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Voorwoord

Een van de momenten die ik me nog kan herinneren van toen ik nog heel klein was,
is het moment waarop ik heb leren lezen. Ik moet een jaar of vijf zijn geweest, ik zat
thuis (we woonden op een boot) en was bezig met het bestuderen van een boek. Ik
begon uiteraard niet met een blanco lei: ik kende alle letters, en ook kon ik al een
aantal woorden lezen (die kende ik gewoon uit mijn hoofd). Maar ik kon nog niet
zomaar een willekeurig woord lezen. Terwijl ik zo bezig met het uitspreken van
woorden die ik al kende en het uitspreken van klanken bij letters die ik nog niet
kende, werd mij plotseling duidelijk wat de bedoeling was. Als ik de klanken van
de letters van een woord snel uitsprak, en tegelijkertijd naar mezelf luisterde, dan
kon ik het woord dat op papier stond verstaan, en dus lezen! Zo verguld was ik met
deze ontdekking, dat ik prompt het hele boekje heb uitgelezen (het was een
kinderboek, dus dat viel nog wel mee).

Deze herinnering heeft een aantal opmerkelijke kenmerken. Een eerste kenmerk is
natuurlijk, dat ik me een gebeurtenis van zo lang geleden nog kan herinneren. Maar
voor mij was het dan ook een belangrijk punt in mijn leven: de mogelijkheid te
kunnen lezen opent zoveel nieuwe mogelijkheden, dat het beginpunt daarvan
natuurlijk memorabel is. Maar een tweede, nog opmerkelijker kenmerk is het alles-
of-niets karakter van de gebeurtenis. In luttele minuten beschikte ik over een
complexe vaardigheid die ik daarvoor nog niet had. Uiteraard was er wel wat
voorwerk nodig om dit moment te kunnen bereiken: de kennis van de letters, het
kunnen lezen van enkele woorden, en natuurlijk de vaardigheid om taal te kunnen
spreken en te kunnen verstaan. Maar het kwam wel samen in dat ene moment.



Voorwoord

Dit proefschrift gaat over dit soort momenten, momenten waarna we opeens veel
meer kunnen dan ervoor. Het zijn deze momenten die ons mensen in staat stellen om
bijna alles was maar leerbaar is ook te leren. En dat maakt het onderzoek ernaar zo
fascinerend, maar tegelijk ook zo moeilijk.

Mijn interesse voor het begrijpen van menselijk denken heeft een lange geschiedenis.
Het is allemaal begonnen met Lego, waarmee je alles kon bouwen wat je fantasie je
ingaf. Geleidelijk kwamen hier motortjes, schakelaars en lichtgevoelige cellen bij, en
voor ik het wist was mijn interesse verschoven naar electronica. Via electronica
kwam ik bij de eerste microcomputers terecht, toen nog dingen die uit een printplaat
bestonden en geprogrammeerd werden door het intypen van getallen. Nadat ik mijn
eerste computer had gekregen (een Commodore PET 2001), was mijn
computertijdperk definitief begonnen. Tijdens mijn studie informatica werd mijn
interesse gevangen door iets dat nég ingewikkelder is dan de computer: de
menselijke hersenen. Uiteindelijk heeft mij dit via psychologie bij de oprichting van
Technische Cognitiewetenschap terecht doen komen, een tak van wetenschap die
alles combineert wat mij interesseert.

Vele mensen hebben, direct of indirect, bijgedragen aan het tot stand komen van dit
proefschrift. John Anderson wil ik bedanken voor wellicht de belangrijkste bijdrage
aan dit proefschrift, de ACT-R theorie. Ook ben ik erg blij dat hij lid is van de
beoordelingscommissie en bereid is voor mijn promotie naar Groningen te komen.
Een ander lid van de beoordelingscommissie, John Michon, heeft niet alleen aan de
wieg gestaan van de studie Technische Cognitiewetenschap, maar heeft ook in de
beginperiode van mijn promotieonderzoek en daarvoor mijn afstudeeronderzoek
een belangrijke invloed gehad om mijn denken over cognitie. Ik ben blij dat hij nu,
aan het einde van het project, er wederom bij betrokken is. Paul van Geert mag ik in
dit kader zeker ook niet vergeten te bedanken, met name omdat hij, ondanks zijn
vele verantwoordelijkheden als onderzoeksdirecteur, de tijd heeft gevonden om met
name mijn beweringen over de ontwikkelingspsychologie kritisch tegen het licht te
houden.

Om tot een goed wetenschappelijk product te komen is het belangrijk om regelmatig
met mensen te discussiéren die met hetzelfde bezig zijn als jezelf. Alexander van den
Bosch, ook een Groninger ACT-R-er van het eerste uur, is een belangrijk voorbeeld
van zo iemand. Daarnaast waren ook anderen uit de ACT-R groep uit Groningen een
belangrijk klankbord: Mark Dekker, Ritske de Jong, Hedderik van Rijn, Pieter de
Vries en Alan White. Ook wil ik in deze context Aladin Akyiirek noemen, die in de
beginperiode van mijn onderzoek een belangrijke discussiepartner was. Aladin was
vaak zo kritisch dat ik er soms bijna moedeloos van werd. Vooral ook omdat hij
meestal gelijk had. Dieter Wallach, die ik in het kader van de ACT-R workshop in
Pittsburgh heb ontmoet, bleek eveneens een goede partner in het onderzoek: delen
van hoofdstuk 6 zijn mede van zijn hand.

Vi
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Niet alleen onderzoeksgenoten hebben belangrijke bijdragen geleverd aan mijn
onderzoek. Met name ook de andere Technische Cognitiewetenschappers zijn door
het creéren van een goede werksfeer onontbeerlijk gebleken. Tjeerd Andringa en
Petra Hendriks, collega’s van het eerste uur, maar ook Tinie Alma, Rineke
Verbrugge, Gerard Vreeswijk, Ronald Zwaagstra, Esther Stiekema, Ben Mulder,
Henk Mastebroek, Frans Zwarts en niet te vergeten Hans van Ditmarsch, die tijdens
zijn vakantie het hele manuscript doorgelezen en becommentarieerd heeft, een taak
die vooruitloopt op zijn functie van paranimf. Ook vallen in deze categorie de
collega’s van de sectie Experimentele en Arbeidspsychologie.

Studenten spelen in veel promotieonderzoeken een belangrijke rol. Annelies
Nijdam, Richard Vos en Thijs Cotteleer hebben elk hun bijdrage geleverd. Daarnaast
zijn er natuurlijk alle TCW-studenten, die met hun enthousiasme, nieuwsgierigheid
en motivatie voor een continu positief achtergrondgeluid zorgen.

Niet alleen collega’s, maar ook vrienden zijn van belang. Evelyn van de Veen heeft
op het laatste moment binnen twee weken het hele manuscript op taalfouten
gecontroleerd, en heeft daarbij een van de laatste hobbels op weg naar de drukker
weggenomen. Alwin Visser, een van de paranimfen, is al tien jaar lang samen met
mijn roeiploeg “Wrakhout” een belangrijke sportieve steun.

Dan kom ik nu bij Linda Jongman. Linda, je valt eigenlijk in alle categorieén. Niet
alleen ben je voor mij persoonlijk heel belangrijk, je hebt ook nog een inhoudelijke
bijdrage geleverd aan dit proefschrift (het experiment op pagina 192-193).
Bovendien was jij altijd de eerste die mijn schrijfwerk aan een kritische blik
onderwierp, en mij waarschuwde als ik met al te onbegrijpelijke schema’s dingen
juist onduidelijker in plaats van duidelijk maakte.

Tenslotte wil ik mijn promotoren, Bert Mulder en Gerard Renardel de Lavalette
bedanken voor de tijd die ze in mijn begeleiding hebben gestoken. De gezamenlijke
gesprekken waren voor mij altijd een bron van inspiratie. Met name voor Bert, die
ondanks zijn ziekte nog al mijn hoofdstukken nauwkeurig bekeken heeft, heb ik
grote bewondering.

Mijn taak zit erop, het is nu aan de lezer om mijn voetstappen in onderzoeksland na
te lopen. Voor degenen die niet de volle tocht willen ondernemen, wil ik de verkorte
route in de vorm van de Nederlandse samenvatting achter in het proefschrift
aanbevelen, aangezien ik mijn best heb gedaan daar een zo begrijpelijk mogelijk
verhaal van te maken.

Groningen, 23 april 1999

Niels Taatgen
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1: Introduction

1.1 The weak method theory of problem solving

Since the birth of cognitive science in the fifties, human problem solving has been
one of its central topics. The marriage between psychology and computer science
proved to be especially fruitful, since simulation of cognitive processing allowed
deeper insights into the empirical data from human participants than was possible
with the now old-fashioned techniques offered by behaviorists. A landmark in
problem solving was Newell and Simon's 1972 book Human Problem Solving.
Newell and Simon show detailed analyses of data collected from human
participants, along with results from computer simulation. The main conclusion of
the book is that human problem solving can be characterized by a small set of
methods. These methods require very little knowledge about a particular problem,
and are therefore sometimes called weak methods. The tie between psychology and
computer science was very strong in this enterprise, since most of the weak
methods were algorithms used in artificial intelligence, the sub-discipline of
computer science most involved with cognitive science.

The weak-method theory pictures problem solving as search in a problem space.
This problem space is a directed graph that has problem states as its nodes, and
problem operators as its vertices. A state represents the current configuration of the
problem, and operators manipulate these configurations. In problem-solving terms,
an operator transforms a current state into a new state. Figure 1.1 shows a simple
example of a problem space, the example of the blocks world. This world consists of
a table and three blocks, and the only possible action is to move one uncovered block
from its current spot to a new spot, either on another block or on the table. Each of
the possible configurations of blocks is a state, and is represented in the figure by a
rounded rectangle. There is one possible operator: moving a block. This operator can
be instantiated in multiple ways, as depicted in the figure by arrows. Suppose the
problem starts with the configuration depicted in the upper-left corner of the figure,
and the goal is to build the pile of blocks depicted in the lower-right corner. Solving
the problem involves selecting a sequence of instantiated operators that transform
the start state into the goal state, in this case moving block A to the table, moving
block B onto block C, and finally moving block A onto block B.

The problem-space view of problem solving transforms the abstract idea of problem
solving into a concrete, easily depictable problem, the problem of deriving the right
sequence of operators to transform the start state of a problem into a goal state. To
actually find this sequence, one of the weak methods can be applied. Which method
is most appropriate depends on the amount and type of knowledge the problem
solver has about the problem. The most simple methods are blind-search methods,
like generate-and-test, depth-first search and breadth-first search. These methods
only assume knowledge about the set of possible states, allowed operators, and the
consequences of these operators. Each method systematically searches the problem
space until it stumbles over a goal state, in which case the problem has been solved.
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Start State

B B | Goal State
C C

Figure 1.1. The problem space of the blocks world. Rounded rectangles represent states, and arrows
represent operators.

Blind-search methods assume that the problem solver has no way of knowing
whether a certain state is close to the goal or which operator can bring it closer to the
goal. This kind of knowledge is called heuristic knowledge, and methods that use
heuristic knowledge are called heuristic methods. The most simple heuristic method
is hill-climbing. Hill-climbing assumes a heuristic function that can estimate the
distance between a state and the goal state. Using this function, the operator that
leads to the most promising new state can be selected. For example, in the blocks-
world problem of figure 1.1 the heuristic function might be the number of blocks that
are in the right place with respect to the goal state.

A more complex method is means-ends analysis. Means-ends analysis involves a
comparison between the goal state and the current state, and the selection of an
operator that reduces the difference. If the selected operator is not applicable in the
current state, a subgoal is created to reach a state in which the desired operator is
applicable. Figure 1.2 shows an example of means-ends analysis: planning a trip
from Groningen to Edinburgh. The most notable difference between Groningen and
Edinburgh is that they are situated in different countries. So an operator is sought
that reduces this difference, in this case flying from Amsterdam to London. This
operator is, however, not applicable in Groningen. So getting from Groningen to
Amsterdam becomes a subgoal, and is solved by taking the train to Amersfoort and
then to Amsterdam. The difference between London and Edinburgh can be found in
the same way. An important advantage of means-ends analysis is its divide-and-
conquer strategy. This aspect is especially important if the problem space is large or
infinite, which is often the case in practice. The disadvantage of means-ends analysis



1: Introduction
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Figure 1.2. Step-by-step creation of a plan to travel from Groningen to Edinburgh

is its requirement of additional knowledge. It must be possible to find differences
between states, differences must be ranked in some way (in the example: a difference
in country is more important than a difference in city), and operators must be keyed
to these differences.

To summarize: for each of the weak methods there is a parallel between the
knowledge needed and efficiency. One would expect that as participants gain more
knowledge in a certain problem domain, they will tend to use more efficient
methods. Jongman (1997) has found some evidence for this hypothesis. In her study,
participants have to find information on the Internet. While a majority of the
participants start using a hill-climbing strategy, many of them switch to means-ends
analysis as they gain experience.

Problems of the weak-method theory

Despite the fact that the weak-method theory offers a systematic framework for
studying problem solving and provides explanations for many aspects of human
problem solving, it leaves a number of questions unanswered. A first problem of the
weak-method theory is that it assumes precise and unambiguous knowledge about
problem states, operators and goals, even for the most simple blind-search
methods. This assumption is correct for many problems used in problem-solving
research, like the towers-of-hanoi, the eight puzzle and blocks-world puzzles.
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Figure 1.3. The nine-dots problem (left) and its solution (right)

Research that stresses the importance of insight in problem solving on the other
hand, uses problems for which this assumption does not hold. A well-known
example is the nine-dots problem (figure 1.3), in which the problem is to connect all
nine dots using four connected lines. The difficult aspect of this problem is the fact
that a solution is only possible if lines are used that extend beyond the borders of
the 3x3 grid of points. In problem-space terms, the problem basically has an infinite
number of possible operators, since there are infinitely many ways to draw a line.
Participants tend to reduce the set of possible operators to operators that just draw
lines between two points of the 3x3 grid. The crucial step in solving the problem is
the realization that this reduction is too severe. So problem solving not only
involves selecting the right sequence of operators, but also finding out what the
operators are, and what they do. The example also shows that re-evaluating the
operators currently used may be part of the problem-solving process.

A second problem is the fact that in many cases not all the activities of a participant
can be explained in terms of clear problem-solving methods. Participants use
multiple strategies for a single problem, skipping between them and inventing new
ones on the fly. People tend to forget results if they can not be used immediately, or
have to use memorization techniques to prevent forgetting things. Finally, and that
is a criticism often quoted, people have the ability to “step out of a problem”, to
reason about their own reasoning (see, for example, Hofstadter, 1979, for an
extensive discussion of this point). Evidence for this kind of meta-reasoning are
exclamations like “This doesn’t work at all”, and “Let’s try something different”.
Although itis not at all clear how extensive meta-reasoning can be, people evidently
use some sort of self-monitoring to prevent them from doing the wrong thing for too
long.

The third problem is that the weak-method theory does not explain how people gain
a higher level of understanding in a certain problem domain. An example of this is
mathematics. In order to be able to solve simple algebraic equations like 2x +3 = 7,
one must master simple arithmetic first. Composite concepts from arithmetic form
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the basic building blocks of simple algebra. Solving 2x +3 = 7, for example, takes at
least four simple arithmetic operators. Experience allows people to collapse these
operators into higher-level operators, so they can solve the equation in just one step.
Mastering simple equations is a prerequisite for more complex mathematics like
differential equations. The idea of several levels of understanding is quite common
in developmental psychology, and stems from the stage theories of Piaget (1952).

The three problems discussed above, although somewhat different in nature, boil
down to the same issue: learning. The problem solving process is not a pure search
process but also includes exploration. Exploration is necessary to learn what the
possible operators are and what they do or to question the operators if they fail to
perform well. Exploration can also derive and refine heuristic knowledge, and find
out what methods and strategies are most suitable for the current problem. To be
able to do this several strategies must be tried and compared. Learning can also
result in higher-level operators and an increase the level of abstraction of the
problem-solving process. Exploration can also attempt to use knowledge from other
domains for solving the current problem.

Problem solving from the viewpoint of skill learning

The main topic of this thesis is to study the learning aspect of problem solving.
While complex problem solving will be the starting and the end point, several tasks
will be discussed that are not strictly problem-solving tasks, unless one adopts
Newell’s claim that any task is a problem-solving task. So the topic is actually
broader and extends to skill-learning in general, with complex problem solving as
the main skill to be studied.

An important theme throughout the thesis will be the distinction between implicit
and explicit learning (Reber, 1967; Berry, 1997). Implicit learning is often defined as
unconscious learning: the learner is unaware of the fact that he or she is learning, and
is unable to recall what is learned afterwards. Increased task performance is the only
indication something is learned. Explicit learning, on the other hand, supposes a
more active role of the problem solver. An example of this type of learning is when
the participant sets explicit exploration goals, or explicitly decides to memorize
aspects of a certain problem because they may be useful for another problem. Both
types of learning are important for problem solving. During search the problem
solver gains information in an implicit fashion, since learning is not the goal but only
a by-product. Search for the solution may be alternated by setting explicit learning
goals that try to combine earlier experiences, perform generalizations, explore other
problem domains, or, on a more mundane level, try to keep partial results active in
memory.

One of the core problems of search as a problem solving method is the fact that
problem spaces are often very large or infinite. The reason for this is that in each state
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there are several possible operators leading to new states. In general, the size of the
problem space grows exponentially with the maximum length of the sequence of
operators. For human purposes, blind, systematic search in an exponential problem
space will only be successful if the sequence of operators is relatively short. If longer
sequences are required, knowledge is needed to offer guidance in the choice of
operators, to retrieve partial sequences used for other problems, or to collapse
several operators into one composite operator. Therefore, the maximum capacity for
solving problems in a certain domain is determined by the knowledge for this
domain extended by a limited amount of search. Actually solving a problem using
search, possibly enhanced by explicit learning, may extend the space of solvable
problems.

Figure 1.4 shows an impression of this idea. The top figure represents the set of all
possible problems, loosely ordered in the sense that more complex problems are at
the top of the rectangle, and less complex problems at the bottom. The horizontal
dimension is used to indicate that problems are related to each other. Some of these
problems can be solved by a particular individual by a relatively simple procedure.
This portion of the set is indicated by the black area at the bottom of the set. Problems
in the grey area require more effort, and need some combinatorial search. Problems
in the white area require so much search that the problem becomes practically
unsolvable.

Problems in the black area take relatively little time. As soon as the grey area is
entered, combinatorial search is needed, which increases the time requirements
exponentially. At some point these time requirements become unpractically high,
marking the beginning of the white area. Learning increases the black area in the set,
sometimes by a single item, sometimes, after generalization, by a substantial area. As
a consequence the border between the grey and the white area also moves outwards,
as indicated by the small arrows in the graph. Take for example the left-most peak in
the figure. This might represent the algebra skill of a certain individual. This
individual is, for example, capable of solving equations without much effort (black
area), able to solve simple problems of integration by trying out several different
methods (grey area), but not proficient in doing double integrations yet (white area).

The time requirements are shown in the graphs at the bottom of the figure. Problems
that can be solved in a direct fashion usually do not require much time. But once the
expertise runs out and combinatorial search is needed, the grey area is entered and
the time requirements increase exponentially with the amount of search needed. Due
to this increase, the time requirements soon exceed practical limitations (white area).
This discussion is of course still very informal. A more formal approach will be
discussed later in this chapter.
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Figure 1.4. Impression of the set possible problems. Some can be solved easily (black area), some
need combinatorial search to find the solution (grey), and others cannot be solved at all. The top
figure outlines the expertise of a certain arbitrary individual who has three areas of expertise.
The small arrows in the top figure indicate the effects of learning. The “peaks” in the figure
indicate areas in which this particular individual is an expert. The two graphs at the bottom
indicate the time to find the solution given the type of search needed and can be seen as a
vertical cross-section of the top figure. The left graph represents a novice, who has to use search
for almost everything, and the right graph represents an expert, who can solve many problems
in a direct way.
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1.2 How to study learning in complex problem solving?

Within cognitive science there are a number of research paradigms to study
learning. The main paradigm to study learning is the experimental paradigm used
in cognitive psychology. A common approach is to present participants with a
sequence of similar problems, and see how their performance improves with
respect to reaction time (latency) and rate of errors. One fundamental law found in
this fashion is the power law of practice, a law that states that regardless what the
task is, the reaction time can be described by the function:

T, =bn® (1.1)

n

In this equation T, is the reaction time for trial 1, and b and a are constants.

Another method often employed in experimental learning research is the search for
dissociation effects. Typical experiments first expose participants to some
information, which is tested at a later time using different types of tests. Typical
examples of dissociations are:

* Ifaparticipant is tested directly after learning, he or she performs equally on test
A and B. If he or she is tested again after a week, performance on test A is the
same, but performance on test B has decreased severely (Tulving, Schacter &
Stark, 1982)

* Performance of a participant suffering from amnesia is equal to a healthy
participant on test A, but much worse on test B (e.g., Morris & Gruneberg, 1994).

Dissociations are often used as evidence for the existence of different memory
systems, for example a separate implicit and explicit memory.

Although experimental work offers many insights in the nature of learning and
memory, the standard experimental paradigm is limited to phenomena that can be
quantified easily in, for example, the power law of practice, or the hypothesis that
implicit and explicit information is stored in separate memory systems. Take, for
example, the power law of practice. The smooth form of the curve suggests learning
is a continuous process. Although this may well be the case, this is not necessarily so.
As noted by, amongst others, Siegler (1996), the smooth curve may have resulted
from averaging several step-functions. Also, a hypothesis about the existence of two
separate memory systems is rather crude, and offers little insight into the necessity
of separate memory systems. As we will see later on in chapter 4, dissociations can
sometimes also be explained using a single memory system.

Because the pure experimental paradigm can only state rather global hypotheses, it
often limits itself to experiments where all participants behave roughly the same.
Participants only tend to behave the same if there is only one way to do things. In
terms of figure 1.4, only problems in the black area are investigated. The grey area,
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however, is the area where interesting learning phenomena with respect to problem
solving can be found. In that area almost all participants will behave differently due
to the exponential number of choices. So it will be much more difficult to state
hypotheses in the usual fashion. As a consequence, participants can no longer be
studied as a group, but must be studied individually. The challenge is to still be able
to make generalizations about the population, despite individual differences.

The paradigm that machine learning offers for the study of learning radically differs
from what is used in experimental psychology. Complexity is the main challenge.
Although many types of algorithms are used, some of which will be reviewed in
chapter 2, the common goal in machine learning is to derive generalized knowledge
from examples, sometimes guided by domain knowledge. The goal is to arrive at an
accurate generalization using the most efficient algorithm. In a typical machine
learning study to judge the quality of a new learning algorithm, a set of examples is
used. For example, in a medical setting, an example contains a number of symptoms
and a diagnosis. The set of examples is split in two parts, a training set and a test set.
The training set is first given to the learning algorithm, which tries to generalize rules
or other representations that can predict a diagnosis from the symptoms. The test set
is then used to judge the correctness of these representations. A new algorithm is
judged to be promising, if its performance on the test set exceeds the performance of
a number of established learning algorithms. Performance is measured by the
number of correct classifications the algorithm makes on the test set, and by the time
it needs to learn the training set.

Machine learning algorithms are quite powerful when judged with respect to
efficiency and quality of classifications. Whether or not the learning of such
algorithms has any similarity to human learning is not considered important. This
does not necessarily mean algorithms from machine learning are useless for
studying human learning, since evolution may well have optimized human learning
in the same way computer scientists try to optimize machine learning. Nevertheless,
machine learning algorithms often make computational assumptions that are not
easy realizable for humans. People can, for example, not learn large databases of
examples easily.

A third domain of cognitive science in which learning is studied is developmental
psychology. Developmental psychology studies changes in behavioral capacities in
children over time. According to some theories these changes can be characterized
by transitions between stages, meaning there are periods with little change and
periods with large changes in capacities. Developmental psychologists are mainly
interested in these changes and their characteristics, and less in the processes that
cause these changes. Studying how a complex skill is learned in several steps can
offer important clues about the nature of the learning processes that cause the
change in skill. Possibly the most cited example is the learning of past tenses
(Rumelhart & McClelland, 1986; Pinker & Prince, 1988; Elman, Bates, Johnson,
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Karmiloff-Smith, Parisi & Plunkett, 1996). The literature often distinguishes three
stages in this particular skill. In the first stage, all past tenses are learned as separate
facts. The second stage is characterized by the discovery of a rule for regular verbs.
This rule is, however, overregularized so that irregular verbs that were used
correctly in the first stage are now put in the past tense using the regular rule. Only
in the third stage the irregular words are recognized and used correctly. Although
this description tells us little about the processes that cause change, it reveals
nevertheless that an interplay between rules and examples is important. We will
come back to this issue in a later chapter.

Since one of the goals of this thesis is to approach learning in problem solving from
an experimental perspective, we have to deal with the problems mentioned earlier.
Alan Newell already noted the limitations of the classical experimental paradigm in
1973, when he wrote his famous paper titled “You can’t play twenty questions with
nature and win”. According to Newell, psychologists investigate cognitive
phenomena. Examples of these phenomena are:

1. recency effect in free recall
2. reversal learning

3. rehearsal
4

imagery and recall

Although these are just four items from Newell’s list of 59, they will discussed more
extensively later in this thesis. All four of them will turn out to be important for
problem solving. Newell’s criticism focuses on the fact that despite the fact that all
these phenomena are researched thoroughly, no clear theory of cognition emerges.
The main type of structures psychology attempts to establish are binary oppositions.
Among these oppositions are the following:

Continuous versus all-or-none learning
Single memory versus dual memory
Existence or non-existence of latent learning

Stages versus continuous development

o &> W N oE

Conscious versus unconscious

Again these examples are picked from a list of 24, and will become important at some
point in the discussion later on. The point Newell tries to make is that resolution of
all these binary oppositions (“20 questions”) will not bring us any closer to a grand
theory of cognition. Fortunately, Newell also proposes three solutions to the
problem, two of which we will discuss here.

A first solution is to create a single system, a model of the human information
processor that can carry out any task. He also proposed a candidate for such a
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system, namely a production system. If a production system would be given the
right set of rules, it should, in principle, be able to perform any experimental task. It
turned out this solution became the main paradigm dominating the rest of Newell’s
work. In 1990, he wrote “Unified Theories of Cognition”, in which he presented his
final proposal for a grand theory of psychology. At that time, the single system idea
had already spread, and other people had been thinking about unification as well.
Anderson’s 1983 book “The Architecture of Cognition” is an example, in which
Anderson presents his ACT* system. The Rumelhart and McClelland 1986 books
“Parallel Distributed Processing” also attempt to bring all types of cognitive
phenomena together in a single paradigm. The single-system approach has two
important aspects: it constrains the researcher in the type of theories he can state, in
the sense that the theory has to fit in the system, and it forces the researcher to be
very precise: the theory has to be simulated within the system. In this thesis I will
also conform to this single-system approach. The system is the ACT-R 4.0 system, a
descendant of ACT?, as described in Anderson & Lebiere (1998). ACT-R and its
competitors will be discussed in detail in chapter 2.

A second solution Newell offers is to analyze a single complex task. This addresses
the problem that psychology often designs its experiments according to the
phenomenon studied, resulting in simple tasks. The choice for a complex task is less
common, because it is very hard to relate results of a complex task to a single
phenomenon. Experiments using complex problems do however offer sufficient
samples of all human cognitive capacities. A possible complex problem is chess.
Chess involves planning, means-ends analysis, all types of learning, mental imagery,
etc. If we were able to know all there is to know how people play chess, would this
not be a big step towards understanding cognition in general? I will also adopt this
second recommendation in this thesis. But in stead of focussing on a single task, I
will focus on a single class of problems: NP-complete problems.

1.3 NP-complete problems

What is a complex problem? There are many ways to give a subjective judgement of
how difficult a problem is. Chess is difficult and tic-tac-toe is easy. Fortunately, there
are more formal ways to categorize problems. A formal approach also requires us to
be more precise on what a problem is. First we will examine how to formally look at
problems and problem solving. Then we will look at what complexity is, and by the
end of the section the class of NP-complete problems will be discussed.

In informal speech, the term problem has two different meanings. We can talk about
a problem as a general category, for instance the problem of deciding the next move
in chess. It is not possible to give an answer to this question, because it depends on
the position on the chessboard. The term problem can also be used in a more specific
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sense: what move should I make on a chess board with the black king at e1, the white
king at e3, and a white rook at a8? In this case a specific answer is possible: move the
white rook to al, checkmate. A problem in the general sense is a set of problems in
the specific sense. To avoid confusion, the formal term problem refers to a problem
in the general sense, and a specific problem is called an instance. This distinction can
roughly be compared to the terms “task” and “trial” in experimental psychology: a
task is a general description of what a participant must do, a trial is a specific
instance of the task.

A formal definition of a problem defines it as a set of instances and a criterion.
“Solving a problem” means that we decide for a particular instance whether or not
it satisfies the criterion. For example, a formal description of the informal problem of
deciding whether there is a forced checkmate for white specifies the set of instances
as the set of all possible configurations of chess pieces on the board, and the criterion
is the yes/no-question of whether a forced checkmate is possible for white. This last
characterization of the criterion is of course still informal: the formal definition
involves all rules of chess. “Solving a problem” in formal terms means we have a
solution for all instances in the set. If the set is finite, the solution may be an
enumeration of all solutions, but usually a solution for a problem is some algorithm
that can decide whether the criterion holds or not. In order to formalize an
informally stated problem, like “what is the best next move in a certain chess
position” it must be stated as a yes/no-question, for example “Is move X in position
Y the best move?”. A solution to this problem is an algorithm that computes this
answer for any possible move and possible position in chess.

To be able to define the complexity of a problem in a meaningful way, it has to have
an infinite set of instances and there must be some way to measure the “size” of an
instance. Unfortunately, the example of chess is not infinite: although the number of
positions is huge, it is nevertheless finite. The game of checkers, which is played both
on an 8 x 8 board and a 10 x 10 board, can be generalized to a problem with an
infinite number of instances by allowing n x n boards.

Very simple problems, however, can have infinite sets of instances. For example, the
problem to decide whether a list is sorted or not has an infinite set of instances. The
size can be defined by the length of the list. Summarizing, a problem can be defined
in the following terms:

* Aset of instances

* A criterion (a yes/no-question about instances)

* Asize function on each of the instances

* Asolution, i.e. an algorithm that can decide whether the criterion holds for a
certain instance.

13
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Now suppose we have some way to find the “best” algorithm to solve a problem.
This “best” algorithm will use computational resources. The amount of resources the
algorithm consumes is an indication of its efficiency. But since it is the best algorithm
for a certain problem, the efficiency of the best possible algorithm defines the
complexity of the problem. So what do we mean by “use of computational
resources”? There are two computational resources, time and (memory) space. Since
the use of these resources is related, time is often the resource an analysis of
complexity focuses on.

Complexity theory uses relative time instead of absolute time. The time it takes a
certain algorithm to solve a problem is expressed in a complexity function, which
maps the size of the instance on the amount of time it takes to solve the problem. This
complexity function gives a much clearer indication of the efficiency of the algorithm
than absolute time can. If a small increase in the size of the instance causes a large
increase in time, the algorithm is inefficient. So, an algorithm with a linear
complexity function is more efficient than an algorithm with a square or exponential
complexity function. Complexity functions can be calculated, if the algorithm is
known, or approximated empirically when the algorithm is too messy or
complicated to analyze.

If we want to know the complexity of a problem, we are looking for an algorithm that
solves this problem and has the best complexity function. So the complexity of a
problem is the lower bound of the complexity of all the algorithms that solve it. Some
problems, like deciding whether an item is in an unsorted list, have only a linear
complexity. The most efficient algorithm is to examine the items in the list one by one
and compare them to the item we seek. The average number of items that has to be
examined is n/2 if the item is in the list, and 7 if it is not in the list (1 is the length of
the list). Other problems have a higher complexity. Problems that have an
exponential time complexity are called intractable. The source of complexity is often
combinatorial: if, for example, n elements must be ordered, the number of possible
ordenings is n!. If there is no systematic way to weed out the major part of these
ordenings, the problem is intractable. In the case of checkers on arbitrarily large
boards (I will not use chess, because it is finite), the number of board positions to be
examined increases exponentially with the number of moves you want to look
ahead. The question if white can win from the first move is decidable in principle,
but not in practice, because there are more possible checkers games than atoms in the
universe.

Why is exponential time complexity intractable, and polynomial complexity
tractable? Because exponential functions grow so much faster than polynomial
functions. This can be illustrated using part of a figure from Garey & Johnson (1979)
that shows the time it takes to solve an instance of a problem of size n, given the fact
that a single operation can be carried out in a microsecond (figure 1.5). One might
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Complexity n=10 n=20 n=30 n=40 n=50 n=60
function

n .00001 .00002 .00003 .00004 .00005 .00006
linear second second second second second second
n? .0001 .0004 .0009 .0016 .0025 .0036
polynomial second second second second second second
nd .1 second 3.2 243 1.7 minutes 5.2 minutes  13.0
polynomial seconds second minutes
on .001 1.0second  17.9 12.7 days 35.7 years 366
exponential second minutes centuries

Figure 1.5. Comparison between a linear, two polynomial and an exponential time complexity
function (from Garey & Johnson, 1979)

argue that some ](;))roblems with a polynomial complexity, especially with a high
exponent (e.g. 12", are also intractable, but in practice these types of complexities
never occur (only in contrived problems).

The consequences of intractability

Intractable problems are interesting candidates for Newell’s idea of a complex
problem that exposes many aspects of human cognition. Since they have an
exponential time complexity, it is impossible to use an efficient procedure that
solves all instances of a problem. It is, however, not always necessary to be able to
solve all instances of a problem, it may be enough to be able to solve a relevant
subset of them. Relevant in this case means that the system somehow has a use for
them. So for any particular intractable problem, we may have a situation similar to
figure 1.4: some instances of the problem, particularly instances with a small size,
can be solved efficiently, some instances need additional search that may require
exponential exploration of cases, and some cases are unsolvable within a reasonable
amount of time. So intractable problems may serve as a miniature but faithful
representative of the case of learning problem solving.

To further improve on the representativeness of example problems, we will narrow
down the set of intractable problems to the set of NP-complete problems, which is in
itself a subset of NP. “NP” is an abbreviation for Non-deterministic Polynomial. A
problem in NP can be solved by a non-deterministic Turing Machine in polynomial
time. Less technically, given an instance of an NP-problem and a path to its solution,
(so not only the yes/no-answer, but also the choices that are made to reach it) it is
possible to check this solution using a tractable algorithm. In summary: finding the
solution may be intractable, but checking it is tractable.
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Although it has technically not yet been proven that NP-complete problems really
are intractable, the general consensus is that they are for all practical purposes
(Garey & Johnson, 1979). In the next section some examples of NP-complete
problems will be examined, showing the broad range of domains they appear in.
Nevertheless they form a tight class due to their completeness-property. This
completeness property means that any NP problem can be transformed into a
particular NP-complete problem by an algorithm of polynomial complexity. So, take
for example the travelling salesman problem, a well-known NP-complete problem.
Due to its completeness property, it is possible to take an instance of another NP-
complete problem, for example resolving a particular ambiguity in a sentence, and
transform this instance into an instance of the travelling-salesman problem. So if you
find an efficient solution for one particular NP-complete problem, you have
automatically found an efficient solution for all of them. Regrettably, this doesn’t
mean that a partial solution (in terms of figure 1.4) will be at all helpful in this matter.
Nevertheless, if it is possible to gain insight into how people partially overcome the
problems of combinatorial explosion with respect to one particular NP-complete
problem by learning, it carries the promise that this learning scheme may also work
for other hard problems.

1.4 Examples of NP-complete problems

NP-complete problems may be very interesting problems to study, but this
endeavor is purely academical if these problems have little to do with real-life
situations. In this section a number of examples of NP-complete problems will be
examined to show that NP-complete problems are part of everyday life. For some of
these problems, for example language, almost everyone is an expert. For other
problems, for example scheduling problems, extensive skill is normally thought of
as the competence of an expert.

Most of the problems discussed here have been catalogued by Garey and Johnson
(1979), together with their basic reference. Most examples explained here require
some answer, instead of just “yes” or “no”. A problem that requires an answer can
almost always be converted to a yes/no question, as I have shown in the case of
chess.

Examples in Planning

A plan is a sequence of actions that achieves a certain goal. Sometimes reaching the
goal is enough, but in other cases additional requirements must be satisfied, like
finding the most efficient sequence. Planning nearly always involves time and
optimizing time. People plan every day, for example how to make coffee, a plan that
requires no search. Other types of planning do require some search, for example to
plan a route through town to go through a shopping list (Hayes-Roth & Hayes-
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Figure 1.6. Example of the travelling-salesman problem (left)

Roth, 1979), or to plan a meal (Byrne, 1977; van den Berg, 1990). Other planning
tasks involve scheduling, for example school and hospital rosters, or planning
symposia (Numan, Pakes, Schuurman & Taatgen, 1990). Computer science has
invested much effort in programs for planning, resulting in different approaches:
hierarchical, non-hierarchical, opportunistic and script-based planners (See
Akytirek, 1992 for an overview).

Most planning problems are intractable unless heavily restricted. We will look at two
intractable problems that are closely related to planning. In the travelling-salesman
problem the task is to find the shortest closed route connecting a set of cities. More
precisely, a number of cities is given and a matrix stating the distance between each
pair of cities. A route is a sequence of cities, and the length of the route is the sum of
the distances between successive cities. Figure 1.6 shows a case of the travelling-
salesman problem with four cities. The thick line indicates the shortest route, which
has a length of 15.

The general problem is NP-complete, but we can imagine a particular salesman, who
always visits a subset of, say, 25 cities, and who has developed his own private
strategy for solving the problem. When this salesman is transferred to another part
of the country, he has only limited use for his experience: he can use some of his old
knowledge, but must devise some new procedures for his new environment.

The travelling-salesman problem obviously is a planning task, and shows much
resemblance to other planning tasks, for example the shopping-task from Hayes-
Roth & Hayes-Roth (1979). It is often easy to prove that a certain planning task is
intractable, using the fact that the travelling-salesman problem is intractable.

A second planning problem is scheduling. In this problem each instance consists of

a set of tasks, each of which has a certain length, a number of workers, a partial order
on the tasks, and an overall deadline. The task is to create a schedule for all the tasks,
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Task

There are two workers,
each having 6 hours
Task A takes 1 hour.
Task B takes 1 hour.
Task C takes 2 hours.
Task D takes 2 hours.
Task E takes 3 hours.
Task F takes 3 hours.

D The schedule has to satisfy
E the following constraints
C has to finish before &
E has to finish before B
F has to finish before B
D has to finish before C

Figure 1.7. Screen shot of an instance of the scheduling problem. In this experiment (discussed in
chapter 3), participants can move around the blocks to create the schedule.

obeying the precedence constraints as specified in the partial order and the deadline.
Figure 1.7 shows an example of an instance of this problem.

Again the general problem is intractable, but particular sub-problems may be
attainable. For example, the timetable of a certain school is always made by a
particular deputy headmaster. Although it takes him two full weeks every year, he
is the only one in the school who can do it at all. Previous experience is the key to
successful problem solving in this case, another indication of the importance of
learning.

Language

Understanding natural language is generally not considered to be problem solving.
However, formal theories of language, especially with respect to grammar or
syntax, use the same terminology as the formal theory of problem solving. For
example, part of the natural language understanding process is concerned with the
question whether a sentence is grammatically correct. In problem-solving terms, the
set of instances is the set of all (finite) sequences of words. The criterion is the
question whether a particular sequence of words is grammatically correct or not.

Part of research in linguistics concerns the construction of grammars and grammar
systems that describe language. The goal of a grammar of a certain natural language
is to be able to produce every grammatical sentence in that language, but no other,
ungrammatical, sentences. A grammar system aims to provide a framework within
which all grammars of natural languages can be fitted. Chomsky (Chomsky &
Miller, 1963) has defined the basic types of grammars: finite-state, context-free,
context-sensitive and unrestricted grammars, called the Chomsky hierarchy.
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Grammars can produce language, but to parse natural language, to decide whether
a certain sentence belongs to the language, an automaton is needed. It can be shown
that each of the four grammar systems from the Chomsky hierarchy corresponds to
a certain type of automaton: finite-state grammars to finite-state automatons,
context-free grammars to push-down automatons, context-sensitive grammars to
linear-bounded automatons and unrestricted grammars to Turing machines.
Chomsky has shown that finite-state grammars are too restricted to be able to
generate a complete natural language. Unrestricted grammars, due to their
connection with Turing machines, are undecidable. This leaves context-free and
context-sensitive as possible formalisms, of which context-free is always considered
a more desirable alternative, because parsing a context-free grammar is tractable.
The important question is whether the generative power of context-free grammars is
enough to generate natural languages.

Barton, Berwick & Ristad (1987) argue this discussion has outlived its usefulness,
and more modern methods must be used. They show that the fact that a grammar is
context-free is no guarantee for efficiency. The generalized phrase structure
grammar system (GPSG), for example, has the seemingly attractive property that
any GPSG can be converted to an equivalent context-free grammar. This suggests
that since context-free grammars can be parsed efficiently, a GPSG can also be

recognized easily. Barton et al. show this argument is misleading, because for a

2m+1
GPSG G of size m the equivalent context-free grammar has in the order of 3"

rules.

Barton et al. propose complexity theory as a replacement for the equivalence-to-
context-free-grammar criterion. It is a much more precise and reliable instrument to
measure the efficiency of a grammar system. They also argue efficiency is an
important criterion for natural language systems: if we have a formal system of a
natural language that uses combinatorial search (an intractable algorithm) where it
is not really necessary, there obviously is some systematic property in the language
that the formal system fails to account for. For nearly all grammar systems used in
linguistics, parsing turns out to be an intractable problem. According to Barton et al.,
this is partly due to intractable properties of language itself, but can often also be
attributed to the formalism: it simply fails to account for certain features of the
language. The unnatural sources of complexity must of course be expelled from the
formalism, but the natural intractable properties can not. They must be accounted
for by what Barton et al. call a performance theory, in which they hint at least some
combinatorial search takes place.

An example of an intractable property of natural language understanding is the
combination of agreement and lexical ambiguity. Agreement refers to two or more
words in a sentence having the same number, gender or other feature, like in
subject/verb agreement. Lexical ambiguity refers to the fact that a single word can

19



1: Introduction

have different functions, as with homonyms. For example, the word “walk’ can be
either a noun or a verb. In the case of a verb, it can be either first or second person
singular or plural. Agreement grammars are simple context-free grammars that can
account for both agreement and ambiguity. However, Barton et al. prove that the
problem of parsing an agreement grammar is NP-complete with respect to the
length of the sentence.

The conclusion is that although care must be taken to avoid unnecessary
intractability in language, it cannot be avoided altogether, and what remains must
be accounted for by a so-called performance theory. This performance aspect is of
course rather problematic. In Chomsky’s theory the performance part of language is
just a degraded version of the “ideal” competence counterpart due to human
limitations. In the theory of Barton et al. performance has a function that can not be
formalized but is nevertheless crucial.

So, even understanding everyday language is in itself already an intractable
problem. Therefore language performance can not be explained purely by a static
syntactic framework. The learning component, as is the case with other intractable
problems, has to be part of the explanation of the human capacity of understanding
language.

Puzzles and games

Research on problem solving is often done on toy problems. Puzzles in which
letters must be replaced by numbers, missionaries and cannibals must be shipped
over a river, problems where blocks must be rearranged by a robot arm, or puzzles
where numbered tiles must be pushed around to get them in sequence. The
problem with each of these problems is to what extent results, either empirical or by
simulation, can be generalized to other domains. Especially in the case of computer
simulation, the fact that a simulation solves a certain problem has no significance,
because a conventional algorithm can do the same job. Even when a convincing
simulation can be made, it is difficult to generalize the results.

Some games are different, however. They go beyond the toy-realm, because they
keep eluding final solutions. Chess, checkers and Go are examples of games that
have a long history of gradual improvement, never reaching perfection. The games
of checkers and Go are intractable when generalized to an n x n board. Although
chess is highly complex, it is not intractable because it can not easily be generalized
to an n x n board, and standard chess games are always finite. Complexity theory
needs some kind of infinity to work with. Other kind of puzzles are also intractable,
for examples fitting words into an n x n crossword puzzle.

So, studying intractable problems is a far greater challenge than working with toy-

problems. They pose a real challenge to problem solving, but with a larger pay-off.
Since no conventional algorithms exist, the fact alone that a system simulating
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human problem solving on an intractable problem can solve certain cases is
significant.

Mathematics

The main and original source of intractable problems is mathematics. Many
problems involving graphs, partitioning, matching, storage, representation,
sequencing, algebra and number theory are intractable (Garey & Johnson, 1979).

One of the most well-known NP-complete problems stems from logic: the
satisfiability problem (SAT) (Cook, 1971). The problem is to find, for a propositional
logic formula, values for the variables so that the formula evaluates to true. A
straight-forward algorithm used to solve SAT is called truth-table checking, which
amounts to checking every possible combination of values for the variables. Since in
propositional logic a variable can have two values, the number of combinations to be
checked is 2", where n is the number of variables. This is obviously an exponential
function, leading to an intractable algorithm.

Another nice property of the problems mentioned here is the fact that they are (with
the possible exception of the language problems) knowledge-lean. That is, they are
already highly complex without needing huge data banks of knowledge to work on.
This makes simulation a lot easier, and the results easier to interpret.

1.5 The limits of task analysis, or: why is learning necessary for
problem solving?

The picture sketched in figure 1.4 is one of gradual change in mastery of a problem
due to learning. But how important is this learning aspect? Suppose we want to
make a task analysis of scheduling. Wouldn't it be useful to constrain the total set of
instantiations of scheduling to a manageable subset, and derive a set of rules and
methods that can account for that subset? More specifically, is it possible to create
an account of how an expert scheduler works, assuming an expert is someone with
a set of methods that is broad enough to render learning superfluous?

Suppose we have a scheduling expert. This expert can solve some instances of
scheduling, but has problems with other instances: these instances take too much
time to solve. For each expert, we can divide the total set of scheduling instances into
two subsets: the instances he can solve and the instances he can not solve. This
boundary is not entirely clear-cut, since the amount of time the expert is willing to
invest in a solution plays a role, but due to the exponential increase in solution time
this willingness for extra effort pushes the boundary only very slightly. There are
many experts of scheduling, each of whom has his own expertise and knowledge of
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scheduling, so each has his own subset of instances he can do and subset of instances
he cannot do. Now suppose we want to find the ultimate scheduling expert. If the
normal expert can solve something, the ultimate expert can do it too, so the set of
instances that the ultimate expert can solve is the union of all sets of solvable
instances of all possible experts.

In order to find the ultimate expert, we now examine a subset of all possible experts,
the experts that can only solve a single instance. If this expert is presented with its
instance of expertise, it gives its memorized answer, but if another instance is
presented, it says it doesn’t know. So, each of these experts has a set of instances it
can solve of just one member. Now, if we take the union of the knowledge of all these
dumb experts, we get the ultimate dumb expert, who happens to know the answer
to any instance of the problem. This is clearly in contradiction with the fact that the
problem is intractable, so we must conclude that the assumption that an ultimate
expert exists must be false.

The conclusion of this formal exercise is that the there are no ultimate experts for
intractable problems. There is always something left to learn, always a new member,
or preferably, a set of members that can be added to the set of items that can be
solved. But, the reply might be, suppose we incorporate this “learning” in the
algorithm. Shouldn’t this algorithm be capable of solving any instance of the
problem, clearly contradicting the fact that it is intractable? The answer is that a
learning algorithm is not an algorithm in the normal sense. A learning algorithm
changes after each instance it has or hasn’t solved, so it defies the usual analyses of
algorithms. A learning algorithm is not a solution to the problem of intractability.
However, it can offer explanations for the fact why intractable problems are only
mildly problematic for people.

The fact that learning is an essential part of problem solving also shows that the
traditional art of task analysis has its limitations. For many problems a task analysis
is impossible, because even experts still learn, and use learning to solve problems.
The usual idea that at some point an expert knows all there is to learn is not true in
general. The same point can be made with respect to linguistics. Viewing language
as a static formal structure that must be discovered by linguistic research is like
trying to make a task analysis of an intractable problem, so it cannot expose the full
extent of language processing.

One of the research approaches to task performance is to get a full account of
performance first, and worry about learning later. The previous analysis shows this
approach will not work for complex tasks. As models discussed later in this thesis
show, task performance is an intricate interplay between learning and performance.
Just focussing on performance will only give a very limited insight into what is going
on.
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If traditional task analysis is an insufficient formal theory of task performance, what
should replace it? Architectures of Cognition have the capability. They are formal
enough to allow general analyses and making predictions, and they incorporate
learning. Instead of focussing on the knowledge of an expert, the focus will be on the
learning mechanisms that allow one to become an expert and that allow experts to
maintain and adapt their knowledge.

1.6 Overview of the rest of the thesis

The goal of this thesis is to gain more insight into skill-learning, in particular
learning of complex problem solving. The way to accomplish this goal is to use a
single theory in the form a cognitive architecture, and to start with a single complex
problem, the scheduling problem. In chapter 2, the discussion is centered around
the topic of the architecture. There are currently four influential architectures of
cognition, Soar, ACT-R, EPIC and 3CAPS. I will first establish some general criteria
to compare these architectures, after which all four architectures will be discussed.

Human problem solving on the scheduling task, discussed in chapter 3, will turn out
to be a puzzle with many pieces. People tend to rehearse and forget things during
problem solving. People discover new strategies if old strategies don’t work. Some
global statistical analysis using multi-level statistics will chart the outlines of the
learning process. A detailed protocol analysis will shed some more light on what is
going on in the reasoning process.

The approach for chapter 4 to 6 will be to study each of the pieces of the puzzle
offered by the experiment using well-known experiments from cognitive
psychology. These tasks will be modeled in ACT-R to gain insight into how the
particular phenomena relate to the cognitive system as a whole. Chapter 4 will pick
up the issue of implicit and explicit learning in general, and rehearsal in particular.
ACT-R offers a new type of explanation for the implicit-explicit distinction by
removing its Newellian binary status and offering a unifying explanation of an
apparent distinction. The bottom line will be that explicit learning can be explained
by learning strategies, general knowledge specifically aimed at the acquisition of
new knowledge.

Chapter 5 further investigates these learning strategies. It tries to offer a rationale for
using a learning strategy, and investigates the representation of learning strategies
in terms of ACT-R. The best domain to study learning strategies is developmental
psychology. The idea is that learning strategies themselves have to be learned, so the
best way to find out more about them is to compare children of different ages. The
chapter ends in modeling two particular learning strategies, and seeing whether
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they are applicable to multiple problems, and whether any evidence can be found for
the fact that the strategies themselves are learned.

Chapter 6 focuses on another discussion with respect to skill learning, whether skills
are learned by generalizing examples into rules, or by just storing and retrieving
examples. The answer will turn out to be that both methods are used, and that the
impact of these methods on performance depends on how useful they are.

In chapter 7, I return to the primary goal of modeling scheduling. Using all of the
insights gained in the smaller projects of chapter 4 to 6, a model will be presented
that is able to solve small scheduling problems and learn from this process in a
human-like fashion. This model can be used to generate verbal protocols of problem
solving, and is able to make some predictions with respect to individual differences.

Chapter 8, finally, is used to draw some conclusions. An overview will be given of
the skill-learning theory developed during the thesis, and some applications of this
theory are discussed. The usefulness and shortcomings of ACT-R will be discussed.
In a sense, the approach used in this thesis will turn out to show close resemblance
to the final theory we will arrive at. But this is as it should be, since figuring out how
learning in complex problem solving works, is in itself also a form of complex
problem solving.
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2: Architectures of Cognition

2.1 What is an architecture of cognition?

Chapter 1 discussed the single system approach to understanding cognition. This
chapter will discuss these systems: architectures of cognition. Cognitive science has
borrowed the term architecture from computer science. Computer scientists use the
term architecture to refer to the aspects of a computer that are relatively fixed: the
hardware and that part of the software that is fixed for all applications.

A typical computer architecture has great flexibility: it is capable of executing an
infinite variety of programs. However, the architecture can pose constraints on
programs. For example, if a computer has a certain amount of memory, it can not run
programs that need more memory than is available. The software part of the
architecture may also pose constraints. For example, in many time-sharing systems
it is impossible to guarantee accurate timing.

Although these limitations may bother many users of computers, they are not
interesting for theoretical computer science. In principle, any computer has the same
capabilities with respect to what kind of functions it can calculate. This is due to the
fact that every computer is equivalent to a universal Turing Machine with respect to
the functions it can calculate, except for the fact that a Turing Machine has an infinite
memory.

According to the famous Church-Turing thesis (Turing, 1936), a universal Turing
Machine can calculate any function that can be calculated at all. A computer
architecture is therefore a platform that is ultimately flexible: given the right
program, it can calculate any function that is computable in principle, given enough
time and memory. The Church-Turing thesis, together with Turing’s thought
experiment called the Turing Test, can be used to argue that human intelligence can
be simulated on a computer (Turing, 1950; Taatgen & Andringa, 1997).

Human cognition is also very flexible. Given enough time, it is capable of learning to
perform almost any task that is feasible at all for people. An important distinction
between computers and people is that people are not programmed in the sense that
computers are. On the other hand, people cannot learn new things out of the blue:
they almost always need prior knowledge. For example, one cannot learn to add
numbers without knowing what numbers are.

This analogy is the basis for the idea of an architecture of cognition. It is the fixed but
versatile basis of cognition. The architecture is capable of performing any cognitive
task, regardless of the domain the task is from. But where is a cognitive architecture
different from a computer architecture, since a computer architecture is already
capable of performing any conceivable task? A first difference is that a computer
runs a program, and a cognitive architecture a model. On the surface, a model is a
kind of program, written in the language of the cognitive architecture. The difference
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is that a program implements an algorithm, an abstract method to solve a problem.
A model is not an algorithm, however, although in some cases it may behave like
one. Rather, it specifies the prior knowledge the system has. So, if the model tries to
explain the behavior of an expert, the knowledge in it may resemble an algorithm,
because experts have effective ways of solving problems. If the model tries to explain
novice behavior on the other hand, it can only specify general knowledge. A model
of a novice has to discover an effective way to do a task itself, by translating
instructions into procedures it can carry out, or by discovering these procedures by
itself.

Another difference concerns the way a cognitive architecture is designed. In
computer science, the architecture is part of the design of a computer. The
architecture is the starting point of the computer. Given the architecture, a VLSI-
designer can implement the architecture on a chip, and programmers can write an
operating system and other software. If you design a better architecture, you get a
better computer. Human cognition is already there, so designing an architecture of
cognition serves a different purpose. Designing an architecture of cognition is like
specifying a theory, a theory of how cognition works. The quality of a cognitive
architecture is not measured in terms of performance, but in terms of the power of
the theory it implements. This difference in purpose is the same as the difference
between artificial and natural languages. An artificial language is defined by its
grammar, while a grammar for a natural language is a theory of the structure of that
language.

The starting point for the human cognitive architecture is the brain. But many
architectures are more abstract than the architecture of the brain. The main point of
discussion is whether or not the grain size of individual neurons is proper for
formulating a theory of cognition. According to connectionists, properties of
individual neurons are crucial for understanding cognitive performance, and an
understanding of how neurons cooperate and learn in different areas of the brain
will be the most fruitful route to an understanding of cognition in general. Others,
often called symbolists, argue that the level of individual neurons is not the right
level to study cognition, and some higher-level representation should be used. The
title of Anderson & Lebiere’s 1998 book The Atomic Components of Thought directly
refers to this issue. But whatever grain-size we choose, we always abstract away
from the biological level of the brain, even if we model neurons in neural networks.

An architecture as a theory

What to expect from a cognitive architecture? Since human cognition is complex, a
cognitive architecture will have to be able to make complicated predictions.
Analytical methods such as the statistics used by most psychologists can be used to
make predictions, but are often limited to linear relationships. Cognition is often
non-linear, making analytical mathematical methods infeasible. If analytical
methods fail, simulation is the next best method to be able to make predictions.
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Figure 2.1. Relationship between theory, architecture, models and cognition

Generally, an architecture is an algorithm that simulates a non-linear theory of
cognition. This algorithm can be used to make predictions in specific domains and
for specific tasks (Figure 2.1).

To be able to make predictions about how people will perform on a specific task, the
architecture itself is not enough. Analogous to the computer architecture, where a
program is needed to perform tasks, a task model is needed to enable an architecture
to simulate something meaningful. Prior knowledge, specified by the model, may be
specific to the task, or may be more general. For example, many psychological
experiments require the participants to perform some very specific task, such as
adding letters as if they were numbers. Such an experiment relies on the fact that
participants know how to add numbers and know the order of the alphabet. A model
of adding letters would involve knowledge about adding numbers, numbers
themselves, letters in the alphabet and knowledge on how to adapt knowledge from
one domain to another. It should not incorporate knowledge about adding letters,
since it is unreasonable to suppose an average participant in an experiment already
has this knowledge. This task-specific knowledge can only be learned during the
experiment, or, in the case of the model, during the simulation.

The way task knowledge is merged with the architecture depends on the nature of
the architecture. In connectionist theories, all knowledge often has to be learned by
a network. To be able to do this, a network has to have a certain topology, some way
in which input is fed into the network, and some way to communicate the output.
Some types of networks also need some supervisor to provide the network with
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Figure 2.2. Research paradigm in cognitive modeling. Adapted from van Someren, Barnard and
Sandberg (1994).

feedback. In neural networks task knowledge is not easy to identify, but is implicit
in the environment the network is trained in. In symbolic architectures knowledge is
readily identifiable, and consists of the contents of the long-term memory systems
the architecture has. Another problem is that it is very hard to give a network any
prior knowledge: one always has to start with a system that has no knowledge at all
yet. In many cases, this is no problem, but it is in learning complex problem solving,
since solving a problem is based to a large extent on prior knowledge.

Regardless of the details, at some point the general theory is combined with task-
specific elements to create a task model. A task model is a system that can be used to
generate specific predictions about behavior with respect to a certain task. These
predictions can be compared to participant data. Figure 2.2 shows the layout of this
paradigm. The consequence of this type of research is that the general theory cannot
be tested directly. Only the predictions made by task models are tested. If the
predictions made by a task model fail to come true, this may be attributed to the
architecture, but it may also be attributed to inaccurate task knowledge or the way
task knowledge is implemented in the architecture. To be able to judge the
achievements of an architecture, there must be some way to generalize over models.

One way to judge the performance of an architecture with respect to a certain task,
proposed by Anderson (1993), is to take the best model the architecture can possibly
produce for that task. Although this is a convenient way, it is not entirely fair.
Suppose we have two architectures, A and B. Given a set of task knowledge,
architecture A can only implement a single task model, while architecture B can
implement ten task models, nine of which are completely off. Although
architecture B may produce the best model, architecture A provides a stronger
theory since it only allows for one model.
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Judging the success of an architecture

Instead of just focussing on successes, an architecture also has to be judged by its
failures. Figure 2.3 shows a schematic impression of this idea, based on Kuipers
(Kuipers & Mackor, 1995). Imagine the set of all conceptually possible cognitive
phenomena. Not all of these conceivable phenomena can actually be witnessed in
reality. For example, in chapter 1 we discussed the power law of practice, but we
might also hypothesize a linear law of practice, or a negative exponential law of
practice. As a consequence, only a subset of the possible phenomena can actually
occur in reality.

When a theory of cognition is proposed, this creates a new subset: the set of
phenomena that are predicted by the theory. In terms of an architecture of cognition
this means that the architecture allows an infinite set of models, each of which
predicts some cognitive phenomena. The union of all these phenomena is the set of
cognitive phenomena that are possible according to the theory. In order to judge the
quality of the theory, we first have to look at the intersection of the “reality-subset”
and the subset predicted by the theory. This intersection represents phenomena that
can be predicted by some model, and can actually occur in reality. Although these
successes are very important, we also have to look at the failures of the theory.
Failures fall into two categories: counter examples, which are phenomena in reality
that cannot be predicted, and incorrect models, phenomena predicted by the theory
that cannot occur in reality. In the discussion about unified theories of cognition the
emphasis is often on the counter examples: are there any phenomena the theory
cannot account for? The other category, incorrect models, often gets less attention.
This is unfortunate, because incorrect models pose a much bigger problem to
architectures of cognition than counter examples.
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Figure 2.4. Possible instantiations of figure 2.3

The reason why incorrect models are a big problem is due to the Church-Turing
thesis mentioned earlier. According to this thesis, any computable function can be
computed by a general purpose machine such as the Turing Machine. This implies
that, theoretically, any sufficiently powerful computer architecture can implement
both all possible correct and all possible incorrect models. Figure 2.4 illustrates this
implication: a general purpose architecture can, in principle, model any cognitive
phenomenon. In terms of a theory of cognition: an “empty” theory can predict
anything. So, the goal of designing a cognitive architecture is not to give it as much
features as possible, but rather to constrain a general purpose architecture as much
as possible so that it can only implement correct cognitive models. In practice, as
shown in figure 2.4, a typical architecture can produce many incorrect models, but
generally produces good models. Constraining the general computer architecture
may have an undesired side-effect in the sense that phenomena that could
previously be explained are now unreachable.

A cognitive theory in the form of an architecture is not a theory in the sense of
Popper (1959), but more like a research program in the sense of Lakatos (1970).
According to Popper a good theory is a theory that can be refuted. As we have seen,
only predictions by models can be refuted directly. Only the claim that an
architecture is an ideal architecture, in the sense of figure 2.4, can be refuted by
exposing an incorrect model or producing a counter example. In Lakatos’s view of
science, scientists work in research programs. A research program consists of a set of
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core ideas and a paradigm to do research. The core ideas of a research program are
generally not disputed within the program, and researchers will continue working
within a certain program as long as the paradigm keeps producing encouraging
results. In the research program view, the architecture can be viewed as the core idea
of a research program. Creating models of cognitive phenomena is part of the
research paradigm. Another part of the research paradigm is a methodology to test
models. When is a model considered to be a “correct” model?

Matching model predictions with experimental data

To consider a model of a cognitive task as a faithful model of human performance, it
is not sufficient that it can perform the task. A model has to perform the task in the
same manner as a participant. In order to be able to make this comparison, we have
to compare data from an experiment with the output of a model. Ideally, a model
produces data that can be directly compared to participant data. Measures that are
used often in psychological experiments are reaction times and accuracies. Models
should at least be capable of making predictions in terms of these measures. Some
architectures, like ACT-R, are capable of making direct predictions about reaction
times. Other architectures only indicate a correspondence between steps or cycles in
the system and time. In these type of architectures only relative time between
different types of problems or trials can be compared to the data. Accuracy is often
measured by the rate of correct responses or by the percentage of items recalled.
Not all architectures can model all aspects of accuracy. An architecture like Soar, for
example, is only interested in errors that result from incomplete or inconsistent
knowledge. So errors due to “slips” or forgetting are not considered interesting in
the view of the Soar theory.

Since cognitive models give a detailed account of how a task is performed, they
make it possible to do more elaborate testing than just reaction times and accuracies.
If a trial consists of a number of operations before the response can be given, an
attempt can be made to determine the individual latencies of the separate
operations, for example by registering eye movement. Reaction times and accuracies
tend to change over time, mainly due to learning. The influence of learning can only
be disregarded in cases where the task is very simple or the participant is trained
exhaustively. Most architectures can account for learning, so should be able to model
effects of learning on performance.

The quality of the predictions of a model is often expressed using the R? measure,
the proportion of variance the model can explain. Suppose we have an experiment
that produces n data points, so for example a free-recall experiment in which 20
words can be recalled, we have 20 percentages, one for each of the words, so n=20.
The experiment produces data points (data;) that have an average of data. The model
makes a prediction of these data points (model;). The explained variance can now be
calculated using the following equation:
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An R? of 0.90 or higher is generally considered good, while an R? of 0.80 or lower is
suspect. In that case there is some source of variance that is left unexplained by the
model.

Although the R? measure gives a rough estimate of the quality of the model, it does
not take into account a number of factors. A first point to consider is the relation
between the number of predicted values and the number of parameters that a model
uses to make its predictions. If a model needs to tweak 20 parameters in order to be
able to predict 20 data points, it is clearly not a good model, regardless of the
proportion of variance it can explain. A second point is that this measure only
considers the data points from the experiment as averages. As a consequence, any
individual differences are discarded. This is no problem if all participants basically
behave the same and individual differences are only due to noise that cannot be
accounted for. The R? measure, however, doesn’t capture any systematicity within
the behavior of single participants.

One way to take into account that participants differ in their choices is to use a
technique called model tracing. Anderson, Kushmerick and Lebiere (1993) used
model tracing to assess a model of a route planning task. For each individual
participant at each point of the problem solving process they compared the choice of
the participant to the choice of the model at that point. If both choices agreed they
allowed the model to continue to the next step. If there was no agreement, the model
was forced to take the same step the participant took. In this particular experiment,
it turned out that there was an agreement of 67% between the participant’s choice
and the model’s choice. In 20% of the cases, the participant’s choice was the second-
best choice of the model. This agreement turned out to be quite good when
compared to random-choice and hill-climbing strategies, and to be quite similar to
individual differences between participants.

Although model tracing allows the scoring of models in which participants have to
make a number of choices in each trial, it still provides no account of individual
differences. The model of the task is still a generic model. To really account for
individual differences, a generic model must be made that can be instantiated for
each individual participant. An example is a model of a working memory task by
Lovett, Reder and Lebiere (1997). The model can explain individual differences by
varying a single parameter in the generic model.
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In summary, a good model is a model that can approximate as many data points as
possible using as few parameters as possible. In tasks with large individual
differences, a model that can explain individual differences by varying parameters
is better than a model that reproduces averages.

2.2 An overview of current architectures

In this section I will review four popular architectures of cognition, all of which
have been reasonably successful in modeling various cognitive phenomena. The
four architectures to be discussed, Soar, EPIC, 3CAPS and ACT-R, are all either pure
symbolic or hybrid architectures. This means all of them share the idea that symbols
are the right grain-size to study cognition. However, a pure symbolic theory
assumes the underlying neural structure is irrelevant, while a hybrid theory argues
that subsymbolic processing plays an important role.

Soar

The Soar (States, Operators, And Reasoning) architecture, developed by Laird,
Rosenbloom and Newell (1987; Newell, 1990; Michon & Akytirek, 1992), is a
descendant of the General Problem Solver (GPS), developed by Newell and Simon
(1963). Human intelligence, according to the Soar theory, is an approximation of a
knowledge system. Newell defines a knowledge system as follows (Newell, 1990,
page 50):

A knowledge system is embedded in an external environment, with which it
interacts by a set of possible actions. The behavior of the system is the sequence
of actions taken in the environment over time. The system has goals about how
the environment should be. Internally, the system processes a medium, called
knowledge. Its body of knowledge is about its environment, its goals, its actions,
and the relations between them. It has a single law of behavior: the system takes
actions to attain its goals, using all the knowledge that it has. This law describes
the results of how knowledge is processed. The system can obtain new
knowledge from external knowledge sources via some of its actions (which can
be called perceptual actions). Once knowledge is acquired it is available forever
after. The system is a homogeneous body of knowledge, all of which is brought
to bear on the determination of its actions. There is no loss of knowledge over
time, though of course knowledge can be communicated to other systems.

According to this definition, the single important aspect of intelligence is the fact that
a system uses all available knowledge. Errors due to lack of knowledge are no failure
of intelligence, but errors due to a failure in using available knowledge are. Both
human cognition and the Soar architecture are approximations of an ideal intelligent
knowledge system. As a consequence, properties of human cognition that are not
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part of the knowledge system approach are not interesting, and are not accounted
for by the Soar architecture.

The Soar theory views all intelligent behavior as a form of problem solving. The basis
for a knowledge system is therefore the problem-space computational model (PSCM), a
framework for problem solving based on the weak-method theory discussed in
chapter 1. In Soar, all tasks are represented by problem spaces. Performing a certain
task corresponds to reaching the goal in a certain problem space. As we have seen in
chapter 1, the problem solving approach has a number of problems. To be able to
find the goal in a problem space, knowledge is needed about all possible operators,
about consequences of operators and about how to choose between operators if there
is more than one available. Soar’s solution to this problem is to use multiple problem
spaces. If a problem, “impasse” in Soar terms, arises due to the fact that certain
knowledge is lacking, resolving this impasse automatically becomes the new goal.
This new goal becomes a subgoal of the original goal, which means that once the
subgoal is achieved, control is returned to the main goal. The subgoal has its own
problem space, state and possible set of operators. Whenever the subgoal has been
achieved it passes its results to the main goal, thereby resolving the impasse.
Learning is also keyed to the subgoaling process: whenever a subgoal has been
achieved, new knowledge is added to the knowledge base to prevent the impasse
that produced the subgoal from occurring again. So, if an impasse occurs because the
consequences of an operator are unknown, and in the subgoal these consequences
are subsequently found, knowledge is added to Soar’s memory about the
consequences of that operator.

In the same sense as the PSCM is a refinement of the idea of a knowledge system, the
PSCM itself is further specified at the symbolic architecture level, the Soar
architecture itself. Figure 2.5 shows an overview of the architecture, in which buffers
and memory systems are represented by boxes, and processes that operate on or
between these systems by arrows. Except for sensory and motor buffers, which are
not modeled explicitly, Soar has two memory systems: a working memory and a
production memory. Working memory is used to store all temporary knowledge
needed in the problem solving process. The primary data structure in working
memory is the goal stack, which stores all current goals in a hierarchical fashion.
Tied to each of the goals on the stack is the current state of the problem space related
to that particular goal, and, if present, the current operator.

An example of the goal stack at a particular moment in a particular task is shown in
figure 2.6 (Lehman, Lewis, Newell & Pelton, 1991). The task is language
comprehension. Each triangle represents a goal with an associated problem space.
The small squares, diamonds and circles represent states, and the arrows between
them operators. The impasse-subgoal process is represented by the question mark
and the dotted arrow to a subgoal. The theory behind this model assumes that
sentence comprehension involves reading a sentence word-by-word. During the
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reading process a representation of the meaning of the sentence is assembled. So, at
the top problem space, the goal is to comprehend a sentence. This goal is
accomplished by alternating two operators: an attend operator, which reads the next
word, and a comprehension operator, which augments or updates the current
interpretation of the sentence. Comprehending a word is generally not possible in a
single step, so after the comprehend operator is selected, an impasse will occur. This
impasse generates the language subgoal, which tries to update the current
interpretation of a sentence given a new word. The language subgoal has several
operators to do this. A word can simply be linked in the interpretation. Sometimes a
new word refers to a word read earlier, making it necessary to find the word referred
to. In other cases the interpretation built earlier is wrong, and has to be
reconstructed. The language space often offers too many choices to link words to
each other, so a third subgoal, the constraint goal, is needed to create constraints on
the possible linkings. This constraint space uses syntactic and semantic constraints
to help making the choice. To find semantic constraints, it is sometimes necessary to
use general world knowledge, which is found using the fourth and final subgoal, the
semantics goal.

All knowledge needed for problem solving is stored in production memory in the
form of rules. Although all knowledge is stored in production rules, they do not have
the same active role production rules usually have. A rule in Soar cannot take actions
by itself, it may only propose actions. So if Soar is working on a certain goal and is
in a certain state, rules may propose operators that may be applied in the current
state. Other rules may then evaluate the proposed operators, and may add so-called
preferences to them, for example stating that operator A is better than operator B.
The real decisions are made by the decision mechanism. The decision mechanism
examines the proposals and decides which proposal will be executed. The decision
mechanism is actually quite simple. If it is possible to make an easy decision, for
example if there is just one proposal or preferences indicate a clear winner, it makes
this decision, else it observes an impasse has been reached and creates a subgoal to
resolve this impasse. So, the problem of choice in Soar is not handled at the level of
individual production rule firings, which are allowed to occur in parallel, but at the
level of the proposals of change made by these rules. The learning mechanism in
Soar is called chunking.

As mentioned before, learning is keyed to impasses and subgoaling. Whenever a
subgoal is popped from the goal stack, Soar creates a new production rule with a
generalization of the state before the impasse occurred as the condition, and the
results of the subgoal as the action. Dependent on the nature of the impasse, this new
rule may propose new operators, create preferences between operators, or
implement operators or do other things.

In the language comprehension example discussed earlier learning occurs at all
levels of the model. At the level of the comprehension problem space, Soar may learn
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a production rule that implements the comprehension operator for a specific word
in a specific context. But Soar may also learn a production rule in the constraints
problem space to generate a semantic constraint on possible meanings of a sentence.

The knowledge system approach of Soar has a number of consequences. Because not
all aspects of human cognition are part of the knowledge system approximation,
some aspects will not be part of the Soar theory, although they contribute to human
behavior as witnessed in empirical data. Another property of the Soar system is that
all choices are deliberate. Soar will never make an arbitrary choice between
operators, it either knows which operator is best, or it will try to reason it out. Since
intelligence, according to the knowledge system definition, can only involve
choosing the optimal operator based on the current knowledge, it does not say much
about what the system has to do in the case of insufficient knowledge.

An aspect of human memory that is not modeled in Soar is forgetting. According to
the knowledge-system view this is a deviation from ideal intelligence, a weakness of
the human mind. This rules out the possibility that forgetting has a function, for
example to purge the memory from useless information, allowing for better access
to useful information. An error such as choosing a sub-optimal strategy is also
considered as aberration of rationality, and is therefore not part of Soar. To
sometimes favor a sub-optimal strategy over the optimal strategy may on the other
hand have advantages. Maybe one of the sub-optimal strategies has improved due
to an increase in knowledge or a change in the environment, and has become the
optimal theory. In many situations, the only way to discover how optimal a strategy
is, is to just try it sometimes.

Since Soar’s behavior deviates from human behavior with respect to aspects that are
not considered rational by the Soar theory, the Soar architecture can only make
predictions about human behavior in situations where behavior is not too much
influenced by “irrational” aspects. Another consequence of the fact that Soar only
models rational aspects of behavior is the fact that its predictions are only
approximate. An example is Soar’s predictions about time. A decision cycle in Soar
takes “~~100 ms”, where “~~" means “may be off by a factor of 10”. So in a typical
experiment Soar’s predictions have to be determined in terms of the number of
decision cycles needed, while the data from the experiment have to be expressed in
terms of reaction times. If both types of data show the same characteristics, for
example if both show the power law of practice, a claim of correspondence can be
made.

One of the strong points of Soar is its parsimony. Soar has a single long-term

memory store, the production memory, and a single learning mechanism, chunking.
Soar also adheres to a strict symbolic representation. The advantage of parsimony is
that it provides a stronger theory. For example, since chunking is the only learning
mechanism, and chunking is tied to subgoaling, Soar predicts that no learning will
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occur if there are no impasses. In a sense Soar sets an example: if one wants to
propose an architecture with two long-term memory stores, one really has to show
that it can not be done using just one.

ACT-R

The ACT-R (Adaptive Control of Thought, Rational) theory (Anderson, 1993;
Anderson & Lebiere, 1998) rests upon two important components: rational analysis
(Anderson, 1990) and the distinction between procedural and declarative memory
(Anderson, 1976). According to rational analysis, each component of the cognitive
architecture is optimized with respect to demands from the environment, given its
computational limitations. If we want to know how a particular aspect of the
architecture should function, we first have to look at how this aspect can function as
optimal as possible in the environment. Anderson (1990) relates this optimality
claim to evolution. An example of this principle is the way choice is implemented in
ACT-R. Whenever there is a choice between what strategy to use or what memory
element to retrieve, ACT-R will take the one that has the highest expected gain,
which is the choice that has the lowest expected cost while having the highest
expected probability of succeeding.

The principle of rational analysis can also be applied to task knowledge. While
evolution shapes the architecture, learning shapes the knowledge and parts of the
knowledge acquisition process. Instead of only being focused on acquiring
knowledge per se, learning should also aim at finding the right representation. This
may imply that learning has to attempt several different ways to represent
knowledge, so that the optimal one can be selected.

Both Soar and ACT-R claim to be based on the principles of rationality, although
they define rationality differently. In Soar rationality means making optimal use of
the available knowledge to attain the goal, while in ACT-R rationality means optimal
adaptation to the environment. Not using all the knowledge available is irrational in
Soar, although it may be rational in ACT-R if the costs of using all knowledge are too
high. On the other hand ACT-R takes into account the fact that its knowledge may
be inaccurate, so additional exploration is rational. Soar cannot handle the need for
exploration very well, since that would imply that currently available knowledge is
not used to its full extent.

The distinction between procedural and declarative memory is studied quite
extensively in psychology. Although one should be careful to map distinctions from
psychology onto cognitive architectures directly, the best way to explain this
distinction is to assume different representations and different memory systems. The
disadvantage of this differentiation is that the architecture becomes less simple than
an architecture with only a single memory system, like Soar. On the other hand,
ACT-R has no separate working memory and instead uses declarative memory in
conjunction with an activation concept to store short-term facts. To keep track of the
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Figure 2.7. Overview of the ACT-R architecture

current context, ACT-R uses a goal stack. The top element of the goal stack is called
the focus of attention, a pointer to an element in declarative memory that represents
the current goal. New goals can be pushed onto the goal stack, and the current goal
can be popped (removed) from the stack. Figure 2.7 shows an overview of the
processes and memory systems of ACT-R. In an appendix to this chapter, some
practical aspects of using the ACT-R simulation system will be discussed.

ACT-R’s symbolic level

ACT-R comprises two levels of description: a symbolic and a subsymbolic level. On
the symbolic level representations in memory are discrete items. Processing at the
symbolic level entails the recognize-act cycle typical for production systems, with
declarative memory fulfilling the role of working memory. Declarative memory
uses so-called chunks to represent information. A chunk stores information in a
propositional fashion, and may contain a certain fact, the current or previous goals,
as well as perceptual information. An example of a goal chunk, in which two has to
be added to six and the answer has not yet been found, is:

GOAL23
ISA ADDITION
ADDEND1 SIX
ADDEND2 TWO
ANSWER NIL

In this example, ADDEND1, ADDEND2 and ANSWER are slots in chunk GOAL23,
and SIX and TWO are fillers for these slots. SIX and TWO are references to other
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chunks in declarative memory. The ANSWER slot has a value of NIL, meaning the
answer is not known yet.

Assume that this chunk is the current goal. If ACT-R manages to fill the ANSWER
slot and focuses its attention on some other goal, GOAL23 will become part of
declarative memory and takes the role of the fact that six plus two equals eight.
Later, this fact may be retrieved for subsequent use.

Procedural information is represented in production memory by production rules.
A production rule has two main components: the condition-part and the action-part.
The condition-part contains patterns that match the current goal and possibly other
elements in declarative memory. The action-part can modify slot-values in the goal
and can create subgoals (and some other actions we will not discuss in detail here).
A rule that tries to solve a subtraction problem by retrieving an addition chunk
might look like:

IF the goal is to subtract num2 from  numl and there is no answer
AND there is a addition chunk num2 plus  num3 equals  numl
THEN put num3 in the answer-slot of the goal

This example also shows an important aspect of production rules, namely variables.
Num1, num2 and num3 are all variables that can be instantiated by any value. So this
rule can find the answer to any subtraction problem, if the necessary addition chunk
is available.

ACT-R’s subsymbolic level

The symbolic level provides the basic building blocks of ACT-R. Using this level
only already allows for several interesting models for tasks in which a clearly
defined set of rules has to be applied. The symbolic level leaves a number of details
unspecified, however. The main topic that it delegates to the subsymbolic level is
choice. Choices must be made when there is more than one production rule that can
match, or when there is more than one chunk that matches a pattern in a production
rule. Other matters that are taken care of by the subsymbolic level are accounts for
errors and forgetting, as well as the prediction of latencies.

At the subsymbolic level each rule or chunk has a number of parameters. In the case
of chunks, these parameters are used to calculate an estimate of the likelihood that
the chunk is needed in the current context. This estimate, called the activation of a
chunk, has two components: a base-level activation that represents the relevance of the
chunk by itself, and context activation through association strengths with fillers of the
current goal chunk. Figure 2.8 shows an example in the case of the subtraction
problem 8-2=?. The fact that eight and two are part of the context increases the
probability that chunks associated with eight and two are needed. In this case 2+6=8
will get extra activation through both two and eight. The activation process can be
summarized by the following equation:
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Figure 2.8. Example of spreading activation in ACT-R. The current goal is Goal405, which
represents the subtraction problem 8-2=?. The context consists of Goal405 and the numbers
eight and two. Context elements are sources of spreading activation. In this example they give
extra activation to Goal23, an addition fact that can be used to find the answer to the subtraction.
Spreading activation is indicated by dotted arrows.
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In this equation, A; is the total activation of chunk i. This total activation has two
parts, a relatively fixed base-level activation (B;) and a variable part determined by
the context (the summation). The summation adds up the influences for each of the
elements in the current context. Whether or not a chunk is part of the current
context is represented by Wi if a chunk is part of the context, W=W/#, otherwise
W;=0. n is the total number of chunks in the context and W is some fixed ACT-R
parameter which usually has a value of 1. The S;; values represent the association
strengths between chunks.

The activation level of a chunk has a number of consequences for its processing. If
there is more than one chunk that matches the pattern in a production rule, the
chunk with the highest activation is chosen. Differences in activation levels can also
lead to mismatches, in which a chunk with a high activation that does not completely
match the production rule is selected. Such a chunk can be matched anyway, at an
activation penalty, by a process called partial matching. Finally activation plays a
role in latency: the lower the activation of a chunk is, the longer it takes to retrieve it.
This retrieval time is calculated using the following equation:

Time,, = Fe ' AT (2.3)
Since a chunk is always retrieved by a production rule, this equation expresses the
time to retrieve chunk i by production rule p. Besides the activation of the chunk,
the strength of the production rule (S,) also plays a role. The F and f parameters are
fixed ACT-R parameters, both of which default to 1. As the sum of activation and
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strength decreases, the time to retrieve a chunk grows exponentially. To avoid
retrieval times that exceed the order of a second, a retrieval threshold is defined.
Chunks with an activation value below the threshold cannot be retrieved.

Choices between production rules are determined by estimates of their expected
gain. To be able to calculate the expected gain of a certain rule, several parameters
are used to make an estimate. The main equation that governs this estimate is:

Estimated Gain for productionp = P,G-C, (2.4)

In this equation P is the estimated probability of reaching the goal using
production rule p, G is the value of the goal, and C, the estimated cost of reaching
the goal using p. The unit of cost in ACT-R is time. Suppose we are willing to spend
10 seconds on a certain goal (G=10), and suppose there are two production rules p1
and p2, and p1 reaches the goal 60% of the time (P,; = 0.6) in 2 seconds on average
(Cpy = 2).Similarly, P, = 0.8 and C, = 5. In that case the expected gain of p1 is 4,
and the expected gain of p2 is 3. So, p1 is selected in favor of p2, since its expected
gain is higher. To be able to estimate all these values, ACT-R maintains a number of
parameters with each production rule. Besides parameters to calculate the expected
gain, production rules also have a strength parameter, comparable to activation of
chunks. The strength parameter is another component that determines the latency of
firing a production: productions with a higher strength take less time to match
(equation 2.3).

Learning in ACT-R

While ACT-R has two distinct memory systems with two levels of description,
distinct learning mechanisms are proposed to account for the knowledge that is
represented as well as for its parameters. At the symbolic level, learning
mechanisms specify how new chunks and rules are added to declarative and
procedural memory. At the subsymbolic level, learning mechanisms change the
values of the parameters. Objects are never removed from memory, although they
may become virtually irretrievable.

A new chunk in declarative memory has two possible sources: it either is a
perceptual object, or a chunk created internally by the goal processing of ACT-R
itself. ACT-R’s internally created chunks are always old goals, as exemplified by the
ADDITION-goal discussed earlier. Any chunk in declarative memory that has not
originated from perception has once been the current goal in ACT-R.

Learning new production rules is a more intricate process. Production rules are
learned from examples. These examples are structured in the form of a dependency
chunk. A dependency is a special type of chunk, which points to all the necessary
components needed to assemble a production rule. Figure 2.9 shows the
dependency structure necessary for the subtraction rule. In this example, three slots
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Figure 2.9. Example of the declarative structure needed to learn the subtraction production. In this
case, the dependency has three filled slots: the original goal, the modified goal in which the
answer slot is filled, and a constraint, an old addition goal that was used to calculate the answer

of the dependency are filled: the goal slot contains an example of a goal in which the
answer slot is still empty (nil), and the modified slot has an example of the same goal,
but now with its answer slot filled. The constraints slot contains the fact that has been
used to transform the original goal into the modified goal. Since a dependency is a
chunk that obviously is not a perceptual chunk, it must be an old goal. In order to
learn a new rule, a dependency goal must be pushed onto the goal-stack. After
processing, the dependency is popped and the production compilation mechanism
(in former versions of ACT-R called analogy) generalizes the dependency to a
production rule. This scheme for production rule learning has two important
properties: it is dependent on declarative memory, and assembling a rule is a goal-
driven process.

Since the parameters at the subsymbolic level estimate properties of certain
knowledge elements, learning at this level is aimed at adjusting the estimates in the
light of experience. The general principle guiding these estimates is the well known
Bayes’ Theorem (Berger, 1985). According to this principle, a new estimate for a
parameter is based on its prior value and the current experience.

The base-level activation of a chunk estimates the probability that it is needed,
regardless of the current context. If a chunk was retrieved a number of times in the
immediate past, the probability that it will be needed again is relatively high. If a
chunk has not been retrieved for a long time, the probability that it will be needed
now is only small. So, each time a chunk is retrieved, its base-level activation should
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go up, and each time it is not used, it should go down. This is exactly what the base-
level learning mechanism does: it increases the base-level activation of a chunk each
time it is retrieved, and causes it to decay over time. The following equation
calculates the base-level activation of a chunk:

Bi(t) = Iogz (O 25)

i=1

In this formula, 7 is the number of times a chunk has been retrieved from memory,
and t; represents the time at which each of these retrievals took place. So, the longer
ago a retrieval was, the less it contributes to the activation. d is a fixed ACT-R
parameter that represents the decay of base-level activation in declarative memory
(default value=0.5).

The other parameters are estimated in a similar fashion. For example, the probability
of success of a production rule goes up each time it leads successfully to a goal, and
goes down each time the rule leads to failure.

EPIC

Soar and ACT-R focus on central cognition. The EPIC (Executive-Process Interactive
Control) architecture (Meyer & Kieras, 1997) instead stresses the importance of
peripheral cognition as a factor that determines task performance. This stress on
peripheral cognition is immediately apparent in the overview of EPIC in figure 2.10.
Except for the cognitive processor with its associated memory systems, the main
focus of the other three architectures discussed in this chapter, EPIC provides a set
of detailed perceptual and motor processors. In order to study the role of perceptual
and motor processors, it is also necessary to simulate a highly detailed task
environment. The perceptual modules are capable of processing stimuli from
simulated sensory organs, sending their outputs to working memory. They operate
asynchronously, and the time they require to process an input depends on the
modality, intensity and discriminability of the stimulus. The time requirements of
the perceptual modules, as well as other modules, are relatively fixed, and serve as
an important source of constraints.

EPIC’s cognitive processor is a parallel matcher: in each cycle, which takes 50 ms,
production rules are matched to the contents of working memory. Each rule that
matches is allowed to fire, so there is no conflict resolution. It is up to the modeler to
prevent this parallel firing scheme from doing the wrong thing. Whereas both Soar
and ACT-R have a production firing system that involves both parallel and serial
aspects, EPIC has a pure parallel system of central cognition. As a consequence, EPIC
predicts that serial aspects of behavior are mainly due to communication between
central and peripheral processors and structural limitations of sense organs and
muscles. Corresponding to this idea that processing bottlenecks are located in the
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Figure 2.10. Overview of the EPIC architecture (from Meyer & Kieras, 1997)

periphery, EPIC has no goal stack in the sense of Soar and ACT-R. EPIC can
represent multiple goals in a non-hierarchical fashion, and these goals can be
worked on in parallel, provided they do not need the same peripheral resources. If
they do, as is the case in experiments where participants have to perform multiple
tasks simultaneously, executive processes are needed to coordinate which of the
goals belonging to the tasks may access what peripheral processors. Because EPIC’s
executive processes are implemented by production rules, they do not form a
separate part of the system. EPIC’s motor processors coordinate muscle commands.
Movements are carried out in two phases: movement preparations and movement
execution. During the execution of a movement the next movement can be prepared.

An important aspect of EPIC’s modular structure is the fact that all processors can
work in parallel. Once the cognitive processor has issued a command to the ocular
motor processor to direct attention to a spot, it does not have to wait until the visual
processor has processed a new image. Instead, it can do something else. In a dual-
task setting the cognitive processor may use this extra time to do processing on the
secondary task. Although all the possibilities for parallel processing increase the
flexibility of the architecture, it doesn’t offer many constraints. The modeler has a
choice between creating a very clever parallel model and a pure serial model of a task
by providing other executive production rules. This can only be justified if it can be
shown that participants exhibit both types of behavior. In a sense, what was one of
the virtues of Soar is one of the vices of EPIC: its lack of parsimony. Another
drawback of EPIC as a cognitive modeling tool, is that it does not incorporate
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learning. As has been discussed in chapter 1, it can be doubted whether information
processing and learning can be studied separately.

3CAPS

While EPIC proposes that most constraints posed on the architecture are due to
structural limitations of sense organs and muscles, 3CAPS (Just & Carpenter, 1992)
proposes limitations on working-memory capacity as the main source of
constraints. 3CAPS has a working memory, a declarative memory and a procedural
memory. As in ACT-R, memory elements have activation values. As long as the
activation of an element is above a certain threshold, it is considered part of
working memory and can be accessed by production rules. Capacity theory,
3CAPS’s foundation, specifies that a certain amount of activation units is available.
These activation units can be used to either keep elements active in working
memory or to propagate activation by firing production rules. If the maximum
amount is reached, both working memory maintenance and production firing
processes get less activation units than they need. The result of activation
deprivation for working memory is that memory elements may be forgotten
prematurely. If processing gets less activation than needed, production rules have to
fire multiple times to get the activations of target working memory elements above
the threshold, effectively slowing it down.

The 3CAPS theory views the limitation in activation units as a source of individual
differences. It has been successful in explaining individual differences in language
Comprehension, relating performance differences in reading and comprehending
sentences to working memory span (Just & Carpenter, 1992). A limitation of 3CAPS
is that it does not incorporate learning.

A summary of the four architectures

Figure 2.11 summarizes the properties of the four architectures discussed in this
section. Each of the architectures has its own central theory, and its own roots. Most
of the architectures settle on two long-term memory stores, one for procedures and
one for facts. All of them have some form of working memory, although in the case
of ACT-R this is only a goal stack with pointers to declarative memory. Both ACT-R
and 3CAPS have an activation-based mechanism to represent availability of
memory elements. Although the mechanisms behind them differ, they share some
characteristics. 3CAPS poses a strict activation limit. The consequence of exceeding
the limit is forgetting and longer reaction times. These consequences, however, also
concur with ACT-R’s effects of low activation. If the current context in ACT-R
contains many elements, spreading activation is divided over all these elements,
resulting in lower activation of associated elements. Although there is no explicit
activation limit in ACT-R, thinning out activation may lead to a sudden decrease in
performance when elements drop below the retrieval threshold. At least the
predictions of both mechanisms are roughly equivalent, although it may turn out
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Soar ACT-R EPIC CAPS

Central theory Problem solving Rational Analysis Embedded Capacity theory
cognition

Roots Artificial Cognitive Human-Computer ~ Language

Intelligence Psychology Interaction Processing

Type Symbolic Hybrid Symbolic (central Hybrid
cognition)

Learning yes yes no no

LTM systems 1 (Productions) 2 (Productions 2 (Productions 2 (Productions

and Facts) and Facts) and Facts)

STM systems Working memory Goal stack Working memory, Limited capacity
several sensory working memory
stores

Detailed latency  no yes yes yes

predictions

Parallel yes no yes yes

production

firing

Main source of Single LTM, single  Small production Peripheral Limited capacity

constraints learning rules, principle of modules

mechanism rationality

Parsimony ++ +- - +-

Peripheral no extension (ACT-R/  yes no

cognition PM)

Figure 2.11. Comparison between architectures

that they differ in subtle aspects. Not all architectures encompass learning and

peripheral cognition. Only ACT-R models both, although peripheral cognition only
in a recent extension (ACT-R/PM). This extension borrows many ideas from EPIC.
Architectures tend to seek constraints in an area that is related to the central theory,
and leave other areas unconstrained. Probably all the architectures still have too few

constraints.
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2.3 Neural network architectures

As of yet, there are no general neural network architectures. The four architectures
discussed are either purely symbolic or hybrid. The hybrid architectures borrow
some ideas from neural networks in order to calculate activation levels and other
parameters, but have a symbolic production system engine as main processor.

Lebiere & Anderson (1993) have developed a neural network implementation of
ACT-R. This implementation proved to be a useful exercise, since it offered
additional constraints to ACT-R. One of the changes made to ACT-R due to the
constraints posed by the neural network implementation is the fact that only goals
are matched in parallel, and any remaining matches have to be done serially. This is
curious, since other architectures, most notably 3CAPS, claim parallel matching is a
“neurally inspired” feature. But a “true” neural network architecture cannot be an
implementation of a symbolic architecture, since according to connectionists the
level of subsymbolic elements is the right level of abstraction to study cognition.
Before a “true” neural network architecture of cognition can be developed, a number
of problems has to be solved.

A first problem is the binding problem. In a symbolic architecture it is easy to create a
temporary binding between a variable in a production rule and elements in working
memory. In neural networks this is much harder. The simplest way to create a
temporary link between two structures is to activate a connection between the two.
But allowing for connections between arbitrary concepts requires an infeasibly large
number of connections. An alternative to a direct connection is to represent a
temporary connection between two concepts by a synchronous activation pattern. In
that way arbitrary concepts can be combined without the need for a physical
connection between them. The rest of the neural architecture has to be designed to
handle this kind of representation, of course, producing networks with a totally
different topology from what is currently used in neural network research. Shastri &
Ajjanagadde (1993) designed a network based on this idea, which is capable of
representing both short-term and long-term facts, and which has the ability to reason
with those facts.

A second problem is stability. Neural networks are famous for their capacity to learn.
Maintaining this knowledge is harder though. If a standard three-layer network is
trained on a certain set of data, and new information is added, the old information is
forgotten, unless special care is taken to present new information along with old
information. Since we cannot count on the outside world to orchestrate presentation
of new and old information in the way the network would like it, McClelland
hypothesizes this is a function of the hippocampus. Another solution is to design
networks that are not as susceptible to forgetting as the standard networks.
Grossberg’s (Carpenter & Grossberg, 1991) ART-networks are an example of this
idea. An ART network first matches a new input with stored patterns. If the new
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input resembles one of the stored patterns closely enough, learning allows the new
input to interact with the stored pattern, possibly changing it due to learning. If a
new input does not resemble any stored pattern, a new node is created to accumulate
knowledge on a new category. In this way, new classes of input patterns do not
interfere with established concepts.

A third problem is serial behavior. Many cognitive tasks, most notably problem
solving, require more than one step to be performed. In order to do this, some control
structure must be set up to store intermediate results. Recurrent networks (see, for
example, Elman 1993) have this capability in some sense. A recurrent network is a
three layer network with an additional “state” that feeds back to the hidden layer of
the network. If several inputs are presented in a sequence, for example in processing
a sentence, this state can be used to store temporary results.

Although solutions have been found for each of the roadblocks to a fully functional
neural architecture of cognition, these solutions do not add up (yet). Notably
solutions to the binding problem demand radical changes in the architecture of a
neural network, requiring new solutions to the other problems as well. But the fact
that the brain is built out of neurons promises that there is a solution to all of the
problems. But the debate on what the right grain-size of studying cognition is, has
not ended yet.

2.4 Machine learning

All knowledge in the long-term memory stores of an architecture is somehow
acquired at some point in time, unless it is inborn. Since only Soar and ACT-R
model learning, the other architectures can not even address this issue. A model of a
task that fully addresses the issue of learnability starts with a body of knowledge
that is not specifically tailored for the task, but is a set of general problem solving
methods and a large database of facts. Given the task instructions, it should be able
to learn some initial task-specific knowledge, which is refined during practice. Both
Soar and ACT-R provide the tools to do this in the form of learning mechanisms.
But these mechanisms must be applied within a context of prior knowledge to be
able to get a complete picture of learning,.

The general problem of how to extract knowledge from examples, instruction and
experience is studied in machine learning, a subdiscipline of artificial intelligence.
Although machine learning is not primarily aimed at human cognition, it can give
an overview of available methods. The task a machine learning algorithm has to
carry out is often described as concept learning: given some examples of a concept
and sometimes some prior knowledge, derive a knowledge representation of the
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concept. A representation of a concept can be used to decide whether some new
example is an example of the concept or not.

Carbonell (1990) distinguishes four machine learning paradigms: the inductive,
analytic, genetic and connectionist paradigm. The inductive paradigm assumes a
concept has to be derived from a set of examples. Examples can be positive (x is an
example of the concept) or negative (y is not an example of the concept). The goal of
an inductive machine learning algorithm is to find a generalization that covers all the
positive examples, but excludes all negative ones. This generalization is based
purely on the features of the examples themselves, and not on any other knowledge.
The analytic paradigm has the opposite assumption that there is a rich and complete
domain theory, from which the concept can be derived in principle. But since
deriving things from the domain theory must be guided by some utility aspect,
examples are used as a catalyst. In the analytic paradigm often only a single example
is needed to create a concept description.

To take an example, suppose the concept of a swan has to be derived by an inductive
paradigm. This paradigm would require a set of examples, consisting of swans and
non-swans. Suppose this set contains three examples, a large white swan with a
yellow beak, a large white swan with an orange beak, a small white duck with a
yellow beak. Possible characterizations of a swan in this case are: large, or large and
white, since both of these characterizations include both swans and exclude the
duck. An analytic algorithm works in another way. It supposes we show some object
to a reasoning system and ask it whether or not it is a swan. Suppose the object has
the following properties: wings, white, large, orange beak, lays eggs, flies. Now the
reasoning system needs to have knowledge to answer this question. It knows, for
example that a swan is a large white bird that birds have wings, can fly and lay eggs.
It also knows that airplanes may be white and large too, and are also able to fly. After
some deduction, it may conclude that the object is indeed a swan. The analytic
algorithm may now learn a new rule about swans: if the object is large, white, flies
and lays eggs, it is a swan. The orange beak is not important, since it has not
contributed to the decision, and the fact that the swan has wings is ignored because
it is implied by the fact that it can fly.

Both the genetic and the connectionist paradigm can be seen as special cases of the
inductive paradigm, since both try to generalize concepts solely using examples. But
each of these approaches has grown into a separate research community. The genetic
paradigm assumes that the choice of whether or not knowledge should be learned is
based on utility instead of truth. This idea is not unique for the genetic approach,
since the utility of knowledge is also central in ACT-R. The assumption the genetic
approach makes, is that the mechanisms for determining the utility of a certain
knowledge element are the same as the mechanisms nature uses to determine the
utility of a certain organism that new knowledge is derived in the same fashion as
new organisms are conceived. In genetic algorithms knowledge is represented by
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strings of symbols with a fixed length and alphabet. Usually a genetic algorithm
starts with a set of random strings, the initial population. For each of these strings a
fitness value is determined, a value that estimates the utility of the knowledge coded
by the string. Subsequently a new generation is calculated. Candidate member for
the new generation are selected from the old generation using a randomization
process that favors strings with a high fitness value. The new candidates are then
subjected to a mutation process: some pairs of strings are mutated by a cross-over
operator that randomly snaps each string in two pieces and exchanges the two pieces
between strings. Other strings are mutated by a point-mutation operator that
randomly changes a single token in the string. This new generation of strings is
subjected to the same procedure. The idea is that the average fitness increases with
each new population. To prove this idea, Holland (1975) derived the schema
theorem. This theorem shows that fragments of a string (called schemas) that
contribute to its overall fitness have a higher than average chance to appear in the
new population, while schemas that do not contribute will gradually disappear.
Consequently, in the long term the schemas with the highest fitness will survive.

The connectionist paradigm, although it has many flavors, can also be considered as a
form of inductive learning. Take for example the popular three-layer feed-forward
networks. In these networks an input is fed into the input layer of a network, which
is connected to a hidden layer. The hidden layer is connected to an output layer that
makes a final classification. After a classification has been made, the
backpropagation algorithm is used to change the connection weights in the network
based on the discrepancy between the required output and the actual output. Links
which, on average, contribute to successful classifications will be strengthened,
while links that do not contribute to success will be weakened. Cells in the hidden
layer will often be feature-detectors, a role that shows close resemblance to
Holland’s schemata.

If one looks at the different paradigms, it is apparent that there is a difference in the
number of examples the algorithms need before a reasonable successful
generalization can be made. While an analytical algorithm sometimes only needs a
single example, the connectionist and genetic algorithms often need thousands of
trials before they converge. An analytical algorithm on the other hand needs to do a
lot of processing and requires background knowledge to arrive at a generalization.
New knowledge is often logically deduced from old knowledge, ensuring that if the
domain knowledge is correct, the newly derived knowledge is also correct. This
distinction is more like a dimension, since algorithms can be conceived of that use
both domain knowledge and some generalization based on examining multiple
examples. We will call this dimension the rational-empirical dimension.

Another issue in machine learning that is often left implicit, is the goal of learning.
Sometimes learning is aimed at obtaining new knowledge. For example, if a neural
network learns to discriminate letters on the basis of features or pixel patterns, it has
learned new concepts. But learning can also be aimed at speeding up an existing

52



Machine learning

Exploration  Behaviorist learning
X logic-based
Inguction G >i X:::,:(a,lrks
algorithms enetic
algorithms
ACT-R chunk
learning
Rational Empirical
ACT-R
x Soar X production
Chunking compilation % ACT-R subsymbolic
learning
EBL
X Performance

y

Figure 2.12. Learning algorithms and theories shown on the exploration-performance dimension
and on the rational-empirical dimension.

skill, by compiling knowledge into more efficient representations. This second goal
of learning is also very important in human learning, and is in general described by
the power law of practice, as discussed in chapter 1. Speedup and new knowledge
are not always separate goals. As is also discussed in chapter 1, a speedup in
processing may make some instances of problems tractable that were previously
intractable. In that case speedup opens the road to new knowledge. So this second
distinction can also be seen as a dimension, which we will call the exploration-
performance dimension.

While machine learning algorithms often take extreme positions on both
dimensions, human learning has to be both rational and empirical, and aimed at
both performance and exploration. Figure 2.12 shows how some current learning
algorithms and theories can be positioned on the two learning dimensions.
Induction algorithms tend to be aimed at exploration. The inductive algorithms
based on logic often use some sort of inference to arrive at the best solution given a
set of examples. So this kind of algorithm is rational in Newell’s definition, in the
sense that they use the available knowledge as rationally as possible, but also
empirical, since they use multiple examples. Genetic algorithms and neural
networks lack a rational component, and derive their generalizations from principles
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inspired by genetics and neuroscience. Behaviorist principles of learning can also be
found in this area: they are strictly empirical, and are not interested in performance.
This may well be one of the reasons why connectionists are sometimes falsely
accused of being a new breed of behaviorists. Analytical algorithms, exemplified by
explanation-based learning (EBL), are on the opposite side of the figure. EBL is
strictly rational in the sense that all new knowledge is specialized domain
knowledge, and is based on a single example. As a consequence it can not gather any
new knowledge. Soar’s chunking mechanism resembles EBL in the sense that
learning is based on a single example, summarizing processing in a subgoal, and its
stress on rationality.

ACT-R’s learning mechanisms are harder to classify, since they cannot really be
considered as learning algorithms. So their positions in the diagram are
approximate. The chunk learning mechanism refers to the fact that ACT-R stores
past goals in declarative memory. This may serve several functions. An old goal may
just help to increase performance, for example of the fact that three plus four equals
seven is memorized as a result of counting it. But a chunk may also contain
information gathered from the outside world, or may contain a hypothesis posed by
reasoning. If exploration is considered to be a function that proposes a new
knowledge element as something that may be potentially useful, the chunk-learning
mechanism is more an exploration mechanism than a performance increasing
mechanism. Since new chunks are single examples, and are based on reasoning, they
are more a product of rational than empirical learning. The empirical aspect of
learning is covered by ACT-R’s subsymbolic learning mechanisms. By examining
many examples, ACT-R can estimate the various parameters associated with chunks
and productions. But contrary to other subsymbolic learning algorithms, parameter
learning is mainly aimed at performance increase. A higher activation allows
quicker retrieval of a declarative chunk, and a better estimate of expected-gain
parameters allows for more accurate strategy choices. In order to compile a new
production in ACT-R, a detailed example must be available in the form of a
dependency structure. Although production compilation can be used in any possible
fashion, it is not feasible to create large amounts of production rules that contain
uncertain knowledge. So the most likely role of production compilation is to increase
the efficiency of established knowledge.

Although we have discussed ACT-R’s mechanisms separately, they usually work in
concert. So some new knowledge may initially be learned as a chunk. The
parameters of this chunk may be learned by parameter learning. If parameter
learning has established that the chunk serves an intermediate function in a problem
solving step, it may be transformed into a production rule. So although ACT-R’s
learning mechanisms are not fully fledged learning algorithms, they have the
capability, in principle, to cover the whole spectrum of learning means and goals. In
later chapters I will show how these primitive learning mechanisms can serve as
building blocks for a theory of skill learning.
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2.5 Conclusions

For the purposes of this thesis, accurate modeling of learning processes in complex
problem solving, the ACT-R architecture turns out to be the clear winner with
respect to the comparisons made in this chapter. Neural networks first have to solve
a number of problems before they can achieve the architecture stadium, and 3CAPS
and EPIC do not encompass learning. Although Soar supports learning, it is rigid in
the sense that it is mainly aimed at performance increases, and gaining new
knowledge is hard to model. Soar’s theoretical assumptions are the main problem:
by defining intelligence as using available knowledge, it discounts the importance
of gaining new knowledge, and by ignoring performance aspects of behavior it
makes detailed predictions of behavior impossible. When the learning mechanisms
of ACT-R are examined in the context of machine learning, it turns out that they can
in principle cover the whole spectrum of learning.

Although ACT-R s the vehicle I will use in the rest of this thesis, some of Soar’s ideas
will resurface. The idea to key learning to impasses in problem solving is not only
rational in the Soar sense, but also, as we will see in chapter 5, in ACT-R’s.

2.6 Appendix: The ACI-R simulation system

The ACT-R simulation system is a program written in Common Lisp. The basic
version is based on a command-line interface in Lisp. Typically, a user loads
Common Lisp, loads ACT-R and starts working on a model. A model in ACT-R,
which is just a text file, usually consists of four areas: global parameter declarations,
the contents of declarative memory, the contents of procedural memory and lisp-
code to run the particular experiment.

There are two types of declarations for declarative memory: the specification of the
chunk types and the initial contents of declarative memory. Although chunk types
do not change during the execution of a model, the contents of declarative memory
almost always does, since all the goals and subgoals ACT-R creates are added to it.
In some models, a specification is added that gives the initial chunks an activation
value that differs from the default value 0, for example to reflect that it is a chunk
that has been in declarative memory for a long time. The next part of a model is an
initial set of production rules. Sometimes initial parameters are specified for these
rules. Finally some code is added to run an experiment, and to store results.
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; Very simple ACT-R example model
(p do-addition-fail

; Parameter declarations: switch on =goal>
rational analysis and set Activation Noise isa addition-problem
t0 0.1 answer nil
(sgp :erat:ans 0.1) ==>
=goal>
; chunk-type declarations answer dont-know)
(chunk-type addition-problem argl arg2
answer) ; Parameter declaration for do-addition-
(chunk-type addition-fact addend1 addend2 fail
sum)

(spp do-addition-fail :r 0.2)
; initial contents of declarative memory
; Lisp code to run sample experiment

(add-dm
(fact34 (defun do-it (n)
isa addition-fact (let ((result 0))
addendl 3 (dotimes (i n)
addend2 4 (let ((task (gentemp "goal")))
sum 7) (eval *(add-dm
(fact42 (,;task isa addition-problem
isa addition-fact argl ,(random 5)
addendl 4 arg2 ,(random 5))))
addend2 2 (eval “(goal-focus ,task))
sum 6)) (run 1)
(when
; contents of production memory (equal (+
(eval *(chunk-slot-value ,task
(p do-addition argl))
=goal> (eval “(chunk-slot-value ,task
isa addition-problem arg2)))
argl =numl (eval *(chunk-slot-value ,task
arg2 =num2 answer)))
answer nil (setf result (1+ result)))
=fact> (pop-goal)))
isa addition-fact (format t "~%Accuracy = ~6,3F" (/
addendl =num1 result n))))
addend2 =num2
sum =num3
==>
=goal>

answer =num3)

Figure 2.13. Example ACT-R model

Figure 2.13 show an example of a very small model, a model that tries to solve an
addition-problem. It knows only two addition-facts: 3+4=7 and 4+2=6. Whenever it
tries to solve an addition-problem, two rules are applicable: the do-addition rule that
tries to retrieve a matching addition-fact and the do-addition-fail rule that give
“don’t know” as an answer. The parameter declaration for the do-addition-fail rule
makes sure that its expected gain is lower than the expected gain of the do-addition
rule. ACT-R will therefore first try do-addition, and only when that rule fails will do-
addition-fail be allowed to fire.

The Lisp code consists of a function that goes through n addition-problems. It
generates a random addition-problem, which is given to the model. After one of the
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Figure 2.14. The ACT-R environment

production rules has fired, the lisp-function checks whether the answer is correct.
After all n problems have or have not been solved, the function gives an accuracy
score.

The following trace fragment illustrates the output of the model:

? (do-it2)

Cycle 0 Time 0.000: Do-Addition-Fail
Matching latency: 1.000

Action latency: 0.050

Stopped at cycle 1

Run latency: 1.050

Cycle 1 Time 1.050: Do-Addition
Matching latency: 0.950

Action latency: 0.050

Stopped at cycle 2

Run latency: 1.000
Accuracy = 0.500
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This fragment goes through two addition-problems. The first problem fails, but the
second succeeds. The trace shows relatively little detail, but additional tracing
options can be used to get more information.

Although ACT-R can be used from a command-line interface, an elaborate
environment is also offered. Figure 2.14 shows some of the viewers available in the
environment, using the addition example. In the environment, models can be
executed step-by-step. At each moment the current contents of declarative and
procedural memory can be viewed, as well as the rules that are applicable to the
current goal. The environment also provides for a syntax-directed editor that makes
it easier for novices to enter chunks and production rules. Finally, the environment
supports a tutoring function that can be used in combination with a web-based
tutorial. The ACT-R code, as well as the tutorial and the code for the environment, is
available from http:/ /act.psy.cmu.edu The models discussed in this thesis are listed
in an appendix at the end of the thesis, and are all available from a web page as well.
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3: Scheduling

3.1 Introduction

In this chapter I will discuss an experiment that investigates performance changes
due to learning while performing the task of precedence constrained scheduling
(PCS). In PCS, a number of tasks has to be assigned to a number of workers. Each of
the workers has a fixed number of hours to perform tasks. Each of the tasks can
have a different (but integer) duration. Finally, a number of order constraints has to
be met: sometimes a certain task has to be finished before another task may start. All
workers are assumed to work in parallel. A simple example of this problem is:

There are two workers, each having 6 hours
Task A takes 1 hour

Task B takes 2 hours

Task C takes 3 hours

Task D takes 3 hours

Task E takes 3 hours

The following constraints have to met:

A before B

A before D

C before E

A solution to this example is to assign ABD to one worker, and CE to the other. This
solution is straightforward, since the constraints are satisfied by the order within a
single worker. So “A before B” and “A before D” are satisfied by assigning ABD to
a worker, and “C before E” is satisfied by assigning CE to the second worker. A
solution in which the constraints are “crossed” is to assign ABE to one worker and
CD to the other. In that case the “A before D” and “C before E” constraints span both
workers. Problems can be made more difficult by increasing the number of tasks and
workers, but also by creating problems in which the constraints span multiple
workers for any solution.

Although there are many NP-complete problems that might be used as the task in
an experiment, not all of them are equally suitable. PCS has the following attractive
properties:

1. The task is easy to explain, since it corresponds to a task participants may be
familiar with (scheduling in general).

2. Itis improbable that participants have any relevant task-specific knowledge.
It is relatively easy to create challenging instances.

4. The task can be presented in several different ways, one of which requires
participants to solve problems completely by heart.

The version of the problem I will use in the experiment uses instances in which the
tasks always take up all available time of the workers. So, the duration of all the tasks
together is equal to the number of workers multiplied by the number of hours each
worker has. This sub-problem will be called fully-filled precedence constrained
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scheduling (FF-PCS). Restricting the selection of instances to a sub-problem is in a
sense dangerous, because a sub-problem of an NP-complete problem is not
necessarily NP-complete itself. Fortunately, FF-PCS is also NP-complete. A proof of
this fact is given in an appendix to this chapter.

3.2 Experiment

The goal of the experiment is exploration. The general expectation is that if
participants have to solve a series of scheduling problems, their performance will
generally improve due to learning. But what causes these improvements? Is it a
matter of gradual speed-up, or do participants make discoveries that enable them to
use a more effective approach to the problem? Analysis of verbal protocols will
hopefully shed some light on this issue.

To serve as experimental stimuli, a set of instances with varying difficulty was
created. The main determiner for difficulty is the number of workers (), which
ranged from 1 to 3 in the experiment. The stimuli were presented to participants
using two different interfaces (figure 3.1), implemented in HyperCard on the
Macintosh. The direct-manipulation interface, shown in the top panel of figure 3.1,
shows both a propositional representation and a visual representation of the task.
The propositional representation lists the constraints of the schedule using short
sentences such as “A before B”. In the visual representation, tasks are represented by
the white boxes with letters in them. The length of each box represents the duration
of a task. Workers are represented by grey rectangles. As with the tasks, the length
of the rectangle represents the number of hours a worker has. Participants can create
aschedule by dragging the task boxes onto the worker rectangles. In the figure task F
has already been dragged onto the bottom rectangle. In the propositional interface
participants had to perform the planning process entirely by heart. The only thing
the interface allows participants to do is to enter the solution by clicking on the
rectangles containing the letters (A-F in the example) representing the tasks, the
“next worker”-button to end the task list of a worker and move on to the next one,
and a “Clear”-button to start over again. Both interfaces contain a “Ready” button
which the participant has to click after entering the solution. If the answer is correct
the program will move on to the next scheduling problem, else feedback will be
provided and the participant has to try again.

To see whether participants develop specialized strategies for specific types of
instances, approximately half of the instances has a solution that conforms to a
common pattern. This pattern is outlined in figure 3.2 for instances with two and
three workers. A representation similar to the direct-manipulation interface is used
(the two worker example is the solution to the instance in figure 3.1). These instances
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Problem

There are 2 workers with
each 6 hours

Task A takes 1 hour

Task B takes 1 hour

Task C takes 2 hours
Task D takes 2 hours
Task E takes 3 hours
Task F takes 3 hours

The schedule has to satisfy
the following constraints:
Task C before &
Task E before B
Task F before B
Task D before C

Problem
There are 2 workers with

each 6 hours
Task & takes 1 hour |H||B|||:|||]|| E" F|
Task B takes 1 hour

Task C takes 2 hours -
Task D takes 2 hours -
Task E takes 3 hours Nesct worker Clear

Task F takes 3 hours

The schedule has to satisfy Correct!
the following constraints:

Task C before &

Task E before B

Task F before B

Task [ before C

Figure 3.1. Two interfaces used in the experiment. The top panel shows the direct-manipulation
interface in which participants can drag around boxes representing the tasks, while the bottom
panel shows the propositional interface in which participants have to solve the problem by
heart.

are particularly hard due to the fact that many of the precedence constraints in this
pattern cross workers in the solution.

Although this experiment is primarily exploratory, a number of expectations can be
formulated. A first expectation is that performance will increase due to experience:
a learning effect. A second expectation is that there will be an effect of the type of
interface: the direct-manipulation interface is easier, so will lead to better
performance. A third expectation is that instances conforming to the pattern in
figure 3.2 will be harder to solve than other instances. A final expectation is that
participants will discover some new strategies to solve the scheduling problem.
Evidence for new strategies has to found by protocol analysis, or by sudden jumps
in performance.
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B C before A
worker1| D | E -— | E before B
F before B
worker 2 | F C < A | D before C
= q B A before D
worker 1 | | | E before G
F before A
worker 2 | F G e C | G before C
5 H before B

worker 3 | I L D | |pefore B

Figure 3.2. Schematic diagrams of the solutions to half of the instances presented to the participants
(an example for two and for three workers is shown). The representation is similar to the direct-
manipulation interface: boxes represent tasks and the length of a box represents its duration.
The arrows represent precedence constraints. Note that the letters in the boxes are just examples
and differ between instances.

Method

Participants. Eighteen undergraduate students of the University of Groningen were
recruited to participate in this experiment. The experiment lasted 2 hours, including
instructions and a small break. Participants were paid Fl. 20 for their efforts.

Materials. Sixteen FF-PCS instances were created of the following types:

* RI1 (2 instances): a single worker with four or five tasks

* A2 (10 instances): two workers, conforming to the pattern in figure 3.2
* R2 (8 instances): two workers, not conforming to any specific pattern
* A3 (3 instances): three workers, conforming to the pattern in figure 3.2

* R3 (3 instances): three workers, not conforming to any specific pattern

Procedure. Participants were randomly assigned to two groups. Group 1 started the
experiment with the direct-manipulation interface, and switched to the
propositional interface for the second half of the experiment. Group 2 started with
the propositional interface and switched to the direct-manipulation interface for the
second half. Figure 3.3 shows the exact experimental procedure for each of the two
groups. At the start of the experiment, participants were instructed about the task
and the particular interface they started with. To ensure participants properly
understood how to handle the interface, they were given an example problem with
its solution, after which they had to enter the solution. After the break participants
were told the task would remain the same, but the way in which they had to enter
the answer had changed. They then again had to enter the solution of an example
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Group 1

Group 2

Start of experiment

Start of experiment

problems, in
random order

three A3 and three
R3 problems, in
random order

Direct one R1 problem Propositional one R1 problem
Tnampulahon one R2 problem interface one R2 problem
interface
five A2 and three R2 five A2 and three R2
problems, in problems, in
random order random order
Break Break
Propositional one R1 problem Direct one R1 problem
interface one R2 problem mampulatlon one R2 problem
interface
five A2 and three R2 five A2 and three R2

problems, in
random order

three A3 and three
R3 problems, in
random order

End of experiment

End of experiment

Figure 3.3. Experimental procedure

using the new interface. Participants were asked to think aloud during the
experiment, which was recorded using an audio cassette recorder. The software
registered and time-tagged all actions participants performed during the

experiment.

Analysis of the results
To analyze the results of the experiment, a number of methods will be used. First,
we will examine the solution times, and see if participants become faster, and
whether or not there is transfer between the first and the second interface. Secondly,
we will do a protocol analysis on the verbal protocols in order to get a deeper
insight into what strategies participants learn during the experiment.

3.3 Analysis of solution times

An informal analysis
There are a number of potential factors that influence the solution time for each

instance:
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First part Second part
Direct manipulation Propositional
14 14
1.3 1.3
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Average solution time = 287 sec Average solution time = 150 sec

Figure 3.4. Relative time to solve each instance for the two groups and the two parts of the
experiment

1. Individual differences

2. The difficulty of the instance

3. The interface (direct-manipulation or propositional)
4

Learning

To get some impression of the learning factor, which is the main factor of interest, we
will first do some quick calculations. To remove the difficulty factor of items, all
solution times were divided by the average solution time for that particular item.
Since participants occasionally “got stuck” at a particular instance, solution times
that were longer than 2.5 times the average time were removed (8 cases out of 288).
Finally, the scores were averaged and plotted in figure 3.4. Only the five A2
problems and three R2 instances are plotted, since the first R1 and first R2 instance
are the same for all participants, so average to 1 all the time, and the A3 and R3
instances at the end of the experiment were completed by too few participants, so
were also omitted in the analysis. In the first part for each of the two groups there is
a clear learning effect, since on average participants start at around 1.3 times the
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average time to solve an instance, and improve to around 0.8 times the average time.
In the second part of the experiment, there is no effect of learning. This cannot be
explained by the fact that the learning curve has flattened out due to the fact that
there is nothing left to learn, since the average solution time is not better than in the
first part, but even slightly worse (average solution times are below each of the
graphs.) So, there is evidence for a time-on-task effect. This effect has several possible
explanations, like boredom and a decrease in motivation or mental fatigue.

An analysis using multilevel statistics

A more thorough method to analyze the data that gives an impression of the impact
of the different factors on the solution time, is to make a statistical model using
multilevel analysis (Bryk & Raudenbush, 1992). A model in the sense of multilevel
analysis is a set of regression equations that predicts the dependent variable, the
solution time in our case. The basic regression equation is as follows:

Vi = BOi + BliAti + BZi Bti RN o ¥ (3.1)

The solution time y,; for participant i and trial ¢ is predicted by an intercept B; for
participant i, plus the influence of a number of factors. Factors, in this equation
represented by A, B,;, etc., are in our case the type of interface, the difficulty of an
instance and the trial number. These factors are scaled by B,;, B,;, etc. The final part
of the equation, r;, represents the random variance for each trial.

Each of the B scaling factors may vary between participants, as indicated by the i
index. Each of these scaling factors has its own equation:

Boi = Yoo * Upi (3.2)
Bii = Y10t Uy (3.3)

Multilevel analysis in general also allows us to add factors to these equations,
comparable to the A; and B;; in (3.1). These factors represent characteristics of
individual participants. They are omitted here, since no such information is
available. The y-coefficients are called the fixed effects in terms of multilevel analysis,
since they do not change between either participants or trials. The u-coefficients are
called random effects, since they vary between participants. Not all factors have a
significant random effect on differences between individuals, so sometimes the s
are just equal to the y's. An advantage of this method is that between-participant
variance and within-participant variance can be discerned. A random effect on By,
means that individuals have different starting points on the learning curve, so a
random intercept. If we take the trial number as a factor, the B-coefficient that serves
as its multiplication factor will become the slope of the learning curve. A random
effect on this coefficient means individuals have different learning rates, so arandom
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solution solution
time time

trial number trial number

Figure 3.5. The difference between a random intercept (left), and a random slope (right). Each line
represents an individual participant.

slope. Figure 3.5 illustrates the difference between a random intercept and a random
slope.

The general method to find the most appropriate model for a certain set of data is to
use a multilevel analysis program to estimate the coefficients in the model. In this
case MLn (Rasbash & Woodhouse, 1995) is used. The analysis starts with a very
simple model, after which additional factors are added incrementally. After each
additional factor, the deviance (- 2 log likelihood) between the model and the data is
checked, to see if the additional factor provides for a significant improvement.

Analysis of the first part of the experiment

One of the constraints on multilevel analysis is that the dependent variable has to
have a normal distribution. The solution times in the scheduling experiment,
however, are skewed. In order to fix this, the logarithm of solution times is used
instead of plain solution times. One of the factors will be the trial number itself, in
order to estimate the learning effect. The actual version of (3.1) now becomes:

logyyi = Boi + Buit + Y2oAu * YaoVii + YaoAi Vi + i (3.4

In this equation f is the trial number, ranging from 1 to 9, A; equals 1 if the trial
involves a type A instance (the difficult ones) and 0 otherwise, V,; equals 1 if the
item is presented in the propositional interface, and 0 if it is presented in the direct-
manipulation interface. The A;V,; term represents the interaction between interface
and instance type. Note that most of the ’s have been replaced by Y's, indicating
that no random effect on the level of individual differences has been investigated.
Both B-parameters are calculated according to (3.2) and (3.3). The data used in the
analysis are all the A2 and R2 instances in the first part of the experiment, nine in
all. Three data points with excessively long solution times were removed (each from
a different participant).
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Fixed effects

Effect Parameter  Estimate S.E. p<
Intercept Yoo 5.030 0.130 .000
Trial no. Y10 -0.074 0.014  .000
Propositional interface Y30 0.549 0.163  .000
Type A problem Yoo 0.104 0.104 159
Propositional * Type A Y0 0.298 0.145  .020
Random effects

var(intercept) 1, 0.067 0.030
var(residual) T4 0.207 0.025

-2 log likelihood: 2249

Figure 3.7. Statistical model of the log solution times

Although (3.4) represents the most elaborate model, it is not necessarily the best
model. The procedure to find the best model is as follows. We start with the most
simple model, in this case the model that just states that the solution time is a fixed
value, and all variation is random noise. This model will leave some unexplained
variance, as expressed in the -2 log likelihood estimate. The next step is to add some
factor that may improve the model. Adding a factor reduces the degrees of freedom,
so this reduction must be warranted by a significant decrease in unexplained
variance. In this analysis, the significance threshold will be 5%. Figure 3.6 shows the
search tree to find the most appropriate model. At the top of the tree the most simple
model is shown. Adding the factor of time considerably improves the model, as
shown by the second box. Now there are two choices: adding a random intercept or
a random slope. The search tree explores both possibilities. Note that the
introduction of random effects implies replacing a fixed yin the formula by a {3 that
has a different value for each participant. Although both new models improve the
previous model, the random intercept model reduces unexplained variance most.
Moreover, if a random slope is consequently added, this does not improve the
model. Apparently the individual differences can be captured by just a random
intercept. The next three steps add the factors of interface type, problem type and the
interaction between the two. Each of these steps improve the model. Finally, a last
attempt is made to add a random slope, but this still does not improve the model.

The final model is presented in figure 3.7. It turns out that the effect of trial number

is very significant, so there is a clear learning effect. The type of interface also has a
significant impact on the solution time: the propositional interface, not surprisingly,
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l0gYyi = Yoo * I

-2 log likelihood= 321.8

add the factor of trial number
p=0.00

l0gYii = Yoo * Yiot + 1y

-2 log likelihood= 312.7

add random intercept
p=0.00

logyy; = Boj * Yiot + 1y
-2 log likelihood= 255.3

add random slope

logyy; = Yoo *+ Byt + 1

-2 log likelihood= 274.6

add interface type add random slope
p=0.00 p=0.25 (not significant)

logyyi = Boi + Yot + YaoVii + 1

logy,i = Boi + Byt +r1y

-2 log likelihood= 239.4

-2 log likelihood= 252.5

add problem type

logyy; = Boi + Yiot + Ya0Ar + YaoVii * Iy

-2 log likelihood= 229.0

p=0.04

l add interaction between interface and problem type

logyii = Boi * Yiot + Y20 + YaoVii + YaoAi Vi + M4

—

-2 log likelihood= 224.9

Final model

add random slope
p=0.12 (not significant)

logyyi = Boi + Bait + Ya0Ai *+ YaoVii + YaoAuVii + Iy

-2 log likelihood= 220.6

Figure 3.6. Search tree to find the best model. Each box represents a model, with the equation at the
top and the -2 log likelihood at the bottom. The thick arrows and boxes indicate the optimal

search path.
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requires more time. Whether or not an instance is of type A is mainly significant in
interaction with the type of interface. If the instance is of type A and the interface is
propositional, there is an extra increase in solution time. This interaction can be
explained by pointing at the difficulty of type A problems. The hard part of solving
type A problems is to coordinate precedence constraints that span multiple workers.
The fact that this type of instances is especially hard in the propositional interface
condition is evidence for the fact that participants do not use a visual image to
represent the schedule, but rather a linear string of tasks. If participants used a visual
image, the type A problems would not have any additional difficulty associated
with them in the propositional interface condition. If a schedule is represented as a
linear string, it is easy to check constraints within a worker, but very hard to check
constraints between workers.

It turns out that the best fitting model only has a random intercept and no random
slope. So, the main source of individual differences is the starting point of the
learning curve. Individual differences in learning rate were not large enough to
provide for a better fitting model.

Analysis of the second part of the experiment

Although the informal analysis already showed that there is probably no learning
effect in the second half the experiment, a multilevel analysis was conducted for
that part as well. Before the analysis, five datapoints with excessively long solution
times were removed from the set. Figure 3.8 shows an abbreviated version of the
search tree: only -2 log likelihoods are shown and the additions to the model. What
is immediately apparent is that the trial number has no impact on the solution time,
whether it is added to the simple model or to the final model. Although the
interaction between interface and problem type is not significant in the second part
of the experiment, the other effects are quite similar to effects in the first part of the
experiment. The bottom part of figure 3.8 shows the final model.

Conclusions

The statistical model of the solution times confirms the expectations stated in the
previous section, at least with respect to the first part of the experiment. There are
strong effects of learning, interface type and problem type. None of these effects are
particularly surprising. Oddly enough there is no learning effect in the second part
of the experiment. An explanation for this has to be sought in the area of motivation
or fatigue: perhaps participants no longer seek strategies that improve their
performance. In chapter 5, I will show learning may indeed be partly dependent on
motivation, because a low motivation makes learning strategies less attractive than
just trying a simple strategy over and over again.

70



Analysis of verbal protocols

297.4
add random intercepié \idd trial number
281.8 296.9
add interface type‘
275.8 249.9
add problem type‘ add interaction between interface and problem
' —_— | 2521 % 2524
final model number
Fixed effects
Effect Parameter  Estimate S.E. p<
Intercept Yoo 4.516 0.116 .000
Propositional interface Y30 0.403 0.152 .004
Type A problem Y20 0.427 0.084  .000
Random effects
var(intercept) Ug; 0.072 0.035
var(residual) T 0.264 0.032
-2 log likelihood: 252.1

Figure 3.8. Abbreviated search tree for the model of the second part of the experiment and the final
model

3.4 Analysis of verbal protocols

Inspection of the verbal protocol recordings reveals that only protocols of the
propositional interface condition can be interpreted easily. The recordings of the
direct-manipulation interface contain little information, and are difficult to correlate
with actions of the participants in the interface. This was to be expected, since
verbal protocol analysis tends to be a poor research instrument in assessing tasks
with a large visual component. Since the learning effects are largest in the first half
of the experiment, participants from group 2 are used primarily in the analysis. One
of the recordings was unusable due to problems with the cassette recorder, and
another participant did not verbalize enough in order to be intelligible. So seven
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A21 D A25 R24 A23 R22 A29 A27

Relative time

© - n
o o — O DD o
| | | |
T

Instance

Figure 3.9. Relative solution times (similar to figure 3.4) for participant 2. Note that A21 is the third
instance the participant has to solve, since the two training problems are not in the graph.

protocols were available from group 2. To get an impression of group 1 as well, two
protocols from the second half of the experiment are added, giving a set of nine
protocols.

We will proceed with the analysis in two steps. First, we will do a detailed analysis
of a single participant. This analysis will show what kinds of processing are going on
during problem solving. Secondly, a more quantitative analysis will be done on the
set of nine protocols.

Analysis of participant 2

Participant 2 shows a learning curve that is similar in shape to the average learning
curve (figure 3.9). The relative time to solve an instance improves from 2.3 for the
first instance to 0.5 for the last, a learning effect that is even larger than the average
participant. The following excerpt is from the protocol of participant 2, while she is
solving problem A21 (figure 3.1). This problem is interesting, since it is followed by
a large jump in performance. A possible explanation, which we will now examine in
detail by protocol analysis, is that the participant discovers some new means to
solve scheduling problems. The problem and the protocol are translated from
Dutch, as are all other excerpts discussed. First I will repeat the problem:

There are two workers with 6 hours each
Task A takes 1 hour

Task B takes 1 hour

Task C takes 2 hours

Task D takes 2 hours

Task E takes 3 hours

Task F takes 3 hours

The schedule has to satisfy the following constraints:
C before A

E before B

F before B

D before C
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The protocol is as follows:

Yes. There are two workers with each six hours. Two. Task A, task B, task C. The schedule has to
satisfy the following constraints... Task C before A, C before A, E before B, F before B and D before C.
[..unintelligible..] First now D. D.. D..C..A..B..,, D..C..A..B..,, D.C.A.B., DCAB, and then, DCAB, [keys
in DCAB] and then E... E..F, E..F. [keys in EF] [Receives feedback] Oh, task F is not before B. C.., D has
to be before C. D.. No, C..D.., D has to be before C. C.. D.., C.. D.., A...B [keys in CDAB] that’s one
worker. E.F..., [keys in EF]. [receives feedback] Huh?! Task F is not before B and task D is not before
C? Oh wait. D has to be before C, so first D... D...C..AB..AB [keys in DCAB]. Next worker, F.. yes,
F.E.., ready. [keys in FE]. [receives feedback] Task E is not before B? Isn’t it? Yes? [Emphasizing, keys
in] D..C..A.B..E..E..F...ready. [receives feedback]. Well! Ehmm.. Task D takes two hours. [Silence]
Task F is not before B, so F should be before B. Task E before... E should be before B, so E and F
shouldn’t be done by.... by the same worker. So we will, let’s see. Task C before A, so we will first.... E
before B, so we will first E..E..E..B..C. E...E..B..C.., EBC, no that’s not right. EBC..F.A..B.. Ah.. start
again. The D should be before C. [silence]. E... Ehm... The D should be before the C, so we put the D
with worker one, and C with worker two. So we start with E with worker one... E..C..A.. E.C.A.
ECA..E.C.A.No, I don’t get it... E.C..A..D..E.. Oh.. wrong again.

This is about half of the total protocol for problem A21. Participant 2 needed 793
seconds to solve the whole problem. It is obvious that the written protocol doesn’t
reveal much in the presentation given above. Nevertheless, we can already infer
some categories into which we can classify the various elements in the protocol. First
there are reading actions, in which the participant reads parts of the problem. It is
also obvious that the participant incrementally builds a schedule by adding tasks
one by one. So adding a task to the current schedule is also a possible action. The
interesting parts of the protocol are the parts in which the participant makes complex
inferences. There is one obvious example in the above excerpts, where the
participants remarks “so E and F shouldn’t be done by.... by the same worker.” In
order to reach this conclusion, five constraints of the problem need to be combined:
the fact that each worker has six hours that both E and F take three hours, and the
fact that both E and F must be before B. Identification of the simple steps in the
problem solving process enables us to keep track of the information the participant
has in working memory at a particular time. In order to analyze the above fragment,
and the rest of the protocol, the following categories will be used.

Notational primitives:

* c:a denotes the constraint “C before A”. Participants can connect these

constraints to more advanced schemas like b:c:a (b is before c is before a) or b;c:a
(b and c are both before a).

* sched(acd | bef) denotes a schedule or a schedule fragment, the vertical bar
separates workers.

¢ a5 denotes the number of hours a task takes (in this case: task a takes 5 hours).
¢ work2 denotes the number of workers (in this case 2 workers).

¢ time7 denotes the number of hours each worker has (in this case 7 hours).

* diff(a,b) denotes the fact that task a and b must be done by different workers
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* same(a,b) denotes the fact that task a and b must be done by the same worker.
* last(a) denotes the fact that task a must be done last by a worker.
* first(a) denotes the fact that task a must be done first by a worker.

¢ middle(a) denotes the fact that task a must be somewhere in the middle of the
schedule of a worker.

Reading

When the participant reads something from the screen, this is denoted by the Read()
action. The argument is the item read. For example, Read(c:a) corresponds to the
participant reading “c before a”. The result of a reading action is that the item read
is in working memory.

Adding tasks to the schedule

When a participant adds new items to the current schedule this is represented by
the Add() action. The argument is the task added to the schedule. The result of an
add action is that the task is added to the current schedule in working memory.

Rehearsing working-memory items
Any items in working memory (WM) can be rehearsed, which is denoted by the
Reh() action. The argument is the item rehearsed.

Inference

In general inference is denoted by Inf(p1; p2 - q), meaning q is inferred from p1
and p2. Precondition for such an inference is that p1 and p2 are available in
memory. The result is that q will be in working memory.

Evaluation
* Eval+ denotes that the participant concludes the schedule is correct.

* Eval-() denotes that the participant concludes that the schedule is incorrect. If a
violated constraint is mentioned, it is given as the argument, for example Eval-
(c:a): the schedule is incorrect because c is not before a

* IEval+ denotes that the program accepts the solution

* IEval-() denotes that the program rejects the solution, the violated constraint(s)
are again between parentheses

Other actions
* Restart denotes that the participant starts again

* Inkey() denotes that the participant keys a (possibly partial) solution into the
computer

¢ Fill denotes miscellaneous remarks
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* Meta denotes remarks about the difficulty or other aspects of the task

* Qdenotes a question of the participant to the experimenter

Analysis of verbal protocols

Using this scheme, the following analysis can be made of the protocol fragment. The
analysis column shows an interpretation of the fragment listed in the protocol
column. The WM column shows the possible contents of working memory based on

this interpretation.

Problem A21. Time 793 seconds

Protocol Analysis WM
1. Yes. There are two workers with ~ Read(work2); work2; time6
each six hours. Read(time6)
2. Two. Task A, task B, task C. Reh(work2); Read(a); work2
Read(b); Read(c)
3. The schedule has to satisfy the Fill
following constraints...
4, Task C before A, C before A, E Read(c:a); Reh(c:a); c:a;eb;fb;dc
before B, F before B and D before ~ Read(e:b); Read(f:b);
C. Read(d:c)
5. [unintelligible] ?
first now D. D.. Add(d) sched(d)
D..C.A.B.,, Reh(d); Add(c); Add(a); sched(dcab)
Add(b)
D..C.A.B.,, Reh(dcab) sched(dcab)
D.C.AB, Reh(dcab) sched(dcab)
10. DCAB, Reh(dcab) sched(dcab)
11. and then, Add(l) sched(dcabl)
12.  DCAB, [keys in DCAB] Reh(dcabl); KeyIn(dcabl)  sched(dcabl)
13. and then E... Add(e) sched(e)
14. E.F. Reh(e); Add(f) sched(ef)
15. E.F. [keys in EF] Reh(ef); KeyIn(ef) sched(ef)
16. [receives feedback] Oh, task Fis  IEval-(f:b); Restart
not before B.
17. C., Read(c)
18. D has to be before C. Read(d:c) d:c
19. D Read(d)
20. No, C..D.,, Add(c); Add(d) sched(cd)

There are two
workers with each
6 hours

Task A 1 hour
Task B 1 hour
Task C 2 hours
Task D 2 hours
Task E 3 hours
Task F 3 hours
The schedule has
to satisfy the
following
constraints:

C before A

E before B

F before B

D before C
Solution:

ECA

DFB
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Problem A21. Time 793 seconds

Protocol Analysis WM
21. D has to be before C. Read(d:c) sched(cd); c:d
22. C.D. Reh(cd) sched(cd)
23. C.D.., Reh(cd) sched(cd)
24. A..B.. [keys in CDAB] Add(a); Add(b); sched(cdab)
KeylIn(cdab)
25. That’s one worker Add(l); KeyIn(l) sched(cdabl)
26. E.E.., [keys in EF]. Add(e); Add(f); KeyIn(ef) sched(cdablef)
27. [receives feedback] Huh?! Task F IEval-(f:b;d:c); Restart
is not before B and task D is not
before C?
28. Oh wait. Fill
29. D has to be before C, Read(d:c) dic
30. so first D... D...C..AB..AB [keys Add(d); Reh(d); Add(c); sched(dcab)
in DCAB]. Add(a) Add(b); Reh(ab);
Keyln(dcab)
31. Next worker, Add(l); KeyIn(l) sched(dcabl)
32. F.. yes, F.E.., ready. [keys in FE]. Add(f) Reh(f); Add(e); sched(dcablfe)
KeyIn(fe)
33. [receives feedback] Task E isnot  IEval-(e:b) sched(dcablfe)
before B?
34. Isn’t it? Yes? ? Fill sched(dcablef)
35. [Emphasizing, keys in] Keyln(dcablef) sched(dcablef)
D..C..A..B..E..E.F..ready.
36. [receives feedback]. Well! |Eval- sched(dcablef)
37. Ehmm.. Task D takes two hours.  Read(d2) sched(dcablef);
d2
38. [Silence] Fill sched(dcablef)
39. Task F is not before B, Eval-(f:b) sched(dcablef);
fib
40. so F should be before B. Reh(f:b) sched(dcablef);
fb
41. Task E before... E should be Read(e:b) sched(dcablef);
before B, f:b;e:b
42. so E and F shouldn’t be done Inf(f:b; e:b; €3; f3; time6 diff(e,f)

by.... by the same worker..,

_ diff(e,)
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Problem A21. Time 793 seconds

Protocol Analysis WM

43. So we will, let’s see. Task C Restart; Read(c:a) diff(e,f); c:a
before A,

44, so we will first.... Fill diff(e,f)

45. E before B, Read(e:b)

46. so we will first E..E..E..B..C. Add(e); Reh(e); Reh(e); sched(ebc)

Add(b); Add(c)

47. E..E.B.C.., Reh(e); Reh(ebc) sched(ebc)

48. EBC, Reh(ebc) sched(ebc)

49. no that’s not right. Eval- sched(ebc)

50. EBC..F.A.B.. Add(l); Add(f); Add(a); sched(ebclfab)

Add(b)

51.  Ah.. start again. Restart

52.  The D should be before C. Read(d:c) dc

53. [silence]. Fill d:c

54.  E.. Ehm... Read(e) dic

55.  The D should be before the C,so  Inf(d:c - diff(c,d))
we put the D with worker one,

56. and C with worker two.

57. So we start with E with worker Add(e) sched(e)
one...

58. E.C.A.. Reh(e); Add(c); Add(a) sched(eca)

59. E.CA. Reh(eca) sched(eca)

60. ECA.. Reh(eca) sched(eca)

61. E.CA. Reh(eca) sched(eca)

62.  No, Idon’t getit... Fill

63. E.C..A.D.F. Oh.. wrong again.  Reh(eca); Add(d); Add(f);

Eval-

A dissection of the protocol in terms of the analysis above reveals a bit more of what
is going on during the problem solving process. Figure 3.10 shows a summary of the
analysis in the form of the search tree that is traversed in the episode above.

The participant starts with reading the problem (1-4, not shown in the figure). After
that, there are four episodes in which she tries to find a solution (5-16, 17-27, 28-33
and 34-36). Each of these episodes consists of a number of alternating processes:
incrementally increasing the current schedule, rehearsing the current schedule, and
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—D —— DCAB — DCAB —— feedback from interface: F not before B
EF (5-16)

—C — CD — CDAB — CDAB —feedback interface: F not before B, D not before C
EF (17-27)

—D —— DCAB DCAB —— feedback interface: E not before B
FE (28-33)

DCAB feedback interface: F not before B
EF — (34-36)

impasse (37-38)
|
inference that E and F should be assigned to different workers (39-42)

—E EBC EBC restart on own initiative
FAB (43-51)

impasse

|

inference that C and D should be assigned to different workers (52-56)

—E ECA ECA restart on own initiative
DF (57-63)

Figure 3.10. Search tree corresponding to the analysis of instance A21. Numbers in parentheses refer
to line numbers in the protocol.

evaluating the current schedule. At the end of each episode, the resulting schedule
is either rejected by the interface or by the participant. Although the participant does
not reveal on what basis she selects tasks to add to the plan, the precedence
constraints seem to be an obvious lead. The DCAB sequence, which recurs in three
of the four episodes, directly reflects the “D before C” and “C before A” constraints.
A possible strategy underlying this type of sequencing is to look for two constraints
in which the second task in the first constraint equals the first task in the second
constraint, and distill a three-task sequence out of it.

Up to line 36 in the protocol, the problem-solving process seems to follow a straight
forward search pattern, although the participant only backtracks once, but rather
starts again after a dead end in the search tree. Furthermore, the participant tries the
same solution twice. After four unsuccessful tries, however, the participant reaches
an impasse (37-38). After this impasse, a complex inference is used to infer a new
constraint, the fact that task E and F should be assigned to different workers (39-42).
As mentioned before, this inference is quite complex, since it involves five
constraints. Using this newly inferred constraint, search is resumed, and a new
unsuccessful episode follows (43-51). The solution reached in this episode differs
from the previous episodes, however, in the sense that the newly derived constraint
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is satisfied. Another interesting change is that the participant evaluates the solution
herself, instead of relying on the interface. In the next episode the participant derives
another new constraint, the fact that task D and C should also be assigned to
different workers (52-56). In the final episode (57-63), the participant nearly reaches
the solution. Although she only needs to add task B to her schedule, she somehow
decides the solution is incorrect and starts anew. Examination of the complete
protocol reveals that the participant needs several more search episodes before she
solves the problem.

The problem solving fragment discussed above shows aspects of two theories of
problem solving. Processing within search episodes concurs with the theory that
problem solving is problem-space search, which we have discussed in chapter 1. On
a more global scale, however, the fragment shows aspects of insight theory
(Davidson, 1995). According to insight theory, which is rooted in Gestalt
psychology, the interesting moment in problem solving is when the problem solver
suddenly “sees” the solution, in a moment when an “unconscious leap in thinking”
takes place. Instead of describing problem solving as a gradual approach of the goal,
insight theory predicts the following pattern: exploration, impasse, insight and
execution. The nine-dots problem is a typical example (see figure 1.3 in chapter 1):
the exploration phase consists of fruitless search within the boundaries of the nine
dots, after which an impasse occurs followed by the insight that lines may go beyond
the boundaries of the grid. This insight allows for a final resolution in terms of a
solution.

This insight problem-solving pattern can be found in the problem-solving fragment,
since the four unsuccessful search attempts (5-36) can be seen as the exploration
phase, after which an impasse occurs (37-38), followed by an insight (39-42).
Unfortunately, the insight is only an important step in the direction of the solution,
so the execution phase actually involves some more exploration. Furthermore, the
insight episode isn’t really an “unconscious leap in thinking”, but rather an episode
of solid rational reasoning. Although the fragment shows the pattern of insight
problem solving, it does not share the more mystical aspects associated with some
versions of insight theory.

Learning the different-worker strategy

From the viewpoint of learning problem solving it is interesting to investigate
whether something is learned during an insight episode. Although it is hard to
actually prove something new is learned, it is possible to find some evidence that
this is the case. One way to do this is to see if the same pattern of reasoning can be
found again in later instances. After problem R25, a problem in which the pattern
cannot be used, it recurs in problem A25, as the following fragment shows:
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Problem A25 Time 300 seconds

Protocol Analysis WM
20. task A should be before D Read(a:d) sched(adcb);
ad

21.  A.D..C.B.E.F.ready.

Inkey(adcb); Add(l);
Add(e); Add(f);

sched(adcblef)

Inkey(adcblef)
22. task F is not before B. [Eval-(f:b) fb
23. so E and F cannot be done by the  Inf(e2; f2; time4; f:b; eb diff(e,f)

same worker...

. diff(e,f))

Again, the complex inference is made after two unsuccessful search attempts. In this
case, however, there is no impasse: the participant immediately makes the inference.
Later in the experiment, in problem A29, the same strategy is used:

Problem A29 Time:128 seconds

Protocol Analysis WM
15. B..A..D..C, next worker.. Reh(badc); Add(l) sched(badcl)
16. E.F ready. Add(ef); Inkey sched(badclef)

17. Oh, task F is not before C, so E
and F again can’t go together.

|[Eval-(f:c); Inf(f:c; ? —
diff(e,f))

diff(e, )

The only difference with problem A25 is that the participant seems to recognize the
fact that this pattern has occurred before. In the final type A problem, problem A27,
the participant immediately uses the newly learned strategy without resorting to

fruitless search first:

Problem A27 Time:140 seconds

Protocol Analysis WM

8. So then it is eeh, A before Cand  Read(a:c); Read(d:a); ac;d:a;eb;fb
D before A, E beforeB and F Read(e:b); Read(f:b)
before B

9. E and F can probably not go
together, since then they will not
be before B

Inf(e:b; b — diff(e,f)

diff(e, )

Summarizing, the four protocol fragments show how a new strategy, the “different-
worker strategy”, comes into existence. In A21, the strategy is discovered in a classic
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insight problem-solving pattern. In A25, the pattern recurs, except that there is no
impasse period. In A29, the pattern again recurs, but the participant shows evidence
of recognizing the strategy. Finally, in A27, the strategy is incorporated in the normal
search process.

Learning the fit-the-hours strategy

The different-worker strategy is not the only strategy the participant discovers
during problem solving. The first indication of a second strategy is in problem R25,
the fourth problem.

2 workers
9 hours
Problem R25 Time 200 seconds A 2 hours
B 2 hours
Protocol Analysis WM C 3 hours
D 3 hours
15. ABE.D.E..C.. Reh(abfld); Add(e); sched(abfldec) E 3 hours
Add(c); Inkey(abfldec) F 5 hours
16.  Oh, no, that’s not right. task Cis  Eval-(c:b) sched(abfldec) A before E
not before B, C before B
17. OK, one more time. Restart E before D
18. E A and B belong together, so Inf(f5; a2; b2; time9 — same(a,b,f) Solution:
the first worker... same(a,b,f)) AFB
CED

After an unsuccessful search episode, the participant mentions that F, A and B
belong together, and should be assigned to the first worker. Inspection of the
particular problem shows why this may be inferred. For each worker, the sum of the
tasks assigned must add up to nine hours. Only 2+2+5 and 3+3+3 add up to nine in
this given instance, so A, B and F should go together, and C, D and E. Although this
particular piece of protocol is only weak evidence for this strategy, stronger evidence

for the new strategy can be found in problem R24, two problems later.

2 workers
Problem R24 Time 93 seconds 9 hours
A2 hours
Protocol Analysis WM B 2 hours
1. two workers with each nine Read(work2); work2; time9 C 3 hours
hours, Read(time9) D 4 hours
let’s look at the hours... Meta E 7 hours
: . . A before B
seven plus two can again be Read(e7); Read(a2); same(2,7) C before D
nine, Read(b2); Inf(e7; a2; b2 C before B
- same(2,7))
Solution:
EB
ACD
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Problem R24 Time 93 seconds

Protocol Analysis WM
4. Four, three and two equals nine,  Read(d4); Read(c4); same(2,7);
Read(b2); Read(a2); same(2,3,4)
Inf(d4; c3; b2; a2 —
same(2,3,4))
5. So that seven has to gowith Aor  Inf(same(2,7);e7 — same(2,e7)
B. same(2,e7))

After problem R24, the participant uses this strategy at the start of every new
problem, a clear indication that this new strategy has been incorporated in the
general problem solving method. In the problem A29, the strategy has become
routine, and the participant can even recognize whether or not the strategy is useful.

2 workers
Problem A29 Time:128 seconds 6 hours
A1 hour
Protocol Analysis WM B 1 hour
1. eehm, there are two workers Read(work2; time6) work2; time6 C 2 hours
with each six hours. D 2 hours
_ E 3 hours
2. It may be the case that E and F Inf(e3; f3; time6 — same(e,f) F 3 hours
go together, because three plus same(e,f))
three, Abefore D
X B before A
3. And DCBA, two, two, two, one Inf(d2; c3; b1; at; time6 same(e,f); E before C
hour. — same(a,b,cd)) same(a,b,c,d) F before C
4. It can also be the case that... Meta Solution:
Well, anything can be the case. EAD '
BFC

Summary of the qualitative analysis

The most interesting aspect that can be found in the protocol of participant 2 is the
fact that she learns two new strategies to solve scheduling problems. The first time
these strategies surface is after one or more unsuccessful search attempts. It is quite
probable that the participant discovers the strategy at this point. Later on, they are
incorporated in the problem solving process. Since scheduling is intractable, these
strategies do not provide an effective procedure to solve the general scheduling
problem. Nevertheless, they are useful for a large number of instances of the
problem.

Another aspect of the problem solving process is that the participant hardly uses
backtracking: she just starts all over again. On the other hand, she does keep track of
what she does somehow, since a renewed search attempt is almost always a
variation on the previous attempt. A final very obvious aspect is the role of rehearsal.
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The participant uses rehearsal quite extensively to keep partial solutions active in
memory. Interleaving rehearsal with other aspects of processing requires planning
as well. The participant not only has to create a schedule for the workers in the
scheduling problem, she has to schedule her own activities as well.

Quantitative analysis

To get a more reliable picture of the ideas outlined in the previous section, a
simplified version of the analysis has been carried out for all protocols. All main
analyses have been done on the seven interpretable protocols from group 2.
Occasionally we will also look at the two protocols from group 1. Two observers, a
professor in computer science and a graduate student in psychology, were asked to
score the protocols according to the following categories:

* Simple inferences, defined by the fact that two or less constraints are involved.
Constraints are all aspects of the task, e.g. “A before C” constraints, the fact that
task C takes two hours, and any constraints the participants themselves have
derived.

* Complex inferences that resemble the fit-the-hours strategy

* Complex inferences that derive the fact that two tasks should be assigned to
different workers

* Complex inferences that derive the fact that two or more tasks should be
assigned to the same worker

* Complex inferences that derive the fact that some task should be at the
beginning of the schedule, at the end of the schedule, or somewhere in the
middle

* Complex inferences that do not fit in with any of the previous categories

* Counting, if the participant uses counting to do addition

The last category requires some more explanation. It turned out some of the
participants sometimes used counting as a strategy to do addition. This strategy is
normally found only in children who have not yet memorized all addition facts. A
possible explanation is that in situations where working memory demands are high,
counting is a procedure that is less likely to disrupt the contents of working memory
than retrieving a fact.

After the observers had scored the protocols, the correspondence was calculated.
Correspondence is expressed using the kappa-measure (van Someren, Barnard &
Sandberg, 1994), which corrects for the expected correspondence. The kappa
measure turned out to be 0.61. According to van Someren et al., kappa should at least
be 0.70. Closer inspection of the categories, however, revealed that simple inferences
and miscellaneous complex inferences were scored very unreliably. Furthermore,
the fit-the-hours strategy and inferences that two or more tasks should be assigned
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Observer 1
Observer 2 Bink Ch Cdiff | Cfirst | Clast | Cmid | Cnt
No score or removed (BInk) 2114 8 5 6 3 2 1
Fit-the-hours strategy (Ch) 11 32 1
Different worker (Cdiff) 5 27
Assign first (Cfirst) 24 1 3 15
Assign last (Clast) 9 16
Assign middle (Cmid) 1 2
Use counting to add (Cnt) 1 14

Figure 3.11. Correspondence between the two observers

to the same worker were hard to distinguish. So, the simple inferences and the
miscellaneous complex inferences were removed from the analysis, and inferences
that tasks should be done by the same worker were collapsed with the fit-the-hours
category. This resulted in the correspondence table in figure 3.11, and a kappa of
0.72, which is an acceptable value. The entry in the Blnk/Blnk cell (2114) of the figure
is high due to the fact that most entries in the protocol were not classified, since they
contained no apparent inferences (or counting events). Figure 3.11 also shows that
the fit-the-hours and the different-worker strategies are most prominent among the
complex inference strategies. So, the two strategies we found in participant 2 are also
the main strategies found in the rest of the participants. The analyses of both
observers were combined into a single analysis using only the complex inferences
both observers agreed on. If both observers agreed on a complex inference, but used
different categories (5 cases), the experimenter chose the most appropriate category.

One would expect that if participants learn new strategies during problem solving,
the number of complex inferences increases with practice. Figure 3.12 shows this is
indeed the case: in the first problem the participants use 0.5 complex inferences on
average to reach the solution, which increases to more than 2 inferences in instance 8,
dropping back slightly in the last two instances.

Figure 3.13 shows how the two most prominent strategies are distributed over the
individual participants. The black boxes mark the use of the fit-the-hours strategy for
a certain instance, while the grey boxes indicate the use of the different-worker
strategy. As is evident in the figure, some of the aspects witnessed in the analysis of
participant 2 are also evident in other participants. Some of the participants also
integrate the fit-the-hours strategy in their standard search strategy, notably
participants 2, 6, 7 and 11. The same is true for the different-worker strategy. This is
less evident in the figure, since the different-worker strategy cannot be used
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Figure 3.12. Number of complex inferences for each instance

successfully for every instance. Participants 1, 2, 4, 6 and 7, however, show consistent
use of it.

The use of counting to add numbers was use extensively by participant 1, who used
it 13 times to add numbers. Three participants, 6, 11 and 12, only used it once, and
the other participants showed no evidence for the use of counting to do addition.
Although this aspect has no relevance to the rest of the discussion here, I will return
to this matter briefly in chapter 5.

3.5 Conclusions

The analyses presented in this chapter only scratch the surface of all that is going on
during problem solving. But it is a study in the spirit of Alan Newell, in which we
try to learn as much as possible by studying a single complex task. It is clear that
learning in problem solving cannot be accounted for by a simple, one-principle
theory. Nevertheless many of the aspects found in the analysis support the general
outline discussed in chapter 1. There is evidence for the use of problem-space
search, but also for qualitative insight-like changes in problem-solving approach.
Participants discover and refine new strategies as the experiment proceeds,
enabling them to eventually handle even more complex problems.

The next two chapters will examine details of the aspects of learning in problem
solving that have been found in this chapter. The strategy is to formulate a model
based on intuitions gained from the scheduling experiment, and test these models
on more simple experiments and data from the literature.
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participant 1 I | || ||

participant 2 | | |

participant 3 || |

participant 4 I | I

participant 5 |

participant 6 I e
I I I .

participant 7

participant 11 I

from condition 1

paricipant 12 N I

from condition 1

Figure 3.13. Strategy use plotted for individual participants. Black boxes indicate the fit-the-hours
strategy was used for that particular trial, and grey boxes indicate the use of the different-
worker strategy.

Maintaining the current problem context

One important aspect of problem solving, which becomes most apparent if problem
solving has to be done entirely by heart, is to maintain the current problem context
in memory. Protocols show participants have great difficulty with this aspect of
problem solving, since they give a lot of attention to rehearsing their current
schedule, but nevertheless make many mistakes with it. Clearly there is more going
on than just pure rational search. But participants have to do more than just
rehearsal, they also have to keep track of other dynamic aspects of problem solving,
such as what they have already tried and what new constraints they have already
derived. Coordinating knowledge in the current problem context has aspects of
implicit and explicit learning. Rehearsal is clearly an intentional, explicit aspect, but
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a growing sense of the inadequacy of search given the current knowledge, is more
implicit. Chapter 4 will elaborate on this topic, and will discuss a model of
rehearsal.

The role of insight and rule learning

Protocol analysis showed clear evidence for the emergence of two distinct problem-
solving strategies, the fit-the-hours strategy and the different-worker strategy. The
single protocol that was analyzed in detail also showed a learning pattern that
resembled the exploration-impasse-insight-resolution scheme posed by insight
theory. In chapter 5, a rational basis for this pattern of problem solving will be
sought. Additionally, the problem of how new rules can be learned during an
insight episode will be discussed.

3.6 Appendix: Proof of NP-completeness of fully-filled precedence
constrained scheduling

A proof of NP-completeness consists of two steps. First, the problem must be in NP,
and secondly it must be possible to polynomially reduce any NP problem to the
candidate NP-complete problem. Reducing a problem A to problem B means that
there exists a transformation function T that takes an arbitrary instance of problem
A and returns an instance of problem B, satisfying the condition that the solutions
to both instances are the same. To polynomially reduce A to B means that the
transformation function T must have a polynomial time complexity.

To prove that any NP problem can be reduced to a candidate NP-complete problem
is very hard. Fortunately, there is a much easier method. It is sufficient to prove that
an arbitrary other NP-complete problem can be reduced to the candidate NP-
complete problem. Since all NP problems can be reduced to this other NP-complete
problem, any NP problem can be reduced to the candidate NP-complete problem in
two steps (figure 3.14).

The original definition of PCS assumes all tasks have a duration of one hour. So FF-
PCS also differs in this respect, since tasks can have an arbitrary duration. The NP-

completeness proof will have to take this into account as well. The formal definition
of PCS is as follows (from Garey & Johnson, 1979).

Definition of PCS

An instance is a set T of tasks, each having length I(t) = 1, a number mOIN" of
workers, a partial order < on T, and an overall deadline D 0 IN*. The question to be
answered for each instance is: is there an m-worker schedule for T that meets the
overall deadline D, i.e., a function o:T - IN such that, for all u=0, the number of
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Figure 3.14. How to prove any problem can be reduced to an NP-complete problem

tasks t OT for whicho (t) <u<a(t) +I(t) is no more than m and such that, for all
tOT,0 (t)+I(t)<D, and obeys the precedence constraints, i.e., such that t<t'
implies o(t') 2 o(t) +1(t) ?

Definition of FF-PCS

FF-PCS differs from PCS with respect to the following two points: it allows arbitrary
lengths of tasks, so I(t) O IN*, and it requires the schedule to be filled, so

tgrl(t) = mD.

Theorem
FF-PCS is NP-complete.

Proof

First, we have to prove that FF-PCS is NP. The problem is NP, if there is an
algorithm consisting of two parts: a non-deterministic part that “guesses” a
schedule, and a deterministic algorithm of polynomial time complexity that checks
whether this schedule meets all the constraints. Both parts of this algorithm are
easy: guessing a schedule is just filling o(t) with arbitrary values, and checking the
schedule means checking the precedence constraints (one check for each
constraint), whether all tasks end before the deadline (one check for each task), and
whether there are no overlapping tasks (no more checks required than the
multiplication of the number of tasks and the deadline D).

The second part of the proof involves the reduction of PCS, a known NP-complete
problem, to FE-PCS. So, given an instance I of PCS, we have to show how this
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instance can be transformed into an instance I’ of FF-PCS, and have to prove that if
there is a schedule for I, there is a schedule for I, and if there is no schedule for I,
there is no schedule for I’ either.

The best way to understand this transformation is to think of a PCS schedule as a
schedule in which some of the workers have time left in which they have nothing to
do. Now suppose we also want to schedule this “free time”. This will not increase or
decrease the difficulty of the process, since there are no constraints on free time, it is
just that any time that is left over is now officially called a “free-time” task.

For the transformation function we will distinguish three possible cases, two of

which are trivial. The first is the case in which ;I(t) >mD, so the total duration of
t

all tasks exceeds the total time workers have. In that case there can never be a

solution. So we can just transform all instances to a single FF-PCS instance for which
we know no schedule is possible. This transformation satisfies the condition, since

for all instances there is no schedule. The second trivial case is when ;I(t) =mD:
t
the total duration equals the total time the workers have. In this case the PCS
instance already is a FF-PCS instance, so we can just use identity as the
transformation function. The third case is when gTI (t) <mD, the case in which there
t
is more available time than it takes to do all the tasks. The idea is to “fill up” the rest

of the schedule with tasks of length one (“free-time” tasks), on which we do not
impose any precedence constraints. These extra tasks can fill in the rest of the

schedule. So given an instance I of PCS, we create I’ by adding mD - ng (t) tasks to
t

T, each of which has I(t) = 1. No precedence constraints are imposed on these new
tasks. If there is no schedule for I, neither will there be one for I’, since it only has

more tasks to schedule. If there is a schedule for I, it has exactly mD — g'rl (t) points
t

in time left for which the schedule has less than m scheduled tasks that can be filled
with the added tasks in I'. Since no precedence constraints are imposed on these
tasks, they can be scheduled anywhere.

89



3: Scheduling

90



crrrera Implicit versus Explicit
Learning




4: Implicit versus Explicit Learning

The goal of this chapter is to arrive at a theory of implicit and explicit learning
without introducing new theoretical entities. The basis for this theory will be the
ACT-R architecture. The ACT-R theory, of course, also uses multiple theoretical
entities. As we will see, none of these correspond directly to the notions of implicit
and explicit learning, but together they can provide an explanation. This chapter will
start with a general discussion about implicit and explicit learning. One experiment
that is often quoted in the context of implicit learning is a dissociation experiment by
Tulving, Schacter and Stark (1982). An ACT-R model is presented that can be used
to explain their results. The model also serves as a basis for a more general discussion
on how implicit learning and explicit learning can be understood in terms of ACT-
R. The remainder of the chapter is used to discuss a particular example of explicit
learning: rehearsal. Rehearsal is often studied using the free-recall task. By
examining free-recall in several different situations, we may conclude that the
primacy effect is mainly an effect of explicit learning, while the recency effect can be
explained by implicit learning.

4.1 Introduction

In chapter 11 have discussed Alan Newell’s criticism of psychological research, in
which he mocked the simplistic conceptualization of the complexity of human
cognition in terms of binary oppositions. Since 1973 a new opposition has become
popular in cognitive psychology: the distinction between implicit and explicit
learning or implicit and explicit memory. Although the term implicit memory was
already proposed by Reber in 1967, the topic became popular by the end of the
eighties. Before implicit learning research became popular, most memory research
paradigms were based on either recognition or recall. Both in recognition and recall,
participants first have to study some materials, and are tested later on. These types
of experiments offer many insights into the nature of human memory, but tend to
bias theories of memory. For example, in the famous dual-store memory theory by
Atkinson and Shiffrin (1968), a major role for storing information in long-term
memory is attributed to rehearsal, the mental process of sub-vocally repeating
information. The dual-store theory was able to explain many of the recognition and
recall experiments. A very powerful but false prediction was however neglected:
the fact that no rehearsal implies no storage in long-term memory. As we will see
shortly, learning may even take place without awareness. The dual-store theory
overestimated the importance of rehearsal as a memory process, because it used
recognition and recall as a basis. In both types of experiments, participants were
told explicitly they had to memorize certain items.

Reber’s 1967 experiments departed from this experimental paradigm, and

investigated what people learn without being aware of what they have to learn. The
experiment he introduced, and which has been replicated many times in many
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variations, is artificial grammar learning. In this experiment participants first study a
list of strings that has been generated by a finite-state automaton based on an
artificial grammar. After this study phase, participants were told the strings they had
studied were words generated by a grammar. In the following test phase, they were
presented with new strings generated using the same grammar, mixed with random
strings and strings with subtle errors in them. Participants had to figure out which
new strings were generated by the grammar, and which were not. It turned out that
participants are surprisingly good at this task, and classify the new strings not
perfectly, but well above chance level. Since none of the strings that were originally
memorized were presented in the test phase, and participants were not aware of the
fact that there was any systematicity in the learned strings, they somehow must have
learned more than just the literal strings. Reber coined the term implicit learning to
describe this additional, unintentional aspect of learning. Additional studies show
that although participants perform well on this task, they can not explicitly state the
rules of the grammar.

The idea that participants must learn to predict the behavior of a final-state
automaton has been used in several other research paradigms. An example of one of
these paradigms is dynamic system control, in which participants have to learn to
control a complex system. An example is an experiment by Berry and Broadbent
(1984), which involves a scenario in which participants have to learn to control a
sugar factory. The Sugar Factory computer simulation they used is a dynamic
system in which participants have to control sugar production by setting the number
of workers. Since the relationship between input and output is highly non-linear, it
is almost impossible for participants to discover the rule that governs the system.
Nevertheless participants learn adequate control quite quickly, although they are
not able to state the underlying rules of the system. A model of this experiment will
be discussed in chapter 6.

Another type of research that deviates from traditional memory research is the
dissociation paradigm. An example of this type of research is an experiment reported
by Tulving, Schacter, and Stark (1982). In this experiment participants first had to
study a list of 96 words. They were subsequently tested using two different tests, an
implicit and an explicit test. The first, explicit, test was a simple recognition test, in
which the participant was asked whether or not a certain word was in the study list
or not. The second, implicit, test was a word-completion task. In this case
participants were presented with a word fragment which they had to complete, for
example A_ _ A __IN (answer: ASSASSIN). Some of the fragments originated from
the studied list, and others were from words not previously studied. Each
participant had to do each test twice: an hour after the study phase and a week after
the study phase. Figure 4.1 shows the results. One hour after studying the words,
participants recognize 58% of the items correctly (this percentage is corrected for
guessing). After a week, performance has dropped considerably to 24%. The implicit
word-completion task, however, shows a totally different picture. Studying words
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Figure 4.1. Results of the Tulving, Schacter & Stark experiment: performance on the explicit
recognition test degrades in a week, while performance on the implicit word completion task
remains constant.

improves performance on this test: after one hour word-completion was accurate for
studied words in 49% of the cases, while new words were only completed
successfully in 30% of the cases. This advantage does not degrade with time, since
after a week performance on the word-completion task is still the same. The
discrepancy between the two tasks is called a dissociation: while one type of
information, the fact that a word has been studied in the context of the experiment,
degrades over time, other, subtly different, information seems not to suffer from any
decay in time at all.

In the example above the dissociation is caused by time: one type of performance did
suffer due to the passage of time, while another did not. There are other types of
dissociations, for example due to brain damage. A study by Warrington and
Weiskrantz (1970) reveals that patients suffering from amnesia perform much worse
compared to healthy people on explicit tests like recognition and recall. On implicit
tests like word completion, their performance equals control participants.

What do experiments such as artificial-grammar learning and dissociation learning
exactly prove? At least they show the inadequacy of the classical recognition/recall
paradigms, and also show that the “no rehearsal no learning” prediction of the dual-
store model does not hold. But, probably to Alan Newell’s horror, psychologists
turned the new phenomena into a new binary opposition, and, even worse, posed
two binary opposite theories (the systems and the processing theory) to explain the
distinction. Implicit and explicit learning were proposed as two distinct types of
learning, each having its own mechanisms and needing its own theoretical
framework. Explicit learning was associated with all the old memory research, but
implicit learning, the new kid on the block, promised to be a new unexplored
domain of countless experiments.

What makes implicit learning different from explicit learning? The dissociation

experiments show that implicit learning is somehow more robust than explicit
learning, since neither brain damage nor the passage of time seems to affect it.
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Implicit learning is more robust in other aspects as well. McGeorge, Crawford and
Kelly (1997) have shown that explicit learning is dependent on age and intelligence,
while implicit learning is not. Participants that score higher on an IQ-test also
perform better on explicit memory tests, and performance of older participants on
the explicit test is worse than the performance of younger participants. Implicit
learning on the other hand is hardly affected, either by IQ or age.

Another aspect of implicit learning, even used by some researchers as the defining
quality, is that consciousness or awareness does not seem to play a role in it. Implicit
learning is therefore sometimes called unconscious learning, as evidenced by the fact
that although the participants can not verbalize any knowledge about the task, their
performance increases nevertheless. In Reber’s artificial grammar participants were
not able to state any of the grammar rules, but could categorize the strings anyway.
In the Tulving experiment, participants had forgotten that they had studied a
particular word after a week, but managed to use them for word-completion
anyway. The notion of consciousness is, however, not unproblematic, as pointed out
by Shanks and St. John (1994). In the artificial grammar experiments participants
were not able to express any of the rules of the grammar. But they were aware of the
fact that certain combinations of letters were more likely in grammatical than in
ungrammatical strings, something that could at least explain some of their increased
performance. A “safer” version of the unconsciousness aspect of implicit learning is
to define implicit learning as unintentional learning, learning that is not tied to goals.
In artificial grammar learning and in the Tulving experiment, participants had to
memorize words or strings for later recall or recognition, not with the intention to do
word-completion or to figure out a grammar. In this sense implicit learning can be
seen as a “by-product” of normal information processing, while in explicit learning
information processing is aimed at learning, comprehending or memorizing
something.

There are two opposing theories that attempt to explain the differences between
implicit and explicit learning: the systems theory and the processing theory.
According to the systems theory, put forward by Squire (Squire & Knowlton, 1995),
there are two different memory systems, an implicit and an explicit memory system,
represented in separate structures in the brain. The fact that amnesiacs perform
worse than controls on explicit tasks but not on implicit tasks can simply be
explained by the fact that their explicit memory is damaged but their implicit
memory is intact. Explicit memory is conscious memory, implicit memory is
unconscious. Information in explicit memory decays with time, while information in
implicit memory stays put. This also corresponds well with the folk-psychology idea
that all our experiences are stored in unconscious memory.

The processing theory of implicit learning by Roediger (1990) assumes that there is

a distinction between two types of processes: data-driven processes and
conceptually driven processes. Data-driven processes are triggered by external

95



4: Implicit versus Explicit Learning

stimuli and can be associated with tests of implicit memory. For example, in the
word-completion task part of the pattern is given. This part of the data actively
facilitates the retrieval of the whole pattern. In the recognition test on the other hand,
a connection between a word and an episodic event must be verified, so has a more
conceptual nature. Conceptually driven processes are initiated by the participant
and lead to explicit learning. According to the processes theory, memory
performance will be best if the processing required on the test is the same as the
processing required in the learning phase.

The problem with both the systems and the processing theory is that a distinction
found in empirical data is explained by proposing two different theoretical entities,
either two systems or two types of processing. From a scientific point of view this is
a weak explanation that furthermore offers no insights in what the difference is
between implicit and explicit learning. The evidence for separate entities is not final
either. There are many examples of dissociations in which explicit learning is
impaired while implicit learning is intact. If each type of learning is associated with
its own theoretical entity, however, a so-called crossed double dissociation has to be
found. In a crossed double dissociation, two experimental variables have to be found
that have opposite effects on the implicit and the explicit test. A dissociation like this
has never been found (Cleeremans, Destrebecqz & Boyer, 1998). To quote
Cleeremans (1997, page 215):

With the exception of Hayes and Broadbent (1988) that has failed to be replicated
so far, such a [crossed double dissociation] has never been observed in implicit
learning situations. [...] the fact that no crossed double dissociation has ever been
satisfactorily obtained in implicit learning research has often been used by other
authors (e.g. Shanks and St John, 1994) as an argument to deny the existence of
implicit learning as an independent and autonomous process.

Evidence from studies with patients isn’t strong either: both patients of
Huntington’s disease (Heindel, Butters & Salmon, 1988) and Parkinson’s disease
(Saint-Cyr, Taylor & Lang, 1988) have severe difficulty in learning motor skills, while
showing intact performance on recall and recognition. Motor skills are usually
considered procedural skills. Since people do not have conscious access to their
procedural skills the associated learning process can be considered implicit. The
problems these particular patients have, however, seem to limit themselves to the
motor domain, so a generalization to implicit learning in general is unwarranted.

4.2 A model of the dissociation experiment

Tulving’s dissociation experiment consists of three separate activities, each of which
is modeled by a small set of production rules: studying the list of words, the
recognition test and the word-completion test. First, the list of words has to be
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Figure 4.2. Example of the activation for a chunk accessed at time 1, 4 and 7.

studied. In the experiment, every 5 seconds a word is presented. Since participants
were only told they were involved in a memory experiment, they had no direct clue
on what they had to do exactly with the words. It is therefore a safe assumption that
participants will just rehearse the word and the fact that they have seen the word in
the current context. This is easily accomplished in ACT-R: a first production rule
creates a declarative recognition chunk that points to the word to be studied and to
the current context. The recognition chunk can be considered as an episodic
memory trace. A second rule keeps retrieving the chunk that represents the word
and the recognition chunk until the next word is presented. Due to ACT-R’s base-
level learning, the activation of a chunk is increased each time it is retrieved. The
base-level activation at a certain time f can be calculated using the following
equation:

n
Bi(t) = log§ (t-t)+B @4.1)
2

In this formula, 7 is the number of times a chunk has been retrieved from memory,
and t; represents the time of each retrieval. The longer ago a retrieval was, the less
it contributes to the activation. B and d are constants. Figure 4.2 shows an example
of the behavior of this function, in which the activation of a chunk is plotted that is
accessed attime 1,4 and 7.

When the rehearsal production rule retrieves the recognition chunk and the chunk
that represents the word itself, activations of both chunks are increased

considerably, because 7 is increased in the formula, and the new t; ’s are all still close
to t. There is, however, a difference between the activation of the recognition chunk
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Figure 4.3. Development of activation values for recognition chunks, primed words and non-primed
words in the course of the week after the study phase of the experiment.

and the word chunk. The recognition chunk has just been added to declarative
memory, so has no previous history of activations. This means that the activation of
the recognition chunk is based solely on the few rehearsals in the context of the
experiment. The word chunk, however, was already present in declarative memory,
and already has a history of past use. In the model, this is simulated by assuming that
words have been accessed on average 150 times, spread evenly over the past ten
years, producing a low, but stable activation value. Some fixed activation noise in the
model assures that all words have slightly different activation values. The difference
between recognition and word chunks means that activations will also develop
differently in the time period after studying the words. As figure 4.3 shows, both the
word chunks and the recognition chunks start at a high level of activation. The
activation of recognition chunks, however, decays faster due to the fact that they
have no previous history.

In the recognition test the question must be answered whether or not a particular
word has been studied in the study phase. In terms of the model this means that
given a particular word chunk and a particular context chunk, a recognition chunk
must be retrieved that connects the two. This is handled by two production rules.
The first rule tries to retrieve the recognition chunk and answers “yes” when it
succeeds. The second rule, which may fire if the first rule fails, just answers “no”.
This model is not entirely faithful, since it does not model the event in which a word
that has not been studied is mistaken for one that has been studied. This can be
modeled in ACT-R using partial matching, but this has not been done in the current
model (partial matching has briefly been introduced in chapter 2, but will used in the
Sugar-Factory model in chapter 6). Failure to recognize a word that has been studied
is due to the fact that the activation of the recognition chunk has become too low,
since ACT-R cannot retrieve chunks with activations below the retrieval threshold.
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In a recognition test, the indices to retrieve the right chunk are clear enough: the
word and the study event. This is not the case in the word-completion task, where
only a part of the word is given and the rest has to be retrieved. In order to retrieve
the word that fits the pattern A _ _ A _ _IN, ideally a production rule is needed that
matches the first, fourth, seventh and eighth letter, and tries to retrieve a word that
fits. The problem with this solution is that a production rule is needed for any
combination of letters, which would mean 256 production rules if we would restrict
ourselves to just 8 letter words. A solution that only requires a few production rules
is to retrieve a word using only one or two letters, and compare if the retrieved word
matches the rest of the letters. If it does, a solution has been found, if it does not, the
model gives up. Alternatively, the model might have a few tries before giving up,
but that aspect has not been modeled. One of the matching rules is as follows:

IF
the goal is to complete a word fragment AND

the first letter of the fragment is 11 AND
the second letter of the fragment is 12 AND
there is a word w that has I1 as its first letter AND
has [2 as its second letter

THEN
mark w as a candidate solution in the goal

This rule tries to find a word that matches at least the first two letters of the pattern.
This rule will not work forthe A __ A _ _IN, because the second letter is unknown,
but it will work if the first two letters are given.

Although both recognition and word completion require some declarative retrieval,
they differ with respect to the source of errors. In the recognition test, it may be the
case that a recognition chunk is no longer retrievable due to low activation. In the
word-completion test interference with other words is the major source of errors.
Words that are primed in the learning phase of the experiment get an activation
advantage over words that are not primed. This advantage may persist over longer
periods of time, as is indicated in figure 4.3. This difference between the two tasks
may well be the real explanation for the dissociation. Figure 4.4a demonstrates that
the model indeed behaves in a way that is comparable to human data. The main
parameter that was manipulated to achieve the fit is the base-level learning decay
(parameter d in equation 4.1). The recommended value for this parameter is 0.5, but
this turned out to be a poor choice to explain long-term learning, since in a week
ACT-R had forgotten everything. Instead the value of 0.3 has been used. Other
parameters that have been manipulated, such as the retrieval threshold and the
activation noise, did have small effects on the actual values of data points, but did
not change the main dissociation effect.
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Figure 4.4. Results of the model of the dissociation experiment (a). The data are repeated in (b).

The interesting aspect of this model is the fact that although it exhibits a dissociation,
it nevertheless has no separate theoretical constructs to explain this difference. Both
types of information are represented in the same memory system by the same
memory process. The dissociation can be explained by the characteristics of the tasks
themselves, rather than by hypothesized constructs. What is the difference between
recognition and word-completion? To get a broader view on this question, we first
have to review the notion of activation. Activation in ACT-R is an estimate of the log
odds that a certain chunk is needed in the current context. This estimate is used in
ACT-R for two purposes:

If there are two or more possible candidates for retrieval by the production rule
that is currently matched, the candidate with the highest odds is chosen.

If the odds of needing a certain chunk are too low, the potential gain of
retrieving it is not worth the effort.

If we look at the study task the participants have to do, we have to compare it to the
situation in which people normally read words. In normal situations, it is not useful
to remember in which particular context a word has been read. It is, however, useful
to keep track of how often a word is used or encountered, since high-frequency
words are more important than low-frequency words. So, if someone read low-
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frequency words in a normal setting, he would typically not remember the event of
reading the word itself, and would probably only update the frequency information
of that word. The Tulving experiment is not a normal situation, it is a memory
experiment. In order to meet the, at that point, unknown criteria of the memory
experiment, the participant intentionally influences the normal learning scheme by
rehearsing information. Rehearsal in this context means: intentionally increasing the
number of retrievals of certain chunks, thereby artificially increasing the odds-of-
being-needed of the chunk. As a consequence, the recognition chunk that stores the
information that the word has been studied can still be recovered one hour after the
study phase. A unintended by-product of rehearsal is that the frequency information
of the studied words is increased as well. Since low-frequency words are used, the
extra retrievals due to rehearsal have a significant impact on this estimate. It is this
frequency information that the word-completion production rules need in order to
select candidates, and which can be used as an explanation why studied words are
completed better than words that are not studied, even after a week.

In the previous discussion the important difference between normal situations and
a memory experiment is intentionality. In the introduction I have already noted that
intentionality might be a key notion in the discussion. In the next section I will
explain how this idea can be worked out in terms of the ACT-R theory.

4.3 An ACT-R theory of implicit and explicit learning

In the introduction I mentioned intentionality might be a good starting point to
understand the nature of the difference between implicit and explicit learning. An
advantage of using intentionality is that it can easily be operationalized in terms of
ACT-R. Intentionality in terms of ACT-R means: tied to a goal. In the case of
learning words for later recognition, as in the Tulving experiment, the intention of
the participant is to memorize the words. If we look at the learning mechanisms in
ACT-R, none of them is principally tied to intentions. Although the base-level
learning mechanism may be used in the context of a memorization goal, it is not its
basic function. Its basic function is to keep track of the odds that chunks are needed,
a function that is normally performed unintentionally and unconsciously. The same
can be said about all learning mechanisms in ACT-R: they are at work all the time,
and are basically not tied to intentions. In a sense all learning in ACT-R is implicit
learning. This idea is consistent with other properties of implicit learning. Implicit
learning does not change much by ageing, and individual differences are small.
This is exactly what we want for basic mechanisms in an architecture for cognition,
since it is a theory about what people have in common and not about what sets
them apart. The fact that implicit learning is not easily impaired due to brain
damage also favors the architectural mechanism view: the basic way the brain
works shouldn’t change due to damage.
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What is explicit learning? The position I would like to defend is that explicit learning
is a form of implicit learning. But while implicit learning is a by-product of normal
processing, explicit learning is the by-product of specific learning goals. Where
normal processing would retrieve a chunk representing a word only once, an explicit
learning goal may retrieve it a number of times, not because it is necessary for
processing, but just to put the implicit learning mechanisms to work. Although we
have no direct conscious access to the base-level learning mechanisms itself, we may
have found out, due to experience that repeating a word helps remembering it.
Instead of being another type of learning, explicit learning is just a set of strategies to
make the best possible use of the implicit mechanisms. Explicit learning is therefore
not a part of the architecture of cognition, but is rather produced by knowledge that
isrepresented in the memory systems of that architecture. This idea also corresponds
well with properties of explicit learning: since the knowledge corresponding to it has
to be learned itself, one can expect large individual differences due to intelligence
and development. Similar observations can be made with respect to brain damage.
If implicit learning is a fundamental property of the brain, it will not be easy to
damage it. Explicit learning, on the other hand, consists of knowledge. Brain damage
may cause this knowledge to be lost, or disrupt successful usage of this knowledge.

In the case of the Tulving experiment, the recognition task is an explicit task only
because participants suspect either recognition or recall if they are told they are
involved in a memory experiment. If one explained the word-completion task to
participants at the start of the experiment, and told them they were supposed to do
this task after the study phase, it would turn into an explicit task. The participant has
several options: she can either stick to a rehearsal strategy, or attempt some more
clever memory strategy, for example by explicitly memorizing characteristic
fragments of words. The choice of strategy will have a large impact on performance.
The original rehearsal strategy will of course still exhibit the assumed characteristics
of implicit learning, while the fragment-memorization strategy, if it works at all, will
probably suffer from the same fast decay that is supposed to characterize explicit
learning. We might even be able to find a dissociation within the same task in healthy
participants.

In Reber’s artificial grammar and Berry and Broadbent’s sugar factory, participants’
performance increases, although they are not capable of formulating any explicit
rule-like knowledge about the task. In both cases, it is very hard to find the real rules:
deriving grammars from examples is a very difficult task, and the non-linear
character, the randomness and the limited means of control in the sugar factory
make it almost impossible for participants to derive rules within the limited time of
the experiment. As a consequence, explicit strategies that are usually successful in
detecting regularities will fail. Nevertheless there is also implicit learning going on.
For example in the sugar factory task, which I will discuss in detail in chapter 6, each
time the participant sets the controls of the factory and perceives an outcome, a
chunk recording this information is added to declarative memory. This is not done
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intentionally, but rather because all popped goals are stored. It will turn out that this
information alone can account for the improvement participants show on the task.

In the remainder of this chapter and in the next two chapters, I will explore the
implicit/explicit distinction based on the idea that implicit learning is based on
mechanisms of the architecture, and explicit learning is the application of learning
strategies. In chapter 5,  will discuss explicit strategies that learn new production
rules, and how an increase in the number of strategies can explain the difference
between small children and adults on a classification task. In chapter 6, I will
describe how the implicit/explicit learning debate can be related to another debate
in the learning literature: whether new skills are learned by accumulating examples,
or by deriving general rules. The remainder of this chapter is devoted to one of the
issues stated in the previous chapter: a model of rehearsal. This model will be
discussed in the context of the free-recall task, a classical paradigm to study
rehearsal.

4.4 A model of rehearsal and free recall

The model discussed in this section is the first model I made in ACT-R. As a
consequence, the model is based on an old version of ACT-R (2.0), which on the one
hand included features that have since been removed, but on the other hand did not
include all that is currently part of ACT-R. I further chose to implement verbal
rehearsal using a separate phonological loop, based on Baddeley’s evidence for this
kind of structure. If I were to model rehearsal again, I probably would be more
hesitant to add extra structures to the architecture. Recently, the CMU group
(Anderson, Bothell, Lebiere & Matessa, 1998) has also modeled free recall as part of
a broader project on list learning. Their model did not use an explicit phonological
loop. They, however, implemented a phonological-loop-style memory structure
within declarative memory that did the same job.

As we have seen in the introduction, rehearsal has been studied extensively in the
seventies in the context of the dual-store memory theory by Atkinson and Shiffrin
(1968). One of the experimental tasks used for studying rehearsal is the free-recall
task. In this task a list of words, typically containing fifteen to twenty items, is
presented at a constant rate to a participant. After presentation, the participant has
to recall as many words as possible from the list. Two effects emerge from the results,
the primacy effect and the recency effect, respectively referring to the fact that the
first and the last few items of the list are recalled better than the rest. The dual-store
memory theory can explain both effects: the primacy effect is due to the fact that the
first few items in the list are rehearsed more often because they initially don’t have
to compete for space in short-term memory (STM), and the recency effect is due to
the fact that the last few items are still in STM at the moment they have to be recalled.
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Figure 4.5. The percentage of correctly recalled items and the number of rehearsals (Rundus, 1971).
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Figure 4.6. Baddeley’s theory of working memory

This explanation is confirmed by Rundus (1971), who asked participants to rehearse
aloud. The data show that there is a relation between the number of rehearsals and
the chance of recall (figure 4.5), at least with respect to the primacy effect.

Since the popularity of the dual-store theory declined, partly because rehearsal
turned out to be not the sole mechanism to store information in long-term memory
(LTM), less research effort has been put into it. A theory that does involve rehearsal
is Baddeley’s theory of working memory (Baddeley, 1986). In Baddeley’s theory,
working memory has a central executive and two rehearsal subsystems: the
phonological loop and the visuo-spatial sketch pad (figure 4.6). Both subsystems are used
to temporarily store small amounts of phonological and spatial information. The
phonological loop is a system that stores up to two seconds of phonological code in
a serial fashion. The visuo-spatial sketch pad uses a quasi-visual representation of
objects that can be used for spatial reasoning. The visuo-spatial sketch pad can be
used to answer questions like: if the triangle is below the square, and the circle is to
the right of the square, and the circle is above the cross, is the cross left or right from
the triangle?
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The phonological loop is the relevant structure for retention in free recall, at least in
the overt-rehearsal version by Rundus. Instead of being the process that transfers
information from STM to LTM, rehearsal has become a process necessary to
maintain items in STM. Whether or not information will also be stored in LTM is not
specified by Baddeley’s theory, because it is a theory of working memory only. Work
by Craik and Lockhart indicates that the extent to which rehearsed information is
stored in LTM depends on the amount of processing that needs to be done on
individual items (Craik & Lockhart, 1972). This led to the distinction between
maintenance rehearsal and elaborate rehearsal. Maintenance rehearsal is used just to
retain information for a short time, for example a telephone number that needs to be
dialled. During elaborate rehearsal on the other hand further processing is done on
the rehearsed information.

Baddeley has gathered extensive empirical evidence for the phonological loop and
the visuo-spatial sketch pad. The central executive, however, is a weak point in the
theory. It is supposed to be able to contain two or three items, and to control what
goes into both subsystems, but it is unclear what representation it uses, and why and
when it puts something in either subsystem. The central executive is almost a
reference to the rest of information processing, because it not only stores
information, it also makes important decisions on what to memorize in what
subsystem. Some of these decisions must be deliberately planned, involving
knowledge stored in LTM. The problems with the central executive have an obvious
reason: somehow the theory of working memory must be tied to the rest of
information processing, and the central executive is responsible for this.

The ACT-R theory can be seen as a specification of central information processing
that can serve as a means to create models of rehearsal using Baddeley’s
phonological loop. The role of the central executive is taken care of by the ACT-R
architecture.

A model of free recall in ACT-R

To be able to model free recall in ACT-R, we first need some way to do rehearsal. In
order to use Baddeley’s phonological loop, some assumptions have to be made
about the representation of the loop and the interaction with ACT-R. According to
Baddeley, the phonological loop has a phonological representation. To be able to
interact with the memory of ACT-R, we must assume it is possible to activate a
phonological representation given a chunk-like symbolic representation in
declarative memory and vice-versa. To simplify matters, we will assume the
phonological loop has the following properties:

* The phonological loop is a linear storage buffer with a capacity of 2 seconds of
phonologically coded words.

* References to declarative chunks representing pronounceable words can be
added to the loop. New references are added to the end of the loop.

105



4: Implicit versus Explicit Learning

* If the capacity of the loop is exceeded, a random word is dropped.

* Atany moment the contents of the loop can be rehearsed, which involves
entering a subgoal to do this.

* In the rehearsal subgoal the words can just be rehearsed (maintenance
rehearsal), or further reasoning can be done with them (elaborate rehearsal).

Implementing a separate structure for rehearsal is at odds with the idea that
rehearsal is just a learned strategy. But what if the phonological loop is not primarily
a structure of working memory, but rather a buffer to store perceived speech in, or
speech that is about to be pronounced? In that case, rehearsal would be a clever
strategy of reusing a structure whose original purpose is different.

Once rehearsal is taken care of, a model of free recall is straightforward. During the
study phase of the experiment words are read and added to the phonological loop
one at a time. In the time between presentations the phonological loop is rehearsed.
At the time of recall, words are recalled in order of activation until there are no
words left above the retrieval threshold. No attempt is being made to first “empty”
the phonological loop at the time of recall, only the last item of the list is retained.

The explanation this model offers for the two prominent effects in free recall, the
primacy and the recency effects can now be made clear. The primacy effect can be
explained in the same manner as Rundus’ explanation: the first few words are
rehearsed more often, on average, so are retrieved more often. The recency effect can
be explained by the fact that the retrievals are relatively recent, so their impact on the
activation is larger.

A positive recency effect can be considered as an implicit learning effect, since its
presence is not influenced by strategy. This finding concurs with developmental
data. Hagen and Kail (1973) compared free-recall behavior of 7 and 11 year-old
children. Although both groups show a recency effect in recall, in the group of
younger children the primacy effect is absent. Cuvo (1975) found that this difference
can be attributed to strategy: younger children tend to just repeat the last item
presented, while older children adhere to the adult pattern of rehearsal. These
studies demonstrate that implicit learning, as witnessed in the recency effect, is not
affected by age, while explicit learning is, as witnessed in the primacy effect.

Simulation 1

The goal of the first simulation was to reproduce the results of Rundus’ experiment.
Rundus used 25 participants, to whom 11 lists of 20 words were presented on cards
with a 5 second interval. Participants were instructed to rehearse aloud.
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Figure 4.7. Results of the simulation compared to Rundus’ data.

In the experiment the mean number of words correctly recalled was 11.12 and the
mean number of rehearsals 88.3. The simulation recalls 11.15 words correctly on
average, using 116.0 rehearsals. The serial position curve and the mean number of
rehearsals for each item in the list are shown in figure 4.7. The fit between the data
and the model is reasonably good for the probabilities of recall (R>=0.82), and not too
good for the number of rehearsals (R%2=0.57). As can been seen in the figure, the
model overestimates the number of rehearsals, although the curve has the right
shape.

Simulation 2

In the standard experiment, participants have to rehearse aloud, but are free in
choosing which words to rehearse. Participants can be constrained in this aspect, for
example if they may only rehearse the word that has just been presented. Figure 4.8
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Figure 4.8. Data and model of the restricted version of free recall

shows the data (from Fischler, Rundus & Atkinson, 1970) and the results of the
model (R?=0.65). The interesting aspect is that the primacy effect largely disappears,
but the recency effect remains. This finding is consistent with Hagen and Kail (1973)
(no primacy effect in young children) and Cuvo (1975) (young children only
rehearse the last word presented) studies.

Simulation 3

To see whether the model holds its ground in other variants of the task, a data set
collected by Murdock (1962) is a good basis for comparison, since he used different
list lengths (from 10 to 40 words) and different rates of presentation (1 or 2 seconds
per word). Murdock did not require overt rehearsal, so only the probabilities of
recall can be compared. Figure 4.9 shows the data and the results of the model. The
main deviation between model and data is that the model overestimates the
primacy effect. The overall explained variance is nevertheless quite high (R?=0.91).

Simulation 4

In the standard free-recall experiment, recall starts immediately after the
presentation of the words. If there is a delay between recall and presentation in
which further rehearsal is prevented, the recency effect disappears. An experiment
by Postman and Phillips (1965) demonstrates this effect: 18 participants were given
lists of 20 words, 6 lists for which recall immediately followed the presentation, and
6 lists where participants had to count backwards for 15 seconds before recall.
Words were presented at a rate of one word per second, and rehearsal was covert.
The mean number of words recalled correctly was 6.20 if there was no delay after
presentation, and 5.05 if there was a 15 second distraction. The serial position
curves for both conditions are depicted in figure 4.10, together with the simulation
data. The simulation recalls 8.6 words correct on average in the condition without
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Figure 4.9. Data (a) and model results (b) for different versions of free recall. The first number is the
list length and the second number the presentation rate.

delay, and 4.6 words in the 15 sec delay condition. The most interesting aspect,
however, is that the recency effect has largely disappeared. This is normally
explained by the fact that participants cannot use the contents of their rehearsal
buffer in their answers, but the model shows that an explanation based on decay of
activation is sufficient. It also predicts that due to the fact that the last few items are
rehearsed fewer times than items in the middle of the experiment, the recency effect
will eventually turn into a negative recency effect, as we will see in simulation 5.
The primacy effect is much less affected by the delay, since it is caused by the fact
that items have been rehearsed more often. The explained variance is only average:
the overall R? has a value of 0.58.

Simulation 5

Craik (1970) discovered that the disappearance of the recency effect after a delay
can even turn into a negative recency: in some situations recall for items at the end
of the list is worse than for items in the middle part. In a free-recall experiment 20
participants were presented with 40 lists of 15 words at a rate of 2 seconds per
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(b) after presentation.

word. After each 10 lists, participants were asked to recall as many words as
possible from the previous 10 lists, giving a final-recall score. The results of this
experiment are shown in figure 4.11a. To obtain a smooth curve Craik averaged
each data-point with its successor and predecessor, except for the first and the last.

The free-recall model also produces negative recency, as can be seen in figure 4.11b.
The same averaging technique as Craik used is used on the data. In the simulation
the model has to produce as many items as possible after presentation, after which a
60 second break follows and another, final, recall session. Although the results of the
model cannot directly be compared to Craik’s data, since the experimental setup is
a negative recency effect that is similar to Craik can be seen in the model.

different,
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Figure 4.11. Negative recency in data by Craik (1970) (a), and in the model (b).

Discussion

The results of the simulations show that the classical effects of primacy and recency
in free recall can be reproduced using a theory of rehearsal based on the ACT-R
architecture and Baddeley’s phonological loop. The primacy effect can be explained
by the fact that items early in the list are rehearsed more often on average than other
items in the list, the same explanation that was used in the dual-store theory of
memory. The recency effect can be explained by the base-level activation
mechanism of ACT-R: the last few items of the list have a higher activation because
they have been accessed more recently.

Simulations 2, 4 and 5 show that both the primacy and the recency effect can be
manipulated by changing aspects of the task. It is interesting to examine the nature
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of these manipulations. In simulation 2, participants were instructed to use a certain
type of rehearsal strategy, which resulted in the disappearance of the primacy effect.
The learning strategy thus determines the presence or absence of the primacy effect,
and can be considered as an effect of explicit learning. In simulations 4 and 5, the
circumstances of the experiment were changed. Instead of changing the strategy, a
time delay was used, resulting in an effect on the recency effect.

The various models presented in this section also illustrate the inadequacy of the R?
measure to express the quality of fit between the data and the model. Although the
fit with the original Rundus data is clearly the best, the model of the Murdock
experiment achieves the best fit, although it overestimates the primacy effect.

The parameters in the models discussed above were set to their recommended
default settings, except for the activation noise and activation threshold, which were
estimated to optimize the fit to the Rundus model. The same settings were used for
all the other simulations. The base-level learning decay parameter used was the
recommended value of 0.5. In the Tulving model this parameter had to be set to 0.3,
meaning there is an issue to be resolved here. We will return to this issue in
chapter 6.
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5: Strategies of learning

5.1 Introduction

In the previous chapter we saw that learning is a concept with two layers. The
bottom layer consists of the learning mechanisms of the architecture, while the
upper layer is a set of learning strategies that manipulate the mechanisms of the
bottom layer. We have already seen an example of a learning strategy in the form of
rehearsal. In this chapter, the focus will be on learning strategies that try to infer
new knowledge, a phenomenon that we have witnessed in the protocols of the
participants in the scheduling problem. There are several questions to be answered
with respect to learning strategies.

The first question is: when are learning strategies used. A learning strategy is tied to
an explicit learning goal. This means that at some point during reasoning, a learning
goal must be posed in favor of other processing. The protocols in chapter 3
demonstrate that several episodes can be distinguished in the problem solving
process, some of which involve search, and some of which involve reflection. In the
reflection episodes, participants discover new strategies, and the recurrence of these
strategies in later episodes indicates that they have been learned during the first
episode. But when, and for what reasons, does a participant decide to stop search
and start reflection? This is a question of meta-cognition, often portrayed as a
monitoring process that prevents unbounded search. An alternative, which I will
pursue in sections 5.2 and 5.3, is to incorporate the function of meta-cognition
without the need for a separate monitoring process. A separate process would
require its own monitor, leading to endless regress.

A second question one might ask is how learning strategies themselves are learned,
and what their nature is. Learning learning strategies is probably a long-term
process, so it will be hard to investigate this process in a standard experimental
setting. A better setting to investigate the nature of learning strategies is
development. During development, a lot of learning strategies are acquired.
Probably many differences between adults and children with respect to their
reasoning capabilities can be explained in terms of what type of information they can
represent, and what learning strategies they have available to learn this information.
In section 5.4, three theories of development will be discussed, and what can be
learned from them.

The third and final question is how to model strategy learning in ACT-R. New
production rules have to be represented in memory. Some learning scheme has to be
developed that is independent of the current task. In sections 5.5 and 5.6, I will
propose some example learning strategies, and show how they can learn task-
specific knowledge in two different domains. To emulate some of the developmental
aspects of these strategies, I will do some “reverse development” by impoverishing
the learning strategies. As we will see, this leads to behavior associated with an
earlier stage of development.
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5.2 Search vs. Insight

In chapter 1, I criticized the traditional approach of problem solving, in which
solving a problem means no more and no less than finding an appropriate sequence
of operators that transforms a certain initial state into a state that satisfies some goal
criterion. The difficulty of problem solving is determined by factors as the length of
the sequence needed, the number of possible operators, and the amount of
knowledge available on how to choose the right operator.

The alternative insight theory stresses the moment at which the crucial step towards
the solution is found. Insight can be viewed in two ways: as a special process, or as
aresult of ordinary perception, recognition and learning processes (Davidson, 1995).
Despite the intuitive appeal of a special process, the latter view is more consistent
with the modern information-processing paradigm of cognitive psychology, and is
much more open to both empirical study and computational modeling. One way to
look at insights from an information-processing viewpoint is that an insight involves
the relaxation of constraints (see, for example, Knoblich & Ohlson, 1996). In the nine-
dots problem mentioned in chapter 1, for example, the initial assumption that all
lines should remain within the 3x3 square is a constraint that needs to be relaxed.

Another famous insight problem is the box-candle problem, in which a candle has to
be affixed to a door, using a box of candles, a box of matches, and a box of tacks (see,
for example, Mayer, 1983). The crucial constraint to be relaxed is the fact that the
boxes are not just containers, but can also be used to support the candle. Knoblich &
Ohlsson (1996) have shown in an experiment involving matchstick problems that
once a constraint is relaxed, it stays relaxed.

Looking at insights as removing constraints is a rather negative approach:
something that is there needs to be removed. A slightly different view on insight is
to assume some new knowledge is gained at the moment of insight. This
corresponds well with the idea that a constraint stays relaxed. Another advantage of
this view on insight is that not all insights can be described as relaxing constraints.
The fact that participants in the scheduling problem start using complex inferences
during a reflection episode can of course be called “the relaxation of the constraint
not to use complex inferences”, but this stretches the original idea so much it
becomes almost meaningless: it is like defining the creation of a statue as removing
marble.

Both the search and the insight theory select the problems to be studied in
accordance with their own view. Typical “search”-problems involve finding long
strings of clearly defined operators, as in the eight puzzle, the towers-of-hanoi task
and other puzzles, often adapted from artificial intelligence toy domains. “Insight”-
problems, on the other hand, can be solved in only a few steps, often only one.
Possible operations are often defined unclearly, or misleadingly, or are not defined
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atall, as the nine-dots and candle problems illustrate. Due to this choice of problems,
both evidence from insight and search experiments tend to support their respective
theories. Both theories ignore some aspects of problem solving. The search theory
seems to assume that participants create clear-cut operators based on instructions
alone, and fails to assign a significant role to reflection. Insight theory on the other
hand offers no explanation of the role of processing that happens before the
“insight” occurs. An obvious alternative is to think of both search and insight as
aspects of problem solving, and to try to find a theory of problem solving that
combines the two (Ohlsson, 1984).

One such view sees insight as representational change, which is a more general term
that includes constraint relaxation and gaining new knowledge about the task.
Search is needed to explore the current representation of the problem, and insight is
needed if the current representation appears not to be sufficient to solve the problem.
In this view, search and insight correspond to what Norman (1993) calls experiential
and reflective cognition. If someone is in experiential mode, behavior is largely
determined by the task at hand and the task-specific knowledge the person already
has. In reflective mode on the other hand, comparisons between problems are made,
possibly relevant knowledge is retrieved from memory, and new hypotheses are
created. If reflection is successful, new task-specific knowledge is gained, which may
be more general and on a higher level than the existing knowledge. All these
theories, however, fail to specify at what time a certain mode of thinking will be
used, and due to what influences the mode of thinking changes.

In the protocol analysis of the scheduling problem in chapter 3, we saw that all
participants start with an experiential search strategy, and only later on switch to a
reflective strategy. As we have observed, the process reflects the explore-impasse-
insight-execute pattern described in the literature about insight (Ohlsson, 1984;
Davidson, 1995). Some, but not all, of the participants show some sort of impasse,
during which they stop searching, just stare at the screen for a minute, and then try
anew approach. Furthermore, there is no difference between the explore and the
execute stage: the participant just searches on, using the knowledge gained by
reflection. Sometimes further reflection is needed to reach a solution.

5.3 A dynamic growth model

In this section a model is proposed that explores the distinction between search and
reflection. The model is based on Anderson’s theory of rational analysis, the
theoretical basis of ACT-R (Anderson, 1990). According to rational analysis,
participants choose strategies based on a cost-benefit analysis: the strategy that has
the lowest expected cost and the highest probability of success is selected in favor of
others. The model is not an actual ACT-R model, but a dynamic growth model, in
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which the trade-off between search and reflection is modeled in a coarse-grained
way. Dynamic models are used in developmental psychology to describe
developmental paths, for instance a model that describes stage-wise increases in
knowledge (Van Geert, 1994; 1998). In section 5.6, the coarse-grained model will be
applied in actual ACT-R models.

In order to give a rational account of insight learning, the first question is: why
would participants initially prefer a search strategy in the scheduling problem? The
reflective strategy seems to be much more powerful. There are several reasons for
this. A first reason is that reflective reasoning has a high cost. To be successful,
several aspects of the task must be combined and kept in memory. Additional
knowledge must be retrieved from memory and it may be necessary to seek
analogies with other problems. A second reason is that it is not immediately evident
that search will be unsuccessful. In the nine-dots problem, but also in the scheduling
problem, naive search alone does not work, but people generally do not know this
when they start on these problems. Why not try the strategy which takes the least
effort first? A third reason is that as a participant starts with a new type of problem,
he has only read instructions and has seen an example problem. He first has to learn
the basic rules and operators by experience, before he can attempt any higher level
strategies.

Considerations like these are the basic ingredients for the model. In the model,
search and reflection are two competing strategies, whose evaluations depend on
expected gain. Estimates on these gains change in time, due to increasing knowledge
and the successes and failures due to this knowledge.

The model
According to rational analysis (Anderson, 1990), strategies are chosen with respect
to their expected outcome, according to the following equation:

Expected outcome of strategys = P,G —Cg (5.1)

In this equation, P; is the estimated probability of reaching the goal using strategy s,
G is the expected value of the goal, and C; is the estimated cost of reaching the goal
using strategy s.

The model will attempt to describe how search and reflection will alternate while
solving a problem. The model is coarse-grained in the sense that the knowledge of
the system with respect to a certain task is summarized in two variables L, and L,.
L, is a measure for the amount of basic task-knowledge, for example, in the case of
the scheduling task, knowledge about adding a task to an existing plan and
knowledge to judge whether a solution is correct. L, corresponds to the amount of
higher-level knowledge in the system, for example the fact that it is a good idea to
see how the tasks add up to the amount of time the workers have available. If a
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amount of knowledge
O = N WP OO N0 wo

0 50 100 150 200 250 300 350
time (sec)

Figure 5.1. Basic growth function

participant starts with a new problem, we assume that both variables have a small
value. Later on, they increase, since the participant builds up knowledge during
problem solving. The assumption of the model will be that search will increase the
amount of basic knowledge, represented by L,, and reflection will increase the
amount of higher-level knowledge, represented by L, . The choice of two knowledge
levels is somewhat arbitrary, as are some of the choices of parameters in the
equations below. The reader should keep in mind that the goal is to produce a
rational account of the alternation between search and reflection.

The following equations show how L, and L, grow in time, and are inspired by the
growth equation used by Van Geert (1994):

If the strategy in step i-1 is search, then

Ly(i -~ 1)

Ly(i) = Ly(i-1) +RyLy(i—1)H - H (5.2)

leax

else L, keeps its value, so L,(i) = L,(i—1). R, is a constant that controls the rate of
growth, and L, ,, is the maximum possible value for L, . The fraction at the end of
the equation ensures that L; doesn’t exceed its maximum value. Assuming only
search is used, the value of L, grows gradually and levels off once it approaches the
maximum. Figure 5.1 shows an example of the growth of L, knowledge if only
search is used, and L., equals 10.

The equation for L, is slightly more complicated, because the increase in value

depends on the current value of L,, reflecting the fact that we can only gain higher-
level knowledge if we have enough basic knowledge.
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If the strategy at step i-1 is reflection, then

Lo(i -~ 1)
L (5.3)

Lo(i) = Ly(i-1) +S;, [y (i-1)H -

L2max

else Ly(i) = Ly(i—1). Lyyay is the maximum possible value for L, . The parameter S,
(support) controls the influence of basic knowledge on the increase of higher level
knowledge.

Now that we have described how knowledge grows depending on the type of
strategy, we have to describe the process by which a strategy is chosen. At this point,
Anderson’s expected gain equations are introduced into the model. Whether the
strategy at step i will be search or reflection is determined by their respective
expected outcomes:

Expected outcome of search = Pgg,.p(i) 0G—-C (5.4)

search

Expected outcome of reflection = P, (G —C, (i) (5.5)

The strategy with the highest expected outcome will be chosen. In these equations
G, Cgearch and P, are fixed parameters. G, the expected value of the goal, is
assumed to be fixed as long as the goal is not reached. C,,,, the cost of search, may
change in actual problem-solving situations, for example due to the fact that search
becomes more complicated once more knowledge is involved. But since these
fluctuations are task-dependent, the current model assumes that the costs of search
remain constant. The influence of P, , the chance of success of reflection, will be
taken into account in the specification of the costs of reflection. P, (i) and C, (i)
are variable in time, and rise and fall due to the chosen strategy and the growth in
knowledge.

The probability that search will reach the goal depends on the amount of knowledge
and the current evaluation of this knowledge:

o La(D)P (i) + wLy(i)Py(i)
Psearen() = =T i+ wi,(

(5.6)

The constant w determines how much more useful higher-order knowledge is than
basic knowledge. P, (i) is the contribution to the probability of success of L,
knowledge, and P,(i) the contribution of L, knowledge. The probability of success
increases as knowledge increases, but decreases over time if the goal is not reached.
The decrease in knowledge is calculated by multiplying the probability of success by
a decay parameter on each time-step search is used as strategy. New knowledge is
given the benefit of the doubt, and is assigned an initial probability of success of 1.
Both P,(i) and P,(i) can be calculated using:
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PaecayP| (i =) [Lj(i=1) + (L;() ~L;(i 1)
L0

P;(i) = (i=12) (5.7)
Pdecay T€Presents the decay in probability of success, and has typical values between
0.95 and 0.99 if the strategy in step i was search and the goal has not been reached.
In the case of reflection in step i, Pyecay = 1. The pyecayP;(i—1) part of the equation
takes care of the decay of existing knowledge. However, new knowledge is added to
the model as well, and this new knowledge starts out with the “optimistic”
probability of success of 1. The (L;(i) - L;(i — 1)) part of the equation takes care of that
aspect. So on each search step, the probability of success decreases due to decay, and
increases due to the addition of “fresh” knowledge.

The costs of reflection depend on two factors. The first is that the costs are higher if
there is less basic knowledge, since higher level knowledge has to be based on more
primitive knowledge. The second factor is that the costs are higher if there is already
a lot of higher level knowledge. This reflects the idea that there is only a limited
number of good ideas to come up with, and that it will be more difficult to discover
anew idea if there is less to discover.

“imax] (1)
ref(l) - Cbase"'B:l Ll(I)D B: |_2 - (5.8)

2ma
This equation assumes reflection has a certain base cost (Cy ) that is increased by

L,(i
which decreases as level 1 knowledge increases, and c, 2(1) ,
Ll(l) 2max

which increases as level 2 knowledge increases.

leax

two factors: c;

Finally we have to say something about time, since we have talked about “steps” in
the previous discussion. Each step takes an amount of time which can vary. So,
following the ACT-R intuition that cost and time are related to each other, we take
the estimated cost of the strategy at step i as the amount of time step i takes:

T(i) = T(i—1)+C(i) (5.9)
where C(i) iseither Cg,, ., OF C, (i), depending on the strategy at step i.

Results

If the appropriate constants and starting values are chosen for the variables
described above, we can calculate the increase in knowledge over time. The model
is simulated using a spreadsheet program, in this case Microsoft Excel. Note that
the model assumes that the goal is never reached, so the results simulate a
participant that never succeeds in reaching the goal. Figure 5.2 shows the value of
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Figure 5.2. Value of level 1 and level 2 knowledge (top) and the expected gains for search and
reflection (bottom) for G=20

L, and L, with respect to T, and the corresponding evaluations for search and
reflection. At the start of the task, search is superior to reflection, but as search fails
to find the goal, and the basic (level 1) knowledge increases, reflection becomes
more and more attractive up to the point (at T=155) where reflection wins from
search. Since reflection leads to an increase of level 2 knowledge, search again
becomes more attractive (using the newly gained knowledge), and since the cost of
reflection increases with the amount of level 2 knowledge already present, reflection
becomes less attractive. As a result search will again dominate for a while, up to
T=262 where reflection wins again. We assume problem solving continues until
both expected outcomes drop below zero, since then neither strategy has a positive
expected outcome. In the example, this is the case at T=533.

As noted, G is the value of the goal. Using a lower value for G corresponds to the fact

that a participant values the goal less, and is less motivated to reach it. If we calculate
the model for G=15 instead of G=20, we get the results as depicted in figure 5.3. The
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Figure 5.3. Value of level 1 and level 2 knowledge (top) and the expected gains for search and
reflection (bottom) for G=15

result is that reflection occurs only once, and later (at T=239). Furthermore, at T=393
both evaluations drop below zero, so a less motivated individual gives up earlier. If
G is further decreased to 12, no reflection at all takes place, and the give-up point is
at T=277.

5.4 The nature of learning strategies

The dynamic growth model nicely describes the phenomena around insight in the
literature and in the scheduling experiment. Furthermore, it explains why this
behavior is rational. It also predicts changes in strategy due to motivational factors.
It however poses new questions. What is the nature of the basic and higher-level
knowledge? How will the model behave if the goal is reached at some point? What
mechanism is responsible for gaining new knowledge, and how is it represented?
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In the previous chapter, I proposed to define implicit learning in terms of learning
by the mechanisms of the architecture, and to define explicit learning by activity of
explicit learning strategies. In this sense, learning that occurs during search is
implicit, since during search the goal is to solve the problem, not to learn something
new. During reflection, on the other hand, the goal is to find a new way to approach
the problem, so the goal is to discover something new. In this sense, reflection can be
seen as explicit learning. As I have argued, there is no principal distinction between
the knowledge learned by implicit learning and the knowledge learned by explicit
learning, hence there is no real distinction between level 1 and level 2 knowledge in
the dynamic growth model. It is just that level 2 knowledge might be more useful,
because it has been constructed in a more clever way.

How to get more insight into learning strategies? As we have seen, they are a source
of individual differences. On the other hand, there are explicit strategies that at least
all adults share, as we have seen in the case of rehearsal. But even in the area of
rehearsal, some people prefer to memorize items by verbal rehearsal, while others
prefer memorizing information by visualizing it in some fashion. Since learning
strategies that are unique for certain individuals are hard to investigate, I will focus
on strategies that most adults share, and see how they develop in children.

Piaget’s stage theory

The first to acknowledge the fact that children reason in a different way than adults
do was Jean Piaget (1952). Based on many experiments, among which the famous
conservation experiments, Piaget concluded that children from different ages solve
problems in different ways. He proposed a theory of stages, in which children in
higher stages can reason more abstractly than children in lower stages. An example
is the fact that very young children, who are in the first sensorimotor stage, only
reason about objects that are in their field of perception. Once an object is hidden it
is considered non-existent. In the second, pre-operational stage, children have
mastered the concept of object permanence, and know an object is still there,
although it cannot be seen at the moment. The transition between stages is a
discontinuous jump: a child either has or hasn’t mastered the concept of object
permanence. Piaget’s four stages are very strict: if a child moves to a new stage,
they do so for all skills in all domains at once. It turned out that Piaget’s theory was
too strong. Children can be taught skills that belong to a stage they have not
reached yet, and children may be in different stages in different cognitive domains.
Piaget was well aware of this problem, to which he referred to as “horizontal
décolage”.

The mechanism that causes these discontinuous jumps is adaptation, which,
according to Piaget, is a result of assimilation and accommodation. During assimilation
elements from the external world are added to the knowledge of the child.
Accommodation, on the other hand, is an internal process that modifies the
assimilatory scheme on the basis of the assimilated experiences. So accommodation
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Level Representation

Examples

Age

S4/Rp1 . Slngle [YOUMEAN] or [MEN]CE]
Representations

Rp2: Represen- [YOUMEAN_MEMEAN]
tational Mappings

Rp3: Represen-

NICE NICE
tational Systems [YOU ME }

MEAN = MEAN

Rp4/A1: Single NICE NICE
i YOU1l -
Abstractions MEAN MEAN

NICE NICE
ME

YOU2 -
MEAN MEAN

= [INTEppg]

Child pretends that doll is hit-
ting someone.

Child says, “Doll mean”

Child makes one doll’s mean
actions produce reciprocal
mean actions in the other
doll.

Child makes two dolls act as
Mom and Dad in parental
roles.

Child makes two dolls inter-
act in reciprocally nice and
mean ways.

Child makes two dolls act as
Mom and Dad as well as doc-
tor and teacher simulta-
neously.

Person explains that inten-
tions matter more than
actions.

Person sees Dad as having
general personality charac-
teristics, such as conformity,
emotionality, or secretiveness

18-24
months

3.5-4.5
years

6-7 years

10-12
years

Figure 5.4. Example of stage 7-10 in Fischer’s theory. Adapted from Fischer & Ayoub (1994)

can be seen as the process that produces “new” knowledge, and causes the sudden
jumps. In order to do so, it needs the accumulated knowledge gained by the

assimilation process.

Fischer’s levels

A modern version of Piaget’s theory by Kurt Fischer (1980) tries to remedy the flaws
in the original theory. His theory has no less than thirteen stages or levels as he calls
them, grouped into four tiers. He distinguishes between two levels of performance:
the functional level and the optimal level. The functional level is the level a child

performs at in a “normal” situation. There may be large variations in this level
across domains. At the functional level, a child is no longer in a single stage, but has
a different level of development for each cognitive domain. The optimal level, on

the other hand, is the highest level that an individual can produce, and is attained
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when given high levels of support and opportunities for practice. The fact that
levels of development can differ across domains makes Fischer’s theory more
realistic, but weaker than Piaget’s. A strong point of the theory is however that
Fischer describes the kind of representations that are used at each level, and how
they can be combined to reach a higher level. In that sense, the theory is much more
precise than the original Piaget theory.

From the viewpoint of learning strategies, the optimal level can be associated with
the learning strategies that are available to a child. A skill that is beyond the child’s
optimal level is a skill for which it lacks the right learning skills. That does not imply
that the child has already learned everything it could possibly learn given its current
learning skills. For each domain, the child has acquired some of the domain-specific
knowledge it can possibly gain given its current learning skills. This level can be
associated with the functional level. To get from the current functional level for a
skill to the optimal level, the child just has to learn additional domain-specific
knowledge using its current learning skills. To go beyond the optimal level, new
learning skills have to be acquired first.

Figure 5.4 is an illustration of some of the levels, in this case the third tier applied to
the topic of what type of behavior agents can carry out. At the level of single
representations, the top level in the table, children can represent that people or
animate objects can carry out concrete actions and have concrete characteristics.
They cannot yet combine these representations. At the next level, simple
combinations of agent-behavior tuples can be made, for example: if you are mean, I
will be mean. These combinations remain isolated, however, so there is no
generalization of relationships between agent-behavior tuples. At the level of
representational systems, combinations of representations are no longer isolated,
but generalized. Instead of having a collection of combinations of representations,
the actual mapping between representations is understood. At the final level of this
example, the level of single abstractions, mappings between representations are
combined, leading to concepts like intentions: the intention of a person influences
the actual behavior they show while interacting. The complex pattern of interactions
between mappings between representations are collapsed into new units:
abstractions. In the next tier, abstractions are combined in the same manner as
representations in this tier: first by simple combinations, later by systems, and finally
by systems of systems.

An important property of Fischer’s theory is that the representations used at a
certain level are combined in the next level, either by forming combinations, as in the
shift from single units to mapping, or by generalization, by combining a set of
mappings into a system. So, the end-products of a level are the building blocks for
the next level. A simple experiment that shows that young children cannot combine
representations in the same way older children can is the discrimination-shift task
by Kendler & Kendler (1959). In this experiment, children are presented with blocks
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Figure 5.5. Example of a discrimination-shift task. Stimuli indicated by the “+”-sign are stimuli on
which the participant has to answer with “yes”.
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Figure 5.6. Results of the discrimination-shift experiment

that are either white or black, and either small or large. The children have to say
either “yes” or “no” to each block. For example, they have to say “yes” when a white
block is shown, or “no” when a black block is shown. The children do not know this,
but have to discover this on the basis of feedback. After a child has made 10
consecutive correct predictions, the criterion is changed, unbeknownst to the child.
Either a reversal shift is made, in which “yes” has to answered in response to black
blocks, or an extra-dimensional shift is made, in which the dimension is changed,
and the child has to answer “yes” when a large block is presented (figure 5.5). After
the shift, the number of trials the child needs in order to be able to do ten consecutive
correct trials again is counted. Figure 5.6 shows the results of a discrimination-shift
experiment in which participants were children of 6-7 years old (Kendler & Kendler,
1959). Fast-learning children discover reversal shifts quickly, but need a lot more
trials to discover an extra-dimensional shift. Slow-learning children show a pattern
that is entirely opposite: they are faster at an extra-dimensional shift, while needing
much more time for a reversal shift. Similar experiments have shown that adults are
also faster at reversal shifts (for example, Harrow & Friedman, 1958), while small
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children and animals (for example rats in Kelleher, 1956) are faster at extra-
dimensional shifts.

In terms of Fischer, the knowledge needed to successfully do this particular
discrimination-shift task can now be stated. The most compact representation is an
Rp3-system (the third row in figure 5.4), in which the color (or size) of the block has
to be mapped onto the response (yes or no). Before a shift takes place, the following
system has to be learned:

WHITE YES
[COLOR e+RESPONSENO}

(5.10)
BLACK

A property of the block, its color, has to be used to select a response. If a child has
not mastered Rp3-representations yet, it has to use representations of one of the
lower stages of development, for instance the S2 stage of sensorimotor mappings.
This stage is not shown in figure 5.4, but is two levels below the S4/Rpl-level. At
this stage, it is not yet possible to reason about individual properties of an object,
but just about the object as a whole. The knowledge needed before the shift has to
be represented by a set of four sensorimotor mappings:

{ [SMALL-WHITE-BLOCK — REPONSE-YES],
[LARGE-WHITE-BLOCK —RESPONSE-YES],
[SMALL-BLACK-BLOCK —RESPONSE-NO],
[LARGE-BLACK-BLOCK —RESPONSE-NO] } (5.11)

If we now look at the changes required in each of these representations to
accommodate the different types of shift, we can understand why reversal shifts are
easier if you use Rp3 representations, and extra-dimensional shifts are easier if you
use just S2 representations. In the Rp3 case (figure 5.7a), the reversal shift is easier,
because the system remains the same: only the mapping within the system changes.
In the S2 case (figure 5.7b), the extra-dimensional case is easier, since only two out
of four mappings change, while two mappings remain the same. In the reversal
shift all four mappings change.

In the introduction to this section I remarked that reflection corresponds to the use
of explicit learning strategies. Since learning strategies themselves have to be
acquired as well, it interesting to look at the development of reflection and the
relation with Fischer’s theory. Kitchener, Lynch, Fischer and Wood (1993) have done
a study in which they relate Fischer’s skill levels to reflective judgement. Each level
from Rp1 upwards can be related to an increased capacity of reflection. While
children at the Rp1 level can only reason about concrete propositions, like “I know
the cereal is in the box”, children at the Rp3 level can reason about the uncertainty of
knowledge. Kitchener et al. developed the Reflective Judgement Interview to assess
the level of reflection, and used participants who were between 14 and 28 years old.
The results show a steady increase in reflective capacity. Moreover, a specific version
of the test was used to assess the optimal level of performance by giving maximal
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Figure 5.8. Increase in reflective judgement with age. From Kitchener et al. (1993)

contextual support. In this version of the test the growth curve shows some evidence
for growth spurts, as predicted by Fischer’s theory (figure 5.8).

In summary, Fischer’s theory is weaker than Piaget’s with respect to the predictions
it makes. This is not a big problem, since Piaget’s original theory is not completely
accurate. On the other hand, Fischer provides representations that can be used to
analyze skills in different stages of development. These representations can also be
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used to describe developmental paths that lead from one stage to the next stage. In
this sense Fischer’s theory is stronger than Piaget’s theory: it can specify how
knowledge is represented, and how a higher-order representation can be built out of
lower-order representations. It still lacks a real processing component, however, a
specification of the processes that actually change the representations. Furthermore,
Fischer’s representations in their current form are not precise enough to support a
detailed processing theory. This is also the main criticism of stage theories of
development, the fact that they put too much stress on the state of knowledge at a
certain age, thereby neglecting the importance of what some researchers see as the
main issue of interest in development: the process of change.

The dynamics of change in Fischer’s theory can be described by dynamic systems
theory. Van Geert (1994) has developed models of the increase in knowledge on
different levels, using growth equations similar to those presented in section 5.3. An
interesting feature of van Geert’s model is that it can model the shape of the growth
spurts, such as the slight regression in performance between age 17 and 18 in
figure 5.8, followed by a fast increase between age 18 and 20. As the model is coarse-
grained, it does not describe the changes in representations, nor can it explain by
what changes a new level starts. Nevertheless, a dynamic growth model may be a
good starting point for constructing a fine-grained model that does model
knowledge representations.

Karmiloff-Smith’s representational redescription

A theory that puts more stress on the process of change than on levels of knowledge
is Annette Karmiloff-Smith’s (1992) theory of representational redescription (RR). The
RR theory is concerned with mastering skills in specific domains, so it has no global
Piaget-like stages or Fischer-like optimal levels. An interesting feature of the theory
is that it discriminates an implicit learning phase for a new skill, followed by
several explicit learning phases. In each new phase, the representations of the
previous phases are redescribed into a new representation. The phases are called I
(implicit), E1 (explicit 1), E2 (explicit 2) and E3 (explicit 3). The last two phases are
often collapsed into a single E2/3 phase. The difference between a phase and a
stage is that phases are not related to age, and the cycle of four phases recurs for
every domain that has to be mastered during development.

According to the RR theory, the I-phase in learning a new skill involves implicit, data
driven processing. In this phase, the child creates “representation adjunctions” out
of the external data, which are just stored in memory. No further processing is done
on these representations, but they can contribute to successful performance. If the
child has accumulated enough adjunctions, performance becomes consistently
successful. The RR theory defines this as behavioral mastery. Although the child can
perform the skill, it does not have conscious access to it, since the examples are not
generalized into rules. Generalization takes place in the E1 phase, in which the focus
is moved from external data to internal representations. Features from the
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environment are disregarded in favor of the internal generalization process. This
may lead to a decrease in performance, since generalizations may be wrong. In E2/
3, the internal representations are made consistent with the external data, leading to
a representation that supports successful performance, and offers the building
blocks for new skills.

Each phase produces its own type of representations. The “representational
adjunctions” are stored in procedural form. This procedural form is not the same as
production rules in ACT-R, but shows a strong resemblance to popped goals that are
stored in declarative memory. In the E1 phase, the representational adjunctions are
redescribed into more compact abstractions that can be related to other domains.
These abstractions are recoded in E2/3 into a representation that is available for
conscious manipulation, and that can be verbalized. An important feature of these
representations is that they all remain available, so even if a child has reached phase
E2/3, the representational adjunctions are still available. In chapter 6 we will discuss
some ACT-R models in which the ideas of representational redescription will be
used and made precise in terms of ACT-R representations.

Siegler’s overlapping-waves theory

Siegler (1996) criticizes the stage, level and phase models by pointing out that the
idea of a stage may well be an artifact of the way developmental psychologists
collect their data. Typical experiments involve studying how two or more age
groups of children perform a certain task, and contrasting their respective
approaches. According to Siegler, however, it is a mistake to think about the way
children think about a certain problem at a certain age. The result of these
approaches are staircase models. For example, several strategies to do simple
additions have been identified in children: small children tend to count both
addends from 1, slightly older children start with the largest addend (the min
strategy), and even older children retrieve the answer from memory (Ashcraft,
1987). A “staircase” interpretation of these differences is depicted in figure 5.9: first
children use the sum strategy, then they switch to the min strategy, and finally to the
retrieval strategy. Closer inspection of what strategies children use reveals that
children do not use a single strategy to solve addition problems, but instead use
several strategies. What changes with age is the frequency with which they use a
certain strategy. The bottom graph of figure 5.9 illustrates this aspect using a study
from Svenson and Sjoberg (1983). In this longitudinal study, the strategy use of 13
children was followed from first to third grade. As can be seen in the graph, at each
point in time children use several strategies, and the frequencies of particular
strategies fluctuate over time.

The main point Siegler makes is that children do not change strategies overnight.

When a child discovers or learns a new strategy to do addition, it does not
exclusively switch to this strategy but adds it to the set of existing strategies with
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Figure 5.9. Staircase model (top) versus data supporting the overlapping-waves model (bottom) of
addition strategies (from Siegler, 1996)

which it has to compete. If a strategy proves to be sound in the long run, and has an
edge over other strategies, it will be used more often.

In chapter 3, we saw that some participants in the scheduling experiment sometimes
use counting to do addition, which corresponds to the min strategy. This
corresponds well with the overlapping waves model: even adults have all strategies
available, but most adults just use retrieval as their sole strategy. Some individuals
may however use other strategies occasionally. The fact that addition had to be
performed in a situation where working memory load was already high may also
have contributed to a shift in strategy. The matter of working memory load will
return in chapter 7.

Discussion

The goal of this section was to get some idea of what learning strategies are by
looking at development. Each of the four theories discussed offers some parts of the
puzzle. Unfortunately, all four theories are mainly descriptive, and are not very
specific about exact representations or processes acting on these representations.
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An important topic in development is domain specificity. Although Piaget’s theory
of pure global development has turned out to be too strong, the presence of some
global factor is still under debate. Fischer and Karmiloff-Smith seem to contradict
each other on this point. Fischer defines a global optimal level of performance at a
certain age. When this level goes up, there is a global increase in development. This
global increase is not witnessed in the way Piaget envisions it, because performance
in specific domains may still be lagging behind. Karmiloff-Smith’s RR theory only
describes development within a domain, without any need for global development.

One might ask whether it is at all possible to settle this debate on the basis of
empirical evidence. In Fischer’s theory, it is always possible to define an optimal
level: it is just the level of the domain that has progressed most. In order to assert an
optimal level that is really meaningful, it has to offer some additional support to the
learning process. Although it may be very hard to find empirical evidence, a
modeling perspective may offer some sort of support.

One issue a model may resolve is whether it is at all possible to have knowledge that
is useful for all domains. If such knowledge can be defined and represented, for
example in ACT-R’s representations, the next step is to find a developmental path
through this knowledge, and to specify how a more refined strategy can be learned
from a more primitive one. If a system like this can be developed, and is capable of
offering new explanations for old phenomena, it might offer a new type of evidence
in the discussion. But in order to build such a system, the mechanisms of change
have to be understood. The theories discussed here can offer some clues.

Karmiloff-Smith suggests the first (I) phase in learning a new skill is to store
representational adjunctions. This phase only involves storing, retrieving and
applying these adjunctions. Only when this set is sufficiently stable in the sense that
behavioral mastery is reached, the explicit phases in which the information is
integrated can be entered. This idea closely matches Piaget’s idea of assimilation and
accommodation: during assimilation external experiences are stored, while during
accommodation these experiences are integrated into a qualitively new behavior.

Siegler’s theory of overlapping waves shows that the discovery of a new strategy
does not necessarily imply that this strategy will completely dominate behavior. A
new strategy first has to prove it is better than the existing strategies. This illustrates
the need for an evaluation mechanism: any new strategy has to be assessed with
respect to the question whether it really is useful and better than the alternatives.

What have we learned with respect to learning strategies? Take Fischer’s theory as a
starting point. Each new level in the theory involves a type of representation in
which a single representation replaces a combination of representations from the
previous level. Assuming these representations are mainly declarative, one needs
accompanying procedural knowledge in order to handle these representations.
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Which of these comes first? In terms of ACT-R, the declarative representations have
to be first, because a declarative example is needed to learn a new production rule.
This also concurs with the RR model in which a set of representations is acquired and
stored in the first phase. Only when a suitable set of knowledge is collected can
generalization be attempted. Probably many generalizations are possible, so sorting
them out may take some time, and may cause the rise and fall of certain strategies as
Siegler has shown. Summarizing,

* learning strategies have to be general, so they can be used in several domains

* it has to be possible to find some developmental path through these learning
strategies

* representing, storing and retrieving examples is an important first step in
acquiring a new strategy

* since several generalizations are possible, an evaluation mechanism is needed to
select the most useful strategies

In the remainder of this chapter, I will show a potential example of a general learning
strategy, thus addressing the first point on the list. This strategy will be explored in
models of two separate tasks. An interesting property of the strategy is that once it
is impoverished by removing some of the production rules, it exhibits behavior
consistent with a lower level of development. This property is important for the
second point: the developmental path through strategies. The models in the
remainder of this chapter will model the discovery of new rules, so accommodation
in terms of Piaget, or the E1-phase of Karmiloff-Smith. The aspect of assimilation or
I-phase, i.e. the use of examples, will be an important topic in the next chapter, as
well as the evaluation mechanism.

5.5 Modeling explicit learning strategies in ACT-R

The goal of an explicit learning strategy is to learn new knowledge that is necessary
for some new task or domain, or to improve the knowledge already available for an
existing task or domain. In order to model this in terms of ACT-R, general learning
goals have to be defined, and production rules that operate on these goals. The
starting point for learning goals is the predefined dependency chunk-type (see
figure 2.9 in chapter 2). Dependency chunks form the basis for new production
rules: once a dependency is popped from the goal stack, it is compiled into a
production rule. Intuitively, the best way to think of a dependency is to consider it
as an example of how to do something. The goal of coming up with such an
example can therefore be seen as an explicit learning goal. Eventually, this learning
goal will produce a new production rule. In ACT-R, the dependency learning goal
needs production rules that matches it. These rules are therefore also part of explicit
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learning, and have to be domain independent. So at least the production rules that
operate on dependencies are explicit learning strategies for learning new
procedural knowledge.

When are explicit learning goals needed? As we have seen earlier in this chapter, we
need them if the current approach to the task does not work well. But they are also
needed, in the case of a psychological experiment, when participants have to do a
task they have never done before, as is often the case. Participants in a psychological
experiment need explicit learning strategies to set up initial knowledge structures to
perform the task. These strategies need some domain-specific information to work
with, for example the following types of information:

Task instructions and examples. In the case of an experiment or educational setting, a
task or problem is explained by the experimenter or teacher, and sometimes a few
examples are shown.

Relevant facts and biases of other domains in declarative memory. New tasks often build
on existing knowledge. Knowledge from related domains can therefore be retrieved
and adapted to the task at hand.

Facts and biases in declarative memory from the current domain. As someone gains
experience in a new domain, popped goals are accumulated in declarative memory,
while declarative learning maintains activation levels and associations with other
chunks. This declarative knowledge, similar to the RR model’s implicit I-phase
knowledge, may serve as a basis for new production rules.

Feedback. If a wrong answer is given based on the current knowledge, and feedback
is provided on what the right answer is, this may also be used as a basis for new
rules.

Figure 5.10 outlines how a learning strategy works: given initial information in
declarative memory, a set of general production rules creates an example of how to
do something, a dependency. This dependency is compiled into a new production
rule, which has to compete with the rules that have created it. If the task-specific rule
performs too poorly, the explicit learning strategies win the competition, and
propose new rules, taking into account the feedback (if any) received on the faulty
rule. The competition between the task-specific rules and the general learning
strategies is the same competition as the competition between search and reflection
modeled in the dynamic systems model earlier this chapter.
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Procedural Explicit learning Competition Task-specific
Memory strategies > - rules
(“reflection”) (“search”)
Declarative Instructions, Example of how to
Memory biases and facts do something: Feedback
Dependency
Figure 5.10. General schema of learning strategies in ACT-R
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Figure 5.11. Example of the beam task

5.6 An ACT-R model of a simple explicit strategy

The beam task

The task we will start with is a beam task. It is a simplified version of the balanced-
beam task, a task of used in developmental studies (Siegler, 1981). The problem is
relatively easy: a beam is given, with weights on the left and the right arm. Attached
to the arms of the beam are labels, each with a number on it. The task is to predict
whether the beam will go left, right, or remain in balance. The numbers on the
labels have no influence on the outcome. Figure 5.11 shows an example of a beam.
Although the task is easy if we know something about weights and beams, it is
much more difficult if we know nothing at all.

The assumption is that the model initially has no task-specific rules about beam-
problems. The only procedural knowledge the model has is a set of general rules.
Later on, we will use the same general rules for other tasks. The general rules used
to learn this task are the following;:
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Property-retrieval. If there is a task that has a number of objects, create a dependency
that contains an example of retrieving a certain property of each of the objects. In the
case of the beam task, the objects are the arms of the beam, and weight and label are
possible properties. This rule creates a rule that directs attention to a certain aspect,
attribute or dimension of the task.

Find-fact-on-feedback. If feedback indicates that the answer is incorrect, and also
contains the correct answer, set up a dependency that uses the goal and the answer
as examples. Also, retrieve some fact that serves as a constraint in the dependency.
The resulting rule will, given a goal, try to fill in the answer using some retrieved fact
from declarative memory. To be able to generate correct rules for the beam task, we
need to retrieve the fact that a certain number is greater than another number, in
order to predict correctly whether the beam will go left or right.

Both general rules involve retrieving an arbitrary chunk from declarative memory,
either a property or a fact. Normally the retrieval of arbitrary chunks will not
produce the right rules. The chunks retrieved are however not arbitrary, since ACT-
R’s activation mechanism ensures that the chunk with the highest activation is
retrieved. Since activation represents the odds that a chunk is needed, the chunk
with the highest odds of being needed is retrieved. This activation can itself again be
manipulated by explicit declarative memory strategies such as rehearsal.

In the model, this is reflected by the fact that both property-retrieval and find-fact-
on-feedback can be influenced by prior knowledge. If there is an association strength
between beam and weight, indicating knowledge that a beam has something to do
with weight, property-retrieval will choose weight in favor of label. If there is an
association strength between beam and greater-than, a greater-than fact will be
retrieved by find-fact-on-feedback. Although this is not part of the model presented
here, a possible source of the relevant associations is an implicit learning phase in the
sense of the RR theory as discussed in section 5.4.

Since the general rules are just production rules, they can be in direct competition
with the task-specific rules they generate. If property-retrieval generates a rule X to
retrieve the label, X will compete with property-retrieval. If X is not performing well,
for example if it retrieves the irrelevant label, its evaluation will decrease, and it will
eventually lose the competition, in which case property-retrieval will create an
example of retrieving weight. Although find-fact-on-feedback is only activated if
feedback indicates an incorrect answer (i.e., when an expectation-failure occurs), the
rules it produces are in competition with each other. The rule with the highest
success rate will eventually win.

Figure 5.12 summarizes the property-retrieval rules, and figure 5.13 summarizes the
find-fact-on-feedback rules. Both are instantiations of figure 5.10. Figure 5.13 shows

136



An ACT-R model of a simple explicit strategy

Property-retrieval

Select a property Competition Task-specific rule
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between weight retrieving the
and beam property

Figure 5.12. How property-retrieval works

Find-fact-on-feedback

Find-fact-type: Task specific rule
“Don't lfnow” greater-than Answer left if left arm has a
rule fires Find-fact: greater weight than the right
\ 3 greater-than 2 arm

/ feedback Possible bias Dependency
association Example of answering left if left
A between beam and arm has a greater weight than
“left” greater-than the right arm

Figure 5.13. How find-fact-on-feedback works

the case in which a “Don’t know” rule fires. If instead an incorrect answer is
predicted, a dependency is created in the same manner. Apart from the general
rules, the model contains lisp functions to generate random beams, and production
rules to give feedback. When the model produces an incorrect answer, it will try the
same beam again until it can predict the right outcome.

Simulation results

The general rules turn out to be sufficient to learn the task. The following rules are
examples of (correct) rules learned by the model. The rule generated by property-
retrieval is a rule that retrieves the weight property for both arms of the beam, and
stores them in the goal:
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Figure 5.14. Results of the beam model

IF  thegoalis of type SOLVE-BEAM and refers to two objects Oland O2
of which no properties have been retrieved yet
AND there is a property of O1of type weight and value V1
AND there is a property of O2of type weight and value 4

THEN add VZand VZ2as properties of type weight to the goal

One of the rules generated by find-fact-on-feedback is a rule that predicts when the
left arm of the beam will go down.

IF the goal is of type SOLVE-BEAM and two properties Viand VZ2of
type weight have been identified
AND there is a fact of type greater-than that specifies V2is

greater than Vi
THEN set the answer slot of the goal to LEFT

The model was tested in several conditions, differing in the bias given for the
properties (P) and the fact-type (F). The following table summarizes the conditions:

P+  Association between beam and weight

P-  Association between beam and label, a bias for the wrong property

F+  Association between beam and greater-than

E- Association between both beam and greater—than, and beam and number,
so two possible fact-types were favored.

F--  No associations between beam and fact-types, four fact-types are possible.

Each experiment has both a P condition and an F condition. Each experiment was
run 30 times for 45 trials. Figure 5.14 shows the results. As can be seen in the graph,
in the P+F+ condition ACT-R learns to solve the task quite rapidly, and the fact that
the model does not reach a 100% score within a few trials is only due to the fact that
beams are generated randomly, only occasionally producing a beam in which
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Figure 5.15. Average number of failures for trials relative to a property switch

balance is the correct answer. Performance decreases if the model has less initial
information. In the case of the P-F-- condition, the model often fails to find the correct
rules for the task. Success depends heavily on the quality of the declarative
information. This information does not have to be completely accurate, but some
declarative stage before proceduralization is important for success.

The results in figure 5.14 suggest a gradual increase of performance. However, this
impression is misleading, as it is caused by averaging 30 runs. If individual runs are
examined, each has a certain point where performance increases dramatically. To get
a better perspective on this increase, it is necessary to find the exact point at which
the increase in performance starts. In one of the conditions, the P-F+ condition, this
point is the most obvious: the moment the model switches from examining the label
property to examining the weight property. Since this moment is easy to identify in
an individual run of the model, it is possible to average results with respect to this
point in time. An interesting aspect to average is the number of failed predictions the
model makes before it makes the right predictions. Remember the model keeps
trying to predict the right answer until it is successful. The result is shown in
figure 5.15. It shows the average number of incorrect tries for each trial in the P-F+
condition. At x=0 the model creates a production rule that retrieves the weight
properties. As is apparent from the graph, before ACT-R creates this rule, on average
three failed predictions are made. Since this clearly establishes that the current task-
specific rules are not correct, the general rules can take over and propose new task-
specific rules. This process resembles the impasse-insight stages of insight problem
solving, and is based on the same mechanisms of the dynamic growth model.
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Figure 5.16. Trials needed to learn the discrimination-shift task, (a) from the Kendler & Kendler
experiment, (b) by the ACT-R model

Discrimination-shift learning

One of the advantages of explicit learning strategies compared to implicit learning
is that they can handle change more easily. If something changes that has been
stable for a while, an explicit strategy may react by proposing new knowledge to
replace the old. An example of a task in which the rules change is discrimination-
shift learning, which I have explained in section 5.4. The ACT-R model of adult
behavior uses the same 8 general production rules used in the beam-task,
implementing the property-retrieval and find-fact-on-feedback strategies. It learns
rules that are quite similar to the rules for the beam task: a rule that focuses on one
of the properties of the blocks, either the size or the color, and rules that map
specific colors or sizes onto the answers yes and no. This knowledge is closely
related to the Rp3-representation of Fischer’s theory (figure 5.7). The small-child /
animal model uses only 2 of the 8 general production rules, implementing a limited
find-fact-on-feedback strategy. The latter model hardly uses any explicit reasoning
at all, but rather stores regularities in the environment in production rules. This
representation closely resembles Fischer’s S2-representation. The results of both
ACT-R models are shown in figure 5.16b, producing results quite similar to the
Kendler & Kendler data in figure 5.16a.

Despite the fact that the discrimination-shift task is generally not considered to be an
insight problem, it nevertheless requires the participant to notice that something has
changed, and to discover the new relations. So it can be seen, in a sense, as an
elementary insight problem.
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5.7 Discussion

The goal of cognitive modeling is to create computer simulations of cognitive
processes. A criterion for a good model is whether the results of the simulation
match the empirical data. A second criterion that becomes increasingly more
important, is the question whether the model can learn the knowledge it needs. A
model that uses a large set of specialized production rules is less convincing than a
model that gathers its own knowledge. The learning mechanisms which are part of
the architecture, are often not capable of doing this job by themselves, so they need
augmentation. In the previous chapter I have argued that these mechanisms
correspond to implicit learning. The mechanisms can be augmented by explicit
learning, that is, implemented by knowledge in memory that directs the implicit
learning mechanisms.

Implicit mechanisms are fixed, but explicit strategies have to be acquired.
Individuals probably differ in their explicit strategies, although they may well have
many in common. Rehearsal, for example, is a strategy used by almost all adults,
though it is clearly not something we were born with. An interesting question is
whether the same property is also true for other learning strategies. Is there a
sequence of rules that unfolds during development? The model of the
discrimination-shift task at least hints in this direction, as d