Bullock, Theodore (2000) Revisiting the Concept of Identifiable Neurons. [Journal (Paginated)]
Full text available as:
HTML
29Kb |
Abstract
Although eutely in nematodes was known, giant neurons in several taxa and unique motor neurons to leg muscles in decapod crustaceans, the idea that many animals have many identifiable neurons with relatively consistent dynamical properties and connections was only slowly established in the late 1960s and early 1970s. This has to be one of the important quiet revolutions in neurobiology. It stimulated a vast acquisition of specific information and led to some euphoria in the degree and pace of understanding activity of nervous systems and consequent behavior in terms of neuronal connections and properties. Some implications, problems and opportunities for new discovery are developed. The distribution of identifiable neurons among taxa and parts of the nervous system is not yet satisfactorily known. Their evolution may have been a case of several independent inventions. The degree of consistency has been quantified only in a few examples and the plasticity is little known. Identified neurons imply identifiable circuits but whether this extends to discrete systems, functionally definable, seems likely to have several answers in different animals or sites. Very limited attempts have been made to extend the concept to cases of two or ten or a hundred fully equivalent neurons, on all kinds of criteria. These attempts suggest a much smaller redundancy and vaster number of types of neurons than hitherto believed. Theory as well as empirical information has not yet interpreted the range of systems from those with small sets of relatively reliable neurons to those with large numbers of parallel, partially redundant units. The now classical notion of local circuits has to be extended to take account and find roles for the plethora of integrative variables, of evidence for neural processing independent of spikes and classical synapses, of spatial configurations of terminal arbors and dendritic geometry, of modulators and transmitters, degrees of rhythmicity (regularity varying several orders of magnitude), and of synchrony. Adequate language and models need to go beyond "circuits" in any engineering sense. Identifiable neurons can contribute to a broad spectrum of issues in neurobiology.
Item Type: | Journal (Paginated) |
---|---|
Keywords: | dentifiable . Equivalent cells . Addressable neurons . Redundancy, Giant neurons, Eutely, Command cells, Revolutions, Evolution of nervous systems, Circuits |
Subjects: | Biology > Behavioral Biology Neuroscience > Computational Neuroscience Neuroscience > Neuroanatomy Neuroscience > Neurophysiology |
ID Code: | 1089 |
Deposited By: | Bullock, Theodore Holmes |
Deposited On: | 01 Dec 2000 |
Last Modified: | 11 Mar 2011 08:54 |
References in Article
Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page