Brain Research Reviews, 12 (1987) 117-165 117
Elsevier

BRR 90060

Ventral tegmental (A10) system: neurobiology.
1. Anatomy and connectivity
R.D. Oades and G.M. Halliday

Department of Physiology, Flinders Medical Centre, Bedford Park, S.A. (Australia)
(Accepted 30 September 1986)

Key words: Ventral tegmental area A10; Substantia nigra A9; Dopammc Mesostriatal pathway; Mesolimbic pathway;

pathway; Li system; Circuit system

CONTENTS
General i 118
1. The dlslnbllllon and nature of neurons in the VTA 118
1.1 118
1.2. Ahistorical point of view 18
1.3. The Al0nuclei 19
1.4 Phylog:ne(ic representation of DA systems 121
1.5. Ce i ionof DA 122
1.6. Typesof: actmty 123
1.7. Acaveaton lesion damags 125
2. Th f the VTA 125
2.1 i 125
2.2. Efferent 125
22.1. The termmology for VTA pathways 126
127
T’\ i 127
Th iatal pathway 132
The imbi 132
The hi i pecial 133
Pathways to zhe rat conlccs 137
Species ical projection 138
Cortical DA terminal di i 140
2.2.10. Distribution of two types of fibers 140
2.2.11. Uni-vs bilateral proj 140
2.2.12. Colldteraluculm jecti 141
2.2.13. Top igins of VTA projecti 142
2.2.14. Thccﬁeremmule 143
2.3. Afferent i 144
2.3.1. Mes-and 144
2. Die 144
2.3.3. T 144
3. VTA projectis 146
3.1. Circuit systems 147
3.2, C t 150
4. Summary 151
152
152

C R.D. Oades, D of Physiology, Flinders Medical Centre, Bedford Park, S.A. 5042, Australia.




118
GENERAL INTRODUCTION

This review of the neuroanatomy of the ventral
tegmental area (VTA) and its projections (VTA sys-
tem) is the first of a series based on the types of activi-
ty and interactions found in this projection system.
Thus issues that relate to neurotransmission and
modulation will be discussed later.

The purpose of these articles is to provide a relativ-
ely succinct and informative summary of the present
consensus of understanding of the VTA system pay-
ing due consideration to the historical development
of the extensive interest that this system has re-
ceived, particularly in the past 25 years. A qualified
understanding of the anatomy and connectivity of the
'VTA provides the basis for discussion of the amazing-
ly diverse involvement of the VTA system in the inte-
gration of information and the modulation of the or-
ganization of behavior in the central nervous system.

1. THE DISTRIBUTION AND NATURE OF NEURONS
INTHE VTA

1.1. Introduction

The VTA consists of a few heterogeneous groups
of cells lying together close to the midline on the floor
of the midbrain (mesencephalon).

A short description of the major nuclei on which
the VTA borders, shows the position of the VTA
more precisely. Rostrally extend the mammillary
bodies and the posterior hypothalamus (diencepha-
lon). The nucleus (N.) ruber and oculomotor fibers
are situated dorsolateral to the VTA. Dorsally and to
some extent through the VTA pass fibers from sever-
al brainstem nuclei. These come to form the medial
forebrain bundle (MFB) as it ascends from the mid-
to the forebrain (telencephalon). In particular the
raphe nuclei extend dorsally from the caudal border.
Caudally to the VTA lies the pons and hindbrain
(rhombencephalon).

The VTA lies bilaterally in the midline appearing
very roughly semicircular in transverse section. In its
caudal extent it lies over the N. interpeduncularis.
Lateral to the VTA is the substantia nigra (SN) (Fig.
1).

1.2. A historical point of view
The VTA seldom received discussion as a separate

entity before the of current
using the axonal transport of labeled substances for
the study of connections between brain areas. The
classical description was made by Tsai*'%*!! in 1925
from Golgi and Nissl preparations. In this description
of the brain of the opossum he described an area lat-
eral to the N. interpeduncularis, the ‘trigonum inter-
p ’, which d of the ped lari
corporis mamillaris, the lemniscus medialis and the
N. tegmenti ventralis. This area lay medial to the ‘tri-
gonum lemnisci’, that extended from the pes pedun-

Fig. 1. Transverse sections through the rat mesencephalon at
more rostral (upper diagram) and a more caudal level of the N.
interpeduncularis (after Dahistrom and Fuxe®’). The topo-
graphy of the DA cell groups A8-A10 and 5-HT cell groups
B8-BY arc illustrated. AC, aqueductus cerebri; CC, crus cere-
bri; FR, formatio reticularis; GC, grisea centralis; LM, lemnis-
cus medialis; NIP, N. interpeduncularis; NR, N. ruber;
SNCISNR, substantia nigra zona compacta/reticulata.



culi to the ventral tip of the SN where the sulcus later-
alis mesencephali marked the separation from the
tegmentum proper. The border of the trigonum in-
terpedunculare coincides with the separation, on the
grounds of histofluorescence and connectivity stud-
ies, between the dopaminergic (DA) cells of the A9
(SN) and the A10 (VTA) nuclei®” (Figs. 1 and 2).
Kosaka and Hiraiwa®® and Castaldi”? believed
that the fusiform nature of the cells of the N. opticus
tegmenti and N. tegmenti ventralis warranted their
inclusion as part of the SN. The same desire for syn-
thesis was reflected by Hassler'®® who referred to the
VTA as the N. niger suboculomotorius. Tsai, howev-
er, disagreed. He argued that the cell-free space
overlying the sulcus, the smaller size of the cells and

their close relationship to the tracti mammillo- and *

olfacto-tegmentalis pointed to the specific character
and function of the area — the area that has become
known as the ventral tegmental area of Tsai.

The goal of a definition of the borders to a given
brain region is to assist in the attribution of function
to the connecting neural systems and to be able to
make a contrast with related systems nearby. Neuro-
biologists have had a great deal of difficulty in defi-
ning the borders of the VTA.

Recent refinements in the study of the connections
made by neurons in the VTA have demonstrated that
a gradual change occurs across the sulcal area. This
has been done with particular reference to the DA
containing neurons of the ventral tegmentum. A con-
tinuum stretching from the A8 cells dorsolateral to
the SN pars compacta to the A10 cells in the midline
has been advocated!!!36234418 This is argued on the
basis that there is a gradient rather than a clear-cut
difference between the structures innervated by
these neurons.

Nonetheless there are some reasons for maintain-
ing that there is a border worthy of recognition both
on the basis of the principle target areas for projec-
tion, the pattern of innervation and the cytoarchitec-
ture. These reasons will become evident from recent
work showing differences in the structure and con-
nectivity of the nuclei making up the VTA. (At this
stage it should be emphasized that although much of
the following discussion refers to the special feature
of DA containing cells, it should be remembered that
there are many neurons present that use other trans-
mitters.)
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1.3. The A10 nuclei

The cells in the area of contention on the lateral
borders of the A10 area are known as the N. parani-
gralis (Npn). Dahlstrom and Fuxe®’, like the authors
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Fig. 2. Frontal sections (A-D) showing outlines of structures in
the ventral tegmental region with dots representing the posi-
tion and approximate density of DA cell bodies (glyoxylic acid-
treated material) from anterior (A) to posterior (D) in the rat.
Horizontal sections (E, F) were taken at a dorsal and vemral
level through the N. interpedi laris (E) and inter is
(F). (Arrows indicate the midline.) Sagittal sections (G, H)
were taken at the level of the III nerve rootlets and in the mid-
line (amenor is lef[) CC, crus cerebri; DTD/DTV, dorsal/ven-
tral | ions; FIP, fossa interped laris; FR,

IFN, N. interfasci is; IP, N. interpe-
duncularis; LM, lemniscus medialis; LnCd., N. linearis cauda-
lis; OC, oculomotor III; R, N. ruber; SNC/SNR, substantia ni-
gra pars compacta/reticulata; VTA, ventral tegmental area
(Phillipson®"%).
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of most succeeding studies of rats, emphasized that
there was no clear border between the A9 (SN) and
the A10 (VTA) fluorescing cell bodies (i.e. contain-
ing DA). Nonetheless in their opinion, the A9 cate-
cholamine cell bodies are those found around the
border of the non-fluorescing N. tractus opticus ba-
salis.

A number of authors maintain that a separation of
the Npn from other cell groups can be seen in the
brains of carnivores and primates. A clear separation
from other nuclei of the VTA and SN has been well
shown in the human®*. More recently an immuno-
cytochemical study of tyrosine hydroxylase (an en-
zyme important for DA synthesis) in the human
brainstem found two distinct, closely packed groups
of positively reacting cells at and below the exits of
the third nerve. These nuclei correspond to the Npn
and the N. parabrachialis pigmentosus (Npbp)*"*.

A common origin for the Npn with the other cell
groups of the SN and VTA may be indicated by the
two types of cell present. The smaller cells resemble

[
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those of the Npbp (A10), whereas the larger cells re-
semble those of the SN (A9)3%408,

From Golgi preparations Phillipson®'® noted a fur-
ther distinction. Whereas the dendrites in the SN are
organized in horizontal and vertical planes, he saw no
long vertical dendrites in the VTA. However, Felten
and Sladek'®* found that in 3 species of primate small
cells of the dorsal, but not the ventral, A10 region
gave rise to long vertical dendrites.

The rostral end of the VTA borders on the dien-
cephalon. This coincides dorsally with the anterior
limit of the N. ruber. Here the cells of both the dorsal
and ventral interstitial nuclei**’ contribute along with
cells in the rest of the VTA to the MFB. The ventral
nucleus has been attributed to the diencephalon®®.
In the midline, caudal to this nucleus, over the fossa
interpeduncularis, lies the N. interfascicularis
(Nif)*5315,

The Nif contains small, tightly packed cells which
show a low fluorescence intensity with the glyoxylic
acid method®'>%®, The latter authors*® found that

Flg 3. Coronal Nissl-stained sections through the mesencephalon at the level of exit of oculomotor fibers (3) in the rat (top left), cat
(top right), monkey (Macaca nemestrina) (bottom left) and man (male 65 years old) (bottom right) (Halliday and Tork!*:160.161)_



spindle shaped cells with a long dendrite throughout
the VTA were absent in the Nif of cats. Monkeys are
reported to have fewer but larger Nif neurons than
rats or cats*.

Although the Nif is the most rostral of the VTA nu-
clei, DA containing cells of the Npn also extend ros-
trally, dorsolateral to the Nif. Dahlstrom and Fuxe®’
noted that these cells extended into the N. interstitia-
lis ventralis tegmenti between the fascicula retro-
flexi. Scattered fluorescent cells of the diencephalic
Al1 group extend caudally, medial and ventral to the
fascicula retroflexi, towards the A10 cells. (cf. Figs. 2
and 3).

Thus, as with the definition of the lateral borders
of the VTA, it may be seen that (1) the cytoarchitec-
tonic borders do not closely coincide with the rostral
extent of the DA containing cells; (2) the extension
of the distribution of DA containing cells beyond the
conventionally described nuclei of the ventral teg-
mentum results in a diffuse border area at the rostral
limits of the VTA (i.e. borders with A8 and A1l nu-
clei).

The Npbp forms a mantle of relatively small,
round, oval or stellate cells dorsal and dorsolateral to
the N. interpeduncularis and ventral to the lemniscus
medialis (Nissl preparations®'>360408:410411y " aroer
cells in the cat show larger dendritic fields'®16140%,
The cells seem to lack any consistent orientation.
This contrasts with the rostrodorsal/caudoventral
orientation in the Npn and the caudodorsal/rostro-
ventral orientation in the N. linearis caudalis’®. In
terms of fluorescing DA cells the Npbp is limited in
the rostrocaudal axis to the middle two thirds of the
N. interpeduncularis.

A10 cells distribute dorsally in the N. linearis
(NIn). The tegmental decussation forms the lateral
boundary. Some DA cells are even found dorsally
amongst the raphe group®®. The pars caudalis ex-
tends from the rostral end of the N. interpeduncularis
back over the caudal midline®®. The pars centralis
and rostralis extend rostrally from the Npbp?*3%.
Taber’ distinguished an intermediate part in the
cat. It is very small®*>*! and may correspond to the
caudal part of Huber et al. %, The cells of the NIn are
mainly medium sized and oval or fusiform in shape.
But smaller rounder cells have been observed in the
rat®®. To Tork et al.*® there was a larger size range
apparent in the rostral linearis-parabrachial conti-
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Fig. 4. The main ultrastructural features of 3 VTA nuclei drawn
from electron mi aphs. These repr ions show inter-
nal sequestration of the Nif (rostral is left), varicose dendrites
in the Npn and smooth cylindrical dendrites in the Nln rostralis
(Tork et al.“®).
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nuum of the cat compared to the interfascicular and
caudal parts. Indeed Poitras and Parent®® thought
the cells in the pars rostralis to be larger. These lar-
ger, more pyramidal cells have large dendritic fields
(Fig. 4). The smaller oval cells are characterized by
relatively few spines. As with the Nif the border be-
tween the NIn rostralis and the A8 is arbitrary?'!.

In summary it is widely agreed that the VTA A10
group of cells consists of essentially separate nuclei
— the Npn, Npbp, Nin caudalis and rostralis, and
Nif§730L315 (Table I).

1.4. Phylogenetic representation of DA systems
Already it is clear that the presence of dopamine
(DA) containing cells in the VTA has obtained an
overwhelming significance for neurobiologists con-
cerned in defining the VTA. DA was first recorded in
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the CNS at the end of the fifties®®“?’ and soon loca-
lized i /8. These ions were
rapidly followed by the formal classification of the
DA cells of the VTA as the A10 group®’.

Soon DA cells were located in fish™!, birds" and
in a range of mammals'? (Table ITT). In lower verte-
brates the ‘peripeduncular area’ contains a mixture
of both DA and serotonin (5-HT) cells'. The latter
are more abundant in primitive fish and amphibia.
Although catecholamine cells are present by the oc-
ulomotor roots and CA processes have been seen in
the pallium, a broader development is seen in only a
few teleosts and reptiles.

Since 1964 all studies have emphasized an asto-
nishing general similarity between the VTA nuclei of
mammals ranging from rodents to man: e.g. rat’
N3 abbit, dog®, cat*S3WIS, opossum®s,

non-human primates'2>13$1851913%  and  man®2%
203-296,313

In detail there are slight differences (e.g. rostrola-
teral extent of the VTA cf. Nln in 1.3. above). Sub-
groups of the VTA may show changes in the dorsal

TABLE 1

extent. The dorsal peak of A10 cells may be more ex-
tensive in primates. In particular this was seen in the
squirrel monkey rather than in two old world species
of macaque. The cells even stretch dorsomedial to
the N. ruber'2*%.

1.5. Comparative representation of DA

A Swedish group has estimated that the average
DA neuron contains 30 pg DA*®. It has been esti-
mated that there are 27-29,000 cells (bilaterally) in
the VTA of the rat'¥1613%6_Of the 18,000 staining for
tyrosine hydroxylase (TOH)*® most were concen-
trated in the middle third of the area from the Nif and
Nin. For the rat this is the greatest midbrain concen-
tration of DA (i.e. A10 > A9; 2.3/2.4:1 for rat and
cat, 1:1.5/1.6 for primates®141:13:161)

The number of DA cells increases with phyloge-
netic progression. Using a similar method to Swan-
son®, German et al.'*! estimated the number of cells
in the A9/A10 area as 25,000 for the Balb/C mouse,
40,000 for the albino rat and 450,000 for a 33 year-old
man. (Close comparisons between studies cannot be

Volume (V) of each nucleus in mm® and the total number of cells (n) in the SNC and each nucleus of the VIA for rat, cat, monkey and

man

Percentages are expressed in brackets below each value, in rcspect of the lo[al volume and cel] populanun of the VTA. SNC substan-
N, N.

tia nigra pars compacta; VTA, ventral [cgmcmal area; PBP,
linearis rostralis/caudalis (Halliday and Tork’

LN >

Species SNC VIA PBP PN IF LR Lc
Rat
v 03 1.2 0.6 03 0.1 0.1 02
(%) (100) (50) (13) © [©] 13)
nx10® 12 27 11 6 08 2
(%) (100) (40) (%) 3 ®) ®)
Cat
v 3 14 6 2 1 3 3
(%) (100) (42) 13) (W) (19) 19
nx10° 2 63 18 7 12 10 16
(%) (100) 29 12 19) (16) 3
Monkey
v 6.3 65 45 0.7 0.2 03 0.8
(%) (100) (©9) an @ (O] 13)
nx10° 7 37 6 2 0.5 2
(%) (100) a7 @13) (O] [¢)) .G
Human
v 68 183 101 33 4 9 37
(%) (100) (55) (18) () ) (20)
nx10° 436 690 288 256 6 17 83
(%) (100) “2) 37 ™ &) (12)




made because of the use of different correction fac-
tors (Bogerts and Swanson) and observational vs au-
tomatic counting methods (Halliday and German)
where programmed criteria may have allowed small
cells to be omitted.) The cut-off point for A10/A9 dif-
ferences in phylogeny may occur with Tupaia (but cf.
dogw’). Tupaia is arguably at the base of the primate
lineage. In this animal a histofluorescent study found
the A10 area to be less extensive than in the rat”2 It
seems to be agreed, according to present criteria,
that in man there may be more DA neurons in the SN
than in the VTASL1#117# This is reflected by the DA
levels in the VTA (ca. 2.4 ng/mg protein) which are
half those of the SN pars compacta®’,

‘We shall see in the following sections that the only
remarkable phylogenetic change is that of the DA
projections accompanying the explosive growth of
the neocortex in mammalian evolution®®?? (see
2.2.7. below). In non-mammals it is not surprising that

=]
o

a mesocortical projection has not been clearly
shown. More surprising is the purported absence of a
mesostriatal DA pathway in fish*®.

1.6. Types of activity

Two types of cell may be made out with the light
microscope in the A9 and A10 after treatment with
Toluidine blue and Nissl stain'®37, A lightly staining
type is probably of a non-DA nature. But darkly
stained basophilic cells probably represent somata of
DA neurons. The latter type was shown to take up
tritiated ca amines which disapp
treatment with the specific catecholamine toxin 6-hy-
droxydopamine (6-OHDA).

These authors also obtained electron microscopic
results essentially similar to those of the SN!73:353:37,
The basophilic (DA) cells contained densely filled ri-
bosomes and large quantities of rough endoplasmic
reticulum. In the lightly staining cells ribosomes were

ed after

Fig. 5. Th

computer i
nohistochemistry in the rat. Labelled are the DA cell groups A8-A10. AQ, cerebral aqueduct; IC, inferior colliculus; MB. mammil-
lary bodies (German et al.™*!).

of midbrain (rostral in foreground) DA cell distribution identified by TOH immu-
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sparse and the reticulum well spaced; in contrast to
the DA cells, the nuclear membranes showed many
involutions.

Types of DA cell in the VTA have been separated
according to their rate of monoamine metabolism by
following the decline of histofluorescence after
blockade of DA synthesis®. The turnover rate for DA
was reported to be slightly higher in the smaller more
medial cells of the Nif and Nin than in the more later-
al Npn. The more peripheral cell bodies are more
likely to be non-monoaminergic as fewer fluoresce.

Melanin pigment is found in the A10 (and other
monoamine nuclei) of man, although the Nif has not
been specifically described®. There may be many
more (60 times) pigmented neurons in the A9 than
the A10 (ref. 61). The pigment accumulates from the

first through the 6th decade!*. To a lesser degree
pigment granules are found in other primates'*. It
has been hypothesized that this substance is less a
metabolic waste product as a physiological modula-
tor of receptor function (discussion'®). Indeed it has
been suggested that melanin granules may promote
the dynamics of the agent (cf. MPTP?¥) that affects
the availability of DA in Parkinson’s disease.
Another feature of the VTA that affects activity is
its vascularization. Apposition of the basement mem-
brane of blood capillaries to the plasma membrane of
somata and dendrites has been observed in new and
old world primates'?'?*. In contrast to the observa-
tions of these authors on rats and rabbits, an Austra-
lian group has consistently found that a large number
of cells (and dendrites) in the midline nuclei of
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cat (B) (Bar = 1 um). In the rat VTA the perikaryon is in close contact with the blood—brain barrier (small arrow points to a synapse;
N, nucleus). In the cat VTA a dendrite (D) is in close contact with the capillary (Ca) (BL, basal lamina; A, axon)). Large arrows point

to pores in the basement membrane. (Halliday and Torl

158,160,161



cats'*“® and in all the VTA nuclei of the rat'® abut
on to the walls of blood vessels (Fig. 6). This feature
is also characteristic of other monoamine nuclei.

1.7. A caveat on experimental lesion damage

The majority of neuroanatomical, neurophysio-
logical and behavioral studies of the VTA involve the
i ing of lae or The intention
may be to cause damage chemically or electrolytical-
ly. But unintentional damage from the electrode or
cannula tracts may also occur. It is therefore appro-
priate to consider briefly the difficulties that arise for
the interpretation of lesion effects.

Mechanical (electrolytic) and chemical lesions are
used in anatomical and behavioral studies. In the for-
mer degenerating fibers are picked up by silver im-
pregnation or the Falck—Hillarp formaldehyde fluo-
rescence technique (for example). In the latter elec-
trolysis and specific catecholamine toxins (e.g. 6-
OHDA) are used to investigate the behavioral
changes resulting from the denervation of the VTA
projection areas. These, as well as other methods for
anatomical labelling (e.g. glyoxylic acid, horseradish
peroxidase (HRP), tritiated amino acids) and psy-
chopharmacological techniques (injection of DA
agonists and antagonists) can produce non-specific
damage to fibers of passage. These fibers can be nor-

i 9 4 17

), ic*? and p R
These fibers pass both around and through the VTA.
Specifically there is the ventral NA bundle that joins
the MFB to project to the hypothalamic complex, ba-
sal ganglia, lateral septum and medial amygdala.
Damage to the peduncularis mammillaris can also af-
fect innervation of the lateral hypothalamus, preop-
tic and medial septal areas. Anterior thalamic inner-
vation is interrupted when the lemniscus medialis and
peduncularis cerebellaris superior are invaded by
large lesions. Damage to the fasciculus retroflexus
would interrupt further diencephalic connections. It
is not difficult to damage the connections of the N. in-
terpeduncularis with ventral midline VTA lesions.
Having suggested that caution be taken with the
interpretation of the results of lesions in the VTA, we
should add that in some cases care has indeed been
taken to ensure that non-specific damage, such as
that caused by the toxin 6-OHDA, be kept to a mini-
mal level' 3%, Yet well-intended attempts to restrict
the extent of lesion damage to a small area lead to a
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second problem. Small lesions will not affect the
whole VTA. Thus on the one hand, where 6-OHDA
is used to damage A10 cells in the dorsal part of the
VTA, it is likely to damage cells of the A8 area lying
medially in the tegmentum (cf. Figs. 1 and 5 in Dube
and Parent'™). On the other hand electrolytic dam-
age of the posterior VTA is likely to affect the rostral-
ly lying 5-HT cells of the B8 group that lies in part un-
der the Nln caudalis. Many studies that have tried to
avoid these problems with small lesions have not in-
vestigated the full extent of the VTA A10 region.
The advantages and disadvantages should be borne
in mind during the following discussion.

2. THE CONNECTIVITY OF THE VTA

2.1. Intrinsic connections

Within the VTA of primates'? and subprimates
(cat!*81%!) there is a high proportion of dendroden-
dritic contact. Both laboratories report that about
50% of cells have dendrosomatic, axodendritic, den-
drodendritic but not axosomatic synapses. Long fluo-
rescing dendrites (100 um+) have been seen in both
the A10 and the A9 region'?. Indeed the dendritic
fields of the Npbp can invade the Npn area and those
of the caudal Npn region enter the interpeduncular
zone. This further emphasizes the high degree of
DA/non-DA and local integration that must occur
throughout the A10 nuclei’'®. The absence of local
axosomatic synapses is also a feature of other mono-
aminergic nuclei.

Phillipson®' reported local axon circuits from type
1 cells with varicose secondary dendrites that make
up the Nif, NIn and to a lesser degree the Npbp of
rats. (The Npn and Npbp have primary and second-
ary dendrites that are moderately spiny.) However,
in view of the difficulty of excluding some artifacts in
Golgi material it is probable that this second form of
intra-VTA communication is but sparsely repre-
sented.

2.2. Efferent connections

We will first consider the range of structures to
which the VTA projects, more or less, as a whole.
Reports on the localization of the cells of origin with-
in the VTA will be considered in the next section.
The emphasis is placed on establishing the total range
of jecti irrespective of the i in-
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volved. An attempt to indicate where there are DA

and non-] DA pathways may be found in Fig. 7. As a
it has been d that about 30%

of VTA projections do not contain DA*®. For com-
parison, estimates for the SN range from 5 to 20%*!%.
2.2.1. The terminology for VTA pathways. Fwe

VTA systems of efferent fibers are disti

accumbens) (Ziehen cited ref. 202), despite being
called the ventral striatum'®’ or fundus striati*’* is

still widely accepted as a ‘limbic’ structure because of
its connectmly and despite the embryological, cyto-
and i it as
part of the neosmatum63 Further, recently fine mor-
between DA terminals in the

reasons for

(Table II). The term ‘mesostriatal’ pathway refers to
the VTA projection upon the anteromedial and ven-
tral neostriatum. For SN and VTA projections there
is a decreasing concentration gradient of DA away
from these areas. The SN provides 80% of the DA
found in the neostriatum'**. In the anteromedial ven-
tral direction there is an increasing participation of
the VTA projection (see below).

The N. accumbens septi (to be referred to as the

TABLE Il
Central dopaminergic projection systems

For further details of VIA see text; for SN

accumbens and dorsal neostriatum have been
described®. The accumbens is therefore considered
part of the mesolimbic and not of the mesostriatal
system. This does not imply any necessary funda-
mental differences from the remaining ‘striatum’ in
terms of its origin or organization.

The term ‘mesolimbic system’ was first brought
into use by Ungerstedt*'2. However, neither the term
‘mesolimbic’ nor ‘limbic system’ has received an un-

and citations in Usunoff et al. %, Bentivoglio et

35, Dray!®; for non-SN/VIA DA systems see Lindvall and B;orklundm Lindvall et al.?, Miachon ct al.*®*, Kalia et al 2.

System Origin

Major innervation

Not involving VTA
Retinal
Periglomerular
Tuberoinfundibular

Inner nuclear layer
Olfactory bulb

Incertohypothalamic Zonaincerta,

A1, A13: dorsal caudal and
Al4: periventricular

hypothalamus

A12: periventricular and
arcuate hypothalamic nuclei

Dendritic projections
Dendritic projections
Pituitary (median
eminence)

Zona incerta, preoptic
Periventricular hypo-
thalamus

Periventricular

Periaqueductal gray

Rare neurons

Area postrema, B nuclei,

gray,
Medial thalamus and
hypothalamus

Refs. 200, 263

dorsal motor n. vagus,

decussatio brachium

conjunctivum, fasciculus
longitudinalis medialis

Involving VTA A10 (and A8, A9)

Mesostriatal SN (VIA)

Mesocortical VTA (SN)

Mesolimbic VTA (SN)

Mesodiencephalic SN (VTA)
(VTA) SN

Mesorhombencephalic SNand VIA
SN (VIA)
SN

Anteromedial striatum
Prefrontal (pregenual) and
insular (suprarhinal) cortices
Limbic cortices, septo-
hippocampal complex,
accumbens, amygdala
Several thalamic nuclei,
Several hypothalamic nuclei
Monoaminergic nuclei,
Superior colliculus,
reticular formation and
periaqueductal gray,

Spinal cord




ambiguous and widely accepted definition. Here the
term *...limbic’ will cover the accumbens, the paleo-
and archicortices (including amygdala), the suprage-
nual, cingulate cortex***%* and the transitional ento-
rhinal cortex, that for functional reasons can be sub-
sumed as part of the hippocampal complex™,

The term ‘mesocortical system’ refers to the pro-
jections to the neocortices as well as those cortices
showing a slight transitional character (peri/suprarhi-
nal, insular, orbital). For the 10 years since their dis-
covery the mesocortical projections have largely
been claimed to be restricted to the pregenual frontal
and transitional cortices. Now it is becoming clear
that there are also projections to sensory, motor and
association areas (e.g. temporal cortex) in rodents,
carnivores and primates®..

This scheme differs slightly from that of some pre-
vious authors?, but draws a better compromise be-
tween anatomical characteristics and brain regions
that appear to function together as a subsystem. The

1 inol to projec-

ter omits
tions to the mid- and hindbrain (mesorhombence-
phalic) and those to the "tween brain (mesodience-

phalic).
2.2.2. The mesorhombencephalic pa/hway There
are projections to the major ic cell
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Swanson®® found that the majority of these fibers
were non-DA, but more DA containing fibers (upto
33%) were found to originate more rostrally (Nif)
Levels of DA in the LC were reported to fall by 46%
after VTA damage®®. The VTA sends twice as many
fibers to the LC as the SN pars compacta. (Caveat:
there is a large projection from the LC to the N. in-
terpeduncularis®®.)

As first pointed out by Simon®? there are at least
two more non-DA descending pathways'“. The
lateral path (rubrospinalis) projects to the nucleus of
the facial nerve, the superior olive and particularly to
the inferior olive in the rat'***%2, rabbit'* and
opossum?55:25%6,

A more medial path descends to the pontine teg-
mental and raphe nuclei and the bulbar reticular for-
mation. (But the possibility that the lesion invaded
the efferent pathway from the N. Darkschewitsch®"
should be noted.) Further degeneration into the spi-
nal cord has not been reported (contrast SN lesions).
There is no clear demonstration of DA fibers de-
scending from the VTA A10 (Fig. 7).

Of great interest from a functional point of view
are projections to the vestibular and accessory oculo-
motor nuclel (N. cuneiformis, reticularis pons oralis,
lis of Cajal and Darkschwitsch). The retro-

groups. Fibers to the SN project more upon the pars
compacta than the reticulata. The A9 rather than the
A8 cell group appears to be in receipt of this ipsilater-

grade tracing study of Giolli et al.'** shows that
these projections arise from the Npn and particularly
the dorsolateral Npbp.

The autoradiographic study of Simon et al.

ported a cerebellar projection of the VTA. Although

364 re-

al projection®.
The report of Beckstead et al.*? further described
the presence of label in the midline (level

of the rostral pole of the inferior colliculus), rostral
‘margin of the median and dorsal raphe (cf. ref. 127),
alongside the trochlear nucleus and in the dorsal and
ventral parabrachial areas. The caudal limit for the
spread of label occurred adjacent to the N. tegmenti
dorsalis lateralis and locus coeruleus (LC).

It has been suggested from the high level of DA to
be found in the dorsal raphe and LC that a few DA
containing cell bodies may be present?. This has
been confirmed for the raphe but not for the LC*2.
But there are DA containing terminals in the raphe
and LCP, Simon et al *62-3643" have confirmed
bilateral projections to these nuclei and to the central
gray. But in contrast to the report of Beckstead they
found label in both dorsal and ventral tegmental nu-
clei of Gudden.

a phar logical study?’ also reports the presence
of possible DA uptake sites here, other anatomical
work using injections of true blue*® did not replicate
these findings.

2.2.3. The mesodiencephalic pathway. Details and
citations of reports on diencephalic and telencephalic
VTA efferent projections are summarized in Tables
III and IV. After injection to the VTA label has been
reported from the posterior and medial hypothala-
mus, from the supraoptic nucleus and the median
eminence. The connection with the medial hypothal-
amus has received indirect confirmation from neuro-
physiological study®?. A few hypothalamic cells
could be driven by VTA stimulation. The possibility
of direct projections to the lateral hypoth and
lateral preoptic area has also been confirmed. But it
should be mentioned that others have looked for pro-
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TABLE III

Historical sequence, technigues and animals used in the selected anatomical studies cited on the VTA projection system of birds and mam-
mals, with special reference 1o DA-ergic projections (1957-1984)

AA", radioactive amino acid label (e.g. Leu, Pro), anterograde transport; D, degeneration following lesion, usually with Fink- Hem

er or Nauta-Gygax, silver staining method; DA, radioactive dopamine — study of
(originally Falck-Hillarp method with formaldehyde, later glyoxylic acid for

i dlcs

) or (IR)
(DBH, dopamine f-hydroxylase); new modifications (e.g. color — (Col), Evans blue, Nuclear yellow etc.); HRP, horseradish perox-

idase (both antero- and retrograde transport studies); Ph,

analysis of lesion; WGA,

wheat germ agglutin transport; M/F, male/female (where not stated, the information was not presented in the original report).

Study Technique Animals
1957
Guillery'? D rat
Montagu®® HF chick, rat, rabbit, guinea pig and man
Weil-Malherbe and Bone*? Ph rabbi
1958
Nauta? D cat
1959
Guillery'® D cat
1963
Bogdanski et al.¥ Ph rat, rabbit, pigeon, chicken
1964
De Vito and Smith** D monkey (M. nemestrina)
Dahlstrom and Fuxe®” HF Mrat
1965
Fuxe'? HF rat
Fuxe and Owman'? HF rat, guinea pig, rabbit, cat, dog and monkey
Fuxe and L]unggren‘“ HF pigeon
Molina® D cat
1966
Wolf and Sutin®* D Mrat
Anden etal.’ HF Mrat
1967
Juorio and Vogt!% Ph chicken
1968
Akagi and Powell* D cat
Pin et al 2 HF cat
1969
Llamas and Reinoso-Suarez™ D cat
1971
Tkeda and Gotoh'® HF chicken
Ungerstedt*? HF
1972
Batista et al.” HF monkey
1973
Nobin and Bjorklund?* HF human (foetus)
Thierry et al, 405 Ph* Mrat
Olson et al -5 HF uman
Bjorklund and Nobin® HF MandFrat
1974
Lmdval] and  Bjorklund™ HF Mrat
Kopin ef HF (Ph) Mrat
Jacobownz and Palkovits'”? HF (Ph) Mrat
Brownstein et al. Ph Mrat
Lindvall et al HF Frat
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(Table I1I continued)
Study Technique Animals
Hokfelt et al, 6177 HF (Ph) Mrat
Bergeretal. HF Mrat
Simon et al.** D rat
Hubbard and Di Carlo'® HF monkey (S. sciureus)
Felten et al. ' HF monkey (M. mulatta)
Lidbrink et al 7/ Ph M rat
Conrad etal. AA*Y Mrat
Segal and Landis™ HRP Mrat
Fuxeetal. HF rat
1975
Fuxe etal.’® HF Mrat
Swanson and Hartman® HF (DBH) Mrat
Garver and Sladek'*® HF monkey (M. speciosa)
Bobillier et al.” AA* cat
Lindvall?* HF Frat
Hopkins'®! HRP rat, cat and Rhesus monkey
Koob et al.?** Ph Mrat
Swanson and Cowan™ AA* Mand Frat
Llamas et al. HRP cat
1976
Conrad and Pfaff®$! AA* Mand F rat
Fallon and Moore!**15 HF Mand F rat
Taber-Pierce et al. AA* cat
Shimada et al.*® HF dog
Beckstead™ HRP MandFrat
Simon et al.*" Mrat
Swanson™® AAT Mand F rat
Tassin et al.” DA* Mrat
Benowitz and Karten™ HRP pigeon
Avendano et al.'* HRP cat
Bockaert et al.* Ph Mrat
Berger et al. HF Mrat
Kizer et al. ™ Ph Mrat
1977
Collier and Routtenberg™ HF Mrat,
Meibach and Siegel?! HFP/AA* Mrat,
Simon and Le Moal D Mrat,
Assaf and Miller's HRP M rat
Pasquier et al.!! HRP rat,
Brown and Goldman® Ph Rhesus monkey
Herkenham and Nauta'®’ HRP Mand F rat
Yamamoto et al.*® HF bird (Melopsittacus undulatus)
1978
Bjorklund etal. % Ph monkey (C. aetiops)
Divatetal. HF/HRP rat, opossum (D. viginiana), tree shrew (T. belangeri)
Lindvall et al * HF/HRP Mand F rat
Lindvall and Stenevi® HF/HRP Frat
Ottersen and Ben-Ari?® HRP rat
Moore™ HRP/AA* Frat
Blessing et al.*® HF M rabbit
Poitras and Parent’ HF MandF cat
Crutcher and Humberstone® HF opossum,
Emson and Koob" DA Mrat,
Troiano and Sicgel*” AA* MandF cat,
Jacobowitz and Maclean'”! HF pygmy marmoset (Cebuella sp.)
Krettek and Price?!? AA* rat and cat
Ochi and Shimizu®* HF Mand F rat
Beckstead® HRP Frat




(Table 111 continued)
Study Technique Animals
Fallon etal. "7 HF Frat
Fallon and Moore'™ 115 HF Frat
Bentivoglio et al.* HRP cat
Schwab et al. WGA Mrat
Nauta et al.””” AA* rat
Phillipson® HRP Frat
1979
Pearson et al.”? R human
Gilad and Reis'* DA*/Ph MandF rat
Arikuni and Gotoh' HRP rabbit
Herkenham and Nauta'” AA* Mand F rat
Simon et al 4% HRP/AA* Mrat
Phillipson®!*-317 HRP/HF Frat
Bischoff et al. Ph Mrat
Beckstead et al. 2 AA* MandF rat
Haglund et al. 1% DA* Mrat
Smialowski et al. ™ Ph rabbit
Wyss etal. HRP rat
Lewis ct al 2 HF Mrat
Russchen and Lohman™*? HRP cat
1980
Veening et al.*® HRP rat
Amaral and Cowan® HRP monkey (M. fasicularis)
Scatton ct al. ! Ph Mrat
Szabo*? HRP cat
Szabo™* HRP monkeys (M. irus and mulatta, S. sciureus)
Luiten and Room™! HRP Mrat
Phillipson and Griffiths*'® HRP Frat
Cronister etal.™ HRP rat and rabbit
Groenewegen et al.'® HRP cat
Nitecka et al. HRP Mand F rat
Vincent et al. Ph Mrat
Newman and Winans?02 HRP M golden hamster
Mehler HRP monkey
Shen and Anderson®® AA* guinea pig
1981
Markowitsch and Irle?? HRP Mand F cat
Tork and Turner*”’ HRP/HF cat
Somogyi et al.*"* HRP rat
Room et al. AA* cat
Palacios et al. ™™ Ph* rat
Fallon'!! HF (Col) Mand Frat
Fallon'? HF/AAHRP  Frat
Bogerts” melanin count  human
Herrling'” Ph M and F rat
ang* HRP/HF (col)  Mrat
Barone et al.*% HRP Mrat
Krayniak etal 2627 HRP/AA* rat, monkey (S. sciureus)
Van der Kooy et al. ! HF Mrat
Dube and Parent'* HF chicken
Ottersen®® HRP rats and cats
1982
Phillipson and Pycock™’® Ph Frat
Albanese and Bentivoglio® HF (col) rat
Velayos and Reinoso-Suarez*’ HRP cat
Porrino and Goldman-Rakic™ HRP

Ishikawa ct al.'*
Russchen™?

Ph
HRP (col)

monkey (M. mulatta)
Mrat

cat
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(Table I11 continued)

Study Technique Animals
Luiten etal *2 HRP Mrat
Loughlin and Fallon® Col rat
Reep and Winans* AA*,HRP M hamster
Fallon and Loughlin® Col MandFrat
Swanson™ ColIR Mrat
Pascuzzo and Skeen™ HRP cat

1983
Macrides and Davis™* IR M hamster
Loughlin and Fallon® HF, AA* rat
Bagnoli and Burkhalter'” HRP M and F pigeons
Felgen and Sladek™ HC:‘ (Golgi/EM)  monkeys (S. sciureus)
Albanese and Minciacchi VHF Mrat
Fallon et al.> HF/Col/TH Frat
Pritzel and Markowitsch™ IR lesser bush baby (Galago senegalensis)
Pearson et al. R uman

1984
Schwerdifeger™™ HRP tree shrew (Tupaia)
Levett et al. 2222 HF M M. mulatta
Tork et al. ® HRP/AA* MandF cat
Sobel and Corbett™ HF/Col o
Skagerberg et al % HF Frat
Lindvall et al. % HF Frat
Fallon etal."”® HF/Col Frat
Loughlin and Fallon®* HRP/HF rat
Sarter and Markowitsch™ HF rat

Studies in lower vertebrates
Pisces: Lefranc et al.??! (Anquilla)
Baumgarten? (cyclostomes)
Santer™ (fish)
Watson*® (Myoxocephalus scorpius, teleost)
Parent et al.’® (Lepomis gibbosus, teleost)

Parent and Northeutt™” (Lepisosteus osseus, holostei)

“Yamamoto et al.*¥ (teleosts)

Amphibia:  Parent®® (Rana pipiens, frog)
Dy

ube and Parent!S (Necturus maculosus, salamander)

Parent™™ (Chrysemys picta, turtle)
Wolters et al.* (Varanus exanthemateeus, lizard)
(and other reports cited therein)

Reptil

jections to the preoptic area with HRP and fluores-
cent techniques and not found them™*"!. More de-
tailed study would be of value here, considering that
these play an important role in controlling ingestive
and reproductive behavior which are functions often
impaired after large or laterally situated VTA le-
sions. A recent detailed study using wheat germ ag-
glutinin and HRP tracers has confirmed reciprocal
connections with the medial preoptic area’. The
connection with the supraoptic nucleus would be of
interest, if confirmed, as this area is known to be rich
in DA and to be involved in controlling endocrinolog-
ical function.

The median eminence contains high levels of DA,
that are usually assumed to be tuberoinfundibular in
origin. But DA levels were found to fall by 40% fol-
lowing VTA damage®®. Further corroboration and
detail of these putative projections are required. This
pathway could provide one way for VTA activity to

both h: I ion from the hypo-
physis and, thus, perhaps cognitive function in the
limbic cortices.

Fibers ascend to the anterodorsal thalamic nu-
cleus Some of these are likely to belong to the acetyl-

i ventral I tract
described by Shute and Lewis*®!. The medial zone of
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Fig. 7. General schematic representation of the main projec-
tions of VTA cells to regions rich in DA terminals (A), to re-
gions with sparse DA terminals (B) and to areas that probably
do not contain DA terminals (C) (Simon*?). ACC, N. accum-
bens; AD, anterodorsal thalamus; AM, amygdala; CG, central
gray; CING, cingulate cortex; DR, dorsal raphe; DT/VT, dor-
sal/ventral tegmental nucleus of Gudden; EC, entorhinal cor-
tex; HPC, hippocampus; LC, locus coeruleus; LHAB, lateral
habenula; LS, lateral septum; MD, mediodorsal thalamus;
MH, medial hypothalamus; MR, median raphe; Occ, occipital
cortex; ON, olfactory nuclei; PRF, prefrontal cortex; R, N.
reuniens; Rg, retrosplenial granular cortex; SI, substantia in-
nominata; Sml1, first somatosensory cortex; STR, neostriatum;
S0, supraoptic nucleus; TD, diagonal band of Broca; TO, tu-
berculum olfactorium.

the mediodorsal nucleus, the N. centralis medius and
the N. reuniens are also in receipt of projections from
the VTA. The lateral habenula receives a major and
possibly the medial habenula a minor projection
from the VTA through the fasciculus retroflexus*®:
319, The projection of the DA component (20-30%)
centers on the caudomedial part of the lateral habe-
nula®. VTA lesion results in ca. 75% depletion of
DA in this nucleus?®.

For comparison, it is noteworthy that the N. inter-

peduncularis, ventral and posterior to the VTA, has
strong reciprocal connections with the habenula and
mediodorsal thalamus®**#*. To a lesser extent the
SN also projects to these nuclei— but to another sub-
division of the mediodorsal thalamus®2.

‘When one considers the importance of the thalam-
ic nuclei for modulating both cortical and subcortical
function it is surprising how little attention either the
VTA innervation of or the intrinsic DA connections
within the thalamus have received 20 years after their
discovery. (DA containing cells are found in the N.
arcuatus, N. periventricularis anterior (A12), N. hy-
pothalamicus posterior, area supramammillaris and
N. reuniens thalami (A11)¥".)

No connections between the A10 and the subthala-
mic nucleus have been reported. This contrasts with
the SN2, (It is assumed that the cholinesterase con-
taining cells reported to project to the subthalamus
and globus pallidus have their origin in the SN*.)

2.2.4. The mesostriatal pathway. Innervation of
the corpus striatum is densest ventroanteriorly and
diminishes dorsally. VTA innervation is absent in the
most medial, dorsal and laterocaudal striatum. The
ventromedial VTA innervates the anteromedial
striatum and the dorsolateral VTA the ventrocaudal
striatum*®. After VTA 6-OHDA lesion anterior
striatal DA levels may drop by 70%, at least twice
the depletion seen in caudal areas (cf. a value of 80%
striatal DA of nigral origin'*; Fig. 8).

2.2.5. The mesolimbic pathway. Following several
reports on the existence of DA in the lateral, but not
in the medial septum of rats during the course of
1974, Segal and Landis**’ managed to confirm that
the origins of these terminals lay with the cell bodies
of the anterior VTA.

A very few fibers are found in the rostrodorsal part
of the medial septum of rats. In the cat the density of
the more medial projection is far higher‘®®. But in
other animals most projections terminate in the me-
dial and ventral parts of the lateral septum (Table
1V). Four separate if somewhat dispersed popula-
tions have been described'®. In the medial part of
the lateral nucleus DA containing fibers form a fine
peripheral outline to the fornix*’. VTA 6-OHDA le-
sions deplete the septal DA by 90%.

The first report of a mesolimbic projection was to
the neighboring accumbens. It is perhaps the largest
mesolimbic projection. It spreads through the ac-



cumbens, the tuberculum olfactorium and the bed
nucleus of the stria terminalis.

Chronister et al.” reported a patchy distribution of
terminals close to the lateral ventricle in the dorso-
caudal part of the accumbens. Rostrally they found
that the distribution spread to occupy the whole ex-
tent of the nucleus. The DA innervation avoids cell
clusters rich in opioid peptides'” (cf. striatum). In
the region of the bed nucleus (N. interstitialis) the
densest innervation was found in the dorsal half*.
Projections to the and lobus i-
us have also been reported for the chicken'™. Using
6-OHDA lesions of the VTA in the rat DA is de-
pleted in the accumbens by ca. 85-95%%°3%, Levels
of DA reported for the accumbens of rat and man are
similar — ca. 25-40 ng/mg protein.

With respect to the amygdala fibers have been
traced to the N. centralis, N. lateralis anterior and
posterior, N. medialis and N. basalis. Denser aggre-
gations of DA fibers and terminals are found in the
central, basolateral and intercalated nuclei than in
the anterior basomedial and posterolateral areas''2,

It is important to note that both nigral (A9) and
even thalamic (A11) cell groups project to the amyg-
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dala’™122®_ But it has been disputed whether the
central nucleus, which contains the highest levels of
DA in the amygdala, does in fact receive a non-DA
A10 innervation®. Projections to the amygdala
have also been reported for the N. peripeduncularis
and interpeduncularis (rat, cat, monkey*2%). DA
levels found in man range from 0.4 to 0.9 ng/mg pro-
tein. These are about a fifth of those found in the rat.
VTA 6-OHDA lesions reduce DA levels in the amyg-
dala by ca. 90% (Oades, in preparation.)

Rostral to the amygdala there are minor, but un-
disputed projections in the neighborhood of the ac-
cumbens off into the substantia innominata (ventral
pallidum) and on to the N. tractus diagonalis. Jones
etal.™® also saw projections of peripeduncular origin
in the monkey. In the human substantia innominata
DA levels were found to be only marginally lower
than in the amygdala (0.73 ng/mg protein) and homo-
vanillic acid (HVA) levels were nearly 3 times higher
(32.7 ng/mg protein)'”. Even further rostrally in the
ventral olfactory forebrain there are projections to
the medial, lateral and dorsal olfactory nuclei.

2.2.6. The hippocampal connection — a special
case. Evidence for a minor DA projection to the hip-

to the

Fig. 8

rior, midline and ventral regions (Kelley et al.

of the (rostral and caudal sections) from the VTA (vertical lines), amygdala
(sl pple) and prefrontal cortex (horizontal I.m:s) Local clustered distribution patterns are not shown. Overlap is most marked in ante-
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TABLE IV
I studies of the ic and di ic projections of the VIA (A10) over 20 years after Dahlstrom and Fuxe"”

Brain region Nucleus References

Diencephalon

Dorso- and Simon et al.***%, Shen and Anderson™®, (Barone et al.*)

(arcuate), supraoptic,

(medial) and lateral Beckstead ctal. 2, Simon et al %33, Luiten and Room?”, Barone etal %", Tork

preoptic posterior etal.“®, (Lindvall et al. ™)

Thalamus N. anterodorsalis, Simon et al.

N. mediodorsalis, Guillery'®, Herkenham and Nauta'®, Rinvik™, Carpenter et al.”, Clavier et

centromedialis and al.”%, Beckstead et al. 2, Simon etal *** Arikuni and Gotoh®?, Velayos and Rei-

reuniens noso-Suarez?

Lateral habenula Guillery'®, Jacobowitz and Palkovits'*?, Lindvall et al.”*, Kizer et al.*®, Hokfelt
et al.'”%, Beckstead et al.*%, Herkenham and Nauta'®, Simon et al.***%, Phillip-
son and Griffith™™%, Phillipson and Pycock™'?, Albanese and Minciacchi®, Lindvall
etal.?, Tork etal.*®, Skageberg et al.*®

Medial habenula Phillipson and Pycock™

Median eminence Kizer et al.*®, Simon et al. %%
Telencephalon
Striatum Ventro-antero-medial, Llamas and Reinoso-Suarez**, Koob et al.?%, Simon et al.***35"3, Pasquier et

Olfactory tubercle, accumbens and
nuclei of the stria terminalis

Nudlei of the substantia innominata
and tractus diagonalis
Olfactory nuclei

Amygdala N. centralis, lateralis
(post. and ant.),
basalis, medialis,
lateralis

Septum Lateralis

Hippocampus

Transition and

Neocortices
Entorhinal (v/1)

Cingulate (ant.)

al.*!!, Fallon and Moore!™%, Beckstead et al.”, Pearson etal.’?, Haglund et al.'¥,
Szabo***, Chronister et al.”, Fallon et al.'®®, Altar et al.”, Tork et al.**, Van
der Kooy et al.¥*, Veening et al.*", Loughiin and Fallon™, Fallon and Lough-
lin'", Swanson™, Albanese and Mingiacchi’, Tork et al. 3

Fuxe'”’, Anden et al’, Ungerstedt*”, Nobin and Bjorklund™, Lindvall and
Bjorklund®, Fuxe et al. B, Simon et al %335 Koob ct al >, Carter and Fi-
biger", Pasquier et al. %1, Fallon and Moore! 115, Lindvall and Stenevi®®, Berg-
eretal’, Nauta etal 7%, , Haglund et al.'”, Gilad and Re.s“’ Beckstead et al.?,
$2ab0™ ¥, Groenewegen et al. ), Chronister ct al.”*, Wang®’, Newman and
Winans?®21, Fallon and Loughlin!®®, Swanson®®, Albanese and Minciacchif,
Tork et al.

Fuxe'?’, Lindvall et al.?*?, Fallon and Moore''*, Lindvall and Stenevi!, Beck-
stead et al. 2, Simon et al %, Tork et al. 1984°

Lindvall and Bjorklund®®, Fallon and Moore'™, Simon et al.***®, Davis and
Macrides®, Davis et al

Fuxe'?’, Anden et al.”, Ungerstedt*'2, Fuxe et al.'™!, Hokfelt et al. """, Lindvall
and E]orklundu’ Brownstein et al.”®, Ben-Ari et al.”, Ottersen and Ben-Ari®®,
Fallon ct al.!!7, Beckstead et al.”, Simon et al.****%, Russchen and Lohman®*,
Ottersen™, Nitecka et al”**, Mehler™, Fallon!!!2, Russchen?, Fallon and
Loughlin'®®, Swanson™, Loughlin and Fallon™, Lindvall et 2l >

(Brownstein et al.%%, Lidbrink et al.*#, Lindvall and Bjorklund®*, Kopin et al.?*,
Kizer et al.?®), Fuxe et al.'®!, Lindvall®, Assaf and Miller", Carter and Fibig-
er’’, Bjorklund and Lindvall®', Fallon and Moore!’, Lindvall and Stenevi®*!,
Haglund et al.'¥, Beckstead et al.*2, Simon et al.***7 3%, Krayniak ct al.?16217,
Luiten et al.>*, Fallon and Loughlin'?, Swanson**®, Albanese and Miniciacchi®,
Tork etal.

(Swanson and Hartman™, Hokfelt et al.™17%, Smialowski*”!, Storm-Mathi-
sen™, Smialowski et al. ", Dolphin and Bockaert™®,, Bishoff et al. %, Herr-
ling!”, Ishikawa et al. 1), Cragg®, Schwab et al. ™, Simon et al. %, Wyss et
al. ™, Amaral and Cowan®, Scatton et al.**!, Schwerdtfeger’™, Swanson*®®, Lind-
vall etal

(Thierry et al*%5, Hokfelt et al.""* "%, Berger et al.***, Lindvall and Bjork-
lund®, Fuxe et al. "1, Kizer etal %)

Lindvall et al.**, Carter and Fibiger'", Fallon et al.""”, Haglund et al.'?, Beck-
stead et al. 2, Simon et al. %, Beckstead®!, Collier and Routtenberg™, Swan-
son*, Lindvall et al.**, Loughlin and Fallon*

(Lindvall et al 2, Lewis et al. %), Emson and Koob'®, Lindvall et al.™, Divac et
al.%, Simon et al. 3%, Beckstead et al.’2, Markowitsch and Irle*?, Swanson®®,
Porrino and Goldman-Rakic*®, Felten and Sladek', Pritzel and Markowitsch™?,
Loughlin and Fallon*®, Tork et al.*®




(Table IV continued)

135

Brain region Nucleus

References

Suprarhinal/insular

Prefrontal (antero-
medial in rat)

Fallnn et al.'"7, Fallon and Moore'™*!"%, Lindvall et al.>*, Divac et al.®, Simon et
368, Bcck:lcad etal.®?, Tork etal. @8 , Sobel and Corbr:tl 74
(Brown ‘and Goldman®®, Lindvall et al. ™), Lindvall and E]orklundm Lindvall et
al #5253, Beckstead™, Llamas et al. ™7, Carter and Fibiger”!, Emson and Koob!®,
Dlvac et al.%, Beckstead et al.*, Simon et al. 7% Haglund et al.¥" . Marko-
witsch and Irle®?, Albanese and Bentivoglio®, Porrino and Goldman-Rakic'®,
Fallon and Loughiin'®, Swanson®, Pascuzzo and Skeen™®, Felten and Sladek™>,
Albanese and Minciacchif, Pritzel and Markowitsch®, Sarter and Marko-
witsch*, Loughlin and Fallon™, Tork et al.*%%, Sobel and Corbett™™, Fallon et
al. ', Levitt et al. >

pocampus from the VTA has grown up piecemeal
over 10 years. In view of the controvemy this evi-
dence g d, the

is trealed separately and in detail. It is salutary to
note that there are interpeduncular connections to
the septum, posterior hippocampus and entorhinal
cortex’™ in rats® and in cats*®’.

Hokfelt et al.'™-1"8 first speculated that some of
the catecholaminergic fluorescence that they ob-
served in the hippocampus could reflect the presence
of DA. Swanson and Hartman® noted that the dis-
tribution of NA and the catecholamine synthesizing
enzyme dopamine B-hydroxylase did not always
match. In 1976 Hamilton and Mackay'®® reported
that lesion of NA pathways reduced hippocampal
levels of DA proportionately far less than they did
levels of NA. In the same year Smialowski*’! re-
ported that apomorphine (DA agonist) and DA, but
not NA, had a stimulatory effect on the EEG recorded
from the hippocampus. Certainly this could easily
have been an indirect effect. Nonetheless in 1977
Storm-Mathisen®® noted that some of the fibers he
observed fluorescing in the hippocampus could con-
tain DA.

By the end of the seventies a small number of apo-
morphine®” and spiroperidol binding sites had been
found®®. Indeed the presence of a DA-sensitive ade-
nylate cyclase that could be blocked with the neuro-
leptic fluphenazine'® ! or micromolar haloperidol
has been reported®. Stimulation of DA-sensitive ad-
enylate cyclase, if not very impressive!!” is present®*.

There is further pharmacological and neurophysi-
ological evidence for DA activity in hippocampal
neurons. The application of DA on to the hippocam-
pus depressed levels of spontaneous firing and that
elicited by glutamate*s-31723%_ Intracellular record-

ing from the hippocampal slice has shown that DA
exerts specific effects distinct from those of other
transmitters. Action potentials recorded from CA,
pyramidal cells repolarize to a more negative poten-
tial®?. Other effects include a hyperpolarization de-
pendent on a calci tivated increase of i
conductance. This effect was blocked by the partial
D, antagonist a-flupenthixol***’. It should be cau-
tioned that the neurul(.puc ﬂuphenazme has been ob-
served to 1 of
the hippocampus to NA”2 However, in the hippo-
campal slice DA and apomorphine in low doses re-
duoe the outﬂow oflabelled NA by way of a DA ago-
ism'”. Further indi-
rect evidence also comes from EEG records. The
neuroleptic chlorpromazine modulates ¥-rhythms'®.

‘What about more direct measures of DA activity?
Haloperidol increased whereas apomorphine de-
creased the rate of formation of the DA metabolite
3 4-dihydroxyphenylacetic acid (DOPAC) in the hip-
pocampus**. Ishikawa et al.'* reported that levels
of DA sensitive to treatment with haloperidol, were
distributed more dorsally than ventrally in the hippo-
campus by a factor of 4-10 (Table V).

Precisely in this dorsal area Martres et al.* re-
ported a high density of labelled iodosulpiride in the
rat. These ligand sites were specific to the stratum la-
cunosum moleculare and decreased in density. from
the CA; to the CA; (also cf. ref. 42 for DA-sensitive
receptors in the rat hippocampus). Thus reports of a
functional DA presence persisted despite many dis-
missive reports that very little DA'® and exceedingly
few DA receptors were present® 2657, Strittmatter
et al.’® demonstrated the presence of presynaptic
DA receptors controlling acetylcholine outflow in
the hippocampal slice (rabbit). But they questioned
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TABLE V

Examples of reports of the concentration, activity and binding of dopamine in the hippocampus

DA DOPAC DOPACIDA  Spiperone Source
nglg wtilization binding
ngimg nelg wet wi. molimg
prot. wet wt. prot.
Rat 120 List and Seeman®*
15 Bischoff cit. Dooley and Bittiger'®
0.60 ‘Westerink and Mulder cit. Dooley and Bitti-
el
14 8.2 0.586 Bischoff et al.*
52 34 0.654 Ishikawa et al. '
13 Archeretal.”!
0.022 Lindvall et al 2
212 (0.138 gigh) Lasley etal.
(label- -precursor TR method)
3.21 Westerink et al.*
27.5 232 0.844 Oades et al
24 54 225 Ikarashi and Maruyama'®’
108 Bijorklund et al.**
16 ‘Van Heuven-] ’“(olsen etal. 1
Rabbit 16 Strittmatter et al.
HVA DOPAC!
DA wiili-
nglmg . nglg zation
prot. wet wi.
Monkey
(Apus
cebella) 0.58
ng/mm’® Haggstrom et al.'®
Human 64 161 2.52 Adolfsson et al."
139 8.8 0.63 Scatton et al. %
36 256
133 10.5 356 0.79 Scatton et al.*2
5.07 Araietal."
0.18 Ploska et al.*?!
whether these sites were of physiological signifi- Simon et al.** made the direct claim, on the basis

cance. Further Westerink et al.* suggested that the
very rapid removal of DA in the hippocampus was an
argument against a transmission role or a special
storage compartment for DA. Nevertheless a recent
study of protein phosphorylation in subcellular frac-
tions and synaptic plasma membrane fractions makes
a convincing case for the process being dependent on
the concentration of DA'". They argue for a DA re-
ceptor-mediated effect.

To return to studies, and

of anterograde transport of tritiated leucine, that DA
fibers from the VTA innervated the internal edge of
the hilus of the gyrus dentatus. The effect of VTA le-
sions suggests that whereas the A10 neurons inner-
vate both the anterior and posterior regions of the
hippocampus, A9 neurons (after SN lesion) are seen
to contribute only to the more posterior innerva-
tion®!. (The possibility of the A9 innervation was
suspected earlier from behavioral observations after

Karten® had, largely unnoticed, described the pro-
jection of the tractus infundibuli in the pigeon from
its origin in the Nln caudalis to the parahipp

SN lesion and hippocampal stimulation
with NA2.)

Studies with HRP and wheat germ agglutmm have
the VTA-hi p ion in the

area. Rather unexpectedly they have argued that t}us
area may be the avian equivalent of the mammalian
subiculum.

rat™*7 (not*®), in Tupata”‘ and in Cynomolgus
monkeys®.

Swanson®® injected True blue into the CA,, CA;



and dentate gyrus of rats. The rostral two-thirds of
the VTA was labelled. He also reported that the con-
nection was crossed (20%). By contrast the projec-
tion from the SN was uncrossed. He estimated that
both VTA and SN projections consisted of about 6%
DA fibers. However, this investigation was restricted
to the septal pole of the hippocampus. Verney et
al.*2 have reported a very thorough survey of the
DA projection using i 1 and histo-

hni in ination with NA and
DA neurotoxins. They found a predominantly ven-
tral distribution of DA terminals in the molecular lay-
er of the prosubiculum and the stratum oriens of
CA,. A very few terminals were seen in the polymor-
phic layer of the dorsal subiculum and down to the
granular layer of the dentate gyrus. (They explain
the reason why Jonsson et al.®, and others (above),
found higher levels of DA dorsally: the dissection
was different and their dorsal region included DA fi-
bers of passage.)

Thus in birds and throughout the mammalian se-
ries there appears to be a VTA-hippocampal path-
way. In contrast to the opinion of Farley et al.’?!,
there is no evidence that the DA innervation has be-
come reduced in man. In their analysis DA levels
(<30 ng/g) were at the limit of detectability. The
French group performed a finer analysis of the rat
hippocampus™®!. They were only able to report a lev-
el of 10 ng/g (i.e. below the detectable limit for Far-
ley). The French figure corresponds to that obtained
by Ishikawa et al."®. But it is interesting that in this
latter study a restricted part of the middorsal hippo-
campus contained 10 times this amount. In the avian
hippocampus the DA:NA ratio is 0.54 (ref. 97).
From the above studies in the rat it is 0.3 and in man
1.1 (Table V).

In man it is the ventral hippocampus that s signifi-
cantly developed?! — precisely that part which is in
receipt of the DA projection. Levels of DA in the hu-
man hippocampus approach or surpass those of the
entorhinal or prefrontal cortices'6**2,

2.2.7. Pathways to the rat cortices. The VTA pro-
jections to the transitional and neocortices are dis-
cussed to illustrate both the development of present
ideas as well as certain points of controversy.

It was not until Thierry et al. in France**#4% dem-
onstrated the synthesis of DA from labelled tyrosine
in the cortex that the existence of DA, not just as a
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precursor to NA, but as a neurotransmitter, was se-
riously considered. It was soon confirmed that there
is a high concentration of DA and DA containing ter-
minals in the anterior cingulate cortex, the (pre)piri-
form/suprarhinal, claustrum, entorhinal and prefron-
tal cortices (Table IV, in parentheses). Recently im-

hemical data have il amore exten-

sive innervation*!.

Since 1974 there have been disagreements over the
extent of the frontal-perirhinal innervation and
whether the anterior cingulate cortex is innervated
by the A9 and/or the A10.

Most authors agree that there is an A10, as well as
an A9, innervation of the ventrolateral entorhinal
cortex. Most of the DA terminals are found in clus-
ters in layers II and 111", In the rat DA concentra-
tions of 3.8-4.5 ng/mg protein*!® or 54 ng/g wet wt.!!
have been reported. Proceeding on into the amygda-
loid/piriform area a 4-fold increase has been re-
ported™.

Lindvall et al.>* claimed that the cingulate cortex
received a DA projection from the lateral part of the
A9. They provided no description of the lesion, thus
their claim is difficult to assess. In the mid-seventies
projections to the cingulate from the medial SN pars
compacta were reported®®’’. However, a sensitive
radiochemical assay has since shown that whereas A9
cells innervate the superficial layers (I-IIT), the A10
additionally innervates the deeper layers'®. The
stronger DA innervation is usually to the superficial
layers™*.

Although authors vary in where they draw the bor-
der between the caudal extension of the anteromedi-
al and the rostral extension of the cingulate cortex in
the pre/supragenual region in rodents, a dual inner-
vation of this area has been confirmed by various
methods?2233:2522%4 In the rat 55 ng/g wet wt. have
been reported for this region.

There is no disagreement that in the pregenual re-
gion of rodents, the prefrontal anteromedial cortex
receives projections from DA containing cells of the
A10 and A9 (Table IV). The rostrocaudal pre/supra-
genual continuum of DA-innervated cortex has an
impressive 5 mm length in the rat*®%! It is precisely
this area that also receives a projection from the me-
diodorsal thalamus, that is used to ‘define’ the pre-
frontal cortex”, DA levels vary enormously from
study to study (75-375 ng/g wet wt., usual range 70 to
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125 ng/g wet wt., 0.6-2.0 ng/mg protein (25-60% of
NA levels)!"?%%22) The DA turnover is higher
here than in other projection areas‘®“! (DOPAC,
30-100 nglg wet wt., 0.28-0.65 ng/mg protein;
HVA, 30-90 mg/g wet wt.). Utilization is double that
in mesostriatal or mesolimbic systems?.

There is also a more laterally situated projection
area around the rhinal sulcus. This was originally
described as lying within the sulcus? and later dorsal
to the sulcus®. The area concerned covers the transi-
tion between the neocortex and the piriform cortex.
The perirhinal projection area is referred to in some
studies as suprarhinal and in others as piriform cortex
— the length of the innervated area varying between
studies. (Swanson preferred to. say that strictly
speaking there was no projection to ‘piriform’ cor-
tex*.) Cytoarchitectonically this area may be best
considered related to that of the insular cortex of sub-
primates'**. Part of this area has also been consi-
dered homologous with the caudal orbitofrontal cor-
tex of monkeys (discussion®). Considering that both
sulcal and dorsomedial cortices receive a specific in-
nervation from the mediodorsal thalamus, both areas
may be considered as prefrontal cortex.

(neonatal 6-OHDA, DSP-4) provided unequivocal
evidence of a more widely distributed cortical inner-
vation by DA which is likely to be shown to be more
highly developed further along the phylogenetic
scale. A band of low density innervation was re-
corded for granular and agranular cortex in a band
from the anterior part of the visual cortex (area 18b)
over retrosplenial loci (area 29b—d) to a lateral re-
gion of the primary motor cortex which shows some
parallels with the primate supplemental motor area.
Staining was largely restricted to laminae I-III.
Many of these areas have not yet been the subject of
retrograde tracing studies. Confirmation of a VTA
origin for a part, but not all of this innervation might
be expected.

2:2.8. Species variation in the mesocortical projec-
tion. Two factors should be borne in mind when one
considers more recent studies that have started to
look at other animals. Firstly the techniques have be-
come more refined (e.g. fluorescent dyes, BDHC vs
DAB-HRP-treated material*>*®?). This means that
non-rat material is being looked at for the first time
with techniques more refined than those often used
with rats. Secondly, one must consider that some

There is some evidence that the left
but not the left insular contains more DA than the
right’™. Although this was not recorded in the study
of Robinson et al.**, a high level of glucose utiliza-
tion has been noted in the same area on the left
side!*.

Early anatomical evidence for a sparse distribution
of DA fibers in the rat through the dorsal and lateral
cortex? was not confirmed pharmacologically*”’.

In view of the close functional and anatomical con-
nections of the parietal and VTA-innervated cor-
tices, the absence of reports of VTA projections to
the former is surprising. In both the rat and cat total
CA content is twice that considered to represent pre-
cursor levels for NA synthesis (59-97 ng/g?; 144
ng/g*®). Striatal levels of NA or hippocampal levels
of DA are of the same order as the report of Brown-
stein et al.%® of 1.3 ng/mg protein parietal DA. The
content**, the binding levels of DA and '*I-sulpi-
ride®’ in the parietal cortex are higher than in occipi-
tal areas, although, with the latter ligand levels are
but 3% of those in the neostriatum®7?.

More recently an immunocytochemical study*! of
the distribution of TOH following depletion of NA

may be that reflect a specific
specialization or an evolutionary trend. (An example
of the former may be the claim that the insular cortex
of hamsters is innervated more by A11 than A10 neu-
rons®3.)

Most studies show an impressive similarity for the
pattern of innervation shown by the VTA of most
subcortical areas. But there is a broader innervation
of the association cortices in carnivores and primates.

Let us take the cat as representative of the carni-
vores. Tork and his colleagues®>*3520474%8 " report
that at least 12 cortical areas receive innervation
from the VTA. These include sensory (auditory, vis-
ual and somatosensory), motor and limbic areas (ret-
rosplenial, cingulate and entorhinal). The strongest
innervation was shown by prefrontal, insular, cingu-
late and visual cortices. Other authors have noted a
particular VTA innervation of visual areas®, the syl-
vian, medial sylvian, posteroventral temporal®®, ec-
tosylvian and sigmoid areas!®3637:25248  Another
marked difference from the rat, where both A9 and
A10 cells project to the cortices, is that only A10 cells
of the cat show cortical projections®?*?, However,
this may well represent a divergence peculiar to car-



nivores as both A9 and A10 cells project to the cor-
tices of primates®™.
Some systems, clearly marked in the rat, are well
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will be made by reference to prefrontal areas.
Through the primates there may be both quantita-
tive and qualitative differences in the mesocortical

represented in the cat (e.g. pref yrus pro-
reus). Other projections to poorly circumscribed
areas of the rat (e.g. retrosplenial cortex™) are ex-
panded in the cat!*2332:32 Innervation of other
association cortices in cats may represent an expan-
sion of systems very poorly represented in rats®?,
rather than a topographical departure from the prin-
ciple and localized innervation of the anteromedial
and sulcal cortices in the rat.

Could the sensory cortical projections represent a
group specialization? Another peculiarity of the visu-
al system in cats is the projection of the lateral genic-
ulate nucleus to cortices outside area 17 (ref. 44). So
VTA projections to occipital*®® as well as frontal eye
fields*®” seem less unexpected. Nonetheless the use
of sensitive immunocytochemical techniques indi-
cates that a visual cortical projection in cats may be
the continuation of an evolutionary feature from ro-
dents*! that becomes more pronounced in primates
(see below).

Lower primates, such as the bushbaby, may repre-
sent a half-way house to the true primates. In this
case projections are reported to dorso- and ventro-
medial frontal and cingulate rather than lateral cor-
tices. Other cortices receive but minor projec-
tions®”. Even here one should not lose sight of the
possibility of species-specific differences until studies
with more sensitive techniques are undertaken. For
example Divac et al.”® were unable to record the su-
perficial DA innervation of the cingulate cortex in
cither the opossum or tree shrew.

A series of anatomical and pharmacological stud-
ies wnh rhesus monkeys*??-2# confirmed DA

to 1 (Brod area 9), orbital
(10-14) frontal and cingulate (24) cortices as well as
the anterior superior and inferior temporal gyri
(20-22, 41). Here DA and NA fibers have been ob-
served ‘densely intertwined’. DA levels ranged from
50to 70% of the NA present. (cf. DA/NA ratio in the
prefrontal cortex (PRF); rat, 0.4; bird, 1.0; man, 0.5
(refs. 11,97, 331, 352).)

In biochemical studies absolute measures of DA
and its metabolites (DOPAC, HVA) may vary be-
tween studies by a factor of 5-10; thus the case for
DA function as a transmitter in association cortices

with respect to rodents. On the quantita-
uve side Bacopoulos et al.'® noted that the levels of
DA metabolites in the rat cortex are minute. In the
rthesus monkey this proportion constitutes 20-40%
of the total. On the qualitative side there is evidence
for differences with respect to rodent systems that
are at least as marked as those shown by carnivores.
Unfortunately, for the most part, the evidence is
pharmacological and thus indirect.

In the adult rhesus monkey the proportion of HVA
in the parietal cortex is 50-60% of that in frontal re-
gions'”!*. The earlier study'* found values higher
than parietal levels for the pre- and postcentral su-
perior and inferior temporal, premotor (6) and motor
(4) cortices. In Cebus monkeys temporal HVA levels
were 80% of those in the frontal cortex'*. By con-
trast levels in the occipital cortex of rhesus seemed to
be but a third of parietal values for DA and HVA.

Measures of levels of DA in the cortices of man tell
a similar story. Values for temporal and frontal cor-
tices are similar'>*, In the parietal cortex levels
were 43%!, 63%*° or 130%' those in frontal areas.
(The differences reflect sampling. Thus the inferior
frontal gyrus contains but one sixth of levels in the
midfrontal gyrus®.) Occipital values were around
60%.

‘What is the relationship between DA and HVA in
these areas? DA utilization can be estimated from
data of Adolfsson ct al.'. The HVA/DA ratio™ for
frontal cortex is 0.57, parietal cortex is 2.9, temporal
cortex 2.6 and occipital cortex is 1.8. The frontal
values are comparable to frontal DOPAC/DA ratios
in rodents. Lest the other values should appear ex-
ceptional, the same study found values of 2.2 for the
caudate and 4.9 for the putamen in man (n, 18)".

On following the changeover through the transi-
tional entorhinal to archicortical amygdala there
seems from some recent biochemical studies to be a
relative drop in the DA innervation to levels less than
those found in the rat on a weight to weight ba-
§is10321352

It seems important to point out that future anatom-
ical work should consist of retrograde studies of as
much material as possible in order to test the ‘indica-
tions” gained from pharmacological studies. Large
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areas of the cortices have never been investigated af-
ter injection of tracers. The conventional tendency to
select one in so many sections should be resisted, de-
spite the mountain of work! Unpublished results of
immunocytochemical studies of tyrosine hydroxylase
(TOH) clearly show a more widespread DA innerva-
tion than previous anatomical methods have shown
— more than fulfilling the predictions from neuro-
chemical analyses. Finally it must be emphasized that
non-DA projections of the VTA to the cortices un-
doubtedly exist. Neither pharmacological nor ana-
tomical methods have been applied to examine this
issue in detail. In rodents only one third of mesocorti-
cal fibers are estimated to contain DA'203%,

2.2.9. Cortical DA terminal distribution. Four
sources of afferent input have been important, his-
torically, for the classification of the frontal cortices
and naturally are important determinants of func-
tion®?*, Layer II receives amygdalofugal input, lay-
ers II and III hemispheric associational input and lay-
er IV input from the thalamus.

In the pregenual frontal cortex some VTA DA ter-
minals are found distributed from layers II to VI,
but in all the studies cited in Table IV by far the great-
est density was found in the deepest layers (V and
VI). This pattern of innervation continues into the
cingulate cortex. But in the cingulate of Rhesus a
denser innervation was noted in layers II and IIT
where NA proved largely absent?®, In rodents and
possibly in other groups a weak innervation of these
laminae stretches out over the retrosplenial to the an-
terior visual cortex*.

In the suprarhinal zone terminals are largely con-
fined to layers V and V2%, A transition from the
deep innervation in the suprarhinal area to a more su-
perficial innervation has been observed with caudal
progression into the piriform cortex?>. In the ento-
rhinal cortex terminal aggregations are reported to
be particularly visible in layers II and III that also re-
ceive an input from the hippocampus'’%527! How-
ever, Beckstead et al.*? reported seeing some DA
terminals in all layers. The hippocampal DA innerva-
tion, seen most intensely at the border between the
prosubiculum and CA,, also takes the form of islands
(in the stratum mol and oriens, respectivel:
though they are somewhat smaller than in the ento-
rhinal area*?.

For comparison NA fibers innervate layers I, IV

and V and 5-HT fibers innervate all layers of the neo-
cortex’,

2.2.10. Distribution of two types of fibers. Careful
observation of histofluorescent material has indi-
cated that there are at least two types of efferent
VTA DA fibers. The type 1 neuron is weakly fluores-
cent. It has a very fine axon. There are a large num-
ber of varicosities often obscuring any smooth seg-
ments of the axon in between. These fibers form
dense pericellular terminal arrangements around
non-fluorescing cells.

The type 2 neuron is strongly fluorescent which
might reflect a high level of DA activity®. These neu-
rons typically show smooth axons with very few vari-
cosities. The terminals form small ‘nest-like’ arrange-
ments on non-fluorescing cells?40228231.210271

In the lateral habenula®'® and lateral septum type 2
fibers are abundant — but type 1 fibers are also seen
more medially in the lateral septum forming a band
around the fornix??*#126270 Ontoniente et al.*’
distinguished such a varicose group of terminals in
the ventroanterior septum from a pericellular inner-
vation found more dorsally, extending throughout
the rostrocaudal extent of the septum.

Both type 1 (ref. 270) and type 2 (ref. 231) fibers
have been seen in the accumbens. Type 2 fibers are
also reported for the tuberculum olfactorium and ol-
factory nuclei?’’. Both types have been seen in the
amygdala, where type 1 is said to be more prominent
in anterior planes?’!.

In the pregenual frontal cortex the perirhinal and
entorhinal cortices type 2 fibers predominate®
4023271 However, within the superficial layers of the
supragenual limbic cortex and the band of innerva-
tion reaching the visual cortex are type 1 fi-
bers*!1723 By contrast in the deeper layers inner-
vated by the VTA type 2 fibers are reported® !,
Confirming these observations on the cingulate cor-
tex Lindvall and Bjorklund® remark that lesion of
the SN consistently removes the fine, varicose supra-
genual terminal system.

2.2.11. Uni- vs bilateral projections. As a simple
generalization the majority of ascending (and de-
scending) connections of the VTA are ipsilateral.
The point has been emphasized in studies conducted
on rats with respect to striatal’, amygdaloid'!! and
other mesocorticolimbic structures®*32. However,
during the early eighties an awareness grew of the ex-
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Selected mesolimbic and mesocortical projections in the rat: relative contribution of DA neurons, of crossed paths and their VTA origin

(derived from Swanson™)

Region % DA % Crossed Remarks on origin in VTA

Prefrontal cortex 30-40 1 Cells widely distributed (more dorsal)

Cingulate cortex 25-35 12 Cells widely distributed (more ventral)

Entorhinal cortex 45-50 8 Cells ventrorostral to ventrocaudal

Hippocampus ca.6 21 More cells rostroventrally

Lateral septum 70-80 7+ Cells lateral and medial, more in rostro-mid-ventral areas
X bens 80-85 8 Cells widely distributed

Lateral habenula ca.1(?) 8 Most cells medially

Amygdala 50-60 2 Most cells in ventral two thirds

tent to which a minority of fibers in different path-
ways were crossed.

In reviewing several studies from his laboratory Si-
mon®? pointed out in 1981 3 exceptions to the rule of
unilaterality. He maintained that the LC, the antero-
dorsal thalamus and the olfactory nuclei received a
bilateral innervation. Fallon and Moore'** could find
but a unilateral projection to the olfactory nuclei.
But surprise reports soon claimed a restricted contra-
lateral projection to the neostriatum**® and the
dorsal accumbens of rats and rabbits™.

Evidence from a few studies in cats d that

Perhaps, from a functional point of view a short
cautionary remark is appropriate. Barone et al.2>~2"
reported neurophysiological evidence from the medi-
al hypothalamus for the possibility that VTA neurons
can exert functional effects in the contralateral hemi-
sphere. Many such effects, however, can be polysyn-
aptically mediated. Some projection areas are bilat-
erally linked. This is well known for the association
cortices, but is also true for other areas that are not
widely known to project to each other across the
commissures (e.g. striatostriatal projections®).

there was a tendency for the mediodorsal thala-
mus*, neostriatum*® and other forebrain areas'® to
receive minor contralateral projections. But Irle
(personal communication, 1982) did not note any

heless the p 1 projec-
tions of the VTA stand in contrast to those of other
monoaminergic brainstem nuclei. Perhaps a few
more neurons from the SN than the VTA have been

noted to project bilaterally. But like the VTA such

P i injec-
tions of HRP. In 1982 Dube and Parent'® saw some
crossing of fibers in the anterior commissure of am-
phibia. This was taken to indicate that the phenome-

non could be more wi in

projecti are to the and basal gan-
glial22140,

2.2.12. Collateral neural projections. As long ago
as the pioneering study by Ungerstedt*!? it had been
d that some VTA cells had axon collaterals

species. In the absence of further reports from cats
and primates it was not possible to comment on the
possibility of a phylogenetic trend.

Since then the use of more refined tracing tech-
niques has shown that for most structures 1-10% of
projections are crossed. At first 1-2% of the meso-

that innervated separate pairs of structures. But only
with more recently developed techniques (e.g. dou-
ble labelling with fluorescent dyes) have anatomists
been able to provide evidence.

Initially on the basis of separate distribution pat-
terns shown by separate labelling experiments, it was

striatal p became d

crossed DA and cholecystokinin fibers’120122
28254418 The crossed mesostriatal fibers derive from
the Npbp and Npn'*®. The general pattern was
shown in a major study by Swanson*® and has been
confirmed in subsequent reports®*%:3%, Of the de-

188 that some neurons might dually innervate
the striatum and cingulate gyrus, the septum and pre-
frontal cortex*%225, The central position of the
septum has since been confirmed by Fallon!!2% with
double and triple labeling techniques and by French
and Canadian neurophysiologists with electrical

;i i di hniques®324,

scending projections only those to the deep
phalic nucleus and the N. reticularis pontis oralis are
exclusively ipsilateral'** (Table VI).

and g q A
The fibers projecting to the septum may also inner-
vate the prefrontal cortex (area 32), the striatum, the
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accumbens and the lateral habenula. Double label-
ling has been recorded for accumbens, septum, ento-
rhinal or sulcal cortex with medial prefrontal re-
gions*™3 and for accumbens or habenula with the
two LC¥,

There is neurophysiological evidence for single
neurons innervating both lateral hypothalamic and
lateral preoptic regions®~?’, lateral hypothalamus
and lateral habenula®®, the anterior hypothalamic
complex and the accumbens?®, the lateral septum
and amygdala®*®.

In general the number of neurons showing collat-
eral innervation is a small proportion of the total
number of neurons present in the VTA, but extensive
collateralization is reported in the recently discov-
ered wideranging mesocortical innervation®*?*.

Fallon'"! has even reported a few cases of triple la-
belling — e.g. striatum, septum and area 32. Howev-
er, he emphasized that nigral cells send out more col-
laterals than those of the VTA and that in the VTA
multilabelling was most often seen laterally in the
Npn. His pioneering studies have shown that VTA
neurons show fewer collateral connections than the
SN, raphe or LC (respectively in quantitative order).
In retrograde labelling studies the greatest overlap is
seen after injections in the medial caudate, lateral
septum, tuberculum olfactorium, accumbens, pre-
frontal cortex and amygdala. This illustrates where
the potential for collateral innervation lies. This was
found in a restricted zone in the dorsal Npn and ven-
tral Npbp'™3.

2.2.13. Topography of the origins of VTA projec-
tions. The refinement of fiber tracing techniques has
only recently enabled a categorization of the projec-
tions of the VTA in terms of each constituent nu-
cleus. Only one of the earlier studies showed a
uniquely restricted source of innervation. The DA
projection to the lateral habenula originates in the
Nif and Npn®'>3'8, However, the non-DA projection
may emerge from any of the VTA nuclei*®. Current
studies show that there are gradients for the distribu-
tion of cells of origin of the different projections with-
in each nucleus*S. However, it seems inappropriate
to consider these details at this stage until a number
of studies are published and confirm the
between DA (and non-DA™) projections, their spe-
cific nuclei of origin and their cytoarchitecture. Fur-
ther we believe it is more useful to provide a sum-

mary across the VTA as a basis for those studies that
attempt to relate structure to function until the tech-
niques for such study are refined enough to take ac-
count of the new anatomical precision.

The results of most studles support generalizations
about crude top phi di along mediol
ral, and di i Cells
distributed more laterally in the VTA tend to project
to more lateral structures; those found more rostrally
tend to innervate the more rostral structures; the
more dorsal cells usually project to the more ventral
structures””!. These trends should not obscure the
heterogeneity of the VTA. It is apparent that, for ex-
ample, some medially situated cells do project to the
more lateral structures and some of the more lateral
cells project to structures close to the midline. Fall-
on'!, following the injection of different dyes into
the frontal cortex, septum and striatum, has made
the striking observation of adjacent cells in the VTA,
each containing a different dye.

Mediolateral topography. Medially situated VTA
cells (e.g. Nln and Nif) project to the septum, the di-
agonal band, the bed nucleus of the stria terminalis
and the pregenual cortex’Sh7L1ST201,230-232357,364.
But there are reports of cells found in the ventrome-
dial Npn and more lateral VTA projecting to the sep-
tum'>1128 and frontal cortex in the rat’%157, if not
the cat®?**. The more lateral VTA fibers project to
the suprarhinal cortex®!:3:22:232.235

The division of opinion over whether the more lat-
eraf*0:130.232.23 or more medial®*1¥¥™* cells
project to the cingulate cortex probably reflects the
extent to which the two separate projections from A9
and A10 were affected by the experimental tech-
nique. I ingly Porrino and Gold; Rakic*
found in the monkey, where part of the prefrontal
cortex has migrated laterally, that the more medial
'VTA neurons projected to the ventral prefrontal cor-
tex whereas the more lateral neurons projected to
the alp cortex (and cingulate)

Some authors report that more laterally placed
cells project to the entorhinal cortex and amyg-
dala!15130239.364 Others found more medially situ-
ated cells of origin for these projections®**’, The
detailed study of Fallon and Loughlin'* noted a large
projection to the amygdala from the Npbp, but that
some cells throughout the A8—A10 continuum pro-
ject to the amygdala.




Cells throughout the VTA project to the ventral
striatum, accumbens and tuberculum olfactori-
um3271157201.279,364.394 Some have suggested that the
more lateral cells project to the anteromedial stria-
tum and more medial ones to the accumbens®*!
38,71,230.364.39 reflecting a more general point to point
‘medial to lateral topography**'. However, within the
accumbens a more recent study of the rat has re-
ported that whereas the Npbp projected mostly to
the lateral parts, medial regions received projections
from both the Npn and Nif*%2.

The more medial cells of the VTA are said to pro-
vide the projection to the hippocampus®'.

Electrophysiological studies have given rise to the
suggestion that although non-DA projections can
arise from the medial or lateral VTA272%, they are
more common in the lateral part*’.

A certain mediolateral topography within the VTA
reflects in miniature the projections from the
A8-A10 continuum. Thus the more lateral SN cells
project more laterally in a given structure than those
of the VTA that project to the same structure''.

Rostrocaudal topography. Both rostral and caudal
neurons may contribute to a given VTA projection,
but when they both contribute, they usually maintain
their dal ionship in the p ion area.
For example neurons along the entire rostrocaudal
axis of the VTA project to the frontal cortex?® but
rostral cells project rostrally’ and caudal cells pro-
ject caudally in the medial prefrontal®* and sulcal
cortex*™.

There is a tendency for the more rostral cells to
project to the septum®1-23315357 and more caudal
cells to the entorhinal’?’" and piriform cortex**.

Dorsoventral topography. The more caudal cells of
the VTA are also the more dorsal cells. For those
areas projected upon from the entire rostrocaudal
axis of the VTA, such as the prefrontal cortex, ac-
cumbens and neostriatum, there is a tendency for the
more ventral parts to be innervated by the more dor-
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Ottersen®® found one target, the central nucleus of
the amygdala of the cat, to receive projections from
both the dorsal and the p VTA.
However, the difference was not extreme, since nei-
ther the Nif nor Nln caudalis were reported to con-
tain many labelled cells: the majority were in the oth-
er VTA nuclei.

In contrast to the topographical patterns of projec-
tion shown by neurons of the VTA (and SN), those
from the raphe (5-HT) are less clear and from the LC
(NA) almost absent (discussion®®).

In conclusion mesocortical projections tend to
have their origin dorsorostrally in the VTA (e.g. NIn
rostralis not Npn). By contrast most mesolimbic pro-
jections originate in the ventrocaudal VTA (Npn and
less from the midline)*2.

2.2.14. The efferent route. A10 DA containing fi-
bers consist of small diameter, non-myelinated ax-
ons'?’ that ascend in the MFB medial to the crus cere-
bri (reviews?*>*7). The fibers are at first dorsolateral
to NA containing fibers but ventromedial to those of
the nigrostriatal pathway. Some crossing takes place
caudal to the mammillary complex, although most fi-
bers ascend ipsi to the i ic re-
gion. Some fibers deviate to the lateral habenula,
and, at about the same juncture, those innervating
the posterior forebrain follow the route of the amyg-
dalofugal pathway and ansa lenticularis to the ento-
rhinal, amygdaloid and piriform cortices.

The route of some of the fibers passing to the hypo-
thalamus corresponds to the peduncularis mammilla-
ris. Other fibers, after passing through the lateral hy-
pothalamus, dorsal in the MFB, ascend past the ros-
tral pole of the thalamus toward the septum. Before
this dorsal flexure, components have branched off to
the posterior hypothalamus, ventral striatum, ac-
cumbens, tuberculum olfactorium and dorsally to the
diagonal band.

Whereas the gdaloid and piriform p
have descended in the external capsule, there are 4

sal cells and the more dorsal parts of the proj
area to be innervated by the more ventral cells of the
VAL 115:232.233.235,315 393 418

Afferents to the suprarhinal cortex tend to come
from the more dorsal cells in the VTA®Z. In addition
projections to the septum tend to come from the
more ventral cells!> 114115231315,

In contrast to this simple dorsoventral distinction,

other tel hali p that continue to as-
cend. The p p [6)) i o as-
cend rostrally. Beneath these fibers, those (2) lead-
ing to the olfactory nuclei proceed rostrally from the
first dorsal flexure. From the prefrontal component a
branch (3) sweeps dorsally and caudally over the cor-
pus callosum to the supragenual limbic cortex and
another p (4) sweeps d dally be-
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neath the callosum to the septum?®-32177:229:230,364.412

In primates fibers dorsal to the callosum pass ros-
trally to the frontal lobes following the contours of
the gyri to the more distant regions. Fibers passing
caudally join supracallosal stria and the cingulate
bundle. Temporal and insular innervation courses
ventrolaterally beneath the rostral stria®?.

Scatton®® reported that about 70% of hippocam-
pal DA is reduced by fimbria-fornix lesion. Thus it
appears that most hippocampal DA fibers arrive by
way of the dorsal route (including a few fibers in the
cingulum), but that a minority may arrive by a ven-
tral route over the amygdala and entorhinal cortex
(amygdalofugal/angular bundle)**?. There are no
DA fibers in the perforant path.

There is some evidence that VTA efferents to the
thalamus ascend in a separate bundle®” that may be
the equivalent of the so-called ventral periventricular
system?. Fibers ascend on the internal edge of the
lemniscus medialis to the ventral nuclei whilst a sec-
ond bundle divides off to the more dorsomedial and
dorsolateral nuclei.

Descending fibers spread dorsally then caudally
over a wide area of the hali

project to the VIA7344 Here another cautio-
nary remark should be made. Phillipson*!” found that
the cerebellar cells were particularly strongly
labelled when injections to the VTA included part of
the N. ruber. Further he noted that the cerebellar in-
nervation of the A8 region was quite considerable.

The detailed study of the cat by Tork et al.**® re-
ported fibers innervating the VTA from areas lying
close by in the posterior interp
ris and several raphe nuclei. From further afield
there were VTA afferents from the LC and pontine
tegmentum, vestibular, cuneate and gracile nuclei,
spinal trigeminal and oculomotor nuclei, the deep ce-
rebellum and ventral horn.

Most of these brainstem connections, with the ex-
ception of the extreme caudal examples, have been
shown to be reciprocal in nature.

2.3.2. Diencephalon. A large part of the dien-
cephalic input to the VTA is made up of fibers from
the lateral habenula®!70:317:364384.408434438 ang the
lateral hypothalamus*118:153.184217.433:434 - phjllipson
also noted that the medial habenula not only sends fi-
bers to the interpeduncularis but to the Nif as well*'”
(cf. sub PpeoLe9)

Most fibers continue in a caudal direction in the cen-
tral gray, giving off a small branch to the cerebellum
before passing over the LC**%2, In addition there is a
small medial path projecting into the pons and a lat-
eral path (rubrospinal tract) projecting to the olivary
and facial nuclei®?.

2.3. Afferent connections

2.3.1. Mes- and rhombencephalon. The VTA re-
ceives a strong innervation from the dorsal
raphe¥7:$2:317:3643% _ Eyrther innervation from the 5-
HT nuclei of the raphe magnus, pontis®’ and media-
nus**** has been described.

Innervation has been reported from the catechol-

amine nuclei of the Al, A5, A6, A7 and A9P?:,

20317.338,364434 (j e the dorsal periventricular system,
LC, ventral tegmental nucleus of Gudden, nuclei ret-
icularis tegmenti pontis, caudalis and oralis and SN).
Two cautionary points should be made. The dorsal
and median raphe and the two tegmental nuclei of
Gudden project to the N. interpeduncularis. Further
the dorsal tegmental nucleus projects via the N. ret-
icularis tegmenti pontinus to the VTA?,

The N. dentatus and interpositus of the cerebellum

Projections are also received by the VTA from the
lateral (and less so, the medial) preoptic nuclei, the
anterior (and less so, the posterodorsal and ventro-
medial) hypothalamus7*80:81:261,275.278,314,317,347,358,355,
44, Tork et al.*® found fibers from all the hypotha-
lamic nuclei, the medial and lateral mammillary nu-
clei of the cat. Retrograde transport was also found
from the parafascicular nucleus of the thalamus®'”.

There is some evidence that VTA afferent fibers
from some areas may be crossed. Cerebellar, teg-
mental, superior collicular and red nucleus fibers
were listed as examples in the cat**®.

A large proportion of fibers descend in the fascicu-
lus retroflexus (Fig. 9).

2.3.3. Tel halon. Many basal in struc-
tures show reciprocal connections with the VTA, al-
beit in a reduced number and from slightly fewer
sites; e.g. bed nucleus of the stria terminalis, diago-
nal band, substantia innominata, anterior, basal and
central nuclei of the amygdala®®!18.155180-182,195,
261.298,317328.385.408.409.43 a1 the accumbens®l 49279,
T8, of GABA fibers*®“¥. The claim for
feedback from the tuberculum olfactorium has rarely
been made!*24%, A small input from the neostria-
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Fig. 9. Photomicrograph of rat brain in sagitial section (Nissl stain) showing the route of the fasciculus retroflexus in which descending
afferent fibers pass 1o the VTA (Sutherland™).
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tum may contain dynorphin'®. In pigeons both the
striatum (lobus paraolfactorius) and accumbens (pa-
leostriatum augmentatum) project back to the VTA
and SN2735,

Indications of a feedback pathway from the pre-
frontal cortex to the VTA came initially from lesion
studies of monkeys®?””. Subsequent studies of rats
and cats have shown reciprocal connections with the
cingulate, suprarhinal, infralimbic (area 25), medial
frontal cortex (area 32) and medial sigmoid gyrus (of
cat)?14126317 34 340408.43¢.436  Molina® also reported
projections from areas 4 and 6 of the neocortex of the
cat to the VTA. In at least the rat there is some rea-
son to believe that the projection is aspartergic™.

There is evidence from studies of antidromic neu-
ral activation that some prefrontal efferent fibers, in
addition to innervating the VTA, also send collater-
als to the superior colliculus, mediodorsal thalamus,
SN, central gray or habenula®®.

The most detailed study of VTA afferents (rat*!”)
reported that the only areas with DA terminals that
receive a projection from the VTA but do not return
a projection are the lateral septum and entorhinal

stimulation of the anterior sigmoid gyrus can be
recorded throughout the midbrain reticular forma-
tion. This is not the case for limbic stimulation'*’.
Even if a fine feedback pathway receives further con-
firmation with modern refined techniques, the large-
ly unidirectional projections of the VTA to the septo-
hippocampal complex stand in clear contrast to the
feedback loops from most structures that receive
VTA innervation. Limbic feedback is more strongly
marked to other monoaminergic nuclei of Nau-
ta’s”’*?" ‘limbic midbrain area’ (Fig. 10A).

3. VTA PROJECTION SYSTEMS

Study of the anatomical pathways to and from the
'VTA throws two features of the organization of infor-
mation flow associated with the VTA and its projec-
tion areas into prominence. Firstly examination of
the reciprocal connections with the DA midbrain nu-
clei suggests the possibility of several neural circuits
(circuit systems, Figs. 11-13) that may have conslder-
able signifi for the i of
cerebral activity. Secondly a major feature of VTA
areas should be considered, as noted by

cortex — and, not ioned, the hipp

The possibility of a direct afferent pathway from
the septohippocampal complex to the VTA has re-
ceived patchy attention. Nauta has pointed out that it
has long been known that fornix fibers distribute to
unknown nuclei in the midbrain tegmentum!”
137.139210 The early implication was that fibers origi-
nated in the hippocampus. In 1956 Nauta® showed
that, at least in the rat, these fibers originated in the
septum and that some terminated in the VTA. De-

Ph)lhpson317 ¢..both axon terminals and dendrites of
the VTA dopaminergic neurones lie in regions of the
nervous system characterised by truly massive con-
vergence’. We shall consider the following examples
of convergence systems — the medial and insular pre-
frontal cortices, lateral septum, central nucleus of the
amygdala, accumbens, habenula and VTA (Figs. 14—
16).

There have been several prominent examples of

yntheses that have d a specific part of the

spite numerous studies with more refined iq
this connection has seldom been seen. Anatomically
it must be regarded as a very fine pathway — from
both the lateral and medial septum?h3$.38.405.
3 which may innervate a few cells in the anterior
VTA (cf. electrophysiological study®* reporting that
a long-latency, multisynaptic influence from the lat-
eral septum was the more dominant). It would seem
likely that some of the confusion arises from the bet-
ter established pathway to the N. interpeduncularis
which may extend both sides of the border with the
VTA®?

Neurophysiological recording studies support the
idea of a strong feedback from the neo- but not the al-
locortices. For example, afterdischarges that follow

VTA projection system or have discussed it within
the context of a more inclusive scheme. These
schemes have included the connections of the ‘limbic
midbrain’ with the ‘limbic forebrain'?’*¥>32, the
frontostriatal system® and pallidal-striatal-nigro-
pallidal organization®™. The schemes, illustrated in
summary form in Fig. 10, are broadly based on onto-
genetic and phylogenetic considerations. They have
addressed issues at the more general levels of ana-
tomical organization (e.g. pallial) and function (e.g.
drive) with less consideration being given to the spe-
cial and contrasting features of connectivity (e.g. re-
duced limbic feedback, above), of function (e.g.
post-VTA lesion syndrome*®) and the transmitters



and nuclei concerned (e.g. A9 vs A10). While it may
be argued that these schemes can be related to some
cognitive constructs arising from psychology, we sug-
gest that a more realistic appraisal of the current un-
derstanding of the connectivity of the VTA projec-
tion system (sections 1 and 2) and its comparison with
those arising from the A6, B7/8 and A9 nuclei can
promote attempts to relate specific functions to a ba-
sis in the neurobiological circuitry. The following dis-
cussion is a first step in that direction.

Dorsal
Thalamus —=
Norepinephiine ——m-

trataminar

Fig. 10. A: schematic representation of the functional anatom-
ical connections between the limbic midbrain arca (LMA) and
the limbic forebrain system (LFS) (after W. Nauta®>?;
mon*®?). Paths 1 and 2 ascend from the spinal cord (SpCd) re-
laying in part at the N. tractus solitarius (NTS). Paths 3, 4 and 5
are frontal (PRF) pathways projecting to the allocortical limbic
system, lateral hypothalamus (LH) and reticular formation
(RF). Paths 6 and 7 connect the hypothalamus (LH and MH)
and LMA with the reticular formation. B: a schematic repre-
sentation of the 3 tiers of organization proposed by H. Nauta?™
for the telencephalon and basal ganglia emphasizing common
characteristics of internal histology, input—output patterns and

isti i The ic neuro-
transmitter and thalamic input is shown on the left. The arrows
represent tier to tier output whereby every area of the first tier
projects to part or parts of the next tier. Acc, N. accumbens;
Cd, caudate nucleus; GP,;, external/internal pallidal segment;
Put, putamen; SI, substantia innominata; SN, substantia nigra
pars reticulata (non-dopaminergic).
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3.1. Circuit systems

It has long been known that there is not only an as-
cending pathway from the SN to the striatum and
frontal cortex, but also a descending reciprocal pro-
jection™»106:166,209.264,304,336,425:432 Thus it is surprising
that the separate, yet somewhat parallel reciprocal
innervation of the VTA was not recognized until 1958
(ref. 274).

The range of structures with which the whole ven-
tral tegmentum is reciprocally connected suggests
that it has a role in the control of function in the phy-
logenetically new and highly developed neocortex
(‘mesocortical system’) as well as that of the phyloge-
netically much older limbic areas (‘mesolimbic sys-
tem’).

Let us first consider the reciprocal connections
with the polysensory association cortices. There is a
widespread but quantitatively uneven innervation
from the 5-HT and NA brainstem nuclei to these cor-
tices. This innervation is denser than the patch-like
distribution of DA cortical terminals, but the distri-
bution of NA and 5-HT terminals is not so wide-
spread as always to overlap with regions of DA inner-

MPRF CING INS

BNST-A

LC
—3 [NA)
>

Fig. 11. Circuit system I: representation of the VTA innerva-
tion of those cortices that have major reciprocal connections
with one of the main monoaminergic nuclei of the brainstem.
Tentative parallels for 3 subcortical areas are also shown. In
some instances the expression of regional contributions to be-
havioral organization involves communication between the
monoaminergic nuclei at the level of the brainstem (e.g.
HAB-R-VTA-MPREF) (for ref. see Fig. 15). MPRF, medial
prefrontal cortex; CING, cingulate cortex; INS, insular cortex;
ACC, N. accumbens; HAB, habenula; BNST-A, bed nucleus
of the stria terminalis and amygdala; VTA, ventral tegmental
area; R, raphe nuclei; LC, locus coeruleus.
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vation. If we consider, from the point of view of po-
tentially functional feedback circuitry, the limited re-
ciprocal innervation that these nuclei receive, then
one feature becomes prominent. Despite the discon-
tinuous distribution of neocortical DA innervation,
prominent VTA efferent terminals are found where
other monoaminergic nuclei are also involved in a
marked reciprocal dialogue (Fig. 11).

Thus, it may be possible to be selective and to sep-
arate the roles of the 3 ‘frontal’ cortices (pre, supra-
genual and insular) on the basis of their dialogue with
monoaminergic nuclei. More tentatively in Fig. 11 a
similar scheme for ‘subcortical’ forebrain areas is

d. This scheme 1 arole
for the unique reciprocal connections of these nuclei.
It does not address questions of the functions of the
range of structures found at different phylogenetic
levels of organization. But it does attempt to point
out interesting features of connectivity that may re-
late to the heterogeneity of function found at such
levels.

Having attempted to contrast the ventral tegmen-
tal projection pattern with that of the other major
monoaminergic nuclei, we now wish to contrast those
from the SN and VTA within the ventral tegmentum.
The VTA and SN have in common with each other a
major dialogue with the frontostriatal system’®®*.

one projection system can affect the other (e.g. de-
pletion of frontal DA with the toxin 6-OHDA is re-
ported to induce an increase of DA receptor number
in the neostriatum).

Although many of the areas in Fig. 12 are intercon-
nected we draw attention to the multiple nature of
the routes by which DA systems originating primarily
in the VTA can influence the function of the striatal
complex directly or by way of modulating striatal af-
ferent input. This is especially true if the SN is in-
cluded in this term and the projection from the ac-
cumbens to the pallidum is also taken into considera-
tion. (Further minor alternatives are suggested by
the arrow roots, e.g. VTA to amygdala, substantia
innominata etc.) The most important point is that the
VTA can modulate activity at the cortical end of the
frontostriatal system (cf. Divac et al.***).

Having discussed the interaction of midbrain sys-
tems with the neocortex (frontostriatal axis), now we
wish to emphasize the limbic-striatal interactions (cf.
allocortex, Fig. 10B). Here one observes the strong
input to the accumbens from the allocortices and the
VTA (Fig. 13). This parallels the neocortical and ni-
gral input to the striatum. These parallel systems
have considerable intrinsic interest'®?”. But what
about their interactions?

The accumbens occupies a crucial position in relay-
ing d ding information, especially that of allo-

The empbhasis of the SN is on the ic feed-
back from the neostriatum and that of the VTA on
the mono- (and poly-) synaptic links with the associa-
tion (neo- and allo-) cortices (Fig. 12). However, the

P

Fig. 12. Circuit system II: ion of the of

cortical origin. The output to the pallidum and SN

ent
i
HeC

—
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Fig. 13. Circuit system III: representation of the integration of

ascending mesolimbic and nigrostriatal DA systems. The dia-

gram shows the major ascending systems (large arrows), cir-

cuitry for interaction and the pallidal output pathway. A,

amygdala; ACC. N. accumbens; ENT, entorhinal cortex;
HAB, habenula; HPC, hippocampus; S, septum; STa, anterior

/\/

HAB

ascending mesocortical with nigrostriatal DA systems. The dia-
gram shows major (large arrows) and minor (small arrows) an-
atomical connections that provide alternative routes for input
and feedback (for abbreviations see Figs. 11-13; for ref. see
Fig. 15)

SN, substantia nigra; VTA, ventral tegmental
arca. (Selected references and citations therein: VTA, SN, pre-
frontal cortex (PRF), insular cortex (INS)%; CC, SN LC,
PRF, INS"; ACCSUA%; ENT'7; ACC, SN'%; 5, HAB®; LC,
raphe nuclei (R), PRF“"‘“*’“; A, ‘mediodorsal thalamus
(MD), CING, PRF*$3; INS”!,



shows firstly where much of the combined limbic/ex-
trapyramidal communication occurs and secondly
where the midbrain DA systems (in particular the
VTA) can modulate this communication. (Note the
W-like up and down connections between the two
midbrain nuclei, the neostriatum and accumbens.)

The VTA DA system is in a position to play a cru-
cial role in the limbic-basal ganglia dialogue. (Some
would say it has a ‘gating’ role.) VTA activity not
only modulates the input to the accumbens in the ac-
cumbens, but it may be transmitted directly to the

pal complex,

cortex to affect input to the accumbens at source and
hence affect its output. The descending route passes
over the accumbens to the neostriatum and pallidum
to influence motor control. (Changes of striatal pro-
tein phosphorylation processes following impairment
of hippocampal activity show that this route is func-
tional®.) The advantage of the route descending
over the accumbens is that it allows for a broader in-
fluence for the limbic systems (fore- and midbrain)
over the outcome of nigrostriatal activity.

An interesting feature that one might add is the
cortical/subcortical interface provided by the septo-
hippocampal complex™’. The input/output compo-
nents of the complex are closely associated respec-
tively wnh the prefromal cingulate-insular level and
the benula-bed 1 dala lev-
el (Fig. 13). From the point of view of future interpre-
tations of function the septohippocampal complex
should be viewed as being in receipt of monoaminer-
gic afferents but its major or usual mode of feedback
is indirect, by way of other subcortical regions.

A highly important feature of Figs. 12 and 13 is the
presence of the substantia innominata and habenula
to the right of each diagram (respectively). For,
around these two structures and the accumbens in the
middle of both figures revolves the interaction be-
tween mesolimbic and mesocortical circuits of the
VTA DA system. Two nuclei of the thalamus that re-
ceive non-DA inputs may also be important for this
side of mesolimbic/mesocortical interaction (N. me-
dialis dorsalis and reuniens). The evidence derives
not just from anatomical tracing techniques'> but
also the utilization of deoxyglucose after electrical
stimulation®. Thus stimulation of the N. mediodor-
salis activated the reuniens, accumbens, medial and
sulcal prefrontal cortex. After N. reuniens stimula-
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tion the h; hi pal
and prefrontal complexes were acnvated

In all this we should not lose sight of the VTA itself
in promoting dialoque between the mesolimbic and
mesocortical systems. The VTA cells projecting to

Fig. 14. Schematic plan view of the rat brain (ostral end at top
of the diagram). in bold print are th

positions of the nodal points of afferent convergence shown in
Figs. 15 and 16: ACC, N. accumbens; ENT, entorhinal cortex;
LH/MH, lateral and medial habenula; PRF, prefrontal cortex;
S, septum; VTA, ventral tegmental area (A10). In fine print
are the areas from which the afferents converge: A, amygdala;
Cb, cerebellum; Cing, cingulate cortex; Cl, claustrum; CuP,
caudate-putamen; DR, dorsal raphe (B7); Fr, frontal cortex;
GP, globus pallidus; HPC, hippocampus; Hy, Hypothalamus;
INS, insular cortex; IP, N. interpeduncularis; IT, inferotempo-
ral cortex; LC, locus coeruleus (A6); LPOA, lateral preoptic
area; NdB, N. of diagonal band of Broca; OB, olfactory bulb;
PAR, parietal cortex; P, N. parafascicularis; Rsp, retrospleni-
al cortex; SCN, N. suprachiasmaticus; SN, substantia nigra
(A9); ST, bed nucleus of the stria terminalis; Th, thalamus;
Catecholamine (A1, AS-A10, A13) and 5-HT (B7, B8) nuclei.
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the ‘limbic’ septum and habenula are those that re-
ceive prefrontal/cingulate input. Even within the me-
solimbic system such a dialogue can be promoted:
VTA cells receiving septal or preoptic input are those
that project to the accumbens®®. Thus one may list
the structures important for the dialogue between A9
and A10 projection systems as the habenula, accum-
bens, substantia innominata, N. mediodorsalis, N.
reuniens and the VTA.

The role of a ‘circuit’ is to facilitate dialogue and
interaction. In this section we have attempted to
show that the role of VTA DA systems is seminal,
whether the circuits are viewed in terms of tiers of an-
atomically and embryologically related structures or
as ascending mesotelencephalic projections based on
transmitters of contrasting function.

3.2. Convergence systems

The notion of convergence systems arises from an-
atomical observations that there are some brain re-
gions that receive an extraordinarily prolific and di-
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Fig. 15. Repr ions of the of afferent input

on mcxocomcal and mesolimbic DA projection regions. A,

Cl Ci, cingulate cortex; Cl, claustrum;
Ent, entorhinal cortex; Fr, fmmal cortex; HPC, hippocampus;
Hy, hypothalamus; IT, inferotemporal cortex; OB, olfactory
bulbs; Par, parietal cortex; PrF, prefrontal cortex; Prh, perirhi-
nal cortex; Rsp, retrosplenial cortex; S, septum; Th, thalamic
nuclei; TO, tuberculum olfactorium; A, B 610, monoaminer-

gic nuclei; VB, ventral noradrenergic bundle (Oades et al.”*%).

verse input. The implication is that these areas are
important for the assimilation of information or the
association of diverse communications. They thus
provide crucial areas for information processing and
its modulation. That the more impressive examples
all receive a DA innervation is a stimulus to the pro-
posal that DA activity is responsible for increasing
the probability of switches between sources of input
competing for the control of the output of the conver-
gence areas®’. Classic examples are the lateral sep-
tum, central nucleus of the amygdala, the accum-
bens, lateral habenula, entorhinal and frontal cor-

x... and the VTA! (Fig. 14).

Firstly one may consider the septohippocampal
complex. The allocortices receive input from a large
array of sources that tend to converge in the lateral
septum and entorhinal cortex*!” (Fig. 15). Both areas
receive a DA innervation from the VTA. In both the
coincidence of the convergence with DA input is so
strong that one is inclined to think of the control and
restriction of input, destined for the hippocampus,
through a VTA DA gating mechanism*. In the lat-
eral septum and central nucleus of the amygdala neu-
ral elements are present that contain one (or more)
of all the amino acids, monoamines and neuropep-
tides for which there is evidence of a neuromodulato-
ry role in the CNS.

In the entorhinal cortex (Fig. 15) DA innervation
is less extensive but occurs in clusters. It might be ex-
pected both to influence other specific inputs and to
gate the propagation of information for propagation
to the hippocampus®”*. Control mechanisms may be
particularly appropriate for the numerous and di-
verse sources of cortical input to the entorhinalis,
that increase along the evolutionary series®™””
117,216-218,231,270,376

There is a massive input from the transition and al-
locortices to the accumbens (Fig. 15). But there is
also some input from the related prefrontal regions.
In contrast to the lateral septum, where there is a
large diencephalic input largely from the hypothala-
mus, in the accumbens there is a multiple input from
many thalamic nuclei. Interactions in the accumbens
are capable of being modified by 5-HT, NA and DA

from at least 5 separate brain areas®?®%150:217.279

280,291,318a,425

A detailed treatment of the frontal cortices (dorso-
lateral/medial prefrontal and sulcal) is beyond the



Fig. 16. Representation of the convergence of afferent input on
the habenula and VTA. ACC, N. accumbens; AH, anterior hy-

Cb, CING, cingul : GP, glo-
bus pallidus; INS, insular cortex; LH, lateral hypothalamus;
L./M. HAB, lateral/medial habenula; LPOA, lateral preoptic
area; L.S., lateral septum; NdB, nucleus of the diagonal band
of Broca; Pf, N. parafascicularis; PRF, prefrontal cortex; SCN,
suprachiasmatic nucleus; SI, substantia innominata; ST, bed
nucleus of the stria terminalis; Al, AS-A7 (NA), A13 (DA),
B7, B8 (5-HT), monoaminergic nuclei.

scope of this discussion. In summary this polysensory
association cortex is in receipt of connections, in se-
ries and in parallel, from the other sensory associa-
tion cortices (discussion®®). Much of the indirect in-
put passes over thalamic relays. There are trends in
the evolutionary series for an increasing limbic inner-
vation from the allocortices over and above the fun-
damental input from the hypothalamus. The infor-
mation arriving in the prefrontal cortex can be mod-
ified successively in the different terminal zones by
all 3 monoamines, GABA, acetylcholine and several
neuropeptides (Fig. 15 (refs. 4, 12, 31a, 91, 116 and
253)).

The ‘mesohabenular’ system has, until recently,
received relatively little attention (Fig. 16). Conver-
gence at this nodal point is of special interest for the
bringing together of input from both the basal ganglia
and the limbic system. The habenula also provides
via the stria medullaris an alternative route to the
MFB for limbic-brainstem communication. The ha-
benula complex, together with the VTA, raphe and
pontine nuclei, may exert an important influence on
the mesocortical and frontostriatal systems. The im-
portance of this role may be deduced from the limbic

P amongst the habenula input. Further
from a functional viewpoint what happens to the ha-
benula affects transmitter activity in the frontal cor-
tices (CAs and stress®™®) basal ganglia and septo-
VTA axis (intracranial self stimulation'®’). Interac-
tions in the habenula are modulated by input from 3

GABA and peptides such as
vasopressin and substance p2¥-310:317319.38,
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Last but not least we should not omit the VTA it-
self from consideration as a nodal point (Fig. 16). We
have already discussed the evidence for a broad
range of input from each level of the brain from the
neocortex to the brainstem. In addition there is evi-
dence for interconnections with other DA neurons.
Indeed probably 7 amines and at least 10 peptides
have neuromodulatory roles in the VTA (Oades, in
preparation).

Further research on the nature of the influence of
the VTA, both within the neuronal circuit systems
described in section 3.1. and on the nodal points of
convergence described in section 3.2., will help to
provide a basis for the explanation of the role of the
VTA and its principal transmitter DA in modulating
the processing of information and the organization of
a wide variety of adaptive behavior. This under-
standing is essential for the development of improved
approaches to treating the many clinical conditions
that in part arise from dysfunction in VTA DA sys-
tems.

4. SUMMARY

The VTA contains the A10 group of DA contain-
ing neurons. These neurons have been grouped into
nuclei to be found on the floor of the midbrain teg-
mentum — Npn, Nif, Npbp and Nin rostralis and cau-
dalis. The VTA is traversed by many blood vessels
and nerve fibers. Close to its poorly defined borders
are found DA (A8, A9, A11) and 5-HT containing
neurons (B8).

Efferent projections of the VTA can be divided

into 5 The mesorhomb pro-
jects to other gic nuclei, the
and a fine projection d ds to other 1 nu-

clei as far as the inferior olive. Fibers to the spinal
cord have not been demonstrated.

The mesodiencephalic path projects to several tha-
lamic and hypothalamic nuclei and possibly the medi-
an eminence. Functionally important examples are
the anterior hypothalamic-preoptic area, N. medialis
dorsalis and reuniens thalami. These two subsystems
are largely non-dopaminergic.

A minor mesostriatal projection is overshadowed
by the large mesolimbic projection to the accumbens,
tuberculum olfactorium, septum lateralis and n. in-
terstitialis stria terminalis. There are also mesolimbic
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with several 7 nuclei (espe-
cially centralis and basolateralis), the olfactory nu-
clei and entorhinal cortex. A minor projection to the
hippocampus has been detected.

The mesocortical pathway projects to sensory
(e.g. visual), motor, limbic (e.g. retrosplenial) and
polysensory association cortices (e.g. prefrontal).
Prefrontal, orbitofrontal (insular) and cingulate cor-
tices receive the most marked innervation from the
VTA. A more widespread presence of DA in other
cortices of rodents becomes progressively more evi-
dent in carnivores and primates.

Most but not all projections are unilateral. Some
neurons project to more than one area in mesodien-
cephalic, limbic and cortical systems. The majority of
these fibers ascend in the MFB. Most areas receiving

ABBREVIATIONS

CNS  Central nervous system
DA Dopamine

DOPAC  3,4-Dihydroxyphenylacetic acid
y-Aminobutyric acid

HRP  Horseradish peroxidase

S-HT Serotonin

HVA  Homovanillic acid

LC Locus coeruleus

MFB  Medial forebrain bundle
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