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CAPTION TO COVER FIGURE 
 
A three-dimensional view of the cochlear partition showing a string of the ‘underwater piano’, represented as a 
resonant cavity in the tectorial membrane. The ‘string’ is a standing wave (shown as solid black lines between vertical 
marks) generated between the first and third row of outer hair cells (test-tube shaped olive-green cells at right bearing 
yellow tufts of stereocilia). The oscillating cavities are the ear’s resonant elements, the ‘piano strings’ sought by 
Helmholtz last century, and they can be detected in the ear canal as a continuous faint ringing (spontaneous otoacoustic 
emission). Incoming sound is detected by inner hair cells (middle) as a disturbance to these resonant cavities much like a 
radio set detects electromagnetic waves using a regenerative receiver arrangement. An even closer analogy is the surface 
acoustic wave (SAW) generator, which generates electromagnetic ripples between two electrodes placed on the surface 
of a solid-state substrate. 

Schematically, the waves are shown as transverse  waves within this gelatinous structure, but physically they are more 
likely to propagate as capillary waves, or ripples, on its lower surface. The diagram shows the tectorial membrane sitting 
on top of the stereocilia, and ripples are initiated on its surface when the outer hair cells are stimulated by acoustic 
pressure variations (sound), in the same way as trembling willow branches overhanging a pool of water do. The 
pressurized cells can sense pressure variations across their cell walls and they express it as movement of their stereocilia. 
However, outer hair cells are reversible transducers, so that when a tuft senses a passing ripple, the movement causes an 
amplified cell response, or ‘kick-back’, which sends a ripple back in the opposite direction. The end result of this 
integral detector/motor system is that ripples, once generated by sound, end up reverberating between the rows of hair 
cells. We have a resonating cavity, like the plucked string of a piano, but in this case cellular energy is used to sustain 
the reverberation, enabling high Q’s to exist in a watery environment (leading to the term ‘underwater piano’).  

Like a laser cavity, oscillations can escape the resonant cavity, and in this case they travel through the tectorial 
membrane, past the flask-shaped inner hair cells (the ear’s detectors, which signal the brain about changes in the 
strength of the laser beam), and reflect off the sharp edge of the inner spiral sulcus (top edge of blue area on left). When 
the returning wave reenters the cavity, it can give rise to an echo (evoked otoacoustic emission).  

Drawing by Tara Goodsell, RSBS Graphic Design, after fig. 3 of Lim, D. J. 1980 J. Acoust. Soc. Am. 67, 1686. Used with permission 
of the author and the Acoustical Society of America. 
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CONTEXT: 

 
This paper outlines a radical new theory of how the ear works which 
reinstates the resonance model of hearing proposed by Helmholtz last 
century. The resonating elements, however, are not physical fibres, as 
Helmholtz thought, but reverberation between rows of outer hair cells, 
which both detect, and generate, ripples on the surface of the gelatinous 
tectorial membrane in response to incoming sound. Our eye can 
perceive sound by noting the pattern of ripples produced on the surface 
of a tray of water sitting on top of a loudspeaker; in a similar way, the 
ear can detect sound by sensing the ripples induced on the surface of a 
gelatinous ‘pond’ in the inner ear called the tectorial membrane. 
 
Traditionally, hearing science has explained how the ear works in terms 
of incoming sound producing a ‘traveling wave’, which moves 
progressively from base to apex. Traveling wave theory says that hair 
cells detect the movement created by this wave. In contrast, the new 
resonance theory says that outer hair cells directly perceive sound (as 
pressure variations) entering the cochlea, although it is true that the 
summed response of these detectors does produce, at high intensities, a 
movement which can be described as a traveling wave (since the 
envelope of the response of a graded set of a resonators can be seen as a 
traveling wave). The difference is that the traditional explanation sees 
the movement first, then its detection, whereas the new theory has the 
detection first, then the movement. In other words, the traveling wave 
is an epiphenomenon and not causally efficacious – the reverse of 
existing theory which sees the traveling wave as providing movement 
which is detected by the hair cells. 
 
Indeed, the new theory sees the movement of the basilar membrane on 
which the hair cells sit as a mechanism for damping excessive response 
of the detectors so that their sensing elements (the hair-like stereocilia) 
are not broken. Such a proposal has already been made by Martin 
Braun in 1996 (Hearing Research 97, 1–10). Vertical movement of the 
partition only begins at sound levels in excess of about 60 dB SPL. 
 
Why introduce the new theory? Because the traveling wave theory is 
unable to satisfactorily explain why, when a microphone is placed in the 
ear canal, a faint, pure sound can be detected coming out of the ears of 
most subjects. Some convoluted explanations have been introduced for 
these so-called spontaneous otoacoustic emissions, but none are 
generally agreed upon or intuitive. In the new approach, the sound 
coming out is taken as the starting point: it is simply seen as the 
continual ringing of (somewhat over-active) resonant elements. And 
once the elements are identified as the reverberation between adjacent 
rows of hair cells, many previously puzzling phenomena have a natural 
explanation: the shape of the physical tuning curve of the cochlea (with 
its steep high-frequency slope and gently sloping tail); cochlear ‘echoes’ 
(when a sound is introduced to the cochlea, a tiny echo comes back a 
short time later); and even the occurrence of musical ratios in the 
spacing of hair cells. 
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In summary, the model can be seen as describing ‘an underwater 
piano’, a term used by Thomas Gold in 1948 when speculating how the 
ear, operating in fluid, could still provide long-lasting, sharply tuned 
resonance. He suggested that the ear operated like a ‘regenerative 
receiver’ found in radio circuits, by which some of the output is fed 
back to the detector circuit to enhance sensitivity and sharpen tuning. 
Indeed, the new theory presented here acts this way, separating the 
detector stage (the reverberating outer hair cells) from the output stage 
(the nearby, although separate, inner hair cells) which sends signals to 
the brain. 
 
Another way of describing the resonant elements is to see a parallel 
with surface acoustic-wave resonators, solid-state devices usually used 
to generate frequencies in the megahertz range by sending relatively 
slow electromechanical pulses back and forth between two sensing and 
generating electrodes. An optical analogy is the Fabry-Perot etalon, in 
which light reflects back and forth between two lightly silvered 
mirrors. 
 
Satisfyingly, the new proposal answers all the problems with current 
theory. Its drawbacks? The gel of the tectorial membrane must have 
special properties: the compliance, surface tension, or other properties 
must be such as to support a very low propagation speed of the ripples 
(or other wave propagation mode), for in this way the microscopic 
distance involved, some 30 µm, can be tuned to acoustic frequencies. 
Relevant properties of the tectorial membrane are presently unknown; 
nevertheless, this is question can be tested. The hypothesis is very much 
a live one, and, at the very least, this new theory should generate 
fruitful discussion and experiment. Your feedback on the proposal 
presented here is welcome. 
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Abstract:  In 1857 Helmholtz proposed that the ear contained an array of 

sympathetic resonators, like piano strings, which served to give the ear its 

fine frequency discrimination. Since the discovery that most healthy human 

ears emit faint, pure tones (spontaneous otoacoustic emissions), it has been 

possible to view these narrowband signals as the continuous ringing of the 

resonant elements. But what are the elements? We note that motile outer 

hair cells lie in a precise crystal-like array with their sensitive stereocilia in 

contact with the gelatinous tectorial membrane. This paper therefore 

proposes that ripples on the surface of the tectorial membrane propagate to 

and fro between neighbouring cells. The resulting array of active resonators 

accounts for spontaneous emissions, the shape of the ear’s tuning curve, 

cochlear echoes, and could relate strongly to music. By identifying the 

resonating elements that eluded Helmholtz, this hypothesis revives the 

resonance theory of hearing, displaced this century by the traveling wave 

picture, and locates the regenerative receiver invoked by Gold in 1948. 
 
 
 
 

Introduction 

To explain how the ear works, resonance theories of hearing — accommodating the ancient 
Greek idea that ‘like is known by like’ — have frequently been put forward. However, since 
Bauhin in 1605 formulated the first resonance idea on the basis of anatomy, the actual 
resonating elements have proved elusive (Wever 1949). First it was air-filled cavities; later, 
minute strings. But even Helmholtz (Helmholtz 1875), the major proponent of the resonance 
picture, found difficulty finding suitable candidates, at times favouring the arches of Corti, at 
others the transverse fibres of the basilar membrane. The problem is to find structures within 
the pea-sized cochlea that can resonate, like piano strings, over 3 decades of frequency.  

The fibres of the basilar membrane have continued to remain the favoured tuning 
elements, even though it is difficult to make their combined stiffness and mass vary by the 
required 6 orders of magnitude (de Boer 1980; Hubbard & Mountain 1996). Moreover, these 
elements are closely coupled, so it is difficult to understand how the high Q that the ear 
displays (150 at 2.5 kHz; Gold & Pumphrey 1948) can arise. Nevertheless, it is this bank of 
graded resonators which auditory science has seen as the cause of the ‘traveling wave’, 
observed by von Békésy (von Békésy 1960), that underlies the stimulation of inner hair cells 
and the generation of neural impulses.  

This paper suggests it is reverberation between neighbouring outer hair cells, 
communicated by capillary waves (ripples) on the tectorial membrane, that constitute the 
resonant elements. These elements resonate sympathetically with incoming sound energy and, 
because they are discrete, high Q’s can be achieved. 

It was just this problem of how the cochlea, immersed in fluid, could achieve the high 
Q’s revealed by psychophysical experiments which led Gold and Pumphrey (1948) to declare 
that ‘Previous theories of hearing are considered, and it is shown that only the resonance 
hypothesis of Helmholtz … is consistent with observation.’  
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Gold (1948) went on to posit that some sort of ‘regenerative receiver’ must be at 
work in the cochlea, and indeed searched for objective evidence for it by placing a microphone 
in ears which, with loud sounds, had been caused to ‘ring’, a phenomenon that Gold saw as a 
clear indication of a regenerative receiver operating with excessive positive feedback. The 
experiment did not meet with success, but it didn’t prevent at least two other attempts to 
reinstate a resonance a theory of hearing: by Naftalin (Naftalin 1963; Naftalin 1981) and 
Huxley (Huxley 1969). 

Some 30 years later, Gold’s work received renewed attention when Kemp, with 
improved equipment, discovered that sound energy could be detected emerging from human 
ears when a sensitive microphone was placed in the ear canal (Kemp 1978). The sound can be 
observed either as an answering echo to a stimulus or, more revealingly, occur spontaneously 
as a continuous faint ringing now called spontaneous otoacoustic emission or SOAE (for a 
review see Probst et al. 1991). 

Since that seminal discovery, the ear could be viewed as an active device, not a 
passive detector, and the motile properties of outer hair cells soon identified them as the locus 
of some sort of ‘cochlear amplifier’ (Davis 1983), although how these cells perform this 
function has not been clarified. This paper puts forward a physical model that unifies all these 
disparate features. 

A physical model 

The hypothesis calls on a particular feature of OHCs that has been overlooked: in all higher 
animals, including humans, OHCs lie in three or more rows in geometric alignment with their 
neighbours. Examination of published micrographs shows that the geometry is typically 
closely defined, much like that of a thin slice of crystal lattice, with regular alignments of hair 
cells in defined directions (Fig. 1). 

This paper theorises that resonant cavities can form between lines of outer hair cells. 
Since OHCs are mechanical sensors/actuators of some sort, a wave disturbance in the gel of 
the tectorial membrane (in which the OHC stereocilia are embedded) could undergo successive 
amplification and reflection between the rows. This constitutes an acoustic surface wave 
resonator in which the stereocilia, connected to fast molecular motors in the hair-cell body, 
pump in acoustic energy.  

A good analogy is the familiar solid-state surface acoustic wave (SAW) resonator 
which employs regularly placed electrodes on the surface of a crystalline material to generate 
(relatively slow) electromechanical ripples that resonate between the electrodes, giving stable 
frequencies in the megahertz range (Bell 1976).  

Developing the idea of a resonant cavity between facing stereocilia, active resonators 
may form not only at right angles to the OHC rows but also at oblique angles where alignments 
of two or three hair cells occur. Herein is the genesis of the cochlea’s typical tuning curve, of 
sets of spontaneous emissions, and perhaps, of musical ratios. 

Perhaps Helmholtz was right: there are piano strings in the ear, but they are smaller 
and less conspicuous than he imagined. In fact, without appreciating the integral role of the 
tectorial membrane — called a ‘peculiar’ elastic membrane by Helmholtz (1875) — the 
resonating elements are nigh invisible. In considering Helmholtz’s piano-string model, Gold 
(1987) asks ‘how can a tiny structure of little strings immersed in liquid be so sharply tuned?’ 
He draws an analogy to an underwater piano and points out that only by adding a positive 
feedback system to each string could such a device be made to work. This is what the current 
hypothesis does. 
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Figure 1.  Geometrical arrangement of the hair cells of a rabbit, showing three rows of 
outer hair cells and one row of inner hair cells. Observe the regular face-centered 
orthorhombic arrangement of the OHCs.  
[SEM courtesy of Allen Counter and the Karolinska Institutet and used with the per-
mission of Elsevier Science Ireland Ltd. Reprinted from Counter, S. A., Borg, E. &  
Löfqvist, L. 1991 Acoustic trauma in extracranial magnetic brain stimulation. 
Electroencephalography Clin. Neurophys. 78, 173–184.] 

 

(a) Geometry of the OHC lattice 

When micrographs of the organ of Corti, as shown in Fig. 1, are examined, one is immediately 
struck by the regular parallel rows of OHCs (three or more) which run from the base, or high-
frequency end, of the spiral cochlea to its apex, where low frequencies are detected. Not only 
is the inter-row spacing precisely defined (typically 15 µm in humans, but continuously graded 
from 10 µm at the base to 25 µm at the apex), but so too is the longitudinal spacing, usually 8–
12 µm (Fig. 92 of Bredberg 1968). Cochlear geometry is fixed by birth, and stays constant 
throughout life (p.13 of Bredberg 1968), just like frequencies of SOAEs (Burns et al. 1994). 

The typical OHC geometry of Fig. 1 is drawn schematically in Fig. 2, where we see 
that five adjoining cells can be grouped into a ‘face-centered orthorhombic’ unit cell with 
spacing a in the longitudinal direction and spacing b between OHC rows 1 and 3, an arrange-
ment defining a diagonal at θ degrees to the transverse direction.  
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Figure 2.  Schematic arrangement of hair cell geometry, showing longitudinal 
distance, a, between OHCs (along the length of the cochlea), and distance b between 
the first and third rows. The diagonal appears at an angle θ given by arctan a/b.  

 

Measurement of a variety of published micrographs and maps of hair cell positions 
(cochleograms) shows that a/b centers around 0.35, so that θ, numerically arctan a/b, is usually 
about 20°. For humans, of 17 such examples, 12 returned a value of 20 ± 3°; for a wide variety 
of other vertebrate species (29 examples), more than half (16 cases) gave a value in this range 
(see Appendix §1). Narrow angles derive from apical regions and wide ones from basal 
locations; the median appears to represent the important mid-frequency region where, in 
humans, speech is detected and SOAEs are most prevalent. 

The most common angle of about 20° means that the diagonal is (1/cos20°) times the 
length of the perpendicular, or 1.06. That number is a key one, for it is also the favoured ratio 
between neighbouring spontaneous emissions. The suggestion, detailed later, is that these two 
directions represent adjacent reverberating cavities. 

(b) Role for the tectorial membrane 

The tectorial membrane, a gelatinous acellular matrix permeated with fibres (Steel 1983), 
occupies a central place next to the hair cells of many animal ears, but its function in 
contemporary hearing theory has been secondary. This communication conjectures that its 
special role is as a medium supporting the propagation of slow surface waves, thereby 
allowing microscopic distances to be tuned to acoustic frequencies. 

The two outermost rows of OHCs are like the reflecting surfaces of a Fabry-Perot 
etalon, except in this acoustic analogue they are active and can supply energy upon reflection. 
It is proposed that a wave disturbance propagating in the tectorial membrane bends OHC 
stereocilia and, in response, a more powerful return stroke is executed, reflecting and 
amplifying the disturbance and initiating continuous oscillation between the rows. As with an 
etalon or Helmholtz resonator, multiple reflection naturally leads to high Q. The more 
reflections, the higher the Q. 

The required ‘kick back’ effect has been identified in OHC stereocilia (Flock 1988), 
but another mechanism for pumping energy into the cochlear partition can be recognised. 
When OHC stereocilia are deflected, the body of the cell changes length, so that the entire cell 
expands and contracts (with very little time delay) in synchrony with the backwards and 
forwards deflection (Evans & Dallos 1993); sinusoidal movement of stereocilia by ±0.05° 
gives synchronised length changes of 10–30 nm. This ‘mechanomotility’ can be understood in 
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terms of stereocilia deflection changing the cell’s membrane potential, which in turn drives a 
fast molecular motor in the cell wall. 

The phase of the mechanomotility depends on cell polarization: hyperpolarized cells 
react 180° out of phase to depolarized ones (Fig. 1B of Evans & Dallos 1993). A particular 
role for the middle row of OHCs is therefore proposed: these cells, with distinctly different 
polarization, respond in antiphase to the flanking rows, an arrangement ideal for continuous 
oscillation of the cavity. Consider a wave propagating from one row to the next: this would 
create a half-period time delay and lead to a total phase shift of 360° and sustained oscillation. 
A surface acoustic wave propagating in the tectorial membrane would fulfill this requirement. 
In effect, the cavity would then resonate like a pipe open at both ends and sounding in its 
whole-wavelength mode. Indeed, two populations of OHCs, bearing opposite response 
polarities, have been observed. When isolated OHCs are electrically stimulated, some 80% 
elongate under positive potential gradients, while the remainder contract (Kachar et al. 1986). 

In summary, waves in the tectorial membrane can be created by up-and-down 
movement of the OHCs, and if the propagating wavefronts are subsequently sensed by bending 
of their stereocilia, a simple self-sustaining (and self-limiting) oscillation is set up. Gain in the 
system depends on the size of the polarization offset from the neutral –70 mV resting level, a 
factor that could be regulated by efferent activity.  

(c) Generation of ripples 

Up-and-down movement requires that the tectorial membrane (TM) support some form of 
transverse wave. Various modes of wave propagation in a gel (a polymer swollen with fluid) 
are possible, depending on the gel’s particular internal properties (Heinrich et al. 1988; Onuki 
1993), and the physics of this as applied to the TM require further study. However, the 
simplest model is one involving familiar capillary waves, like ripples on the surface of water, 
in which surface tension provides the restoring force. We thus posit ripples propagating across 
the surface of the TM in response to sound-induced movement by the OHCs.  

The speed of propagation, c, of a capillary wave is related to the surface tension, T, 
by  

c = (2πT/λρ)½ 

where λ is the wavelength and ρ is the density (Lighthill 1978). Ripples are 
dispersive, with the speed increasing as the wavelength decreases. On the surface of water, for 
example, the speed is 0.86 m sec–1 at 1 kHz and only 0.36 m sec–1 at 100 Hz. Note that these 
are very low values compared to the velocity of a compressional wave in water, some 1500 m 
sec–1. 

Capillary waves have just the right properties for the cochlear resonators: a very low 
propagation speed which, in order to tune the bank of resonating cavities, decreases steadily 
from base to apex. Calculating values, if a cavity 30 µm long is to oscillate at 1 kHz, a 
propagation speed of 30 µm per 0.5 ms would be required; that is, 0.06 m sec–1. Although 
lower than the speed of ripples on the water–air interface, this value is reasonable for a water–
gel interface and could occur if the surface tension between the TM and the cochlear fluids 
were about 4 µN m–1. At higher frequencies nearer the base, say 10 kHz, the necessary speed 
would be faster, typically 20 µm per 50 µs, or 0.4 m sec–1, and calling for a T of 130 µN m–1; 
whereas near the apex, say 0.1 kHz, the requisite speed would fall to 50 µm per 5 ms, or 
10 mm sec–1, and T would need to be less than 1 µN m–1. 

No measurements of surface tension of the tectorial membrane are available. These 
calculations, however, indicate that small values of surface tension are involved, and this 
means low energies. However, cochlear sensitivity is remarkably high, and some calculations 
indicate that hair cells can detect sound energies as low as 1 eV and deflections of their 
stereocilia of less than 0.01° (Bialek & Schweitzer 1985). The advantage of dealing with short-
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wavelength capillary waves is that their curvature is correspondingly high, vastly easing the 
stereocilia’s task of detecting angular deflections. 

Although this hypothesis calls for small values of surface tension, this is no doubt 
easier to achieve than uncommonly large ones. Indeed, it would be surprising if there were no 
surface tension between these surfaces, particularly since the environment is electrically 
charged. The requisite grading in surface tension between base and apex may be achieved 
through regulation of electrical potentials, and the cochlear tuning map may be adjusted by 
efferent activity in just this way. 

The simplest form of the ripple hypothesis is one having isotropic wave propagation. 
In this connection, the surface of the TM is covered with a thin amorphous layer in which the 
OHC stereocilia are embedded (see Fig. 3 of Kimura 1966) and it is this isotropic medium in 
which the capillary waves propagate. One property of capillary waves is high attenuation at 
acoustic frequencies, but this should not be a problem when dealing with distances measured 
in micrometres. No attenuation could in fact lead to interference problems (see Appendix §2), 
and exponential attenuation is factored into a model of cochlear tuning described below. 

(d) Cavities in several directions and the cochlear tuning curve 

So far, a resonant cavity involving reverberation of wave energy between OHC1 and OHC3 
has been postulated. However, the same process that creates reverberation at right angles to the 
rows could also work for hair cells that are obliquely disposed, as shown in Fig. 3, creating a 
series of resonators L0, L1, L2, L3, L4, L5, …  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Geometry of outer hair cell array, elaborated from Fig. 1 with a = 0.35 and 
b = 1, showing multiple oblique alignments of hair cells. We obtain a set of alignments 
at angles θ0, θ1, θ2, θ3, θ4, θ5… with lengths L0, L1, L2, L3, L4, L5, … 
The angles shown produce cavity lengths of 1.00, 1.06, 1.22, 1.44, 1.71, 2.00, … 
which would have corresponding frequencies of 1.00, 0.94, 0.82, 0.69, 0.59, 0.50, … 
It is noteworthy that L1:L0 is 1.06, close to a semitone and equal to the most common 
ratio between SOAEs, and that L5:L1 is 2:1 (an octave).  
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In Fig. 3, the angle between L0 and L1 is 19°, corresponding to the most commonly 
observed cochlear geometry. Accordingly, L1 is 1.06 times longer than L0, and so will have a 
resonance frequency 1.06 times lower. It is therefore hypothesised that the observed favoured 
ratio of 1.06 between SOAEs (Braun 1997) reflects the simultaneous excitation of these two 
cavities.  

The L0 mode, being the shortest, is generally expected to be the strongest, and can 
hence be associated with the characteristic frequency or tuning tip of the cochlear partition at 
that point. Neighbouring hair cells, acting like a phased array of transmitters/receivers, co-
operatively generate a strong coherent wavefront. However, the strength of the first oblique 
mode, L1, and the other odd-numbered alignments, is augmented because they have a middle 
row hair cell (in OHC 2) to help carry the wavefront from row 1 to 3 and back. OHC 2 may be 
considered a sort of traveling wave amplifier. 

Examination of published micrographs, particularly the map of stereocilia positions 
for almost the entire cochleas of rhesus monkeys (Lonsbury-Martin et al. 1988), sometimes 
reveals a very well defined oblique. This example, and others like it, show the tendency for 
stereocilia arms to define certain oblique directions (that is, the arms sit at right angles to the 
axis of the cavity). Inspection of the rabbit cochlea in Fig. 1 indicates that the stereocilia arms 
are well placed to define the third and fourth oblique modes. That is, they are placed 
perpendicular to these cavities (which slant some 52° and 59° from the perpendicular).  

If the first oblique mode (L1 or L–1) were stronger than the L0 mode (because of the 
above factors), and an emission were associated with the former, then the tip of its suppression 
tuning curve might be expected to be ½–1 semitone higher, and be more sensitive, than at the 
emission frequency, and this has been observed (Bargones & Burns 1988; Abdala et al. 1996). 

Significantly, multiple tips and notches are regularly seen in suppression tuning 
curves (Nuttall et al. 1997; Bargones & Burns 1988; Powers et al. 1995), appearing on the 
low-frequency or high-frequency slope (or both) depending, it is suggested, on whether the 
SOAE arises from L0 or from an oblique resonator (see Appendix §3).  

Of particular interest, if the response of all the resonators is summed, the result is the 
typical response curve of a point on the cochlear partition. That is, let us take a single high-Q 
resonator at L0 with slopes of 100 dB/octave and add to it the response of the other associated 
cavities. We assume that the strength of a linear propagating wave front falls off, by attenu-
ation, as a simple exponential and is further weakened, because of circular expansion, by a 1/r2 
factor. Longer resonators will therefore make successively weaker contributions at frequencies 
the inverse of their length. In this model, the effect of OHC2 has been ignored for the sake of 
simplicity. The summation, shown in Fig. 4 (and Appendix §4), exhibits a sharply tuned tip 
flanked by a very steep high-frequency slope and a more gently sloping, although somewhat 
notched, low-frequency tail. This curve resembles the psychophysical (de Boer 1980) and 
mechanical (Nutall et al. 1997) tuning curve of the cochlea. In particular, it explains the 
notches that are commonly seen. 

Perhaps one of the clearest instances of a tuning curve in which the contributions of 
the individual resonators can be seen is a recent laser-beam investigation of the guinea pig 
cochlea (Nutall et al. 1997). In this study, tiny glass beads were placed on the basilar 
membrane and their movement detected with a laser doppler velocimeter. The core of that 
work, shown in Fig. 5 here, shows the response of a bead to broad-band noise, and it is clear 
that the typical shape of the cochlea’s mechanical response is generated. Note the distinct, 
reproducable peaks. The position of these peaks is consistent with oblique alignments of hair 
cells based on an orthorhombic alignment with a/b of 0.338 (θ1 = 18.7°). The predicted 
positions are shown on the figure, and they match the actual peaks to within 6% in frequency. 
These positions represent alignments in which response to imposed sound is enhanced. 
Observe that the odd-numbered peaks are larger than the even-numbered ones: the larger peaks 
correspond to alignments where a middle-row OHC occurs, facilitating ripple transmission. 



 
 

   

8 

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1

re
sp

on
se

frequency 
 

 

Figure 4.  Summing the response of each of the cochlear resonators produces, using 
simple assumptions, a curve that resembles the mechanical response of the cochlear 
partition (and, inverted, the typical cochlear neural threshold curve). Here, each 
resonator L0, L1, L2, L3, …L11 of a set similar to that in Fig. 2 is arbitrarily assigned a Q 
of 50 derived from multiple reflections between hair cells. [The actual set is that found 
in Appendix 4.] Each member of the set (•) produces a peaked response (like that 
shown dotted for one representative member – similar peaks can be found whenever 
multiple reflections give rise to standing waves, such as in organ pipes or plucked 
strings). The L0 resonator is assigned a response of 1 at a relative frequency of 1; 
other longer resonators act at progressively lower frequencies corresponding to the 
inverse of the cavity length (that is, the X-axis is simply the inverse of the cavity 
length). The Y-axis response is based on the simple attenuation of capillary waves 
with distance as they travel between one outer hair cell and its partner, and is 
therefore a simple function of resonator length; given that the amplifying ability of the 
hair cell is, for simplicity, taken as constant (that is, independent of the particular 
resonator considered, meaning that the orientation of the stereocilia arm with respect 
to the resonator axis is ignored), the strength of the response is assumed to diminish 
as a negative exponential of the cavity length, and is further weakened because of 
circular expansion of the wavefront by a 1/r2 factor. (See Appendix §4 for numerical 
details.) The final response envelope is shown as the full curve, although in actuality 
there will be notches between the points – as is frequently observed in the cochlea, 
and in particular, Fig. 5. Given the simplifying assumptions used, there is excellent 
agreement with Fig. 5, particularly the general shape of the curve and the range of 
frequencies which contribute to it. 
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Figure 5.  Peaks in the mechanical response of a guinea pig cochlea match the 
expected response from an outer hair cell array with a/b = 0.338 (or θ1 = 18.7°), a 
value consistent with measurements of micrographs. The response of glass beads to 
wide-band noise was measured with a laser doppler velocimeter (Nutall et al. 1997). 
Note the general reproducibility of peaks, marked with vertical lines, between stimu-
lation at 90 dB SPL (top curve) and 80 dB (bottom). The peak at 17.8 kHz is here 
assumed to be the resonance associated with the L0 cavity, and that at 6.9 kHz to be 
the L7 cavity. Then L1 to L6 fall at the positions marked with open arrow heads: there is 
less than 6% deviation from the marked peaks, and as expected the odd-numbered 
peaks show more strongly than the even. The higher than normal response of peaks 
attributed to L5, L6, and L7 could well come from a favourable orientation of stereocilia 
arms for these particular resonators (that is, the arms are approximately at right 
angles to these cavities). 

(Adapted from Fig. 5 of Nuttall et al. 1997 and used with permission of Elsevier 
Science Ireland Ltd.)  
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(e) Implications for cochlear distortion 

Summarising so far, an array of active resonant cavities stretching from one end of the cochlea 
to the other has been assembled, with the tuning governed by the graded propagation speed of 
a transverse wave in the tectorial membrane. The resonance of the shortest cavity, L0, can be 
associated with the ‘characteristic frequency’ or tuning tip of the cochlear partition at a certain 
point.  

But as well as this primary resonance, each cavity carries with it a set of oblique 
resonators, some pointing towards the base and some towards the apex. When the L0 cavity is 
energised, it cannot help but excite associated oblique resonators (and vice versa) because they 
have hair cells in common. This arrangement renders the cochlea naturally liable to high levels 
of intermodulation (that is, distortion). The ‘essential nonlinearity’ of the cochlea, in which 
distortion can be detected even at the lowest stimulus levels (Goldstein 1967), may be seen as 
distortion remaining at the intrinsic idling levels of the active resonators. 

This intrinsic linking of resonators also suggests that when an SOAE arises in one 
cavity, it is likely to generate other (weaker) SOAEs in neighbouring cavities. This process 
would explain the occurrence of linked bistable emissions (Burns et al. 1984), many of which 
appear at a ratio of about 1.06 (see Appendix §5).  

Indeed, this linking process could underlie the observation of extensive sets of 
SOAEs containing several emissions. Some linking appears to arise when an extensive data set 
of SOAEs (Russell 1992) is examined. When the highest-frequency (perhaps shortest-cavity) 
SOAE is taken as a starting point, there appears to be a statistical preference for SOAEs to 
arise not only at the expected lower ratio of 0.95, but also at 0.77 and 0.31 (see Appendix §6; 
but why these particular ratios are favoured is not clear). 

It is of particular import that interactions take place via resonators that are always 
longer (lower in frequency) than the characteristic frequency. Audiological texts describe how 
combination tones (involving non-linear interaction of two primary tones in the cochlea) are 
audible as difference frequencies (such as 2f1–f2) but sum tones (f1+f2, for example) are 
never heard; the paradox is that a non-linearity should generate both types (de Boer 1984). An 
explanation lies in seeing that interaction between the two primaries at one point on the 
partition can only occur via longer (lower frequency) cavities, which allows the difference 
tones to physically excite a resonator, but there are no such resonators higher in frequency to 
carry the sum tones. 

(f)  Deviations from regularity 

There are 4–5000 sets of OHC ‘triplets’ ranged along the length of the organ of Corti, each 
possessing a characteristic frequency and carrying a dozen or more associated frequencies with 
it. If these banks of oscillators were perfectly placed along the partition, their summed 
response would be nearly complete cancelation. However, if some irregularity in the 
frequency–place mapping were to occur, cancelation would be imperfect and certain 
frequencies would come to dominate (Sutton & Wilson 1983; Wit et al. 1994). It is therefore 
no coincidence that humans have both the highest prevalence of spontaneous emissions 
compared to other animals (Probst et al. 1991) and the most irregular arrangement of outer hair 
cells (Bredberg 1968; Lonsbury-Martin et al. 1988), often possessing extra or missing cells. A 
link between these two facts has already been suggested (Manley 1983).  

In terms of this hypothesis, it means that a centre of energetic activity, which gives 
rise to a discrete set of SOAEs, can arise as much from a gap as from a supernumary cell. It is 
presumed that some integrated activity over certain irregular cochlear regions is at work in 
generating detectable SOAEs.  
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(g) The gel as a delay line: evoked emissions 

The resonant cavity construction also accounts for that other enigmatic phenomenon arising 
from an active cochlea, evoked otoacoustic emissions. 

When a sound burst is conveyed to the ear, a delayed form of it, a ‘Kemp echo’, can 
be recorded some time later (Kemp 1978). A key property of this echo is that the delay is 
surprisingly large, typically 7 ms or 10–15 cycles (Wilson 1980). It is difficult to accom-
modate this delay as that incurred by the delay of a traveling wave in the forward and reverse 
directions (O’Mahoney & Kemp 1995). Significantly, the echo sometimes recirculates, with a 
fixed cycle time of some 6 ms (7.4 periods in one clear instance; Wit & Ritsma 1980). 
Although the envelope delay changes with stimulus intensity, the wave delay remains constant 
(Wilson 1980).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Radial cross-section of the tectorial membrane showing excitation of the 
resonant cavity between the rows of outer hair cells. Most of the energy — 
propagating as a slow capillary wave — is absorbed at Hensen’s stripe, stimulating 
the inner hair cells. Some continues on towards the lip of the inner sulcus where it is 
reflected and re-enters the cavity, creating evoked emissions (‘Kemp echoes’) with 
about a 10-wave delay. The cycle can repeat, causing reverberation. 

 

Looking at Fig. 6, the incoming compressional wave in the cochlear fluids can be 
pictured as immediately stimulating the resonant cavity at the edge of the tectorial membrane. 
However, energy emerging from the cavity would first pass the inner hair cells and then 
continue on towards the inner edge of the tectorial membrane. There it would encounter a 
sharp edge where the TM overlies the space of the inner spiral sulcus, and a wave 
encountering this discontinuity would be reflected back to its source. In this way, re-excitation 
of the cavity could occur, leading to repeated echoes. Note that the distance from OHC 1 to the 
limbal edge is about 5 cavity lengths, giving the right round-trip delay (about 10 cycles). Again 
the slow wave speed in the TM has been called upon, this time to produce a delay line. 

lip Hensen's stripe

basilar membrane

marginal band

inner

spiral sulcus

TM

IHC OHC



 
 

   

12 

Discussion 

This paper fulfils Helmholtz’s quest for resonant elements in the ear. That these elements 
resemble a self-sustaining tuning fork, an electromagnetically driven version of which he built 
and described (Fig. 33 of Helmholtz 1875), would no doubt have appealed to him. The 
hypothesis also satisfies Gold’s demand for some type of regenerative receiver in the cochlea. 
Gold knew in 1947 that one would not wish to put a ‘detector’ — that is, a nerve fibre — right 
at the front end of a receiver (Gold 1989), and this hypothesis clearly separates the 
regenerative stage (the outer hair cells) from the detector stage (the inner hair cells).  

It is therefore presumed, as a corollary, that it is the outer hair cells themselves which 
capture the incoming sound energy, amplify it, and pass it to the inner hair cells. The idea is 
expanded on in the Appendix [§§ 7&8], but it is sufficient here to recognise that OHCs are 
compressible elements (Zenner 1992) immersed in virtually incompressible fluid, and so the 
first step in transduction involves acoustic energy being converted into oscillatory energy of 
the OHC’s cytoskeletal spring (Holley & Ashmore 1988). Individually, such an oscillation 
would lack adequate Q: Nature’s answer has been to link two (or three) OHCs via ripples on 
the tectorial membrane to give time delays large enough to tune the system and sustain high-Q 
mechanical resonance in a fluid-filled environment — the ‘underwater piano’ described by 
Gold (1987). 

In the context of pianos, one other intriguing aspect of this hypothesis demands 
attention, and that is the presence of musical ratios. As well as containing the semitone, the 
cochlear geometry in Fig. 3 contains the octave as the length of L5:L0. (Note also that in Fig. 5 
L5:L0 is 1.96.) A preliminary examination of the maps of stereocilia position in a monkey 
(Lonsbury-Martin et al. 1988) shows that the lengths of obliques commonly involve ratios of 
2:1 or 3:2 (see Appendix §9). Note also in Fig. 1 alignments of 0°, 23°, 40°, 52°, and 59° to 
the radial, giving corresponding lengths of 1.00, 1.09, 1.31, 1.62, and 1.97. Significantly, 
1.62/1.09 is close to 3:2, and 1.97/1.00 is nearly 2:1. Similarly, the length ratios found in the 
Fig. 5 geometry include, as well as the octave, some other small-integer ratios (e.g., L4:L0 = 
1.68, close to 5:3; L2:L0 = 1.21, close to 5:4; L6:L0 = 2.26, close to 9:8). 

By adjusting the a/b ratio, and by tilting the unit lattice a few degrees, it is possible to 
create many small-integer ratios of musical significance (Appendix §§9 & 10). The question, 
of course, is whether the ear in fact uses such a scheme — detecting simultaneous excitation in 
the two arms of an outer hair cell — to detect harmonic ratios. Only extended measurements 
on hair cell geometries can decide the issue, but if confirmed, it would open a startling new 
window on music. No doubt Helmholtz would have been delighted to find musical ratios lying 
hidden within the cochlear geometry.  

The proposal for reverberant cavities in the cochlea outlined here solves a number of 
puzzles in auditory theory and produces many testable predictions, and for these reasons 
deserves further investigation. But if validated, the idea calls for a major shift in our under-
standing of cochlear mechanics, replacing the dominant traveling wave picture with one 
involving true resonance. This is not the place to begin a critique of traveling wave theory, 
which presents a number of theoretical problems, but it is perhaps worth noting that a graded 
delay in a bank of resonators can be seen as a traveling wave, so the difference is more one of 
interpretation and underlying mechanism. Thus, it is still possible to hold to aspects of the 
older concept, but the new proposal gives us a clearer insight of what might be going on at the 
micromechanical level. 
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Appendix 1a  Measured cochlear geometry in humans 
 
Measurement of angles of a variety of published micrographs, tracings, and maps of hair cell positions 
(cochleograms) shows that a/b centers around 0.35, so that θ, numerically arctan a/b, is usually about 20°. 
For humans, of 17 such examples, 12 returned a value of 20 ± 3°, as the following table reveals. 
 
Table A-1a.   
First oblique angle in OHC cell geometry of the adult human organ of Corti 

 
author figure number location a (µm) b (µm) a/b arctan a/b 

(degrees) 
 
Tracings and maps of hair cell positions (cochleograms)  
 
 
Retzius (1884) Fig. 8    0.36 ±0.02 19.7 ±0.7 
Bredberg et al. 1965 Fig. 19 base–

middle 
  0.36, 0.37, 0.36, 

0.37, 0.37 
19.8, 20.1, 19.8, 
20.1, 20.1 

Bredberg (1968) Fig. 40 base   0.37 ±0.02 20.1 ±0.7 
 
Micrographs 
 
Kimura et al. (1964) Figs 3A, 3B base 7.7 19 0.41, 0.32 22.5, 18.0 
Johnsson &  Fig. 10a base 15 31 0.49 26.3 
Hawkins (1967) Fig. 10b middle 12 49 0.25 14.2 
 Fig. 10c apex 11 44 0.25 14.2 
Bredberg (1968) Figs 39, 41A,  

42 
  20 (base) 

–50 (apex) 
0.32, 0.45, 
0.39 

17.9, 24.6, 
21.2 

Wright (1984) Figs 1, 2 middle 9.2 35 0.27, 0.37 14.9, 20.1 
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Table A-1a caption: Measurements of the first oblique angle in published micrographs 

and in tracings of cell positions in the adult human organ of Corti. The angle was 

derived by measuring the average longitudinal spacing, a, and radial spacing, b, of 

hair cells in OHC rows 1 and 3 and taking the arctan of that ratio. Distance a was 

taken as the average over the number of equi-spaced (no missing or supernumerary 

cells) cells visible; b was derived by drawing lines by eye through the rows of hair cells 

and measuring their separation. Reference point on all hair cells was the junction of 

the two stereocilia arms. Although a range of angles occurs, there is a cluster of values 

near 20°, which also represents the median. Narrow angles originate from the apex 

and broad ones from the base. This paper suggests it is significant that when the fifth 

oblique is at 60° (L5 = 2.0, an octave), the first oblique is at 19.1° (a semitone); 

therefore, it is possible to explain angles near 14° from recognising that when the 

seventh oblique is at 60°, the first oblique is at 13.9°.  [For a pair of SOAEs f0 and f1 with 

approximate semitone spacing and relative frequency 1.00 and r1 (=f1/f0), simple trigonometry 

gives θ1 = arccos r1. Subsequent frequencies in the set will then occur at rn = cos θn = cos 

(arctan(n tan(arccosθ1))), where n is 2, 3, 4, 5, …] 

 

 
References:  G. Retzius (1884) in G. Bredberg, Acta Otolaryngol. Suppl. 236, (1968), p. 41; G. Bredberg, 

H. Engstrom, H. W. Ades, Arch. Otolaryng. 82, 462 (1965); G. Bredberg, ibid.; R. S. Kimura, H. F. 

Schuknecht, I. Sando, Acta Otolaryngol. 58, 390 (1964); L.-G. Johnsson and J. E. Hawkins, Arch. 

Otolaryng. 85, 43 (1967); A. Wright, Hearing Res. 13, 89 (1984). 
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Appendix 1b.  Measured cochlear geometry in some non-human vertebrates 
Measurement of angles of a variety of published micrographs, tracings, and maps of hair cell positions 
(cochleograms) shows that a/b centers around 0.35, so that θ, numerically arctan a/b, is usually about 20°.  
For a wide variety of non-human vertebrate species (29 examples), more than half (16 cases) gave a value in 
the range 20 ± 3°, as the following table shows. Values close to 30° (from near the base) may reflect the 
relationship that θ1 = 30° if L3 = 2.0. 

Table A-1b.  First oblique angle in published micrographs of the organ of Corti  
from non-human vertebrates 
author figure number animal a (µm) b (µm) arctan a/b (degrees) 
      
Engström et al. (1966a,b) Figs 4, 24, 111 monkey   21.4, 21.1, 25.0 
Lonsbury-Martin 
et al. (1988) 

Fig. 3 monkey 
(80% from apex) 
(46% from apex) 
(20% from apex) 

 
8.7 
9.5 
8.5 

 
14 
25 
30 

 
31.8 
20.8 
15.8 

      
Altschuler & Fex (1986) Fig. 4a guinea pig 4.2 18 16.3, 13.2, 21.4 
Bredberg (1968) Fig. 7 g.p. 7.0 17 22.7 
Veldman et al. (1990) Fig. 11a g.p.   18.3 
Zhou & Pickles (1996) Figs 2, 3 g.p.   20.1 (av.) at apex 

– 36.9 at base 
Engström et al. (1996b) Figs. 13, 14, 26, 

133,  
g.p.   17.1, 18.0, 21.9, 

30.4 
      
Harada (1983) Fig. 107 rabbit 7.8 23 18.6 
Engström et al. 
(1966b) 

Figs 19, 20, 21, 
27, 33, 34 

rabbit   20.4, 21.2, 21.2, 
21.9, 28.8, 33.8 

Counter (1993) Fig. 7 rabbit   23.0 
 

      
Altschuler et al. (1995) Fig. 1D rat   18.6 
Richardson et al. (1989) Fig. 3b mouse 7.7 22 19.0 
Harrison & 
Hunter-Duvar (1988) 

Fig. 6 chinchilla 5.0 14.8 18.5 

Bredberg (1968) Fig. 95D dog   12.3 
Keidel et al. (1983)  
[supplied by Bredberg]  

Fig. 27 cat   21.5 

Engstrom et al. (1966b) Fig. 31 cat   14.9 
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Table A-1b caption. As for Table A-1a, but for a range of non-human 

vertebrates. 
 

References: H. Engstrom, H. H. Lindeman, H. W. Ades, in Second Symposium on the Role of 

the Vestibular Organs in Space Exploration, (NASA, Washington, 1966a), pp. 33–46; H. 

Engström, H. W. Ades, A. Andersson, Structural Pattern of the Organ of Corti (Almqvist & 

Wiksell, Stockholm, 1966b); B. L. Lonsbury-Martin, G. K. Martin, R. Probst, A. C. Coats, 

Hearing Res. 33, 69 (1988); R. A. Altschuler, and J. Fex, in Neurobiology of Hearing: The 

Cochlea, R. A. Altschuler, D. W. Hoffman, R. P. Bobbin, Eds, (Raven Press, New York, 1986), 

pp. 383–396; G. Bredberg, Acta Otolaryngol. Suppl. 236 (1968);  J. E. Veldman, F. M. J. 

Albers, P. R. W. J. Ruding, J. C. M. J. de Groot, E. H. Huizing, Adv. Otorhinolaryngol. 45, 

154 (1990);  S. Zhou, and J. O. Pickles, Hearing Res. 100, 33 (1996);  Engström et al. 

(1966b) ibid.;  Y. Harada, Atlas of the Ear by Scanning Electron Microscopy (MTP Press, 

Lancaster, 1983);  Engström et al. (1996b) ibid.; S. A. Counter, Scandinavian Audiology 22 

Suppl. 37 (1993);  R. A. Altschuler, Y. Raphael, H. H. Lim, J. Dupont, K. Sato, J. M. Miller, 

in Active Hearing, Å. Flock,.D. Ottoson, M. Ulfendahl, Eds, (Pergamon, Oxford, 1995) pp. 

239–255;  G. P. Richardson, I. J. Russell, R. Wasserkort, M. Hans, in Cochlear Mechanisms, 

J. P. Wilson and D. T. Kemp, Eds, (Plenum, New York, 1989) pp. 57–65;  R. V. Harrison and 

I. M. Hunter-Duvar, in Physiology of the Ear, A. F. Jahn, and J. Santos-Sacchi, Eds, (Raven 

Press, New York, 1988) pp. 159–171; G. Bredberg, (1968) ibid.;  W. D. Kiedel, S. Kallert, M. 

Korth, The Physiological Basis of Hearing (Thieme-Stratton, New York, 1983) p. 33. 
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Appendix 2.  Diplacusis echotica: justification for a very low 
propagation speed 
 
The simplest form of the ripple hypothesis is one having isotropic wave 
propagation. In this connection, the surface of the TM is covered with a 
thin amorphous layer in which the OHC stereocilia are embedded (see 
Fig. 3 of Kimura, 1966) and it is this isotropic medium in which the 
capillary waves propagate. One property of capillary waves is high 
attenuation at acoustic frequencies, but this should not be a problem when 
dealing with distances measured in micrometres. No attenuation could in 
fact lead to interference problems, as one curious phenomenon — 
diplacusis echotica — seems to demonstrate.  
 
Diplacusis echotica is a phenomenon in which subjects complain of 
double hearing: they hear both a sound and its echo. It occurs in less than 
1 in 500 audiology patients (Götze, 1963) and has been recorded in 
audiology textbooks for more than a century (Urbantschitsch, 1910), 
although given little attention. The echo occurs as long as ½ to 1 second 
after the sound (Götze, 1963; Shambaugh, 1940). Such a large delay 
appears impossible acoustically unless we take the very low propagation 
speed proposed, little attenuation, and longitudinal transmission of wave 
energy along the TM. The length of the human TM is about 30 mm, so 
that with a wave speed of 40 mm/s or less, delays of the order of 1 second 
are indeed possible acoustically.  
 
Close audiological examination of individuals with double hearing would 
provide good evidence for the theory presented here. 
 
 
 
Götze, Á. Clinical observations concerning the question on diplacusis and 
echoacusis. Int. Audiology 2, 214–216 (1963). “The time between the first sound 
and echo is much shorter than 1 second.” (p. 215) 

Kimura, R.S. Hairs of the cochlear sensory cells and their attachment to the 
tectorial membrane. Acta Oto-laryngol. 61, 55–72 (1966). 

Shambaugh, G. E. Diplacusis: a localizing symptom of disease of the organ of 
Corti. Arch. Otolaryngol. 31, 160–184 (1940). “… sounds being heard a second later 
in the affected ear” (p. 166) 

Urbantschitsch, V. Lehrbuch der Ohrenheilkunde (5th edn), 66–67 (Urban and 
Schwarzenberg, Berlin, 1910). 
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Appendix 3.  Multiple tips in tuning curves 

It is significant that multiple tips and notches are regularly seen in 
suppression tuning curves, appearing on the low-frequency or 
high-frequency slope (or both) depending, it is suggested, on 
whether the SOAE arises from L0 or from an oblique resonator. 
These observations suggest that the suppressing tone is inter-
acting with both the primary (near-perpendicular) resonator and 
its allied oblique resonators. The dynamics are such that the tone’s 
entrainment of any one of these resonators is done at the expense 
(suppression) of the others. Such intimate linking suggests close 
physical coupling: one energetic resonator and its allied oblique 
counterparts. 

The most detailed data on multiple resonators is given in the 
paper as Fig. 5. However, suppression data are also compatible 
with this picture.  

Martin et al. (1988)* show suppression curves for three SOAEs in a 
monkey (their Fig. 7) and notches appear at frequencies 1.30 ±0.05 
and 1.60 ±0.05 times lower than the highest notch, corresponding 
to the ratios of the L2, L3, and L0 cavity lengths emanating from a 
geometry with an a/b ratio of 0.42. Measurement of this monkey’s 
hair cell geometry (mapped in Fig. 7 of Lonsbury-Martin et al., 
1988†) for the region 54–59% from the apex — the 2–4 kHz region, 
wherein the highest notch appears — gives an a/b ratio of 0.38–
0.41. 

In the case of the 1413-Hz suppression curve (Fig. 7A), the two 
higher frequency notches correspond with observed SOAE 
frequencies.  

One good illustration of multiple tips appears in Powers et al. 
(1995)‡ , in which the major dip of a chinchilla’s suppression curve 
can be interpreted using the geometry of Fig. A-4a. (Although 

                                                           
* Martin, G.K., Lonsbury-Martin, B.L., Probst, R. & Coats, A.C. 1988 Spontaneous otoacoustic emissions in a 
nonhuman primate. I. Basic features and relations to other emissions. 
† Lonsbury-Martin, B.L., Martin, G.K., Probst, R., & Coats, A.C. 1988 Spontaneous otoacoustic emissions in a 
nonhuman primate. II. Cochlear anatomy. Hearing Res. 33, 69–93. 
‡ Powers, N.L., Salvi, R.J., Wang, J., Spongr, V. & Qui, C.X. 1995 Elevation of auditory thresholds by 
spontaneous cochlear oscillations. Nature 375, 585–587. 
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containing some flexible parameters, this geometry is typical, and 
indicates an approach — adjusting the parameters of a/b and tilt 
— that can be taken in matching peaks in relative frequency.)  

Thus, using this tilted geometry and taking the SOAE observed 
by Powers et al. to correspond to the L–1 resonator (relative fre-
quency of 1.00), then each of the associated dips in the 
suppression curve (at relative frequencies of 1.03, 1/1.26, 1/1.40, 
1/1.66, and 1/1.93) are good matches to the L1, L3, L4, L5, and L6 
resonator lengths (1/1.03, 1.24, 1.44, 1.66, 1.90) given in the last 
column of Table A-4.  
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Appendix 4.  Elaboration of the cochlear geometry to include 
skew of the crystal lattice 

Most micrographs examined appear to show an orthorhombic 
crystal lattice, with a hair cell in OHC 1 lining up with another in 
OHC 3, so that the line between them is at right angles to the 
rows. However, some examples show a slight tilt in the lattice to 
produce a rhombic arrangement. For example, one micrograph 
(Fig. 39 of Bredberg, 1968*) taken 17 mm from the base of a human 
cochlea (2 kHz region) shows an a/b ratio of 0.32 and a skew of 3–
4°. This is small, but it has a measurable effect on the length of the 
resulting resonators. It is this set of lengths which are used in 
calculating the cochlear response in Fig. 4 of the main text. 

 

 

 

Fig. A-4a. Cochlear geometry where a/b is 0.3 and OHC row 1 is skewed 3° relative 
to OHC 3. This geometry generates a set of lengths L1, L2, L3, … in one direction and 
L0, L–1, L–2, L–3, … in the other, and these are tabulated in Table A-4.  

                                                           
* Bredberg, G. 1968 Cellular pattern and nerve supply of the human organ of Corti. Acta Otolaryngol. 
Suppl. 236. 
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Table A-4.  Theoretical resonant cavity lengths  

 
 
 
 

cavity length  length re L0 = 1.001 
[reciprocal length] 

length re L–1 = 1.0595 
[reciprocal length] 

L0 1.001 1.000  
L+1 1.031 1.030  [0.97]  

L–1 1.059 1.058  [0.95] 1.000   
L+2 1.141 1.140  [0.88] 1.077  [0.93] 

L–2 1.193 1.192  [0.84]            1.126  [0.89] 
L+3 1.312 1.311  [0.76] 1.239  [0.81] 

L–3 1.379 1.378  [0.73] 1.302  [0.77] 
L+4 1.524 1.522  [0.66] 1.439  [0.69] 

L–4 1.601 1.599  [0.63] 1.512  [0.66] 
L+5 1.761 1.759  [0.57] 1.663  [0.60] 

L–5 1.845 1.843  [0.54] 1.742  [0.57] 
L+6 2.016 2.014  [0.50] 1.904  [0.53] 

L–6 2.103 2.101  [0.48] 1.986  [0.50] 
L+7 2.281 2.279  [0.44] 2.154  [0.46] 

L–7 2.371 2.369  [0.42] 2.239  [0.45] 
L+8 2.554 2.551  [0.39] 2.412  [0.41] 

L–8 2.646 2.643  [0.38]   2.499  [0.40] 
L+9 2.832 2.830  [0.35] 2.672  [0.37] 

L–9 2.926 2.923  [0.34] 2.763  [0.36] 
L+10 3.115 3.112  [0.32] 2.939 [0.34] 

L–10 3.210 3.207  [0.31]   3.031  [0.33] 

L+11 3.400 3.397  [0.29] 3.208  [0.31] 

 
 
CAPTION:  Cavity lengths generated by the skewed geometry of Fig. A-4a (a = 0.3, b = 1, 

and tilt of 2.9°) are tabulated here. The cavities are ranked from shortest to longest and are 

labelled Ln as per the figure. Columns 3 and 4 give the lengths relative to cavity L0 and L–1, 

and the reciprocal of these lengths (related to frequency) is shown in square brackets. Figures 

in bold indicate matches to peaks in relative frequency shown in Fig. A-6a. 
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Appendix 5.  Linked bistable emissions 

The intrinsic linking of various perpendicular and oblique 
resonators has been put forward in this work as a possible 
explanation of linked bistable emissions, a phenomenon described 
in Burns et al. (1984)* in which two SOAEs are found to jump 
backwards and forwards between two fixed frequencies at an 
irregular rate. Most of the human data for this phenomenon 
involve switching at a ratio of about 1.06, as Table A-5a shows. 
This number is interpreted as the ratio of the lengths of the L0 and 
L1 cavities, and the widespread occurrence of a switching ratio of 
1.06 follows naturally from the assumption that these two cavities 
are the ones most frequently energised. 

The assumption is reasonable, given that the most common ratio 
between simultaneously occurring SOAEs is also about 1.06 
(Table A-5b). 

                                                           
* Burns, E.M., Strickland, E.A., Tubis, A. & Jones, K. 1984 Interactions among spontaneous otoacoustic 
emissions. I. Distortion products and linked emissions. Hearing Res. 16, 271–278. 
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Table A-5a.  Linked bistable emissions 

author f1 
(Hz) 

f2 
(Hz) 

f2/f1 semits 

Keefe et al. 
(1990) 

1595.6 1701.8 1.0666 1.12 

 1408.1 1524.1 1.0824 1.37 
 
 

1330.6 1410 1.0597 1.00 

Wit (1990) 
 

1612 1700 1.0546 0.92 

Wilson et al. 
(1988) 
 

3002 
±5 

3233 
±5 

1.077 1.28 

Bell 
(unpublished) 
 

2165.5 
±0.1 

2295.6 
±0.1 

1.0601 1.01 

van Dijk et al. 
(1996) 
[barn owl] 
 

8544 9018 1.055 0.93 

Zurek and 
Clark (1981) 
[chinchilla] 
 

4730 5680 1.20 3.2 

Ohyama et al. 
(1991) 
[guinea pig] 
 

1438 1489 1.0355 0.60 

 
 
References:  Keefe, D. H., Burns, E. M., Ling, R. & Laden, B. in Mechanics and Biophysics of 

Hearing (eds Dallos, P., Geisler, C. D., Matthews, J. W., Ruggero, M. A. & Steele, C. R.) 194–

201 (Springer-Verlag, Berlin, 1990);  Wit, H. P., op. cit. 259–268;  Bell, unpublished;  

Wilson, J. P., Baker, R. J. & Whitehead, M. L. in Basic Issues in Hearing  (eds Duifhuis, H., 

Horst, J. W. & Wit, H. P.) 80–87 (Academic Press, London);  van Dijk, P., J. Acoust. Soc. Am. 

100, 2220–2227;  Zurek, P. M. & Clark, W. W. J. Acoust. Soc. Am. 70, 446–450;  Ohyama, 

K., Wada, H., Kobayashi, T. & Takasaka, T. Hearing Res. 56, 111–121 (1991). 
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Table A-5b 
 
Most common interval in spacing of spontaneous otoacoustic emissions 
 
author peak spacing 

(equivalent) 
Dallmayr (1985) 0.35–0.40 Bark 

(1.05–1.07) 
Dallmayr (1987) 
[SFOAE] 

0.35 Bark 
(1.05) 

Zwicker & Peisl (1990) 
(SOAE, SEOAE, DEOAE) 

0.3–0.5 Bark) 
(1.05–1.08)) 

Lind & Randa (1990) 0.3–0.4 Bark  
(1.05–1.07) 

He & Schmiedt (1993) 
[DPOAE] 

3/32 octave 
(1.067) 

Engdahl & Kemp (1996) 
[DPOAE] 

160 Hz @ 2.2 kHz – 290 Hz @ 4.6 kHz 
(1.06–1.07) 

Talmadge et al. (1993) 0.4 mm (Bark) 
(1.06) 

Braun (1997) 100 cent 
(1.059) 

this work  
(from Russell (1992)) 

0.99 semitone 
(1.059) 

 
Table A-5b caption: All authors agree that the peak spacing occurs very near 1.06, a 

value very close to an equal-tempered semitone. This ratio often appears in a 

different guise in the literature where it is expressed as 0.4 Bark. A Bark is a 

psychophysical unit (named after Barkhausen) designed to roughly correspond with 

a critical band on the partition (a distance of some 0.5–0.9 mm). According to 

Zwicker & Terhardt, Bark = 8.7 + 14.2 log10(fkHz); therefore an interval of 0.4 Bark = 

1.067. 

 
References: C. Dallmayr, Acustica 59, 67 (1985); C. Dallmayr, Acustica 63, 243 (1987);  E. 

Zwicker and W. Peisl, Hearing Res. 44, 209 (1990);  O. Lind and J. S. Randa, J. Otolaryngol. 19, 

252 (1990);  N. He and R. A. Schmiedt, J. Acoust. Soc. Am. 94, 2659 (1993);  B. Engdahl and D. 

T. Kemp, J. Acoust. Soc. Am. 99, 1573 (1996);  C. L. Talmadge, G. R. Long, W. J. Murphy, A. 

Tubis, Hearing Res. 71, 170 (1993); M. Braun, Hearing Res. 114, 197 (1997); A. F. Russell, 

Heritability of Spontaneous Otoacoustic Emissions, PhD thesis, U. of Illinois, 1992.  
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The last line of the table derives from an analysis of the 
SOAE data of Russell (1992). When the ratios between 
neighbouring SOAEs are examined, the following distri-
bution is found. The mean gap is 0.99 semitone. 

 

 
 
Fig. A-5a. Distribution of nearest neighbour ratios 
between simultaneous SOAEs taken from the data of 
Russell (1992). 
 
When the same data set is plotted as a ranking of ratios, it is 
apparent that distinct gaps appear (Fig. A-5b). The principal 
gap, at about 1.057 ± 0.001, seems to be statistically sig-
nificant (p<0.05). This ratio is remarkable in that it is close to 
the conjectured ratio of L0 to L–1. The gap could be interp-
reted to mean that it is not possible to have two connected 
cavities active at the same time and at the same spot on the 
cochlear partition — there must be a small gap along the 
partition from where the L0 cavity is active to where the L–1 
cavity is at work. Because of the slightly different tuning 
conditions at the two respective spots (according to the 
tuning map from base to apex), their frequency ratio will 
never be exactly the ratio of their lengths. 

This interpretation meshes with the observation of linked 
bistable emissions: if there are two excited cavities at the 
same position on the partition, they will alternate rather 
than coexist. 
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FIGURE A-5b.  Frequency ratios between all neighbouring SOAEs 
given in Russell (35) are here plotted in ascending order. The 
distribution is mostly uniform, but a distinct gap occurs at a ratio of 
1.057 ±0.001 (solid-headed arrows). Another possible gap occurs at 
1.075 ±0.001 (open-headed arrows). These ratios match the ratio of 
cochlear cavity lengths based on the geometry of Fig. 5. The first 
represents the ratio of the L0 and L–1 cavities; the second the ratio of 
L–1 and L–2. The inference is that it is not possible to have two simul-
taneous cavities active at the same cochlear location, as discussed in 
the text. (Note that the accuracy of the SOAE ratios here is better 
than 1 in 1000).  



 
 

 Bell: p.16 

  

 
Appendix 6.  Other preferred ratios between SOAEs 

This section investigates whether favoured spacings between 
SOAEs in a large data set can be matched to hair cell geometry. 
We have already seen in the previous section that the most 
common spacing of SOAE frequencies (0.94) correlates well with 
the lengths of two adjacent resonant cavities (1.06), and this 
process is extended to other, long-range, favoured SOAE ratios. A 
suggestive, although, given the available data, not definitive, 
correlation is obtained. 

The data set used is that of Russell (1992)*. This extensive set lists 
791 emission frequencies from 60 sets of twins, and includes 121 
ears with 2 or more emissions. When these multiple emissions are 
expressed as ratios to the highest detected emission, they fall into 
a pattern (Fig. A-6a) showing a number of preferred ratios.  

The highest detected frequency is presumed to be a short, near-
perpendicular resonator, and other lower frequency emissions  
are assumed to be longer, oblique resonators. 

Analysis of Russell’s data confirms that the most favoured 
nearest-neighbour ratio is between 1.05 and 1.06, as shown in the 
figure above. The reciprocal of 1.055 (0.95) appears as a major 
peak. 

However, other substantial peaks are seen. In particular, a strong 
peak is seen at a ratio of 0.31. Such a long-range peak has not been 
previously observed. Braun (1997)† looked for preferred spacings, 
but confined his analysis to less than 800 cents. He found the 
prominent semitone peak, and a number of secondary ones, but 
none of these smaller peaks were common to males and females, 
suggesting they could have occurred randomly. His method of 
analysis, taking all ratios, up and down in frequency, between all 
SOAEs, also tends to cloud the picture. The peak found here at 
0.31 is statistically significant (2.7 standard deviations above trend 

                                                           
*  Russell, A. F. 1992 Heritability of Spontaneous Otoacoustic Emissions (PhD thesis, U. of Illinois). Ann 
Arbor: UMI. 
†  Braun, M. 1997 Frequency spacing of multiple spontaneous otoacoustic emissions shows relation to critical 
bands: a large-scale cumulative study. Hearing Res. 114, 197–203. 
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line). Another clear peak occurs at 0.77 (2.9 standard deviations), 
and may well be the same peak found by Braun (1997) at a ratio of 
9:7.  

 

 

FIGURE A-6a.  Distribution of frequencies of SOAEs in 121 ears that have at least 

2 emissions expressed as a ratio to the highest frequency detected in each ear. A 

major peak occurs at 0.95 corresponding to the commonly found interval of 1.05–

1.06. Two other prominent peaks occur at ratios of 0.77 and 0.31. Other peaks 

occur at 0.88, 0.63, 0.57, 0.50, 0.48, 0.44, 0.40, and 0.36. Not all these are 

statistically significant; nevertheless, the peaks at 0.77 and 0.31, previously 

unrecognised, appear to be real (see below). All these 11 peaks can be made to 

correspond to the inverse of the lengths of the cochlear cavities displayed in Fig. A-

4a and tabulated in Table A-4. Data from Russell (1992). 

 



 
 

 Bell: p.18 

  

Confirmation that the 0.77 and 0.31 peaks are real comes from 
looking at the phenomenon of ‘mirroring’ in which SOAEs in both 
left and right ears have the same frequency (Braun, 1998)*. Braun 
looked only at occurrences of mirroring at single frequencies, but 
examination of the Russell data set shows that it can occur at 
multiple frequencies simultaneously. A good example is a subject 
(Russell’s DZF7A) where at least 5 SOAEs occur in each ear at 
frequencies that differ by less than 1% (see following table). 

Table A-6 

Mirroring in subject DZF7A of Russell (1992) 

 
SOAEs 
in left 
ear (Hz) 

relative frequency 
to left 

presumed 
cavity 

relative 
frequency 
to right 

SOAEs 
in right 
ear (Hz) 

3959     
3383 1.0000 L–1 1.0000 3374 

   0.9795 3305 
3175 0.9385 L+2 0.9395 3170 
2703 0.7990 L+3  0.8139 2746 
2603 0.7694 L–3 0.7712 2602 
2434 0.7195    
2263 0.6689    
1613 0.4768    

  L–7 0.4446 1500 
1415 0.4183    

  L–8 0.4034 1361 
1287 0.3804      L+9 (?) 0.3800 1282 
1216 0.3594     L–9   
1145 0.3385      L+10   
1072 0.3169     L+11 0.3154 1064 

etc. …            …    
 

Given that there are less than six SOAEs per octave (average 
interval of about 200 cents) in this subject, it is clear that the 5 
instances of mirroring (accurate to better than 13 cents) did not 
occur by chance (p<0.05).  

 
                                                           
* Braun, M. Accurate binaural mirroring of spontaneous otoacoustic emissions suggests influence of time-
locking in medial efferents. Hearing Res. 118, 129–138 (1998). 
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Expressed as ratios to the top mirroring frequency, the mirroring 
in this subject occurs at 1.000, 0.939, 0.769, 0.380, 0.317, and 0.172 
in the left ear and 1.000, 0.940, 0.771, 0.380, 0.315, and 0.173 in the 
right. Moreover, when all SOAEs in which frequencies in left and 
right ears match to better than 1.5% are taken together and 
expressed as ratios to the top matching frequency, the following 
figure results. 

 
 

Fig. A-6b.  All examples of mirroring in Russell’s data set (involving at least 2 pairs of 
matching frequencies) are calculated as ratios to the top frequency and ranked in size. A 
tendency for ratios near 0.75 ± 0.02 and 0.32 ± 0.01 (arrows) is evident. 
 

The tendency for ratios to appear near 0.75 and 0.32 suggests that 
the peaks found at 0.77 and 0.31 in Fig. A-6a have a physical basis.  

A further demonstration of a preferred ratio at 0.77 comes from 
looking at how frequently it recurs in some ears. Thus, the ratio 
0.77±0.01 appears 7 times among the 23 SOAEs of the left ear of 
subject DZF7A; 6 times among the 17 SOAEs in the right ear of 
MZF13A; and 6 times among the 17 SOAEs in the left ear of 
MZF13B. These rates are about 4 times higher than expected by 
chance. 

It is possible to see these favoured ratios as further instances of 
resonant cavities, but at longer inter-hair cell distances than the 
common 1.06 ratio. Thus, the cochlea-like geometry shown in 
Fig. A-4a produces cavity lengths (Table A-4) which are the 
inverse of the frequencies of SOAE peaks at 0.95, 0.77, 0.31, and 
others. This geometry is based on a 17° orthorhombic lattice (a/b 
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= 0.30) tilted 3° as shown. The resulting ratio between the shortest 
cavity and its neighbour is 1.058, close to the required 1.06, and 
the tilt provides a match between the inverse length of the other 
cavities and the main peaks in frequency ratios shown in Fig. A-
6a. (Indeed, this geometry also accounts for the other 8 less 
statistically significant peaks.) The presumed geometry closely 
accords with a micrograph (Fig. 39 of Bredberg 1968*) taken 
17 mm from the base of a human cochlea (2-kHz region) in which 
the measured a/b is 0.32 and the skew is 3–4°. The data of Russell 
used here predominantly have top frequencies in the 2–5kHz 
band. 

This correspondence strengthens the suggestion that the cavities 
are oscillating like plucked strings. The interpretation is that 
generation of SOAEs at one location on the partition, by the 
oscillation process described, often creates a number of other 
reverberating cavities at or near the same spot. This generating 
mechanism can occur at a number of unrelated active sites, and 
this is why the baseline in Fig. A-6a tends upwards at lower 
frequencies, reflecting the occurrence at places nearer the cochlear 
apex of further short-cavity emissions unrelated to the original 
top frequency. 

Table A-4 indicates that many cavities are possible, but Fig. A-6a 
suggests that only certain ones are favoured — perhaps those that 
are picked out by the particular orientation of the stereocilia arms. 
Table A-4 shows how a number of preferred ratios in SOAE 
frequency could arise as ratios of the specified cavity lengths to 
that of the shortest cavity (L0). There is presently insufficient data 
to show clear preferred ratios other than at 0.95, 0.77, and 0.31, 
but it suggests that the L–1 and two or more longer cavities are 
prime candidates in generating SOAEs. The hypothesis therefore 
predicts that stereocilia arms are frequently found at angles 
defining these cavities (i.e., arms in rows 1 and 3 should be 
parallel to each other and perpendicular to these cavities) which 
would occur when cavity angles lie at about 19°, 44°, and 72° from 
the transverse direction. 

                                                           
*  Bredberg, G. 1968 Cellular pattern and nerve supply of the human organ of Corti. Acta Otolaryngol. Suppl. 236. 
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Appendix 7  Sketch for a revised cochlear mechanics 
 

The essential element in this new formulation of the resonance 
theory of hearing is to understand that OHCs are compressible 
elements (Zenner et al., 1992)* immersed in virtually incom-
pressible fluid, and so the first step in transduction involves 
acoustic energy being converted into oscillatory energy of the 
OHC’s cytoskeletal spring (Holley & Ashmore, 1988)†.  

In substantiating this picture, the following points are note-
worthy.  

• Small static pressures (2–5 Pa) applied to an isolated OHC 
produced 10–20% shortening of the cell (Ashmore 1987)‡. 

• Using a fluid jet directed at the body of the OHC, Brundin & 
Russell (1993)§ detected mechanically induced length changes 
to pressures of about 1 mPa. They conclude that OHCs in the 
cochlea may change length in direct response to natural sound 
stimulation. 

• Isolated OHCs have been observed to respond directly to 
sound in a tuned manner (Brundin et al., 1989)**.  

• In other studies of isolated OHCs (Santos-Sacchi & Dilger 
1988)††, the mechanical response of cells lacking stereocilia was 
indistinguishable from those with sterocilia when both were 
electrically stimulated, suggesting that stereocilia deflection 
may not be the primary stimulus in hearing. 

                                                           
* Zenner, H.P., Gitter, A.H., Rudert, M. & Ernst, A. 1992 Stiffness, compliance, elasticity and force generation 
of outer hair cells. Acta Otolaryngol. 112, 248–253. 
† Holley, M.C. & Ashmore, J.F. A cytoskeletal spring in cochlear outer hair cells. Nature 335, 635–637 (1988). 
‡ Ashmore 1987 A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. 
J. Physiol. 388, 323–347. 
§ Brundin, L. & Russell, I. 1993 Sound-induced movements and frequency tuning in outer hair cells isolated 
from the guinea pig cochlea. In Biophysics of Hair Cell Sensory Systems, ed. H. Duifhuis et al. Singapore: 
World Scientific. 
** Brundin, L., Flock, Å., Canlon, B. 1989 Sound-induced motility of isolated cochlear outer hair cells is 
frequency-specific. Nature 342, 814–816. 
†† Santos-Sacchi, J. & Dilger, J. P. 1988 Whole cell currents and mechanical responses of isolated outer hair 
cells. Hearing Res. 35, 143–150. 
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• A model of cochlear mechanics has already been proposed 
(Kolton et al. 1989)* in which “excitation for the OHC comes 
from movement of its body rather than from bending of its 
stereocilia”, with motile force generation occuring “through the 
stereocilia, since this would keep the input and the output 
more effectively isolated.” 

• Both stereocilia length and OHC length are graded from one 
end of the cochlea to the other (Pujol et al., 1992)†, allowing 
them to be directly (but broadly tuned) to incoming sound 
energy. 

• Finally, OHC are surrounded by fluid: the spaces of Nuel. Why 
else would these cells, unlike virtually every other cell in the 
body, be in contact with cochlear fluids (not neighbouring cells) 
except that it enables them to react directly (by compression) to 
hydraulic pressure oscillations imposed by the stapes? 

The primary stimulus is therefore taken to be a compressional 
wave which acts directly on the OHC, causing them to shorten 
and lengthen in synchrony with the pressure. However, because 
of mechanomotility, this causes their stereocilia to deflect 
backwards and forwards, generating ripples on the tectorial 
membrane which are amplified by the feedback process operating 
between neighbouring cells. This process is the same as that by 
which a regenerative receiver works. 

The end result of all the OHCs responding in this way is whole-
scale movement of the cochlear partition — the observed 
traveling wave. The traveling wave is in fact the graded delay in a 
bank of resonators. However, the important difference between 
this picture and traveling wave theory as usually conceived is that 
it is the resonance of the tuned OHC elements that is the primary 
response: only later does this movement initiate up and down 
movement of the partition, and it is to be expected that, for a 
given place on the partition, the OHC tuning tip will differ from 

                                                           
* Kolston, P. J., Viergever, M. A., de Boer, E. & Diependaal, R. J. 1989 Realistic mechanical tuning in a 
micromechanical cochlear model. J. Acoust. Soc. Am. 86, 133–140. 
† Pujol, R., Lenoir, M., Ladrech, S., Tribillac, F. & Rebillard, G. 1992 Correlation between the length of outer 
hair cells and the frequency coding of the cochlea. Adv. Biosci. 83, 45–52. 
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tuning derived from the mass and compliance of the basilar 
membrane fibres.  

Indeed, this difference could well explain the mysterious ‘half-
octave shift’ in which a loud sound creates a temporary hearing 
loss, not at its own frequency but half an octave higher. This could 
be explained if the (broad) basilar membrane tuning of a place on 
the partition were approximately half an octave higher than the 
tuning of the OHC elements at this place. Thus, it is excessive 
movement of the partition that desensitises the OHC tuning 
elements at that location, not the high sound energy impinging 
directly on the OHC cells (as we have seen, the OHC are part of a 
regenerative receiver that can turn down its gain when high 
sensitivity is not required). 

Allen and Fahey (1993)* suggested, on the basis of all distortion 
products consistently appearing strongest half an octave below 
CF, that there was a second frequency–place map in the cochlea. 
They attributed it to a mass–compliance resonance involving the 
outer hair cell stereocilia and fluid below the TM and drew a 
correlation between the tip and tail of the neural tuning curve. 
These authors fitted a power-law to their data, but for the limited 
data shown for humans, a straight line gives an equally good fit. 
Significantly, its slope is 0.69, which is close to half an octave. We 
may therefore be seeing in the half-octave shift a manifestation of 
the dual cochlear tunings: the primary OHC resonator tuning and 
the secondary cochlear partition tuning. 

There are thus two conceivable ways by which the partition at one 
location can begin to move. One is in response to activation of the 
OHC tuning elements in response to sound (a ‘jiggling’ of the 
surface that gets transmitted to the body of the partition — not an 
efficient process, particularly because of the half-octave disparity). 
The second is that the partition can respond weakly to sound in 
the manner in which Bekesy describes. The partition movement 
corresponds to the broad tail of the tuning curve; this is a passive 
process that can be observed in the cochleas of dead animals. By 

                                                           
* Allen, J.B. & Fahey, P.F. 1993 A second cochlear-frequency map that correlates distortion product and neural 
tuning measurements. J. Acoust. Soc. Am. 94, 809–816. 
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contrast, the active process derives from the regenerative receiver 
of the OHC elements, and produces the tuning tip (Davis, 1983)*. 

The cochlear partition responds because the tectorial membrane 
presents a barrier to acoustical energy. The tectorial membrane is 
a gel, substances that generally possess very low Young’s moduli. 
We therefore expect the velocity of sound propagation through 
the TM (by a standard compressional wave) to be appreciably 
lower than in the surrounding watery fluids of the cochlea. The 
corollary is that the TM presents an acoustical barrier to the sound 
which is propagating at about 1 km/sec from the oval window, 
through the cochlear ducts, to the round window. Its acoustical 
resistance is high, unlike the watery tissues of the basilar 
membrane, through which sound passes with virtually no 
interaction at all. In other words, the TM has the intrinsic 
property of impeding sound transmission across the partition, 
resulting in the creation of appreciable acoustical forces. The 
result is that acoustical energy, at high levels, can initiate some 
movement of the partition. 

However, it is important to see why this is a weaker response 
than direct compression of the OHCs: because of short-circuiting 
by the helocotrema. This diminishes the pressure response 
according to the helicotrema’s conductance, making the volume 
velocity of the scala fluids the controling factor. As Naftalin 
(1964)† points out, relying on translational movement of fluid in 
scala vestibuli to create stimulation of the hair cells must be an 
inefficient process when stapes movements of the order of atomic 
dimensions are involved.  

The theory of travelling waves in the basilar membrane is based on 
this assumption [that the fluid in the scala vestibuli undergoes a 
translational movement], since to create the travelling wave the 
perilymph has to be moved. Von Bekesy himself did not consider 
that his observations decided the path of energy flow in the cochlea 
as Davis (1957) points out in his review of the subject, but with the 
theory of resonance out of favour, the travelling wave theory has 
been made to carry the transfer from acoustic wave energy to 
mechanical translation of the structures on the basilar membrane and 
hence the shearing action of the tectorial membrane on the hair 

                                                           
* Davis, H. 1983 An active process in cochlear mechanics. Hearing Res. 9, 79–90. 
† Naftalin, L. 1963 The transmission of acoustic energy from air to the receptor organ in the cochlea. Life 
Sciences 2, 101–106. 
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processes. It may be reiterated, however, that where the travelling 
wave theory may very well describe the distribution of resonating 
elements, it can no more account for the quantitative transference of 
acoustic energy than does the classical resonance theory.  (Naftalin, 
ibid., p. 105) 

The traveling wave — a secondary phenomenon 

At high sound pressure levels, acoustic pressure effects and 
viscous coupling between adjacent TM oscillators will move the 
partition and create the familiar traveling wave which Bekesy first 
saw. Although he thought the basilar membrane was responsible 
for the wave, he actually made his observations on Reissner’s 
membrane, so any part of the organ of Corti could have been the 
causal agent. However, it is important to realise that the traveling 
wave is secondary: it is either the movement of the partition in 
response ot high sound pressure, or conceivably the response to 
the combined action of many individual high-Q oscillators. On the 
resonance picture, the traveling wave is not the primary causal 
mechanism. The TW is, from one viewpoint, merely a description 
of how the amplitude envelope of the bank of oscillators appears 
— an epiphenomenon, with no causal efficacy, but describing the 
phase relations between the high-frequency oscillators that 
quickly respond to the stimulus and the low-frequency ones that 
require more time to build up amplitude. 

The Q of an oscillator can be expressed as the number of cycles 
required to set it into full-amplitude motion or, alternatively, for it 
to die away. Indeed, it was Pumphrey and Gold’s incisive 
experiments in 1948 on the ‘phase memory’ of the ear that first 
gave conclusive evidence that the ear possessed some type of 
high-Q (>100) oscillator. Spontaneous emissions often show 
bandwidths of less than 1 Hz, giving an equivalent Q of 1000 or 
more. Helmholtz, too, recognised the fundamental incom-
patibility between a device that has very good frequency-
resolving power (and hence high Q) and at the same time good 
temporal resolution. He investigated how fast notes could be 
played on the piano without appearing blurred, and with a 
‘shake’ of about 10 per second calculated that the width of  
the resonators must be no more than a semitone (6%, or Q of at 
least 17). 
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The ear overcomes the paradox by having it both ways: a set of 
IHC that are heavily damped working in concert with a set of 
highly tuned OHCs that can ring like a bell. Since OHCs are 
supplied with an abundance of efferent nerve endings, gain 
control is probably very tight, allowing the information-retrieval 
capabilities of the system to be optimised. 

Of course, at high SPL, above about 80 dB, the oscillators couple 
their energy and whole-scale movement of the partition begins. 
Here we do need to consider viscous coupling between adjacent 
resonators, and recognise direct excitation of the IHCs. But, to 
reiterate, where there is no coupling there is no energy in the 
travelling wave. 

The important point, often forgotten, is the primacy of the 
acoustical pressure across the partition as the causal agent. Bekesy 
himself acknowledged this, pointing out that the TW was simply 
a descriptive shorthand of what was happening*, but it needs 
restating. And so we notice that SOAEs respond virtually instan-
taneously to a suppressing tone. Zero response times have also 
been seen by Wilson (1980)† and Brown & Kemp (1985)‡. One 
cannot have an SOAE at zero SPL linked to a traveling wave 
mechanism, although attempts have been made to do so by 
calling for a standing wave between the generation site and the 
stapes end of the partition. 

Cogent and long-standing arguments against the BM being the 
frequency-resolving component in the ear still stand. In brief, they 
are that it is difficult for the BM fibres to possess the required 
range in mass and compliance; a number of animals, including 
frogs and lizards, possess a TM (and display spontaneous 
emissions) but have no BM; and even in some humans, the organ 
of Corti at certain places rests upon bone, not the BM. Some birds 
have been observed to normally have a perforation in the basilar 
membrane near the stapes, yet their hearing is apparently not 

                                                           
* Wever, E.G., Lawrence, M. & von Bekesy, G. 1954 A note on recent developments in auditory theory. Proc. 
Nat. Acad. Sciences 40, 508–512. 
† Wilson, J.P. 1980 Model for cochlear echoes and tinnitus based on an observed electrical correlate. Hearing 
Res. 2, 527–532. 
‡ Fig. 2 of Brown, A.M. & Kemp, D.T. 1985 Intermodulation distortion in the cochlea: could basal vibration be 
the major cause of round window CM distortion. 
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affected. Braun (1996)* puts forward the idea that the BM is there 
as an energy-absorbing structure and called into play at high 
sound pressure levels. Dancer and Franke (1989)† have also made 
limited attempts to reintroduce a resonance theory based on the 
tuned response of individual outer hair cells. 

                                                           
* Braun, M. 1996 Impediment of basilar membrane motion reduces overload protection but not threshold 
sensitivity: evidence from clinical and experimental hydrops. Hearing Res. 97, 1–10. 
† Dancer, A. * Franke, R. 1989 Mechanics in a “passive” cochlea: travelling wave or resonance? Il Valsalva 54, 
suppl. 1, 1–5. 
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Appendix 8.  Points of clarification 

1. Although the cavities have been schematised as originating 
from a single cell in OHC 3, this is for illustrative convenience, 
and it is likely that the excited cavities are disjoint, and are 
scattered over a circumscribed length of the partition. Equally, the 
focus of the cavities may just as easily be in OHC1 as much as in 
OHC3.  

2. In situations where additional gain might well be required, 
such as at low frequencies (at the apex), four or more rows are 
often found (see Fig. A-9 here, also Bredberg, 1968). Constant 
inter-row spacing is retained, and the fourth-row elements appear 
at positions to augment the dominant left- and right-facing 
cavities. The resonant cavities are therefore three half-
wavelengths long instead of two, creating the same resonant 
frequency but with additional gain. Some animals, such as the 
echidna, have 5 or more rows (Pickles, 1992). Multiple rows are 
found in birds, frogs, and lizards, and a similar resonating 
mechanism is proposed involving rows of alternating polarity. 

3. Surface acoustic wave devices can also be configured as delay 
lines, convolvers, filters, and frequency analysers (Maines & 
Paige, 1976). 

4. As well as OHC having stereocilia arms purposely arranged at 
right angles to the required oblique laser cavities, the TM is 
permeated by fibres which have been observed to run at an angle 
of about 30° from the radial (towards the apex) (Steel 1983; 
Morisaki et al., 1991). This would facilitate the strong L2 mode at 
this angle, channeling energy in this direction rather than 
allowing it to spread omnidirectionally. 

5. Afferent nerves connect to OHCs in a generally oblique 
manner, beginning at the outermost row and taking an inward 
course, slanting towards the apex, until they reach the modiolus 
some millimetres away (Spoendlin, 1986). Such an arrangement is 
ideally suited to pick up correlated activity in oblique resonators 
(as well as presumed orthogonal connections). 
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6. When maps of hair cell positions are examined, hair cells 
occupying the fourth row almost invariably augment oblique 
alignments (even though the fourth row itself may appear 
irregular in the longitudinal direction) (Lonsbury-Martin et al., 
1988). Moreover, when the positions of clusters of missing (or 
sparsely remaining) hair cells are mapped, they preferentially 
define oblique alignments (e.g., Fig. 40 of Bredberg, 1968). 

7. Ripples impressed permanently into the tectorial membrane by 
acoustic overstimulation have been observed (Fig. 6 of Morisaki et 
al. 1991). After they delivered a 137-dB report from a starting 
pistol to a guinea pig, its TM showed permanent wave-like 
impressions. The ripples appear to originate from OHCs and 
travel in the direction of the TM fibres. However, their 
wavelength is much less than a cavity length, indicating that, for 
overstimulation, unusual behaviour has resulted. For normal-
intensity stimuli, however, involvement of the fundamental mode 
is expected and no residual deformation of the TM would take 
place. 

8. The TM can be seen as a key set of ‘crystal oscillators’ in the 
system. In the same way as a crystal-controlled oscillator relies 
largely on the physical properties of the crystal to set the 
oscillation frequency, so the OHC/tectorial membrane oscillator 
relies in large measure on the physical properties of the TM, not 
on the physiological properties of the OHCs. Indeed, SOAE 
frequencies are remarkably stable, remaining virtually constant 
even after large doses of aspirin sufficient to abolish emissions 
(McFadden & Plattsmier, 1984); similarly, stimulus-frequency 
emissions do not change frequency despite aspirin administration 
(Brown et al., 1993). Factors that can affect frequency include intra-
cochlear pressure (Bell, 1992), temperature (O’Brien, 1994), and 
the presence of nearby tones (Rabinowitz & Widin, 1984), which 
causes small amounts of frequency ‘pushing’ and ‘pulling’. 
Pressure and temperature might be expected to slightly change 
the stiffness of the TM and affect wave transmission speed, in the 
same way as SAW resonators respond to these variables (Reeder 
& Cullen, 1976).  
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9. In the new picture, a traveling wave is no longer needed to 
account for the observed delay in evoked emissions. After in-
coming sound energy excites the OHC resonators, the oscillation 
travels across the TM and is reflected off the sharp edge of the 
inner spiral sulcus before reentering the resonant cavity, where it 
creates an echo. The echo can then be considered to appear almost 
instantly at the ear canal by virtue of a fast pressure wave 
traveling through the cochlear fluids. This idea relies on a small 
change in volume of outer hair cells upon excitation (Wilson, 
1980) and it simplifies the mechanics of the situation considerably. 
We noted earlier that anomalous ‘zero delays’ have been observed 
in a number of evoked emission experiments. 

The delay-line picture allows us to view stimulus-frequency 
emissions as a case of entrainment to an external tone by 
matching cochlear resonators. The signal observed in the ear canal 
will be the sum of all the contributing resonators, which will 
include not only the orthogonal at its characteristic place but also 
oblique resonators at other locations (more basally) that match the 
frequency of the incoming tone. Clearly, the phases between all 
these contributors will vary, and so the summed response detect-
able in the ear canal will be complex (although stable and repeat-
able), as observed. 

10. In a similar fashion, distortion product emissions may be 
considered as the interaction of two stimulus-frequency emissions 
at f1 and f2 where the detection frequency is set at, typically, 2f1–
f2. For reasons not perfectly clear, distortion reaches a maximum 
for f2/f1 ratios of 1.22–1.25 (Harris et al., 1989; Gaskill & Brown, 
1990). A significant clue to what is going on, however, comes from 
noting that the trace of distortion against frequency possesses 
stable fine structure (Gaskill & Brown, 1990), and that particularly 
sharp notches occur at certain favoured ratios (Harris et al., 1989). 
These ratios depend on the subject, but it is significant that values 
close to those found in Table 3 recur in the results of Harris et al., 
1989: 1.03, 1.08, 1.14, and 1.19. 

In other words, distortion is at a minimum when two tones can 
excite two coupled sympathetic resonators in the cochlea — one 
the strong L0 or L1 resonator, the other one of its allied resonators. 
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In the same way, distortion between an SOAE and an external 
tone shows prominent peaks and dips, with a distinct minimum 
in one particular instance at a frequency 1/1.39 times (c.f. the L–3 

length of 1.38) the SOAE (Norrix & Glattke 1996). Conversely, 
where such matching resonators do not exist at a single location 
on the partition, it is supposed that the two tones must force 
slightly unmatched resonators into oscillation, creating distortion. 

Note that the greatest opportunity for mismatch comes where 
there is the biggest frequency gap between adjacent resonators — 
that is, between the L–3/L4 resonators, where there is a maximum 
gap of 1.105 (Table 3). In fact, this region (1.38–1.52 times L0) has 
been variously identified as the locus of ‘a second filter’ about half 
an octave (1/1.41) below the higher frequency (Brown & 
Williams, 1993) or the place of a second frequency–place map 
(Allen & Fahey, 1993). Not only is it the site of maximum 2f1–f2 
distortion, but of all other (less prominent) higher-order distortion 
products as well (Allen & Fahey, 1993). The human data given in 
Fig. 3 of Allen and Fahey (1993), showing the frequency of 
maximum distortion plotted against the upper frequency gener-
ating the distortion, can be fitted by a straight line of slope 0.69, 
equivalent to a resonator length of 1.45, close to the geometric 
mean of the L–3 and L4 lengths.  

General conclusions 

This work began by uncovering a pattern in spontaneous 
otoacoustic emissions and relating this to the regular geometry of 
outer hair cells. Such a matching requires slow wave propagation 
in the tectorial membrane and an active process in which stereo-
cilia are constantly in motion, creating and responding to an 
unceasing criss-crossing of rippling wavefronts. Like a laser cavity 
in an omnidirectional field, this dynamic process picks out the 
most periodic wavefront and amplifies it. 

This conjecture calls for a major shift in our thinking about 
cochlear mechanics, transferring our focus away from the basilar 
membrane and its traveling waves to the tectorial membrane and 
its sympathetic resonators. The acoustic laser means the traveling 
wave and its complex dynamics (Patuzzi, 1996) is no longer 
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needed as the primary causal mechanism in cochlear mechanics; 
on this alternative view, a traveling wave can be considered an 
epiphenomenon, a reflection of graded phase delays in a bank of 
resonators responding directly to intracochlear pressure 
fluctuations (Wever et al., 1954; p. 188 of Patuzzi, 1996; this 
author, in prep.). The basilar membrane, then, may be just an 
energy absorber, not a frequency analyser (Braun, 1996). 

While simplifying matters, this new picture also provides greater 
explanatory power. It is now possible to explain many auditory 
phenomena that were obscure on the traveling wave interpre-
tation. Some have been discussed here, although space precludes 
a detailed exposition. But just on a basic level, all the following 
can be consistently explained: spontaneous, evoked, and 
distortion-product emissions; diplacusis echotica, favoured ratios 
between SOAEs; the shape of the ear’s auditory filter; its essential 
non-linearity; the basis of music, and the geometry, disposition, 
and function of the major organ of Corti elements. 

It is interesting to note that not long after Helmholtz formulated 
his theory, Hasse in 1867 (see Wever, 1949) proposed the TM as 
the resonator, followed by Shambaugh in 1907, and Naftalin in 
1964 (see Naftalin, 1977). Shambaugh (1907) provides a 
compelling argument in favour of the tectorial membrane as the 
ear’s resonating element. His detailed drawings and description 
invoke a picture of “an immense number of delicate lamellae”, 
akin to a soft feather, which together form the basis for a series of 
resonators. Hardesty’s fine illustrations showing organised fibre 
directions (Hardesty, 1908) provide tantalising clues to conceiv-
able propagation modes, and his description of strong surface 
tension adds to the possibilities. Why the tectorial membrane ever 
lost its central role to the basilar membrane (which Hardesty 
[1908] likened to a board in comparison to the silk-like tectorial 
membrane) makes an interesting question. 

Over the last decade or so, a number of researchers (Zwislocki & 
Kletsky, 1979; Brown et al., 1992; de Boer, 1993; Markin & 
Hudspeth, 1995) have called on resonance between TM and OHC 
elements to generate secondary resonance and sharper tuning. 
The idea has recently been put forward that, in lizards, hair cells 
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continuously drive side-to-side movement of discrete blobs of 
tectorial membrane and cause spontaneous emissions (Manley et 
al., 1996). 

Now we return once again to the neglected tectorial membrane 
and find on its surface delicate ripples, the strings of a remarkable 
underwater piano. 
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Appendix 9.  Simple musical ratios in ratios of cavity lengths 

Table A-4 (column 4) presents ratios close to the major second, 
major third, fifth, major sixth, major seventh, and octave. Russell’s 
data shows that L0/L–1 is almost indistinguishable from an equal-
tempered semitone, and so it has been set at 1.0595 (100 cents). 
Then L–2/L–1 is only 1 cent larger than a just major second (9:8), 
L3/L–1 is 15 cents smaller than a just major third (5:4), L–4/L–1 is 14 
cents larger than a just fifth (3:2), L5/L–1 is 8 cents below a natural 
seventh (7:4), and L–6/L–1 is 12 cents below an octave (2:1).  

In general, the probability of small-integer ratios (m : n) appearing 
by chance in the range 200–1000 cents is considerable (p ≈ 0.5 for 
m, n ≤ 10). Nevertheless, if measurement of a number of different 
hair cell patterns repeatedly produced ratios near 2:1 and 3:2, it 
would be powerful evidence for the hypothesis presented here. 

 

 

FIGURE A-9.  Tracing of stereocilia array in a monkey (from Fig. 7 of Lonsbury-

Martin et al. 1988 ) showing a geometry similar to that in Fig. A-4a, except with a *

supplementary fourth row. The ratio between spacing of the cells within a row and 

across two rows is 0.34, and the arctan of this ratio is 19°. Cells separated by two 

rows are not quite aligned perpendicularly (in the radial direction): instead they are 

sheared some 4° away from this direction. Note the way the positioning of cells in 

the fourth row emphasises the first oblique (L–1) mode (grey lines) in the –23° 

direction, and how the right arms of the stereocilia are generally at right angles to 

this cavity. In a similar way, the left arms point most strongly towards the L5 cavity 

at +53° (thin black lines), although some L7 (at 64°) and L9 (72°) cavities (not 

marked) can also be discerned. It is significant that the average length of the L5 

cavities is 1.51 ±0.03 times that of the L–1 cavities, a ratio close to 3:2 (and that the 

ratio of L7/L–1 is close to 2 and the ratio of L–1/L9 is about 3), an arrangement 

ideally suited to simple and rapid detection of harmonics. 

(Figure adapted from Lonsbury-Martin et al., Hearing Research 33, 81 (1988), with 

kind permission of Elsevier Science Ireland Ltd.) 

 

                                                           
* Lonsbury-Martin, B. L., Martin, G. K., Probst, R. & Coats, A. C. 1988 Spontaneous otoacoustic emissions in a 

non-human primate. II. Cochlear anatomy. Hearing Res. 33, 69–93. 

(facing page)
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    FIG. A-9 
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Appendix-10 

 

Is cochlear geometry the basis of music? 
Outline of a theory 
 

 

Pythagoras discovered that dividing a stretched string into 
simple integer ratios produced musical intervals, but why music 
should relate to such special numbers is obscure. Current-day 
inclination is to locate our wonderful musical sense in a neural 
correlation network somewhere in the brain. In an earlier paper, 
it was hypothesised that spontaneous otoacoustic emissions 
could be accounted for by cooperative functioning of outer hair 
cells in the cochlea. This paper shows that the typical geometric 
pattern in which the OHC lie generates important musical ratios 
such as the semitone and octave — and can produce an entire 
chromatic scale in certain cases — and the idea is put forward 
that musical intervals are sensed by the two arms of the OHC 
stereocilia acting as ratio detectors. 
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Spontaneous otoacoustic emissions (SOAEs) are faint, pure tones 
emitted by the ear which can be detected with a microphone 
placed in the ear canal1. Since their discovery by Kemp in 1979 
(ref. 2), they have been taken as good evidence that the cochlea is 
very finely tuned, but it has been difficult to say what the tuned 
elements are. Recently, this author3 suggested that the elements 
were reverberating cavities in the tectorial membrane between 
rows of active outer hair cells, an arrangement that worked as a 
surface acoustic wave resonator.  

The main paper pointed out that the most common ratio between 
neighbouring SOAEs was 1.06 ± 0.01, a number that is very close 
to an equal-tempered semitone (21/12 = 1.05946…). In fact, as 
Figure A-5a shows, the average of 216 neighbouring intervals in a 
particularly rich data set4 was 0.99 semitone, with a spread from 
0.6–1.3 semit. This result is explained as arising from an 
approximate 19° angle between the primary transverse resonator 
and the first oblique one, an angle defined by the face-centered 
orthorhombic geometry of the outer hair cell array. 

The appearance in cochlear tuning elements of a ratio that is very 
close to the basic musical interval of the semitone immediately 
raises the idea that this alignment may have musical relevance. 
This notion is strengthened when we discover that, for a 19.1° first 
oblique angle, another vital musical interval, the octave, appears 
in the same OHC pattern as the length of the fifth oblique 
resonator. The aim of this paper is to place the set of lengths 
generated by the OHC array in a musical context, and show that 
this schema can give rise to the entire 12-tone chromatic scale. 

How can the ear detect such intervals? The stereocilia of OHCs 
appear as two prominent arms, and it is proposed that this unique 
construction is designed to detect ratios in the rate of oscillation of 
each arm. 

The musical ear 

When a stretched string is divided into two lengths of ratio 2:1, a 
pure octave is formed. Similarly, a ratio of 3:2 creates a musical 
fifth. As Pythagoras showed, these two intervals are sufficient to 
create, by a repeated cycle of fifths, the 5-note pentatonic scale (in 
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‘Pythagorean’ tuning)5,6; extension of this cycle produces the 7-
note diatonic (major) scale, and (allowing for the small ‘comma of 
Pythagoras’5) the complete 12-note chromatic scale with which we 
are familiar. 

Many cultures have come by a similar arrangement, and it has 
often been asked why. A naturalistic answer has been keenly 
sought, but no physical structure responsible for our pre-
disposition towards this set of simple ratios has been found7,8. The 
matter has usually been displaced to the realm of higher order 
signal processing, variously assigned to the brain, mind, or soul7. 
Some have even denied that music resides in our make up, merely 
that it reflects cultural conditioning9,10.  

This paper provides an explanation for our musical sense which 
involves the special geometry of the outer hair cell pattern, an 
arrangement that can deliver important musical ratios. 

There is a major difficulty in accepting a naturalistic basis for the 
12-tone scale: whence come the simple integer ratios? While some 
intervals clearly have simple integer ratios, not all do. Thus, the 
octave (2:1), fifth (3:2), and fourth (4:3) bear simple ratios in the 
Pythagorean scale, but an insistence that the ratios be powers of 2 
or 3 gives uncomfortably complex ratios like 81:64 for the major 
third and 243:128 for the major seventh. The ‘just’ intonation 
scheme (which we owe to Ptolemy and Ramos) allows for powers 
of 5 (refs 11, 5, 6) and diminishes the magnitude of the integers 
involved, but a ratio of 45:32 for the tritone is not really simple, 
and there is a reluctance to admit ratios involving the larger 
primes (7, 11, 13, and so on) because if all the consonances are 
made just, the resulting scale would be unstable under changes of 
key12. There seems to be arbitrariness in deciding which ratio is 
sufficiently simple from a theoretical viewpoint while in practice 
still sounding accurate and consonant. The contradiction always 
remains that no simple ratio can exist for the semitone which, 
when raised to the 12th power, returns us to the octave. In 
practice, the ear tolerates irrational approximations sufficiently 
well13 that the equal-tempered scale (semitone of 21/12 = 1.05946…) 
has become nearly universal despite its sharp major third and 
other infelicities6,14. 
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The overwhelming advantage of equal temperament is that it 
allows instant modulation from one key to another without 
retuning the entire instrument. And while studies have shown 
that musical intonation on unaccompanied voice or instruments 
such as the violin tends towards Pythagorean tuning11, it doesn’t 
demand exact small-integer ratios either9. 

This paper provides a possible answer to this difficulty in which 
the set of musical intervals is derived from a geometric arrange-
ment of the ear’s regular crystalline lattice. For certain lattice 
parameters this leads to specific cell alignments which represent 
musical intervals. The interval is usually a small-integer ratio, for 
it is designed to detect harmonics which naturally occur in the 
aural environment. However, each interval does not build upon 
its predecessor by using a constant multiplier; rather, it involves a 
triangular geometric construction, and alignments of hair cells can 
occur for irrational intervals. 

Put this way, a scale is a set of favoured integral frequency ratios 
which fall into a coherent perspective, somewhat like viewing the 
shadows of a picket fence. Many members of the set correspond 
with, or come close to, ratios found in ‘just’ intonation, but not all 
of them; noteworthy are ratios involving 7, which have conven-
tionally been banished from the musical stage15. 

Musical trigonometry 

A new description of cochlear mechanics involving a special 
quasi-crystalline OHC geometry was described earlier3. That 
paper called for outer hair cells to create a perpendicular 
resonator, which defined the characteristic frequency of the 
cochlear partition. However, because of the regular geometrical 
arrangement of the cells, a set of oblique resonances could also 
appear at particular angles to the perpendicular, generating five 
major oblique cavities of length L1, L2, L3, L4, and L5. The 
frequency of a cavity is, of course, the inverse of its length. 

For a face-centered arrangement of outer hair cells, as observed, 
the relative lengths of the oblique resonators depend on the ratio 
between the lengthwise spacing of OHCs along the partition and 
the distance between rows 1 and 3. This ratio can be specified as 
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the angle, θ1, between the orthogonal and the first oblique 
resonator. That is, 

θ1 = arccos (L0/L1) , 

where L0 (≡1) and L1 are the lengths of the orthogonal and first 
oblique resonators. The relation between lengths of the other 
oblique resonators is then given as: 

Ln = 1/cos θn = 1/cos (arctan(n tan θ1)) , 

where Ln is the length of the cavity n hair cells away from the 
perpendicular and θn is the angle enclosed between the resonator 
and the perpendicular. A precise octave (θ5 = 60° and L5 = 2.000) 
therefore arises from a first oblique angle of 19.1° (1.058, or 0.98 
semit). From the same schema, it is calculated that the 0.99 semit 
average, seen in the data of ref. 4, corresponds to an angle of 19.2° 
and gives an octave of 2.007, only 6 cents too large (1 octave = 
1200 cents). 

Investigating further, it can be seen that, based on this geometry, 
a small disparity exists between the size of this L1 semitone and its 
L5 ‘octave’. An exact equal-tempered semitone (21/12) translates to 
a first oblique angle of 19.29° (that is, L1 = 1.059 × L0), but then L5 
= 2.015 × L0, meaning a slightly enlarged octave of 1213 cents. In 
this connection, experiments show that even the best musicians 
judge ‘an octave’ to be slightly larger than the theoretical 2:1 
ratio11,16. The data indicate they prefer a stretched octave of close 
to 2.01 (1210 cents), a value very close to the calculated disparity. 

For θ1 = 19.1°, the corresponding lengths are 1.06, 1.22, 1.44, 1.71, 
and 2.00. Musically, only the first and last in this series carry 
musical significance, the others represent unmusical intervals of 
339, 634, and 928 cents. 

However, by taking L5 to be a semitone lower, a particularly 
auspicious arrangement of hair cells emerges. This arrangement, 
illustrated in Figure A-10a, is based on L5 = 2.125, meaning that θ1 
= 20.56° and L1 = 1.068 (114 cents, a Pythagorean semitone and 
very close to a just semitone of 16:15 or 1.067). Using the equation 
for Ln given earlier, L2 = 1.250, exactly a just major third; L3 = 
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1.505, only 6 cents above a just fifth; and L4 = 1.803, only 2 cents 
above a minor seventh. (Note that, for ease of comparison, we talk 
in terms of lengths, even though the frequency is the inverse of 
this. As an historical point of interest, Pythagoras explained his 
ideas in terms of string lengths, not frequency, and considered the 
scale to progress by increasing string length, as the scale here 
does.) 

If it is supposed that the ear has some mechanism for comparing 
the length (frequency) of the L1 cavity with the others, a rendition 
of the entire musical scale can be created, as shown in Fig. A-10a 
and Table A-10. A remarkable aspect of this scheme is that 8 of the 
12 intervals turn out to be within 9 cents of the just scale values, 
10 of them are within 12 cents of simple integer ratios, and all are 
within 34 cents of their equal-tempered equivalents. 

As foreshadowed, this scheme has the virtue that we are not 
constrained to build up the scale by reiteration of one or two 
intervals; instead the triangular geometry spells out the five basic 
musical ratios directly. This occurrence of a complete musical 
scale from directly observable cochlea elements seems to be 
beyond coincidence, and it is postulated that the physical basis of 
our musical appreciation may have been uncovered. This inner 
ear instrument possesses strings not unlike the piano or harp 
strings Helmholtz was seeking, and it seems that at least some of 
them are musically tuned.  

A string model of this ‘ear harp’ has been constructed based on a 
θ1 of 20.6° (Fig. A-10b), and when tuned according to Table A-10 it 
is conveys musicality, despite its deviations from the convention-
ally accepted scale. 
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FIGURE A-10a (above) and TABLE A-10 (below).  Geometry of the outer hair cell array can, in one 

particular case, produce every musical interval. The alignments are based on the general scheme of 

the face-centered orthorhombic lattice outlined earlier, but in this case the ratio of horizontal to vertical 

spacing of hair cells was chosen so as to give a particular first oblique angle, θ1, of 20.56° (that is, θ1 = 

arctan 0.375). For this angle, the oblique lengths L1 to L5 produce five musical intervals accurate to 

within 6 cents of the just scale intonation. In addition, by comparing the ratios of these lengths with L1 

(in a manner described in the text), the remaining musical intervals are created with no more than 34 

cents deviation from their equal-tempered equivalents. A model of this configuration has been 

constructed with guitar strings, and it plays music. Details of the lengths are given below. 

 
TABLE A-10 
 
Ln length size 

(cents) 
close 
ratio 

musical 
interval 

deviation 
from ratio (¢) 

deviation 
from ET (¢) 

L0 1.000       0 1:1 unison   0   0 
L1 1.068   114  16:15 semitone +2  +14 
           1.17   272  7:6 minor third +5  –28 
L2 1.250   386  5:4 major third   0 –14 
           1.34   500  4:3 fourth +2   0 
           1.41   594  7:5 tritone +11 –6 
L3 1.505   708  3:2 fifth +6 +8 
           1.61   822  8:5 minor sixth +8 +22 
           1.69   907  5:3 major sixth +23 +7 
L4 1.803 1020  9:5 minor seventh +2 +20 
           1.93 1134  15:8 

17:9 
major seventh +46 

+33 
+34 

           1.99 1191  2:1 octave –9 –9 
L5 2.125 1305  17:8 semitone   0 +5 
           2.27 1419  16:7 major second –12 +19 
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Fig A-10b.  A guitar-string model based on the cochlear geometry of Fig. A-10a. This ‘ear 

harp’ renders music. 

Ratio detectors 

Providing our ear with a multiple set of discrete tunings — preferentially 
musical — at each point along the partition permits direct frequency 
comparisons of the components of complex tones to be carried out, notably 
those at musical intervals. But how could this be done?  

The explanation calls on the unique construction of OHCs which allows them 
to act as ratio detectors. Conspicuously, each cell possesses two arms, 
equipping it with the ability to detect the ratio with which they beat. For 
example, when one stereocilia arm responds to a θ1 mode at 19°, and the 
other to the θ3 mode at 46° (Fig. A-9c), the OHC would be able to signal this 
occurrence. 
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FIGURE A-10c.  An outer hair cell has two stereocilia ‘arms’ which appear to be articulated at the join 

with a concertina coupling that allows independent to and fro movement of the arms. Although 

basically a ‘V’ shape, the hinge creates the often noted ‘W’ arrangement. The angle of the V changes 

from base to apex, and a distribution of angles always seem to be present at any point on the partition. 

The two arms are often found angled in such a direction that a resonant cavity will be formed between 

them. 

 
 

Of particular import, the arms of an OHC appear to be articulated 
at the join with a concertina coupling that allows independent to-
and-fro movement of the arms. Although basically a ‘V’ shape, 
the hinge creates the often-noted ‘W’ arrangement17. Detection 
could be carried out somewhere near the intersection of the two 
arms; the distinct basal body at this point (where, in 
developmental terms, the kinocilium used to be) is a likely spot18.  

On a knife edge 

Evidence for this dual-frequency behaviour of OHCs comes from 
observations of bi-stable SOAEs, which are found to jump 
backwards and forwards between two fixed frequencies at an 
irregular rate (every second or so, more or less). Table A-10b lists 
observations of this phenomenon, and we see that the human data 
involve switching between semitone intervals, a distinctive 
behaviour that can be interpreted as switching between an 
orthogonal and an oblique resonator. Moreover, the table 
indicates that at least some of these instances involve switching 
between frequencies that are integer-related. 
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Table A-10b  
Bistable emissions 
 
author f1 

(Hz) 
f2 
(Hz) 

f2/f1 semits ∆f 
(f2–f1) 

f1/∆f f2/∆f f1:f2 

Keefe et al. 
(1990) 

1595.6 1701.8 1.0666 1.12 106.2 15.024 16.024 15:16 

 1408.1 1524.1 1.0824 1.37 116.0 12.139 13.139 85:92 
 
 

1330.6 1410 1.0597 1.00 79.4 16.758 17.758 67:71 

Wit (1990) 
 

1612 1700 1.0546 0.92 88 18.32 19.32 55:58 

Wilson et al. 
(1988) 
 

3002 
±5 

3233 
±5 

1.077 1.28 231 
±10 

13.0 14.0 13:14 

Bell 
(unpublished) 
 

2165.5 
±0.1 

2295.6 
±0.1 

1.0601 1.01 130.1 
±0.2 

16.62–
16.67 

17.72– 
17.67 

50:53 

van Dijk et al. 
(1996) 
[barn owl] 
 

8544 9018 1.055 0.93 474 18.03 19.03 18:19 

Zurek and 
Clark (1981) 
[chinchilla] 
 

4730 5680 1.20 3.2 950 4.98 5.98 5:6 

Ohyama et al. 
(1991) 
[guinea pig] 
 

1438 1489 1.0355 0.60 51 28.2 29.2 28:29 

 
Caption: Bistable emissions appear to show simple integer ratios. In some cases, 

because of limited measurement accuracy, the ratios in the final column are in 

doubt, but taken together there is a clear tendency towards simple ratios. As 

discussed in the text, this behaviour can be taken as evidence of locking between 

two cavity modes (oblique resonators) of fluctuating strength, presumably the L0 

and L1 cavities. 

 

References:  Keefe, D. H., Burns, E. M., Ling, R. & Laden, B. in Mechanics and Biophysics of 

Hearing (eds Dallos, P., Geisler, C. D., Matthews, J. W., Ruggero, M. A. & Steele, C. R.) 194–

201 (Springer-Verlag, Berlin, 1990) (ref. 18);  Wit, H. P., op. cit. 259–268;  Bell, 

unpublished;  Wilson, J. P., Baker, R. J. & Whitehead, M. L. in Basic Issues in Hearing  (eds 

Duifhuis, H., Horst, J. W. & Wit, H. P.) 80–87 (Academic Press, London);  van Dijk, P., J. 

Acoust. Soc. Am. 100, 2220–2227;  Zurek, P. M. & Clark, W. W. J. Acoust. Soc. Am. 70, 446–

450;  Ohyama, K., Wada, H., Kobayashi, T. & Takasaka, T. Hearing Res. 56, 111–121 

(1991). 
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This ‘mode hopping’ behaviour is just what we expect from a self-
excited, multiple-frequency system, and locking to integer ratios 
is another tell-tale characteristic. Mode locking occurs when a 
single active system generates two incommensurate frequencies, 
and is commonly observed in nonlinearly excited musical 
oscillators19. At a frequency where harmonics of the two driving 
frequencies nearly match, the system couples (due to a degree of 
feedback to the frequency-generating process). It is suggested that 
this is what happens when the two stereocilia arms oscillate at 
two incommensurate frequencies, say at the frequencies of the L1 
cavity in the left arm and the L3 cavity in the right. Although the 
two arms can undergo largely independent oscillation, the cell is a 
unitary structure, and some degree of coupling must exist. 
Because of this coupling, the arms will tend to lock. The simpler 
the ratio, the stronger the locking. 

The integers displayed in the table range from 15 to nearly 100; 
however, because of uncertainty in some of the measured 
frequencies, there is doubt whether some of the values should be 
multiples or sub-multiples of what is listed. Clearly, high accuracy 
measurements would be required to firmly establish that 
switching always involves discrete integers. Nevertheless, Table 
A-10b does show several unambiguous cases of integer ratios. 
These integers are not always small, although their magnitude — 
up to 92 — corresponds with the harmonic partials uncovered in 
two sets of SOAEs20 and in the pattern of saxophone 
multiphonics21.  

Mode locking is possible in the OHC system because the 
frequency of an acoustic laser can be slightly altered, as demon-
strated by the well-known entrainment phenomenon in which an 
SOAE locks to an externally presented tone over several hertz22. 
This behaviour is just what is needed for the beating frequency of 
each arm to be ‘pushed’ or ‘pulled’ into partial synchrony with 
the adjacent arm and lock to the nearest integer ratio. 
(Incidentally, it also demonstrates that the frequency of the 
acoustic laser is not determined exclusively by its length; there 
must be a small phase (time) delay built in to the kick-back 
response of the stereocilia when responding to a bend-inducing 
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wave-front, so that a small ‘end correction’ of the cavity length 
may sometimes be called for.) 

When sets of SOAEs are analysed using an ‘error-function 
method’20 which detects common sub-harmonics in the 
frequencies of SOAEs, the appearance of sharp dips (corres-
ponding to apparent ‘fundamental’ frequencies) indicates mode 
locking. A simpler, less rigorous method is to divide all SOAE 
frequencies by the smallest difference neighbouring interval and 
look for results close to integers or small fractions. Both methods 
have been applied to a number of SOAE sets and recurring 
integer relationships have been seen.  

Examination of the ratio distribution shown in Fig. A-5b reveals a 
number of plateaus, and these preferred ratios can be interpreted 
as evidence of mode locking. 

Variations on a geometrical theme 

We have portrayed a precise crystalline lattice with constant 
geometry, but an examination of micrographs shows that this 
precision can be disturbed to greater or lesser degrees. In practice, 
therefore, there is a range in a/b ratios, and hence, in first oblique 
length and in the length of related longer cavities. Thus, Fig. A-5a 
shows that L1 varies from 0.6 semit (corresponding to a θ1 of 15° 
and an L5 of 1.67) to 1.35 semit (θ1 = 22° and L5 of 2.25). Put 
another way, L5 could range from a major sixth to a major tenth. 
Probably, the ear does some global average of perceived ratios in 
stereocilia arm beatings, and works on a semitone very close to 
that of the equal tempered scale (the average interval in Fig. A-5a 
is 0.99 semit). Without this averaging process, musical perform-
ance and appreciation would be a very precarious affair, requiring 
exact intonation. 

The distribution of spacings allows many ratios to appear, and it 
is supposed that, during development, afferent nerve fibres 
preferentially connect to the simple-ratio (musical) cavities. With 
a fixed a/b (to date we have used a nominal spacing based on L5 = 
2.0) it would be impossible to arrange tuning of all the cavities to 
give exact, simple ratios, but a small variation in the θ1 angle 
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allows generation of musically preferred intervals. For example, a 
θ1 of 18.43° gives a semitone of 91 cents, an L2 of 1.202 (minor 
third), L3 of 1.414 (tritone), and L4 of 1.667 (major sixth). 

Examination of the extensive data set on stereocilia positions in 
the cochlea of a monkey23 reveals this variation directly. Thus, in 
Fig. 7 of this reference, when we take for example the segment of 
the cochlea representing 54–59% of the distance from the apex, the 
104 clearly defined L1 cavities (leaning right from OHC3) show a 
mean length of 18.2 arbitrary units with a standard error of 1.0 
unit. At the same time, the 71 comparable L5 cavities (leaning in 
the opposite direction) reveal a length of 35.9 ±1.7 units, giving an 
average ratio of 1.97 (close to an octave). Similarly, the average L3 
(to the left) measures 26.7 ±1.4 units and L1 to the right 17.6 ±0.9, 
giving a ratio of 1.52 (musical fifth). In general, small-integer 
ratios can be discerned on most of the other sections mapped, 
although the stereocilia pattern is never completely regular for 
more than 10–20 cells, and more basal sections show a much more 
periodic pattern than apical ones. 

If it is supposed that the wiring of the nervous system is self-
adaptive, and works to pick out the ratios of importance, then the 
regularity of the geometry which generates the ratios is not so 
critical. The ‘irregularity’ can be viewed as a means of picking out 
ratios which are not ordinarily defined by the regular crystalline 
lattice. Moreover, the lattice parameters themselves can change 
from one point to another. 

At the middle of the cochlea, first oblique angles generally centre 
around 19–20°, meaning that the octave arises from the L5 cavity. 
However, at the apex and base of the cochlea first oblique angles 
as narrow as 14° and as wide as 26° are found, and this non-
standard geometry is conceivably why normal musical perception 
rapidly dissolves at low and high frequencies24. In other animals, 
the angles range from 13° to 37°, with both extremes coming from 
guinea pigs (Table A-1b). Although detailed measurements of 
these narrower and wider examples are called for, it seems 
possible that these cases represent arrangements where the basic 
octave length derives from L7 (13.9°) or L6 (16.1°) for narrower 
cases, or L4 (23.4°) or L3 (30°). Indeed, measurement of Fig. 1 in 
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ref. 3 shows that L4 relates to a length of 1.98 ±0.12. Observed 
degrees of shearing of the OHC crystal cell23 alter the situation 
slightly, and make the left and right oblique cavities of somewhat 
different length (as in the monkey hair cell distances given above). 
However, the factor that controls the available ratios that can be 
sensed remains the lengths of the dominant left- and right-
pointing cavities within which a hair cell finds itself. Because of 
the assistance of the centre-row hair cell, the dominant cavities are 
usually the L1, L3, or L5, but the direction in which the stereocilia 
arms point must be considered too, and this angle changes from 
cell to cell23. Three left-pointing and three right-pointing cavities 
allow for a total of 9 ratios to be sensed. 

How does the cochlea achieve the precise geometry on which 
musical perception depends? Outer hair cells are supported in the 
cupped recesses of Dieters cells, and these supporting cells also 
extend flower-like phalangeal processes that, by reaching across 
and surrounding OHCs three or more cells distant, define the 
placement of OHCs in the reticular lamina25. It would seem that 
musical ratios arise from simple horizontal-to-vertical ratios of 
hair cell spacing: thus, the standard spacing arises from a 
particular spacing of 7:4 (θ5 = arctan 1.75), the favourable arrange-
ment of Fig. 2 derives from a ratio of 3:8 (θ5 = arctan 0.375), and 
the agreeable 18.4° example above from 1:3 (θ1 = arctan 0.333). 

The exact interplay between efferent and afferent, IHC and OHC, 
is still unclear. However, is seems highly significant that in all 
published cochleograms and micrographs where long sections of 
the cochlea can be observed, the ratio between numbers of IHC 
and OHC is integral (commonly 6:5 or 5:4) and the major OHC 
alignments of L3 and L5 intersect IHC positions 4 and 7 cells away 
from the perpendicular (see, for example, Fig. 19 of ref. 26). 

That is, the organism could also recognise an octave by detecting 
the simultaneous firing of IHCs 7 cells apart –similarly, 4 cells 
apart could designate a fifth, and so on. Interval detection could 
therefore be achieved by a close-neighbour analysis of IHC firings 
as well as by a few OHC afferents. 
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Coda: integers rule 

Arguments have been exchanged, and volumes written, about 
which tuning temperament — Pythagorean, just, equal, or some 
other — is ‘best’6. It looks from Table A-5a that a kind of just scale, 
involving simple ratios, comes closest to what the ear is doing. 
However, unlike the traditional just scale, the ear does not eschew 
the number 7, as some music theorists have wished27, and close 
approximations to 7:6, 7:5, and 16:7 can be seen in Table A-5a. It 
was Archytas, Plato’s friend, who first introduced 7 into music, 
and a fascinating account of how Plato adopted this scheme into a 
tuning system by which integral musical ratios arise from a right-
angled triangle with all-integral sides is given in ref. 28. 
Helmholtz studied the seventh partial, but concluded, by 
considerations of harmony with the rest of the scale, that it could 
not be used in modern music29. 

Musical appreciation, this paper proposes, is a function of the 
OHC crystal lattice, an arrangement which, acting like a 
diffraction grating, allows musical intervals in complex tones to 
be sensed. It has been known for some time that pitch has dual 
aspects: pitch height, which provides a sense of high and low; and 
pitch chroma, that allows ‘fifthness’ and other musical intervals to 
be appreciated30,31. The former is presumably a function of 
distance along the cochlear partition; the latter, it has been 
suggested, involves the OHCs providing instantaneous frequency 
comparisons and the IHCs detecting the result using close 
neighbour analysis. To this we owe the beauty and power of 
music.  

Some 2500 years after Pythagoras, a possible physical basis for 
our musical sense has been discovered and, naturally enough, it 
resides in our ears. We can see an elegant crystalline structure that 
is configured to detect the semitone, octave, and a range of simple 
ratios in between. The surprise is that in terms of cochlear 
geometry the semitone seems to be as prominent an interval as 
the octave, if not more so, although it never sounds that way to a 
listener, no matter what the culture.  
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If the cochlea provides us with the basic analyser for harmony 
and discord, it follows that novel contrived scales, like those 
based on 31 or 53 tones, are never likely to gain much favour.  

Pythagoras said music was mathematics that could be heard. 
Looking closely at the cochlea, we see that it is indeed a matter of 
(Pythagorean) trigonometry.  
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