Berkeley, Istvan (1998) Connectionism Reconsidered: Minds, Machines and Models. [Preprint]
Full text available as:
PDF
31Kb |
Abstract
In this paper the issue of drawing inferences about biological cognitive systems on the basis of connectionist simulations is addressed. In particular, the justification of inferences based on connectionist models trained using the backpropagation learning algorithm is examined. First it is noted that a justification commonly found in the philosophical literature is inapplicable. Then some general issues are raised about the relationships between models and biological systems. A way of conceiving the role of hidden units in connectionist networks is then introduced. This, in combination with an assumption about the way evolution goes about solving problems, is then used to suggest a means of justifying inferences about biological systems based on connectionist research.
Item Type: | Preprint |
---|---|
Keywords: | Connectionism, backpropogation, cognitive modeling, model validation |
Subjects: | Philosophy > Philosophy of Mind Computer Science > Neural Nets Philosophy > Philosophy of Science |
ID Code: | 1975 |
Deposited By: | Berkeley, Istvan |
Deposited On: | 06 Jun 2003 |
Last Modified: | 11 Mar 2011 08:54 |
References in Article
Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page