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Abstract 

This paper presents an Artificial Life and Neural 
Network (ALNN) model for the evolution of syntax. The 
simulation methodology provides a unifying approach 
for the study of the evolution of language and its 
interaction with other behavioral and neural factors. The 
model uses an object manipulation task to simulate the 
evolution of language based on a simple verb-noun rule. 
The analyses of results focus on the interaction between 
language and other non-linguistic abilities, and on the 
neural control of linguistic abilities. The model shows 
that the beneficial effects of language on non-linguistic 
behavior are explained by the emergence of distinct 
internal representation patterns for the processing of 
verbs and nouns. 

Modeling the Evolution of Language 
The recent development of computational evolutionary 
models (Wiles & Hallinan, in press) has contributed to 
the rebirth of interest in the origin and evolution of 
language. Computational models can directly simulate 
the evolution of communication and the emergence of 
language in populations of interacting organisms 
(Cangelosi & Parisi, in press; Dessalles & Ghadakpour, 
2000; Steels, 1997). Various simulation approaches are 
used such as communication between rule-based agents 
(Kirby, 1999), recurrent neural networks (Batali, 1994; 
Ellefson & Christiansen, 2000), robotics (Kaplan, 2000; 
Steels & Vogt, 1997), and internet agents (Steels & 
Kaplan, 1999).  

Artificial Life Neural Networks (ALNN) are neural 
networks controlling the behavior of organisms that live 
in an environment and are members of evolving 
populations of organisms. ALNN models have been 
used to simulate the evolution of language (Cangelosi 
& Parisi, 1998; Cangelosi, 1999; Cangelosi & Harnad, 
in press; Parisi, 1997). For example, in Cangelosi and 
Parisi’s (1998) model organisms evolve a shared 
lexicon for naming different types of foods. 
Communication signals are processed by neural 
networks with genetically inherited connection weights 
and the signals evolve at the population level using a 

genetic algorithm with no changes during an 
individual’s lifetime. 

ALNN models provide a unifying methodological 
and theoretical framework for cognitive modeling 
because of the use of both evolutionary and 
connectionist techniques and the interaction of the 
organisms with a simulated ecology (Parisi, 1997). All 
behavioral abilities (e.g., sensorimotor skills, 
perception, categorization, language) are controlled by 
the same neural network. This unified framework 
permits the study of various factors affecting language 
evolution, such as the differences between genetic and 
learned communication systems, the adaptive role of 
both simple and compositional languages, the neural 
control of language, the reciprocal influences between 
language and cognition. 

Emergence of compositional languages: verbs 
and nouns 
The evolutionary emergence of messages that combine 
two linguistic signals has been studied with ALNN 
models. In Cangelosi and Parisi’s (1998) model, 
organisms communicate using simple signals that are 
genetically inherited. In an extension of the model, 
word combination and language learning were 
introduced to simulate the emergence of compositional 
languages (Cangelosi, 1999; in press). The organisms’ 
neural networks had two linguistic winner-takes-all 
output clusters so that two “words” were 
simultaneously uttered to name foods (different types of 
mushrooms). Parents acted as linguistic teachers of 
their offspring. Children learned to name foods by 
imitating their parents’ descriptions using an error 
backpropagation algorithm.  

The simulation results showed that about 60% of the 
populations evolved optimal languages, i.e., languages 
in which each category of food was correctly identified 
and named. In the remaining populations, only one 
category out of six was misclassified. Evolved 
languages were classified into three types: (1) Single-
word, where the units in only one cluster are enough to 
differentiate all mushrooms; (2) Word-combination, 



where symbols from both clusters are needed to 
discriminate mushrooms; (3) Verb-Noun, where the 
units in one cluster are systematically associated with 
high-order categories (e.g., “verbs” for 
approaching/avoiding) and the other cluster is used for 
differentiating sub-categories (e.g., “nouns” for 
mushrooms of different color).  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Distribution of languages in the 18 
simulations with communication (at generation 400). 

 
The distribution of language types (Figure 1) 

showed that there is a strong evolutionary tendency to 
evolve compositional languages, where the syntactic 
structure of messages reflects the hierarchical 
classification of mushrooms. In fact, the most frequent 
(e.g., 64% of good languages) combinatorial structure is 
that of predicate-argument, resembling a “verb-noun” 
sentence.  

Behavioral and Neural Factors in the Evolution 
and Acquisition of Language and Syntax 
We will now focus on some issues about the acquisition 
and use of language, and on their relations with 
language evolution studies. These issues regard the 
interaction between language and other behavioral 
abilities, the stages of the acquisition and evolution of 
syntax, and the organization of neural representations in 
language processing. The first issue is quite an 
important and old one: How does language affect, and 
how is it affected by, other cognitive and behavioral 
abilities? Various language origin theories stress the 
importance of pre-existing sensorimotor knowledge for 
effective evolution of linguistic skills. For example, 
Rizzolatti and Arbib (1998) proposed a motor theory of 
language evolution based on imitation skills. Steels 
(2000) showed how his robotics models of language 
evolution support this theory. In Cangelosi and Parisi’s 
(1998) ALNN model, they showed how language 
evolution relies on the evolution of basic cognitive 
abilities such as categorization. The dependence of 
language on previous sensorimotor skills, and the 
effects of language on this behavior will be looked at in 
the models presented here. 

Researchers interested in both the evolution and the 
acquisition of language, are primarily concerned with 
the early stages of the development of linguistic 
abilities. In particular they focus on the transition from 
a non-linguistic stage where sensorimotor abilities 
dominate to a phase in which language and other high 
order cognitive skills emerge and take control of 
cognitive development. Although little empirical 
evidence is available for language evolution, data on 
language acquisition strongly support the conclusion 
that children learn nouns before verbs (Brooks & 
Tomasello, 1999). They handle nouns at around 18 
months, while verbs are acquired later, from around 24 
months. Verbs seem to follow a more gradual 
acquisition pattern, passing through an intermediate 
stage called “verb islands” (Tomasello, 1992). We will 
use data from our simulations to look for similar 
learning patterns in language evolution. 

The investigation of the neural control of nouns vs 
verbs has been the focus of some interesting 
neuropsychological and brain imaging studies. For 
example, Caramazza and Hillis (1991) looked at the 
brain representation of noun and verbs in patients with 
brain lesions. Martin, Haxby, Lalonde, Wiggs & 
Ungerleider (1995) used PET to show that cortical 
sensory areas are active when the color word of an 
object is retrieved, while motor areas are involved in 
the processing of action words. ALNNs permit the 
investigation of internal representations involved in the 
processing of different syntactic classes such as nouns 
and verbs. 

In the next section we will describe a new ALNN 
model of the evolution of syntax, specifically the verb-
noun syntactic rule. This simulation will be use to study 
in detail the interaction between linguistic abilities and 
other behavioral and neural factors. 

Evolution of Verb-Noun Languages 
The ALNN model described in Cangelosi, 1999 (cf. 
also Cangelosi, in press) showed a significant tendency 
to evolve compositional languages made up of verb-
noun messages. To study the differences between verbs 
and nouns and how verb-noun languages affect and are 
affected by other behavioral, cognitive, and neural 
factors, a new model with a pre-defined compositional 
language will be used. The language includes four 
simple linguistic signals (words), two nouns and two 
verbs. Nouns are defined as linguistic signals that 
covary with the visual input. Verbs are defined as 
linguistic signals that covary with the action of the 
organism. Messages can include only a noun or only a 
verb or they can be a combination of a noun and a verb.  
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The Model 
The task used in the simulation is an object 
manipulation task (Schlesinger & Barto, 1999). At any 
given time the organism is grasping an object with its 
hand and it either pulls the object toward itself or it 
pushes the object away from itself. Two different 
objects are used, a vertical bar (object A) and a 
horizontal bar (object B). The object is perceived 
through a retina of 5x5=25 cells corresponding to 25 
visual input units. The object occupies either three 
vertical cells or three horizontal cells in one of 9 
possible locations in the retina. Hence, an object is 
encoded as a pattern of 25 bits with three 1s and 
twenty-two 0s. In addition to this visual input from the 
retina the organism’s neural network receives a 
proprioceptive input encoding the current position of 
the organism’s two-segment arm. This input is encoded 
in 4 input units, with units encoding proprioceptive 
information about the two pairs of muscles (extensor 
and contractor) of each of the two arm segments. 

In the simulations with language the neural network 
includes 4 more input units encoding linguistic signals. 
Four linguistic signals are used, two nouns and two 
verbs, and they are localistically encoded in the 4 
linguistic input units One noun designates the vertical 
object and a different noun designates the horizontal 
object. One verb designates the action of pushing and 
the other verb the action of pulling the object. In 
different occasions the organism can perceive only a 
noun or only a verb or both a noun and a verb. 
There are two layers of hidden units that receive 
information from the input units and pass it to the 4 
output units (Figure 2). The output units control the 
extension/contraction of the four arm muscles.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – The organism’s neural network for the 
object manipulation task 

 
The connection weights allowing the neural network 

to appropriately manipulate the two objects are 
developed using a genetic algorithm. At the beginning 
of a simulation 80 genotypes are randomly generated 
each encoding the connection weights of a single 
individual. These 80 individuals constitute the first 

generation. The 20 best individuals are selected for 
reproduction, with each individual generating 4 
offspring with the same genotype (connection weights) 
of its single parent except for the addition of some 
random changes to some of the weights (random 
mutations). The process is repeated for 2000 
generations. 

Three experimental conditions were used. In the 
first condition, called “No-Language”, an organism 
lives for a single epoch consisting of a total of 360 
input/output mappings or moves (2 object types x 9 
positions x 20 moves per task). Only the retina and the 
proprioceptive information are provided as input to the 
network. When the organism sees object A, it always 
has to push it away from itself; when it sees object B, it 
has to pull it towards itself. The fitness formula 
computes the total number of tasks successfully 
completed. 

The second experimental condition is called “Late-
Language”. At generation 1000 a copy of the 
populations of the No-Language condition is made. 
From this generation onwards the organisms have a 
longer lifetime and they are exposed to language. Ten 
new epochs with language are added to an individual’s 
lifetime, which therefore now includes 11 epochs, 10 
with language and 1 without language. In 5 of the 
linguistic epochs an individual receives both the 
linguistic input and the retina and proprioceptive inputs, 
whereas in the remaining 5 epochs only the linguistic 
input and the proprioceptive input are present and the 
retina input is shut off. The 5 linguistic epochs are as 
follows: (1) add noun of the object, (2) add verb 
corresponding to the default action (push object A or 
pull object B), (3) add verb for opposite action (pull 
object A or push object B), (4) add both noun and 
default verb, and (5) add both noun and opposite verb. 
The various epochs are experienced by an organism in a 
random sequence. The same fitness formula is used as 
in the No-language case except that in the epochs when 
the opposite verb is used, the organism’s action must 
reflect what the verb says, not what the object type 
would suggest by default.  

In the third experimental condition, “Early-
Language”, organisms are exposed to all 11 epochs 
from the beginning of the simulation, i.e., from the first 
generation. For each condition, 20 replications of the 
simulations were run. 

Results and Discussion 
The average performance of the organism in the three 
simulations is reported in Figure 3. For the two 
linguistic conditions, only the curve of the performance 
in the epoch with no linguistic input is reported, to 
allow a direct comparison among the three conditions. 
The No-language fitness curve grows until it stabilizes 
at around 15.8 successfully completed epochs. In the 
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Late-Language condition, at generation 1001 the 
population goes through a significant drop in 
performance. This appears to be due to the fact that the 
linguistic input reaches the hidden units through 
random weights that disturb the previous good 
performance. However, the behavior gradually 
improves and from around generation 1400 Late-
Language organisms outperform No-Language 
organisms. The final number of successful tasks is 16.6 
for the Late-Language condition. In contrast with this, 
the performance of the Early-Language population is 
less good than that of both the No-Language and the 
Late-Language populations (14.4). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – Performance in epoch 1 (task without 
linguistic input) in the three experimental conditions 

 
These results suggest an interesting hypothesis on 

language evolution and the interaction between 
linguistic and cognitive skills. To be adaptive language 
must be introduced at a later stage, after the cognitive 
abilities upon which it will be grounded have fully 
evolved. In this condition language has a beneficial 
influence on nonlinguistic behavior. If the evolutionary 
scenario involves both the practical task of pushing or 
pulling objects and the processing of linguistic signals 
from the beginning, it is more difficult to evolve 
populations with optimal performance in the practical 
task. Notice that if language is introduced later so that it 
can exploit the already existing (nonlinguistic) 
cognitive skills, the beneficial effects of language on 
nonlinguistic performance are observed not only when 
language is used together with nonlinguistic input (the 
language epochs) but also when there is no language 
and the organism is responding only to nonlinguistic 
input. 

We will now focus on the Late-Language simulation 
to better understand why language has beneficial effects 
on nonlinguistic behavior and to analyze the differences 
between the two different classes of linguistic signals: 
nouns and verbs.  

The 11 epochs of the Late-Language simulation can 
be grouped into 4 categories: (1) No-language, (2) 
Noun-only (the 2 epochs with and without retina input), 

(3) Verb-only (the four epochs with/without retina and 
with default/opposite verbs), and (4) Verb+Noun (the 
four epochs with/without retina and with 
default/opposite verbs).  

Figure 4 shows the average performance for the 
three linguistic categories (categories 2-4) from 
generation 1000 to generation 1300. In the early 
generations, right after language has been introduced 
(from generation 1000 to generation 1100) the 
organisms' performance in the Noun-only epochs is 
higher than that of Verb-only and of Noun+Verb. 
Organisms learn to use nouns earlier than verbs to 
benefit their nonlinguistic performance. However, 100 
generations later the disadvantage of the verb epochs 
disappears. Indeed, the performance for Verb-only and 
Verb+Noun epochs becomes stably better than that of 
Noun-only epochs. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Evolution of noun and verb use in the 
Late-Language simulation  

 
The earlier advantage of nouns vs verbs can be 

explained by the fact that in the Noun-only epochs the 
task is consistent with what has been already learned 
without language up to generation 1000. Given this 
consistency with prelinguistic experience, nouns are 
easier to learn and they can benefit nonlinguistic 
performance earlier than verbs. On the contrary, with 
verbs organisms must learn to ignore some of the 
previously learned knowledge. When an opposite verb 
asks the organism to produce a new behavior (e.g., pull 
object A instead of pushing it, as previously learned) 
this is initially difficult to learn. Therefore, verbs can 
acquire an adaptive advantage only in later stages of 
language acquisition, when noun use has reached a 
good level of performance and stabilization and the 
individual can understand the more flexible nature of 
verbs, which can typically be predicated of a variety of 
arguments. This hypothesis could also explain the 
different stages of acquisition of nouns and verbs in 
children (Tomasello & Brooks, 1999). Verbs need a 
stable class of nouns to fully develop the potential and 
flexibility of their predicate-argument structure.  
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The Late-Language simulation can also be used to 
look at some aspects of the neural processing of 
language. To this purpose we analyzed the activation 
patterns in the second layer of hidden units (Figure 2), 
where sensory (retina+proprioception) and linguistic 
information come together and they both can have a 
role in determining the organism’s motor behavior 
encoded in the output units. We used the activation 
patterns observed in these hidden units in the first cycle 
of each of the 18 motor tasks (9 for object A and 9 for 
object B). Each activation pattern can be represented as 
a point in the activation hyperspace of the hidden layer, 
with the 9 points corresponding to object A making up 
a “cloud” of points and the 9 points of object B making 
up another “cloud”. We measured both the Euclidean 
distance between the centers of the two clouds and the 
size of each cloud as the average distance of the 9 
points from the center of the cloud. (The points 
corresponding to objects/positions incorrectly handled 
were excluded from these calculations. On average, 
only 0.25 objects per epoch were misclassified.) The 
idea is that the successful accomplishment of the task 
requires that the different input patterns corresponding 
to the same object in different positions be internally 
represented as similarly as possible (small clouds) while 
the input patterns corresponding to the two different 
objects be represented as differently as possible (great 
distance between the two clouds). 

The between-cloud distances and the sizes of the 
two clouds were computed for all 11 epochs. Then the 
data were averaged over the 4 categories of epochs: No-
Language, Noun-only, Verb-only, and Noun+Verb.  
Figure 5 reports the average withn- and between-cloud 
distances at generation 2000. The between-cloud 
distances show a progressive increase from the No-
language to the linguistic conditions. In an ANOVA 
test, these differences are statistically significant, except 
between the pair Verb-Only and Noun+Verb. A similar, 
but inverted, pattern of results is found for cloud size. 
The average size of a cloud decreases from the No-
language to the linguistic conditions.  

That language optimizes the representation of 
categories (i.e. increasing between-category distances 
and decreasing within-category sizes) has already been 
shown in other models (Cangelosi & Harnad, in press). 
What this model shows for the first time is that there are 
significant differences also between the three linguistic 
conditions, in particular between nouns and verbs. 
When the network is processing verbs, the size and 
distance of clouds is even better than when it is 
processing nouns.  

How can we explain that verbs have even greater 
beneficial effects on nonverbal behavior than nouns? As 
we have shown, the beneficial effect of linguistic 
signals on nonlinguistic performance is due to the fact 
that linguistic signals induce better internal 

representations of reality. In our model, reality is 
internally represented in the neural network as the 
activation patterns observed in the higher layer of 
hidden units. The addition of language increases the 
distance between the two clouds of points (activation 
patterns) representing the two objects and decreases the 
size of the two clouds of points each representing one 
object. The language-modified clouds make it easier for 
the organism to select the appropriate action in response 
to the input. However, what is critical in internally 
representing reality is not to faithfully reflect the 
properties of the input but rather to prepare the motor 
output with which the organism must respond to the 
input. If the organism must be able to respond to the 
same object in different occasions with two different 
actions (push or pull) verbs are better than nouns in 
shaping the internal representations because while 
nouns covary with objects verbs covary with actions. 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 5 – Inter- and intra-categorical distances for 
the hidden representations at generation 2000. 

Conclusion 
The present model focuses on the evolution of an innate 
language understanding ability for a language made up 
of nouns and verbs. Notwithstanding its obvious 
limitations, the models sheds some light on the 
reciprocal influences between language and 
nonlinguistic cognition, on the differences between 
nouns and verbs, and on the internal organization of 
neural networks that use language in an ecological 
context. Language has a beneficial effect on 
nonlinguistic cognition if it emerges on already existing 
basis of nonlinguistic skills, but not if it evolves 
together with them. The basis for this beneficial 
influence of language on behavior appears to be that 
language produces better internal representations of 
reality. That is, more similar representations of different 
situations that must be responded to with the same 
action, and more different internal representations of 
similar situations that must be responded to with 
different behaviors. Furthermore, verbs have a more 
beneficial effect on behavior than nouns because verbs, 
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by their nature, tend to covary with the organism’s 
actions while nouns tend to covary with the objects of 
reality that may be responded to with different actions 
in different occasions. 

In this paper we have also done some comparisons 
between the computational model of language evolution 
and the literature on children’s language acquisition and 
on neural processing of verbs and nouns. We are 
currently working on an extension of the object 
manipulation model to understand better the relations 
between language processing and sensorimotor 
knowledge (Martin et al, 1995). All in all, we believe 
this is a fruitful approach to the investigation of various 
adaptive, behavioral, and neural factors involved in the 
origin and evolution of language. 
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