CHAPTER |

[. INTRODUCTION

How do children learn curvilinear movements by imitating written letters? How do
varying, error-prone movements during learning become correct, efficient movements
after repeated trials? The principal goal of this research is to provide an answer to these
guestions by modelling the perception/action cycle of handwriting, which involves vision,
attention, learning, and movement.

This work describes a new model, called Adaptive VITEWRITE (AVITEWRITE),
which builds on two previous movement models. The first is the Vector Integration to
Endpoint (VITE) model (Bullock & Grossberg, 1988a, 1988b, 1991) (Figure 1.1). The
VITE model successfully explained psychophysical and neurobiological data about how
synchronous multi-joint reaching trajectories could be generated at variable speeds.
VITE was later expanded (Bullock, Cisek, & Grossberg, 1998) to explain how arm move-
ments are influenced by proprioceptive feedback and external forces, among other related
factors. The firing patterns of six distinct cell types in cortical areas 4 and 5 were also
simulated during various movement tasks (Kalaska et al., 1990). In order to allow a
greater focus on issues related to the learning of curved movements, the AVITEWRITE
model avoids explicit descriptions of muscle dynamics, and therefore uses components of
the earlier VITE models of Bullock & Grossberg (1988a, 1988b, 1991).

A second basis for the AVITEWRITE model is the VITEWRITE model of Bullock,

Grossberg, & Mannes (1993) (Figure 1.2). The curved trajectories of handwriting require



more than simple point-to-point movements. Curved handwriting trajectories appear to
be generated by component movement synergies (Bernstein, 1967; Kelso, 1982), or
groups of muscles working together to drive the limb in prescribed directions, whose

activities overlap in time (Morasso et al., 1983; Soechting &Terzuolo, 1987; Stelmach
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Figure 1.1. (a) A match interface within the VITE model continuously computes a differ-
ence vectorV) between the target position vectdiP{) and a present position vector
(PPV), and adds the difference vector to the present position vector. @) signal

gates execution of a primed movement vector and regulates the rate at which the move-
ment vector updates the present position command. (Adapted with permission from Bul-
lock & Grossberg, 1988a.)
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Figure 1.2. Schematic diagram of the VITEWRITE model of Bullock et al. (1993b): A
Vector Plan functions as a motor program that stores discrete planning \@¢tonsa

working memory. AGROsignal determines the size of script an@@signal its speed
of execution. After the vector plan and these will-to-act signals are activated, the circuit

generates script automatically. Size-scaled planning vebis§GRO are read into a

target position vectorTPV). An outflow representation of present position, the present
position vector PPV), is subtracted from thEPVto define a movement difference vector

(DV,y- TheDV,,is multiplied by theGO signal. The net sign@lV,,[GOis integrated by

the PPVuntil it equals th& P\ The signaDV,,[GO is thus an outflow representation of

movement speed. Maxima or zero values of its cell activations may automatically trigger
read-out of the next planning veco¥,,. (Reproduced with permission from Bullock et

al.,1993b.)

et al., 1984). VITEWRITE uses such a synergy-overlap strategy to generate curved

movements from individual, target-driven strokes. A key issue faced by all models which



seek to generate curves by overlapping strokes is how to appropriately time the strokes to
generate a particular curve. VITEWRITE avoids an explicit representation of time in the
control of synergy activation by using a feature of the movement itself, the point of maxi-
mum velocity, to trigger activation of a subsequent synergy. However, movement in
VITEWRITE is controlled by a predefined sequence of “planning vectors” which cause
unimodal velocity profiles for the synergies that control each directional component of a
curve. VITEWRITE does not address how these planning vectors may be discovered,
learned, and stored in a self-organizing process which can generate unimodal velocity
profiles for each directional component of a curved movement. This challenge is met by
the AdaptiveVITEWRITE model.

AVITEWRITE describes how the complex sequences of movements involved in hand-
writing can be learned through the imitation of previously drawn curves. Although the
system described herein could be modified to learn from the actual movements of a
teacher, the present model learns by imitating the product of that teacher's movements,
the static image of a written letter. AVITEWRITE shows how initially segmented move-
ments with multimodal velocity profiles during the early stages of learning, correspond-
ing to early childhood, can become the smooth, continuous movements with the
unimodal, bell-shaped velocity profiles observed in adult humans (Abend et al., 1982,
Edelman & Flash, 1987; Morasso, 1981; Morasso et al., 1983) after multiple learning tri-
als. Early, error-prone handwriting movements with many visually reactive, correctional
components gradually improve over time and many learning trials, to become automatic,

error-free movements which can even be performed without visual feedback.
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Figure 1.3. Conceptual diagram of the AVITEWRITE architecture. Numbers in paren-
theses indicate the order of discussion in the text.

The AVITEWRITE model architecture is schematized in Figure 1.3 and described later
in detail in the Model Description (Figure 3.1). At the start of movement, visual attention
(1) focuses on the current hand position and moves to select a target position (2) on the
curve being traced. A Difference Vector representation (3) of the distance and direction

to the target is formed between the current hand pos®BW)(and the new target posi-



tion (TPV). This Difference Vector activates the appropriate muscle synergy (4) to drive a
reactive movement to that target. At the same time, a cerebellar adaptive timing system
(5) (Fiala et al., 1996) learns the activation pattern of the muscle synergy involved in the
movement and begins to cooperate or compete (6) with reactive visual attention for con-
trol of the motor cortical trajectory generator (7). A working memory (8) transiently
stores learned motor commands to allow them to be executed at decreased speeds as the
speed and size of trajectory generation are volitionally controlled through the basal gan-
glia (9). Reactive visual control takes over when memory causes mistakes. Both the
movement trajectory and the memory are then corrected, allowing memory to take over
control again. As successive, visually reactive movements are made to a series of atten-
tionally chosen targets on the curve, a memory is formed of the muscle synergy activa-
tions needed to draw that curve. After tracing the curve multiple times, memory alone
can yield error-free movements.

Several properties of human handwriting movements emerge when AVITEWRITE
learns to write a letter. Size and speed can be volitionally varied (Figure 1.3, stage 9) after
learning while preserving letter shape and the shapes of the velocity profiles (Plamondon
et al. 1997; Schillings et al., 1996; van Galen & Weber, 1998; Wann & Nimmo-Smith,
1990; Wright, 1993). Isochrony, the tendency for humans to write letters of different
sizes in the same amount of time, is also demonstrated (Thomassen & Teulings, 1985;
Wright, 1993). Speed can be varied during learning, and learning at slower speeds facili-
tates future learning at faster speeds (Alston & Taylor, 1987, p. 115; Burns, 1962, pp. 45-

46; Freeman, 1914, pp. 83-84). Unimodal, bell-shaped velocity profiles for each move-



ment synergy emerge as a letter is learned, and they closely resemble the velocity profiles
of adult humans writing those letters (Abend et al.,, 1982; Edelman & Flash, 1987;
Morasso, 1981; Morasso et al., 1983). An inverse relation between curvature and tangen-
tial velocity is observed in the model’'s performance (Lacquaniti et al., 1983). It also
yields a Two-Thirds Power Law relation between angular velocity and curvature, as seen
in human writing under certain conditions (Lacquaniti et al., 1983; Thomassen & Teul-
ings, 1985; Wann et al., 1988). Finally, context effects become apparent when
AVITEWRITE generates multiple connected letters, reminiscent of carryover coarticula-
tion in speech (Hertrich & Ackermann, 1995; Ostry et al., 1996), and similar to handwrit-
ing context effects reported by Greer & Green (1983) and Thomassen & Schomaker

(1986).

CHAPTER Il

BUILDING BLOCKS OF THE MODEL

2.1 Movement Synergies

As a starting point for the analysis and modelling of human handwriting, an under-
standing of the basic concept of movement synergies is necessary. Movement, or muscle,
synergies are groups of muscles that work together in a common task. For example,

groups of muscles are responsible for extending or flexing a leg in walking, or the arm,



wrist, and fingers in handwriting. The brain seems to control complex movement tasks,
such as walking or handwriting, by issuing commands to a few muscle synergies, as
opposed to specifying the movement parameters for scores of individual muscles sepa-
rately (Bizzi et al., 1998; Buchanan et al., 1986; Kelso, 1982; Turvey, 1990). Using mus-
cle synergies greatly simplifies the control and planning of movement by lessening the
number of degrees of freedom requiring executive control (Bernstein, 1967; Turvey,
1990). Only at lower levels of the central nervous system, such as in the brainstem and
spinal cord, would the motor synergy commands branch out to individual muscles. A key

guestion is how these movement synergies are controlled.
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Figure 2.1. Velocity profiles become less segmented and more unimodal as the degree of
superposition of consecutive strokes increases. (Adapted with permission from Plamon-
don & Guerfali, 1998.)

Human movements can be broken down into individual movement segments, or
strokes. A stroke is usually defined by the zero crossings of the velocity profile for the
corresponding synergy. The definition may become more complex in cases where strokes

overlap. In the case of “via-point” movements (Figure 2.1), in which movement toward a



new target is begun before the movement to the prior target is complete, there may be no
clear delineation of strokes reflected in the velocity profile (Georgopoulos et al., 1981,

Plamondon & Guerfali, 1998).
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Figure 2.2. Varying the relative timing of synergy activation can yield different curved
movements. For small segments of gradually curving arm movements, synchronous syn-
ergy activation yields approximately straight movements (b) while superposition of
straight movement segments through asynchronous synergy activation yields short,

highly curved movements in (a) and (c). The dotted and solid curves represent synergies
that control movements in the orthogonal posiyhandx directions, respectively.

Each stroke corresponds to the activities of particular muscle synergies. For simple,
point-to-point horizontal planar arm trajectories, humans tend to generate straight move-
ments with bell-shaped velocity profiles (Abend et al., 1982; Morasso, 1981; Morasso et
al., 1983; Figure 2.2b). A key question is how the relative timing of muscle synergy acti-
vations is controlled to generate a desired trajectory. Recall that muscle synergies are
groups of muscles working together in a common task. These muscle synergies may
comprise the muscles used to move a single joint or even groups of muscles spanning sev-
eral joints. When a given muscle synergy is activated, the contraction ratio of one muscle

in that synergy to another in the same synergy remains relatively constant during the
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movement. However, the activation timingsafparatesynergies may vary greatly from
one movement to the next. Itis the relative timing of the activation of these muscle syner-
gies and the corresponding joint movements which determines the trajectory shape.

How are muscle synergy recruitment and subsequent hand movement controlled to
generate arbitrary curves? Hollerbach and Atkeson (1987) showed that when a single
synergy is activated across one joint in an arm movement, such as a simple elbow flexion,
then a gentle arc-like curved hand trajectory is generated. This curved hand path is at a
much larger scale than that of normal human handwriting. When one focuses on a small
segment of this large curve, it appears locally straight. Thus, short duration activity of a
single muscle synergy yields short, effectively straight segments. Similarly, if two
approximately orthogonal muscle synergies are activated synchronously for a short dura-
tion, then short straight segments can be generated in arbitrary directions (Figure 2.2b).

This small scale behavior is in contrast with that observed at the larger scale of whole
arm movements. Hollerbach and Atkeson (1987) reported that staggered, asynchronous
muscle synergy activation is usually required in order to generate straight, large scale arm
reaching movements. For such reaching movements, the active muscle synergies, which
are not necessarily orthogonal to one another, must gradually change during the course of
the movement as the body and arm posture change in order to yield an approximately
straight hand trajectory. The manner in which the active arm synergies may change as a
learned function of posture during a reaching movement has been studied in the DIRECT
model of Bullock et al. (1993a).

In order to generate the smooth small scale and high curvature movements seen in
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much human handwriting, how can the selection and timing of hand and arm muscle syn-
ergies be varied to generate a desired curveyntthronousnuscle synergies can gener-

ate straight, small scale movements, then one may hypothesize that sequential
asynchronousctivation of dissimilar synergies may yield the highly curved, small scale
movements observed in handwriting (Figure 2.2a, c). In the AVITEWRITE model, the
rapid direction changes needed for high curvature handwriting movements are generated
by rapid switching of movement control among overlapping, orthogonal muscle syner-
gies. The assumption of hand muscle synergy orthogonality is made for simplicity.

Thus, a main issue which must be addressed by AVITEWRITE is how the relative tim-
ing of muscle synergy activations in handwriting can be learned so as to generate a partic-
ular shape as the hand traverses the writing workspace. It will be shown how the relative
timing of muscle synergy activations needed for a handwriting task can be learned
through cycles of error-feedback driven learning in a modelled cortico-cerebellar system.

In curved movements, each synergy generates its own bell-shaped velocity profile. A
simple example is a “U” curve (Figure 2.3), drawn as a combination of three strokes: one
for a synergy in the negative, vertical direction; a second in the positive, horizontal direc-
tion; and a final stroke in the positive, vertical direction (Figures 2.3b and 2.3c). That the
curved movements of handwriting obey an inverse relation between curvature and veloc-
ity (Lacquaniti et al., 1983) can be attributed to the direction reversal and synergy switch-
ing which occurs at points of high curvature, as at the bottom of a “U” curve (Figure 2.3d

and 2.3e).
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Figure 2.3. (a) A “U” curve written by a human; (b) and (c): x and y direction velocity
profiles, respectively; (d) movement curvature; (e) tangential velocity. (Reproduced with
permission from Edelman & Flash, 1987.)
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2.2 The VITE Model of Reaching

How is movement direction represented in the brain? Much research, including that by
Andersen et al. (1995), Georgopoulos et al. (1982, 1989, 1993), and Mussa-lvaldi (1988),
supports the idea that motor and parietal cortex compute a vectorial representation of
movement direction in motor and/or spatial coordinates. This idea is known as the “popu-
lation vector hypothesis,” where a population vector is defined as a “weighted vector sum
of contributions of directionally tuned neurons” (Georgopoulos et al., 1989, p. 234). The
activity of one such directionally tuned neuron is illustrated in Figure 2.4.

The VITE, or Vector Integration to Endpoint, model (Bullock & Grossberg, 1988a,
1988b, 1991) uses a vectorial representation of movement direction and length to gener-
ate straight reaching movements with bell-shaped velocity profiles (Figure 1.1). “Trajec-
tories are generated as the arm tracks the evolving state of a neural circuit” (Bullock &
Grossberg, 1988a, p. 314). A Difference VecV)(is computed as the difference from
an outflow representation of the current hand position, or Present Position YA&tpr (

to a target, or Target Position VectdiP{) (Figure 2.5).
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Figure 2.4. lllustration of neuronal directional tuning. The discharge frequency (b) of a

motor cortical cell peaks for movement in a specific directichjnOthis case (a).
(Adapted with permission from Georgopoulos et al., 1982.)
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(@) (b)

Figure 2.5. (a) lllustration of a Difference VectobY) formed from the current hand
location, given by a Present Position Vect®PY), to a Target Position Vectom V).
TheDV is integrated in a VITE circuit to generate a straight movement with a bell-shaped
velocity profile (b).
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TheDV is multiplied by a gradually increasirigO signal, which is under volitional
control, and whose growth rate can be changed to alter movement speed while preserving
movement direction and length. The existence oG&™ signal is supported by basal
ganglia speed control studies, such as those of Horak & Anderson (1984a, 1984b), Turner
et al. (1998), and others (Berardelli et al., 1996; Georgopoulos et al., 1983, Hallett &
Khoshbin, 1980; Turner & Anderson, 1997). T times theGO signal is integrated at
the PPV until the present position of the hand reaches the target.

The VITE model explains behavioral and neural data about how a motor synergy can
be commanded to generate a synchronous, multi-joint reaching trajectory at various
speeds. VITE describes how synchronous movements may be generated across synergis-
tic muscles with automatic compensation for the different total contractions undergone by
each muscle group. Many properties of human reaching movements emerge from VITE'’s
performance, including the equifinality of movement synergies, a rate-dependence of
velocity profile asymmetries, and variations in the ratio of maximum to average move-
ment velocities (Bullock & Grossberg, 1988a, 1988b, 1991).

Although the earlier versions of the VITE model primarily addressed psychophysical
data, the revised VITE model of Bullock, Cisek, & Grossberg (1998) assigned functional
roles to six cell types in movement-related, primate cortical areas 4 and 5, and integrated
them into a system which is capable of “continuous trajectory formation; priming, gating,
and scaling of movement commands; static and inertial load compensation; and proprio-
ception” (Bullock et al., 1998, p. 48). For example, model Difference Vector cells resem-

ble the activity of posterior parietal area 5 phasic cells, while Present Position Vector cells



16

behave like anterior area 5 tonic cells (Figure 2.6). This expanded version of VITE
described how cortical area 4 may assemble a “multicomponent motor command which

simultaneously specifies desired position and load-compensating forces” (Bullock et al.,

1998, p. 48). One limitation of the VITE model was that it did not explain how curved

movements could be generated.
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Figure 2.6. Comparison of six distinct cell types in cortical areas 4 and 5 (Kalaska et al.,
1989, 1990) with model cell responses of the expanded VITE model of Bullock et al.
(1998). (Reproduced with permission from Kalaska et al., 1989, 1990; and Bullock et al.,

1998.)
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2.3 The VITEWRITE Model of Handwriting Generation

The VITEWRITE model of Bullock, Grossberg, and Mannes (1993) (Figure 1.2)
extended the VITE reaching model to explain handwriting data. In VITEWRITE, curved
movements are generated using a velocity-dependent stroke-launching rule that allows
asynchronousuperposition of multiple muscle synergy activations with unimodal, bell-
shaped velocity profiles for each synergy. Scaling the siP&®ty multiplication with
a volitional GRO signal allows size scaling without significantly altering the trajectory
shape or the shape of the velocity profile. Similarly, altering the size of the vol@@nal
signal alters trajectory speed without changing trajectory shape. The movements gener-
ated by VITEWRITE vyield the inverse relation between curvature and tangential velocity
observed in human performance, as well as the Two-Thirds Power law relation between
angular velocity and curvature observed in humans under some writing conditions (Lac-
guaniti et al., 1983; Thomassen & Teulings, 1985; Wann et al., 1988). VITEWRITE also
shows how size scaling of individual synergies via sep&@R® signals can change the
style of writing without altering velocity profile shape. Such independent scaling of mus-
cle synergy commands is supported by the study of Wann & Nimmo-Smith (1990), which
yielded data that “do not support common scaling for x and y dimensions” (p. 111).

The Adaptive VITEWRITE model captures key properties of VITEWRITE and yields
performance which is equally consistent with available handwriting data. In addition,
AVITEWRITE addresses the main limitation of VITEWRITE, which is its inability to
learn and remember the motor plan that, once learned, yields such good performance.

The original VITEWRITE model does not address “the self-organizing process that dis-
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covers, learns, and stores representations of movement commands” (Bullock et al.,
1993b, p. 22). The pattern of “planning vectors” which formed VITEWRITE’s motor
program, or plan, needed to be predefined in order for the system to generate a movement
or write a particular letter. In contrast, AVITEWRITE learns how to generate letters by
itself, and then remembers how to write them. It remains to be seen whether and how the
synergy-launching rule that was used in VITEWRITE can be assimilated into this learn-

ing scheme.

2.4 Adaptive Timing in the Cerebellum

How are curved movements represented in the brain? Given that a particular curved
movement may be generated by appropriately-timed activation of multiple muscle syner-
gies, we need to understand how the time-varying activation of these muscle synergies, or
strokes, is learned. Several mechanisms have been proposed to learn how to adaptively
time responses to stimuli. Possible timing mechanisms include delay lines (Moore et al.,
1989; Zipser, 1986), a spectrum of slow responses with different reaction rates in a popu-
lation of neurons (Bartha et al., 1991; Bullock et al., 1994; Grossberg & Merrill, 1992,
1996; Grossberg & Schmajuk, 1989; Jaffe, 1992), and temporal evolution of the network
activity pattern (Buonomano & Mauk, 1994; Chapeau-Blondeau & Chauvet, 1991).
Given the need to learn time delays of up to four seconds in eye blink conditioning, delay
lines of sufficient length do not appear to be present in the cerebellar cortex (Fiala et al.,
1996; Freeman, 1969). Although Buonomano & Mauk (1994) showed that some sensitiv-

ity of a temporal network evolution model to network noise could yield the experimen-



19

tally observed decrease in conditioning as the interstimulus interval increases, they also
found that their model was overly sensitive to noise, since noise caused the loss of the
model’s timing ability. Loss of timing due to network noise over a four second interval

may therefore preclude temporal network evolution mechanisms.
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Figure 2.7. Overview of cerebellar spectral timing. Long term depression (LTD) occurs
at the parallel fiber-Purkinje cell synapse when an unconditioned stimulus (US) is paired
with a conditioned stimulus (CS) over multiple presentations. In the current discussion,
the US is interpreted as an error signal, although in other contexts it may correspond to a
reward signal. (Adapted with permission from Grossberg & Merrill, 1996.) See text for
details.

Accumulating evidence suggests that adaptively timed learning of strokes may be
achieved byspectral timingin the cerebellum. Ito (1984) and others (Fiala et al., 1996;
Perrett et al., 1993) have suggested that the cerebellum may be involved in the opening of
a timed gate to express a learned motor gain, as when a rabbit learns to blink after hearing

a tone previously associated with an air puff. In this conception (Figure 2.7), a signal

associated with a Conditioned Stimulus (CS) arrives via the cerebellar (mossy fiber)-to-



20

(parallel fiber) pathway at a population of Purkinje cells and triggers a series of phase-
delayed activation profiles, or depolarizations, of the Purkinje cells, called a Purkinje cell
“spectrum” (Figure 2.8b). When a signal associated with a subsequent Unconditioned
Stimulus (US) arrives via climbing fibers at some fixed Interstimulus Interval (ISI) after

the CS, then long term depression (LTD) of active Purkinje cells may occur at that time
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J L tr?:lrsnlng
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Time 4 sec

Figure 2.8. Conceptual diagram of a spectrum of calcium release in response to parallel
fiber input to a population of Purkinje cells with different time constants due to varying
concentrations of dendritic metabotropic glutamate receptor, mGIuR (b); Adaptively
timed long term depression (LTD) occurs over multiple CS-US pairings (a). As the
unconditioned stimulus (US) arrives over multiple learning trials at a fixed interstimulus
interval after the conditioned stimulus (CS), LTD occurs at those Purkinje cells which are
active when the US arrives (shaded response curves in b). (Adapted with permission from
Fiala et al., 1996.)

(Figure 2.8a), leading to disinhibition of the cerebellar nuclei at that time (Figure 2.7);

hence the term “adaptive timing” (Fiala et al., 1996; Grossberg & Merrill, 1992, 1996;
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Grossberg & Schmajuk, 1989). The staggered temporal pattern of Purkinje cell depolar-
izations following the initial CS ensures that some Purkinje cells will be active, and sub-
ject to long term depression, at the time that the US arrives via the climbing fibers (Figure
2.8a).

Fiala et al. (1996) utilized biochemical mechanisms of the metabotropic glutamate
receptor (MGIuR) system to simulate how learning of adaptively timed long term depres-
sion of Purkinje cells occurs and causes disinhibition of cerebellar nuclei during classical
conditioning. The biochemical mechanism of spectral timing will be further summarized
in the Discussion section. Fiala et al. (1996) also showed that a Purkinje cell spectrum
could learn to respond to two conditioned stimuli with different interstimulus intervals (p.
3770). AVITEWRITE takes this approach one step further. Instead of learning one or
two responses at discrete points in time, as in the conditioning task, it is hypothesized that
the cerebellar adaptive timing mechanism can also learn a continuous response over time
in more complex tasks like handwriting. For a continuous handwriting task, different
Purkinje cell spectra are activated by the commands corresponding to different muscle
synergies. The climbing fiber unconditioned stimuli act as error-based signals that train
the Purkinje cells to become hyperpolarized in specific temporal patterns that lead to cor-
rectly shaped writing movements. The level of depression of a given Purkinje cell deter-
mines the extent of cerebellar nucleus disinhibition during that Purkinje cell’s activation.
Each Purkinje cell learns to control a particular muscle synergy during a brief time win-
dow of movement. When these brief, individual movement commands are summed over

the entire Purkinje cell population with staggered, overlapping cell activations, a continu-
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ously changing pattern of muscle synergy activations may be generated which can yield
curved planned movements. Thus, a cerebellar adaptive timing system may learn to
shape the time-varying activation pattern of asynchronous muscle synergies. Such an
adaptive timing system forms part of an integrated handwriting learning and generation
system (Figures 1.3, 3.1) that also uses elements of VITE trajectory formation for visually
reactive movements to targets, as well as ideas from VITEWRITE about building curved
movements from overlapping synergies in a way that preserves shape-invariant volitional

speed and size scaling.

CHAPTER IlI

MODEL DESCRIPTION

3.1 Introduction to AVITEWRITE

The proposed AVITEWRITE model is a neural network handwriting learning and
generation system that joins together mechanisms from the cortical VITE and VITE-
WRITE trajectory generation models (Bullock & Grossberg, 1988a, 1988b, 1991; Bul-
lock et al., 1993b) and the cerebellar spectral timing model of Fiala et al. (1996). This
synthesis creates a single system capable of both reactive movements (movements
directly in response to stimuli without requiring learning in order to be made) as well as

memory-based movements based on previous cerebellar movement learning and subse-
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guent read-out from long-term memory (LTM). AVITEWRITE models curved move-
ment trajectory generation by asynchronous, overlapping muscle synergy activations. It
describes how spatial attention may be involved in the selection of targets on a curve that
is to be traced. Reactive movements are made to these targets at the same time that adap-
tively timed learning of the muscle synergy activations involved in those movements
occurs. The model explains how switching between reactive, visually-guided and mem-
ory-based control of movement generation may occur. \olitional control of movement
speed and size may be achieved while preserving the key features of trajectory shape and
velocity profiles over the wide range of speeds, with speed variation by a factor of 2.8
without significantly altering the trajectory, observed in humans (Wright, 1993). Further,
the model describes how speed can be volitionally varied during learning without
adversely affecting the learning process. Finally, AVITEWRITE describes a system of
on-line movement error correction which automatically shuts off as learning succeeds and

memory alone controls correct handwriting movement generation.

3.2 System Architecture

AVITEWRITE makes essential use of visual spatial attention to determine where the
hand will move to imitate a curve. Attention is modelled algorithmically since it is not
the main focus of the present study. The model assumes, for simplicity, that attention
may be focused within a circular region around the present fixation point. In the model,
visual spatial attention is initially focused around the current hand position on a template

curve (Figure 3.1). The system begins with no prior memory of a given movement shape.
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Figure 3.1. Diagram of the AVITEWRITE architecture: cf = climbing fib&Yg,¢e =
Gating Difference VectoDVg= Size-scaled, memory-enhanced Difference Ve&idy;g

= Visual Difference VectoriGO = \Wolitional speed control signaBRO = \olitional size
control signal; mf = mossy fiber; PC = Purkinje cBIRV = Present Position Vectdr =
Adaptively timed cerebellar outpuf;PV = Target Position VectoTPV,, = Memory-

modulated Target Position VectaM = Spectral Working Memory Buffer output.
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From this predetermined starting point, attention shifts along the curve to another target
(TPV: Target Position Vector) on the shape that lies within an attentional radius of the cur-
rent hand positionRPV. Present Position Vector). How this is modelled will be more
explicitly stated below.

In support of the model’s use of spatial attention, experimental data suggest that supe-
rior frontal, inferior parietal, and superior temporal cortex are part of a network for volun-
tary attentional control (Hopfinger et al., 2000) which is critical for directing “unpracticed
movements in man” (Richer et al., 1999, p. 1427). Jueptner et al. (1997a, 1997b) reported
that the prefrontal cortex was activated in a finger movement-sequence learning task dur-
ing new learning but not during automatic performance after learning. Further, the left
dorsal prefrontal cortex was reactivated “when subjects paid attention to the performance
of the prelearned sequence” (Jueptner et al., 1997b, p. 1313). Evidence for an interaction
between parietal and frontal lobe activity and cerebellar activity was found by Arroyo-
Anllo & Botez-Marquard (1998). The authors found that humans with olivopontocere-
bellar atrophy suffered deficits in copying a simple figure and in immediate visual spatial
memory, “consistent with the hypothesis that the cerebellum is involved in visual spatial
working memory... and that it modulates parietal lobe- and frontal lobe-mediated func-
tions” (p. 52).

AVITEWRITE uses spatial attention to constrain the choice of the target positions that
drive imitative tracing of a curve. The model assumes that these targets are selected
within an attentional “tube” that is swept out by shifts in attention around the curve (Fig-

ure 3.2). If there is no memory, or if movement deviates from the attentional radius
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around the curve being traced due to memory inaccuracy, then a new target is chosen on

the curve.

(@)

(b)

Figure 3.2. lllustrations of target selection. See Model Equations section for full
description of the target selection algorithm. (a) Targets are chosen so as to keep the
movement within an attentional radius, depicted as a circle around the current hand/pencil
tip position, of the curve being traced. Superposition of these circular foci of attention as
attention shifts across space generates an attentional “tube” around the template curve,
shown as dotted lines. (b) Target 1 is possible because movement to it would not exceed
the attentional radius,, from the curve being traced, whereas Target 2 is invalid because

r, would be exceeded.
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Each choice of a neWWPV from the currenPPV defines a visual Difference Vector, or

DV,;s that is constrained to point forward along the template curve (Figure 3.2) and
remain within an attentional radius,) of it, or else return the hand to within a distange

of the curve if it has exceeded it. The details of the target selection algorithm are
described in the Model Equations section. TR&s are used to form difference vectors,

DV,is that both drive the movement and act as teaching signals to train a cerebellar spec-

tral memory via climbing fiber inputs.
Once a target is chosen, vision provides direction and amplitude information, in the

form of the difference vectohV,s, to a trajectory generator which can combine tempo-

rally overlapping muscle synergy activations to generate curved movements whose speed
and size are volitionally controlled. Evidence that visual difference vectors may serve as
triggers for movement error signals was found by Stuphorn et al. (2000). The authors
found that gaze-related reach neurons in the superior colliculus could signal the motor
error between the gaze axis and the reach target. Schwartz & Moran (1999) studied cell
population vectors in motor and premotor cortex during drawing movements. They found
that “population vectors predicted direction (vector angle) and speed (vector length)
throughout the drawing task” and that the “2/3 power law described for human drawing
was also evident in the neural correlate of the monkey hand trajectory” (p. 2705).

Once a visual difference vector is formed to a target on the template curve,
AVITEWRITE assumes that a spatial to motor coordinate transformation occurs (see sec-
tion 4.8) which allows activation of the appropriate muscle synergy to generate movement

to that target. As described below and in Figure 3.3, the model also assumes that a letter
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category representation of the letter being traced is formed which triggers a letter working
memory plan to activate the appropriate muscle synergy-specific cerebellar spectra. The

trajectory generator then starts to integrate the memory-enhanced differenceDxggtor,

generating a velocity vector that drives movement to the target (Figure 3.1). At the begin-

ning of learning when there is not yet a memory contribution to movement canol,
equals DV, ;s multiplied by a volitional size-scalinGRO factor. At the same time that

movement towards the visual target is occurring, adaptively timed learning of the muscle
synergy activations required to reach that target occurs. The cerebellum model stores
movement commands for groups of muscles (muscle synergies) working together to drive
the hand and arm in particular directions. The model uses separate spectral memories to
learn and store the movement commands for different synergies. In the simulations (Fig-
ures 3.10, 3.14), four separate spectral memories are formed for positive and negative,
horizontal and vertical movement synergies, respectively. The use of separate spectral
memories allows muscle synergy-switching with independent control of each synergy. It
also avoids the requirement that any one Purkinje cell spectrum be active for prolonged
periods of time, allowing it to stay within the four second time limit for a spectrum of the
Fiala et al. (1996) model.

A new synergy is activated in the model at the start of movement and whenever there is
a reversal in movement direction, requiring activation of a different synergistic set of
muscles. Prior to learning, the synergies needed to begin a movement are determined by

the value oDV, ;s. For example, when starting the letter “U” when there is no prior mem-

ory of this letter, ®V,;5 is formed which initially points in the negative y and positive x-
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directions. Purkinje cell spectra corresponding to the negative y and positive x-direction
synergies therefore begin having their synaptic weights modified by the climbing fiber
error/teaching signal. As memory starts to form, the model assumes that a visual repre-
sentation of the letter is categorized by inferotemporal and prefrontal mechanisms in the
“what” cortical processing stream, and that a visual cue is used to sample the appropriate
synergies used to perform a given letter from memory (Figure 3.3). Although not mod-
elled explicitly, AVITEWRITE assumes that a working memory, possibly in prefrontal
cortex, forms a category representation of each letter which controls adaptive pathways to
all the synergies. The letter category determines which cerebellar spectra, corresponding
to the particular synergies needed to write that letter, are activated via mossy fiber inputs.
Only those adaptive pathways that were modified due to prior learning will read-out non-
zero values of the cerebellar spectral memory ouRutn order to initiate writing of a
learned letter, the letter category triggers the initial spectra that control the synergies
needed to start the movement. When writing the letter “U” for example, the letter cate-
gory memory activates spectra corresponding to the negative y and positive x-direction
synergies at the beginning of movement. The letter category representation also stores the
identities of the other (the positive y) spectra involved in generating that particular letter.
Their order of activation is determined automatically by the synergy switching rule
described below. Note that it it claimed that the cerebellum is the primary, or even
sole, determinant of the serial order of movement. The letter working memory plan and

synergy switch depicted in Figures 3.1 and 3.3 are assumed to be extracerebellar.
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Figure 3.3. Blow-up of how a letter category controls read-out of learned performance
via the sequential order of synergy-specific spectra for the positive and negative, x and y
synergies, x+, X-, y+, and y-. Synergy switching is triggered by a change in sign of the
total movement directiorDV,;s + R. mf = mossy fiber. See Figure 3.1 (upper left) for
comparison.

Synergy switching is accomplished as follows in the model. If the total movement

direction, determined by the sum of the reactive visual Difference V¥ and the

cerebellar spectral memorRR) in Figure 3.1 changes sign, then a new synergy and

Purkinje cell spectrum are activated. No new spectral components are activated in the
spectrum from the prior synergy, although those components which are active at the time
of the synergy switch continue to respond until they decay spontaneously. Such spectral
behavior is supported by the responses of the biochemically-detailed Fiala et al. (1996)
model to the sudden cessation of glutamate input to the Purkinje cells from the parallel

fibers. In the Fiala et al. (1996) simulations, spectral components which are active at the
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time of input cessation remain active for a time while decaying spontaneously, whereas

no new spectral components respond once the glutamate input has been shut off (Figure

3.4).
[Caz-']cyt 3
x 10% M
2.5¢
2,
1.5¢
1,
0.5+
% 1 . 2 3
) seconds
10 microM
Glutamate
input
0

Figure 3.4. Fiala et al. (1996) spectra with glutamate input shut off after 1 second. Note
that spectral components which are aetitleat is, with [Cé’(*]cyt greater than approxi-

mately 0.2 x 1®M—at time t = 1 remain active until the normal response is completed,
whereas no large new spectral calcium responses occur once the glutamate input has been
shut off.

The term spectral activity is here used to indicate the pattern of time-varying, intracellular

Purkinje cell C&* concentration changes with different latencies in response to parallel
fiber inputs depicted in Figures 2.8 and 3.4. When writing a letter “U”, a negative y-
direction muscle synergy starts the movement. One Purkinje cell spectrum would learn
to correct all the negative y-synergy movement errors. At the bottom of the “U”, the y-

synergy would reverse, triggering activation of a new spectrum to learn to correct the pos-
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itive y-synergy errors. At this point, input to the negative y-synergy spectrum would be
stopped; e.g., by shutting off the glutamate input released from parallel fibers in the Fiala
et al. (1996) model equations, and the spectra active at the time of the direction reversal
would decay.

Error-driven movement learning is mediated by climbing fiber error signals, based on

the value ofTPV— PPV , the difference between the target position and the current hand

position. For a discussion of the coordinate systems assumed for these error signals and
other components of the model, please refer to section 4.8. The climbing fiber signal
modifies the parallel fiber/Purkinje cell synaptic efficacy by triggering patterns of long
term depression across the Purkinje cell populations that control the respective muscle
synergies. As the Purkinje cells’ activity becomes more depressed, their target cerebellar
nucleus becomes disinhibited (Figure 2.7), thereby enhancing muscle synergy activation
over time according to the temporal pattern of Purkinje cell population activity.

The AVITEWRITE model incorporates competition between reactive movement and
memory-based movement control systems. The model hypothesizes that the cerebellar
motor memory competes for control of movement with prefrontal and premotor areas that
guide reactive movements based on visual input (Caminiti et al., 1999; Dagher et al.,
1999; Jueptner et al., 1997a, 1997b; Jueptner & Weiller, 1998; Kawashima et al., 2000;
Sadato et al., 1996). In the model, the reactive visual difference vBMgg (and the
learned output from cerebellar memoify),(transiently stored in a working memory
buffer WM) described below, are combined to form the Memory-Enhanced Difference

Vector,DVg The cerebellar spectral output is calRedth keeping with the naming con-
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vention of the spectral timing models of Grossberg & Schmajuk (1989) and Grossberg &
Merrill (1992). R in AVITEWRITE should not be confused with the similarly named
“reciprocal” (R) central movement command variable from the Equilibrium-Point model
of Feldman & Levin (1995) and St.-Onge et al. (1997). Any similarity between
AVITEWRITE's cerebellar output and the Equilibrium-Point command variable is unin-
tentional.

TheDVsis, in turn, multiplied by a volitional size-scali@ROsignal to yield the size-
scaled, memory-enhanced Difference VecWg When the memory contribution to
DVs is strong enough, then the cerebellar memory deterrbiWgsandDV, ;s decays to
zero (see Equation 1 below).

A visual difference vectoby,;g) will be formed to a target if either of two conditions
is met. First, if the memory is too small (below threskold in Equation 1), then the sys-
tem waits for a brief period of time (paramdWemlag= 0.9) in case another memory is
becoming active. If no memory grows beyond the thresteold ( ) by the end of this time
period, then a reactive visudV,;s is formed in the manner described above. DVg

drives the reactive movement toward a target. Second, if an error is made due to a move-
ment deviating from the attentional radius around the template curve, then a corrective

visualDV,i5 is formed which determind3Vgand drives a corrective movement. The dif-
ference between the target and present positioRY/ PPV ) generates a cerebellar

teaching signal that updates the memory. Memory again takes over control once the tra-

jectory re-enters the attentional focus around the template curve, at whicbVje
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decays to zero. Thus, on-line error correction occurs which automatically shuts off as the
system successfully learns to generate the desired curve. As learning proceeds, error-
prone movements become successively more accurate until no errors are made and mem-
ory alone controls the movement. Once memory can control the movement without
errors, the learned movement can be correctly executed without visual feedback.

As in the original VITEWRITE model (Bullock et al., 1993b), a volitioB& signal
(Equations 8 and 9 below) scales movement speed in AVITEWRITE by altering the tra-

jectory generator’s rate of difference vectbl§) integration (Equation 7 below). How-

ever, the rate of predefined memory planning vector readout in VITEWRITE (see section
2.3) was a function of the movement’s velocity. It is still unclear how such a rule can hold
across learning trials during which a great variability in strokes and speeds eventually
converges to a unimodal velocity profile.

When one turns to spectral learning to overcome this difficulty, one needs to face a dif-
ferent problem; namely, the rate with which cerebellar Purkinje cells can read out the syn-
aptic weights that form their motor memory is limited. In other words, attempting to alter
movement speed by changing B© signal by a factor of 2.8 to match the range of
human speeds (Wright, 1993) would not necessarily alter the rate at which the cerebellum
reads out its stored motor commands by a comparable factor. AVITEWRITE hypothe-
sizes that the rate at which the motor commands are retrieved from cerebellar long term
memory defines the maximum possible rate at which error-free, memory-driven sequen-
tial handwriting movements can be made.

How can learned movements be made across a wide range of speeds while keeping tra-
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jectory shape and velocity profiles relatively constant if the variability of the long term
motor memory readout rate is limited? In his 1991 psychomotor theory of handwriting,
Van Galen suggests that working memory buffers between handwriting “processing mod-
ules” may “accommodate for time frictions between information processing activities in
different modules” (p. 182). AVITEWRITE hypothesizes that a working memory system
helps to write at a wide range of speeds even if the read-out rate of cerebellar spectra does
not change. This working memory system, with movement speed-dependent motor com-
mand readout, is not to be confused with the prefrontal working memory assumed to store
letter category representations (discussed earlier but not explicity modelled in
AVITEWRITE). Experimental data support the idea that working memory function may
influence movement speed. For example, several authors have found that lesions causing
spatial working memory deficits also cause increased speed for learned patterns of limb
movements. Ventral hippocampal lesions (Bannerman et al., 1999), cholinergic basal
forebrain lesions (Waite et al., 1995), and NMDA receptor antagonism (Kretschmer &
Fink, 1999) impair both spatial working memory and cause an increase in movement
speed. Pleskacheva et al. (2000) found that voles with smaller hippocampal mossy fiber
projections exhibited poorer spatial working memory and increased movement speed.
Zhou et al. (1999) found that some neurons in the medial and lateral areas of the septal
complex, which has close reciprocal connections with the hippocampus, display move-
ment speed-related activity. Finally, Chieffi & Allport (1997) found support for the
hypothesis that “short-term memory for a visually-presented location within reaching

space” is represented in a “motoric code” (p. 244).
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The AVITEWRITE model hypothesizes that the learned cerebellar movement com-
mands are transiently stored in a working memory buifék(in Equation 5 below)
which can read out those commands at a variable rate which is less than or equal to the
rate at which motor commands are retrieved from the cerebellar spectral memory. The
motor commands stored in the working memory are combined (Equation 6 below) with

the reactive visual difference vect®\(,g) and scaled by the volitional, size-controlling
GROsignal to form the memory-enhanced, size-scaled difference vBitgr discussed
above. Amemory-modulatedhovement targetTPV,,) is generated from the memory-
enhanced difference vector by addiDys to the current value of PV, (Equation 10
below). At the beginning of movemefiP\, is initialized to the starting position of the

hand; that is, to the initial value of the Present Position Vee@VY)

Some of the studies cited above seem to suggest a role for the hippocampal system in
spatial working memory and the speed control of patterns of limb movements. Other
experimental data suggest that the dorsolateral prefrontal cortex is involved in the work-
ing memory storage of targets (Goldman-Rakic, 1990, 1995; Wilson et al., 1993),
although a role in the storage of motor commands with speed-regulated readout, as mod-
elled by AVITEWRITE, is uncertain.

When an animal is making sequential movements to a series of targets, it must read out
the next target from working memory as it reaches the current target in order to continue
the sequence. In AVITEWRITE, a subsequent motor command is loaded from working

memory and executed only when the previous memory-modulated tamet)(is
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reached. Specifically, when either theVy,, for the x synergy or th&PVy,, for the y
synergy is reached, then both x and y commantig, andWM,, are read from the spec-

tral working memory buffer. A memory-derived target has been reached when the present

hand position RPV) equals the position ofPV,, The difference vector frorRPV to
TPVy, is defined adVyye (Equation 11 below). Thus, whédVy. reaches zero or
becomes negative PV, has been reached and the next command is loaded from the

working memory buffer\WM) (Figure 3.1). (Alternatively, one could use a small, non-

zero threshold value 0BV to trigger WM readout.) The working memory of

AVITEWRITE allows the volitionally controlle@&O signal to alter movement speeds of
both reactiveandlearned movements, while preserving trajectory shape and the shapes of
the velocity profiles, by altering the rate of memory readout relative to the speed of the
movement. The maximum speed at which a learned movement can be executed without
error is determined by the rate of long term memory readout from the cerebellar spectral
memory. In the model, removal of the cortical working memory buffer impairs the sys-
tem’s ability to decrease the speed of learned movements while preserving their kinematic
features, such as shape and velocity profile invariance. If the working memory buffer is
damaged so that it can store only a few values of the cerebellar output, then
AVITEWRITE must increase movement speed in order to keep up with the rate of cere-
bellar long term memory readout and execute learned movements correctly with trajec-
tory shape and velocity profile invariance. The model offers one possible explanation for

the experimentally observed movement speed increases following spatial working mem-
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ory impairment. The spectral working memory would store commands in a motor coordi-
nate system, but the aforementioned data concerning speed increases after working
memory damage imply that working memory storage of targets is formed in spatial coor-
dinates. However, the Chieffi & Allport (1997) data mentioned earlier support the idea
that the working memory for visually-presented target locations is actually represented in
a motor coordinate system.

One consequence of decreasing movement speed and the rate of motor command read-
out from the working memory buffer is that visual error feedback will be delayed. If the
Purkinje cells responsible for triggering the erroneous movement have returned to their
baseline activity by the time that the error feedback arrives via climbing fibers, then the
parallel fiber/Purkinje cell synaptic weights will not be modified and the error will be
repeated on the next learning trial. Further, the late error feedback may “correct” the
wrong synaptic weights if other Purkinje cells in the population are active at the time that
the climbing fiber signal arrives. A corrective movement could still be learned by modi-
fying the weights of the Purkinje cells which are active when the error signal arrives, but
it could be too late for it to significantly improve the movement trajectory. Further, it
might even worsen performance if the curvature of the template curve near the current
position of the moving hand has changed since the time the error occurred and the correc-
tive movement points away from the curve at the time it is made. In summary, delayed
error feedback due to volitional movement slowing could negatively affect the model’s

ability to learn to write a letter.
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AVITEWRITE proposes the following solution to the problem of delayed error feed-
back to the cerebellar Purkinje cell spectrum. This solution is consistent with the fact that
increasing the conditioned stimulus intensity can “speed up the clock” in the rabbit nicti-
tating membrane paradigm which earlier versions of spectral learning were used to model
(Grossberg & Schmajuk, 1989, p. 93). In the model, the density of the Purkinje cell
responses over time varies during learning as a function of the volitionally con@@led
signal that controls movement speed. “Density” of the Purkinje cell spectrum refers to
the relative time separation between adjacent calcium response profiles (Figure 3.5) for
Purkinje cells which differ in their concentrations of dendritic metabotropic glutamate
receptor. When the next Purkinje cell calcium response occurs at a relatively short time
after the preceding response of another cell, then the spectrum is described as being of a
higher density compared to a spectrum for which there is a greater time interval between
Purkinje cell calcium responses. When AVITEWRITE learns at slower movement
speeds, the density of Purkinje cell responses over time is decreased. This decreased den-
sity allows the activities of the Purkinje cells responsible for a given component of a
movement synergy command to span a greater period of time so that more of them may
be active at the time that the error feedback arrives. As speed increases, error feedback
arrives sooner and Purkinje cell spectral density increases so that more cells are active
sooner to sample the earlier error feedback. Simulations of the biochemically-predictive

spectral timing model of Fiala et al. (1996) demonstrated that the rate of Purkinje cell

responsethat is, the spectral densigan be decreased by decreasing the amount of

glutamate released at the parallel fiber/Purkinje cell synapse (Figure 3.5).
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Figure 3.5. (a) Purkinje cell calcium release spectrum from the Fiala et al. (1996) equa-
tions. [ng*]cyt is the cytosolic Purkinje cell calcium concentration. Continuous
glutamate input = 5 microM. (b) Continuous glutamate input = 25 microM. Note that

the spectrum is more dense and spans a shorter time than in (a).

By varying spectral density with speed in AVITEWRITE, successful learning may
occur over a wider range of speeds. Although published data about the range of speeds in
humans across multiple handwriting learning trials is lacking, preliminary analysis of

data received from Dr. Arend Van Gemmert suggests that the range of speeds during
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learning is comparable to that during the performance of learned letters reported by
Wright (1993). Wright showed that the speed of learned letters can be varied by a factor
of 2.8 without significantly altering the shape of the letter. AVITEWRITE is capable of

learning a letter even when the movement duration varies by such a wide range, as illus-

trated in Figure 3.20 and Table 3.1.

3.3 Model Equations

The equations used to implement the AVITEWRITE model are now described. The
reader can skip directly to the Simulations of Section 3.4 before reading the equations.
Note that all integrations were carried out using the fourth order Runge-Kutta method
with a step size of 0.05.

At the beginning of movement learning, a visual target posiliBV)(is chosen in a
predefined forward direction on the curve to be learned such that the line from the current
hand positionPPV, to TPV never exceeds an attentional threshold distance, or radius,
from the curve being traced (the template curve). How this is done is described more
completely below. Errors occur when movement deviates from the attentional radius

around the curve due to memory inaccuracy. As described later for Equation (1), when
the spectral memoryRj grows beyond a threshold valge DVY,;5 decays to zero and
memory alone formBVgand guides the movement trajectory. SiRderms an impre-

cise representation of the visual difference vector, the movement trajectory may surpass
the original visual target and/or form a curved path toward it which may deviate from the

attentional radius around the curve. In the case where movement has deviated from the
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attentional radius around the curve due to memory inaccuracyPMes chosen so that
movement toward it will return the trajectory to within the attentional radius around the
template curve.

In the simulations, the attentional radius is chosen by trial and error for learning a
given shape. For example, if the attentional radius is too big when learning a letter, then
AVITEWRITE will quickly learn a coarse version of that letter with large discrepancies
between the learned and actual letter shapes (Figure 3.6a). In contrast, as the attentional
radius is decreased, AVITEWRITE learns to generate a more accurate version of the let-
ter, but more learning trials are needed to learn it (Figures 3.6b and 3.6c). If the atten-
tional radius is decreased too much, then AVITEWRITE may not be able to learn the
shape at such a high level of accuracy within a limited number of trials. After trial and
error, an attentional radius is found which allows AVITEWRITE to learn a trajectory that
is a reasonably accurate copy of the original shape and which yields fast movements with
unimodal velocity profiles for each synergy.

The target selection algorithm functions as follows. For a discussion of its experimen-
tal predictions and applicability to learning methods other than tracing, see section 4.3.
The algorithm makes precise the idea that visual attention shifts to help select a new tar-
get along the curve in a given direction, or it returns the hand to within the attentional
radius. The algorithm achieves this as follows. First, it sequentially forms line segments
(L in Figure 3.7a) from thBPVto all the points on the template curve (defined by a finite
number of points) ahead of the current hand position. The algorithm then sequentially

evaluates each of those potential target points to determine if movement to it would keep
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Figure 3.6. Simulation results demonstrating the effect on learning of using a large or
small attentional radius,. Left: Learned gamma curves with attentional focus illus-

trated by the tube around the dashed template cividdle: The learned gamma viewed

in isolation. Right: x (top) and y (bottom) velocity profiles, Vx, Vy. (@)= 0.2, Gamma
learned in 6 trials; (b)r, = 0.065, Gamma learned in 13 trials; gy 0.055, Gamma
learned in 49 trials. Note that as the attentional radius is decreased, the accuracy of the
learned curve increases and the velocity profile appears less segmented, with a single bell-
shaped profile for each synergy. However, the number of trials required to learn the curve
increases a, is decreased. Also note that the final y velocities, Vy, are close to but not
equal to zero. Movement is stopped by shutting offGlaesignal when both x and y
velocities are below some threshold value near the end of the curve or if the end of the
curve has been reached and a direction reversal occurs, as when the y velocity becomes
negative at the ends of the Vy profiles in (a)-(c) above. See the discussioQf theet

rule in the Equations section.
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Figure 3.7.(a) Target selection when tR®Vis within the attentional radius of the curve
being traced; (b) Target selection when BV is outside the attentional radius of the
curve being traced. See text for details.
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the PPV within or else return it to within the attentional radius around the curve. For a
given line segment] from thePPVto a potential target, the algorithm computes the dis-
tance D in Figure 3.7a) from each point on the line segment to the closest point on the
template curve. If this distance ever exceeds the threshold attentional distdifcde

PPV is currently within that threshold distance to the template curve, then the target is

rejected. Thus target 1 in Figure 3.7a is a viable target because dB{amewveen the
template curve and the line segmeptnever exceeds the attentional threshold distance
from the curve being traced, whereas target 2 is rejected because distaxceeds the

attentional threshold distance. If tR@V is currently beyond the attentional threshold
distance, as in Figure 3.7b, then a target is rejected if the dis@hbterh the line seg-

ment () to the template curve ever increases as one moves along the line segment toward
the target.

In Figure 3.7b, target 1 is a viable target because the distance from the line $ggment
to the template curve is always decreasing (disténces less tharDg) as one moves
toward the target, whereas target 2 is rejected because difignsgreater tham,.

Movement to any of the potential targets which survive this selection procedure would
keep the trajectory within the attentional radius, or else return the trajectory to the atten-
tional radius around the template curve while never moving away from it. Of the poten-
tial targets which survive the selection procedure, the algorithm then sel@@¥ #sat
position which is farthest from tHeP\/ ThisTPVis used in Equation (1). If the move-

mentPPV passes the target, as whH&Vx> TPVxfor a rightward horizontal movement,
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then the inpuf PV-PPV(for both x and y synergies) to tb¥/, ;s (Equation 1) and to the

synaptic weights (Equation 3) is set to zero until a new target is chosERV & simply
a point in cartesian coordinates, wWitRVxserving the positive and negative x synergies
andTPVyserving the positive and negative y synergies.

The difference vector to the targ&ly,;s is integrated toward the value of
TPV - PPV, as in Equation (1):

Visual Difference Vector

dDV,;s
dt

= [=H1(DVyie) + Ho(TPV - PPV (1-H(ROH(tubg —¢))] . (3

In (1), Ris the learned cerebellar outpiV,s is a two dimensional signal composed of
DVyisxandDV,;sy For a given set of positive and negative opponent syneRjie€.qua-

tion (1) is the sum of the absolute values of the positive and negative synergy spectral out-

puts, Rp and Rn, respectively. For example, in the case of the x synergies,
Rx = |Rxp+| Rxn H(tube)equals 1 if thd®PVis within the attentional radius of the
template curve being traced, and it equals zero otheriH{® [CH(tube —¢€) equals 1
if PPVis within the attentional radius of the template curve and the cerebellar djtput,

is above some threshold valwe, . Otherwis§,R OH(tube —¢) equals zero and the
visual difference vectobV,s, decays to zero. Thus, if memory is availaBle> (€ ) and

the prior movement was sufficiently accurate, remaining within the attentional “tube”

around the curve so that(tube = 1, then memory directs the movement since
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: dDVy;s
H(ROH(tubg —¢) = 1 and Equation (1) reduces -'EGT = —;(DV,;g) DVyis
decays to zero and memory alone then controls the movement. If the memory signal is
too small R< €) or an error is made by deviating from the attentional radius around the
template curve so thad(tube = 0, thenH(ROH(tubg —¢) = 0. Equation (1) then
reduces to the following:

dDV,;s
dt

= [=H1(DVyi) + Hp(TPV=PPV]

DV,;s grows towards the value GiPV—- PPV  and vision controls the movement direc-
tion. In(1),n; =14, =0.25;and =0.001.

Cerebellar learning is simulated as follows. A spectrum of Purkinje cell responses is
created using Equation (2):
Cerebellar Spectral Component

g; = y((t—(i-1) )*)(B—(t-(i-1) BH)™®) 2)

In (2), At is the time between the start of adjacent Purkinje cell spectra. It is varied
between 0.25 and 0.05 to control spectral density (see Figure 3.19)g;Tewdels acti-

vation of Purkinje celi for synergyj at timet. A total of four different synergies are used

in the simplified view of the hand/arm muscle synergies adopted here: positive and nega-
tive x § = 1, 2 respectively), and positive and negativej y= (3, 4 respectively).
AVITEWRITE uses these simplified representations of movement synergies and assumes
that the movement direction generated by each synergy remains constant throughout letter

writing. The model does not directly address the more complex issue of the variability of
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the movement direction generated by a particular muscle synergy as the body posture or
hand location in the workspace changes. One possible way of addressing the issue of
variable synergy-specific directions would be to test whether the spectra learning the pat-
tern of synergy activation during a typical writing movement could still learn the correct
activation to complete the letter even if the direction associated with a particular synergy
changed as thePV traversed the workspace.

In Figure 3.15, a total of 80 spectral componants80) are active in the positive X
synergy [ = 1), and 33 are active in the negative x synergy. For a typical letter, a total of
approximately 200 Purkinje cells are used in the spectra for the four synergies used in the
model. Since a person may learn to write many different letters as well as other shapes,
utilizing 200 or more Purkinje cells for each letter in the roman alphabet, or in the thou-
sands of characters used in languages such as Chinese, would threaten to deplete the sup-
ply of Purkinje cells available for letter storage in the cerebellum, especially when one
considers that the cerebellum is involved in more than just storing letters. A possible
solution to this potential combinatorial explosion would be to utilize the same Purkinje
cell spectra for multiple letters by assuming that multiple, independent weights exist
between different parallel fibers and a given Purkinje cell. Also, the model could be mod-
ified to assume that only the muscle activations for a few basic curve segments are stored
in the cerebellar spectra, and that they are somehow combined as needed to form different

letters, just as different letters are combined to form words (Figures 3.26, 3.27).
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Figure 3.8. (a) Simulated Purkinje cell spectrum generated using Equatiofit(2), =0.1;

(b) Simulated Purkinje cell spectrum using Fiala et al. (1996) equations. AVITEWRITE
uses simplified spectra with constant amplitude and duration, similar to the Fiala et al.
spectrum with a long term depression activation threshold represented by the solid bar

across (b).

In Equation (2), parameteys =0.0136 &d = 25. These parameters and the chosen
exponents yield spectral components of constant maximum amplitude equal to 1 and a
constant duration of 3 time units. This spectrum, depicted in Figure 3.8a, is a simplified
version of that generated by the Fiala et al. (1996) model equations (Figure 3.8b). The
two simplifications are (1) constant maximum amplitude responses of the Purkinje cells
over time, and (2) constant durations of the Purkinje cell responses over time. For rela-
tively short durations, these simplifications are valid if one assumes that Purkinje cell
activity exceeds an activation threshold for long term depression to occur, as illustrated in

Figure 3.8b. For learning of longer duration (slower) movements, decreasing spectral
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density allows a given spectrum of Purkinje cell responses to span a longer period of time.
A new Purkinje cell (PC) spectrum would need to be activated for movements which
exceed the maximum spectral duration, estimated to be about 4 seconds in the Fiala et al.
(1996) model. For most handwriting strokes or small groups of strokes, 4 seconds is suf-
ficient time for a given PC spectrum to remain active.

The mossy fiber/parallel fiber inputs to the cerebellar spectra, analogous to the Condi-
tioned Stimulus in the Fiala et al. (1996) model (Figure 2.8a), are represented by simple
binary signals which gate the activities of particular spectra. Compare the binary
glutamate input used in the Fiala et al. (1996) model equations (Figure 3.4) to the binary

spectral activation gate, Glu, in Figure 3.15b.
Theit" synaptic weighg; between the parallel fibers and the Purkinje cells for synergy

J is modified based on the teaching/error signal as described in Equation (3):
Cerebellar Synaptic Weights

9% _ g

" 0 (=7 +a(TPV,—=PPV,)) (H(TPV,-PPV)) . €]

Each synaptic weight is modified only if its spectral compoggrt active and visual tar-

get information is available. Visual target information is defined®Yy The teaching/

error signal is assumed to be carried by climbing fibers, as in the spectral timing models
of Fiala et al. (1996) and Grossberg & Merrill (1996; Figure 2.7). The basis for this
assumption is discussed in section 4.5. Climbing fibexctivity at each time step (Fig-

ure 3.14) is assumed to be proportional to the current sjte cdmponent of the differ-
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ence between the target positioFRV, and the present positioP\, with synaptic
weights increasing in proportion to the valueTeN-PPVin Equation (3). In particular,

H(TPVPPV) equals 1 if TPV-PPV) > 0, and it equals O otherwise. Parametgrs = 0.3

anda =0.08in (3).

For a discussion of AVITEWRITE's use of a continuously varying teaching signal as
opposed to the discrete climbing fiber signals observed in vivo, please see section 4.6.

Note that the synaptic weight equation, in which the synaptic wagbasesn pro-
portion to the climbing fiber error signal, appears to describe long getemtiation
whereas earlier discussions of cerebellar spectral learning have referred to long term
depression. In a real Purkinje cell, long term depression is associated with a pause in
Purkinje cell firing which disinhibits the cerebellar nucleus. In the AVITEWRITE equa-
tions, only the net excitatory effect of parallel fiber inputs on subsequent cerebellar
nucleus activation is modelled. The intermediate sign reversals that occur between the
time of a parallel fiber input to a Purkinje cell and subsequent activation of the deep cere-
bellar nucleus are omitted for simplicity. This simplification was also made in Barto et
al.'s (1999) cerebellar reaching model, which is discussed in section 4.11.2.

The synaptic weighg;, in turn, gates the PC spectral actigfybefore an output sig-
nal is formed. The gated spectral activity= g;z;. Each terng;z; provides a local

view in time of the learned information. The sum of these terms provides a continuous
sampling of the climbing fiber teaching signals. Thus, the population response of the

Purkinje cells is summed to form the adaptively timed cerebellar ot&ptdr synergyj,
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as in Equation (4):

Adaptively Timed Cerebellar Output

Ry = > hy. ) (4
|
The cerebellar outpW, is generated at a fixed rate in response to a given density of PC

spectral componentg; through time. The output rate Bfcan be altered by changing

spectral density. Decreasing spectral density allows movement learning at variable
speeds.

A cortical Working Memory buffer, whose dynamics are illustrated in Figure 3.9, is
hypothesized to allow performance of learned movements at variable speeds while pre-
serving movement and velocity profile shape. In the mode$ temporarily stored in a
working memory buffer, simulated as a discretely sampled set of values from the continu-

ous cerebellar output:

WM, (t) = Ry(t;) +Ry(t;) fort,st<t, , . (5a)

WM(t) = Ry(t;) + Ry(t;) fortist<t, . (5b)

In (5),t is theit time thatDVgate Which is defined in (11) below, becomes zero from a
positive value. At time= 0, WM(0) =R(0).

The dynamics of the spectral working memory are illustrated in Figure 3.9. For fast
speeds, the working memory buffer effectively passes the motor command along to the
trajectory generator without much delay. Since a command is read from the working

memory very soon after it has been stored there, the memory “bin” (Figure 3.9c, d) which
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had stored the command is quickly emptied of its contents and made available for the
storage of another motor command. The size of the working memory therefore remains
small. For slower movements, a given motor command must be stored in the working
memory longer, and a backlog of motor commands accumulates while a current com-
mand is being executed. The size of the working memory is therefore inversely related to
the movement speed. For very slow movements, a large working memory capacity is
needed with up to almost 140 bins in Figure 3.9c fBCssignal size of = 7.
As shown in Figure 3.1, the spectral working memory outgiy, is combined with

the visual difference vectddV,, and scaled by a size-controlli@ROsignal,S to form

the size-scaled, memory-enhanced difference veotGy,
DVSX = SE( WM( + DVvisx) ) (63)

DVg, = SHUWM, +DV ) . (6b
In (6), S= 0.3 during learning and was chosen at variable values after learning; see Fig-

ures 3.24 and 3.25 below.
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Figure 3.9 (a) Total cerebellar output for the x movement synergy for the llettetrial
37 of Figure 3.13; (b) Snapshots of the signal stored in the working memory buffer for the
x synergy,WMx, at times t = 4 and 8 for the letlewritten with GO signal size] = 20
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(left), and times t = 4, 8, 15, and 25 favritten withGO signal sizel = 7 (right). Use of

the working memory to store spectral output allowed slower moverdent7] whose
duration exceeded the duration of spectral activityLéf) Working memory size during

the fast movement with = 20. Note that the last three commands stored in working
memory were not executed becauseGisignal was shut off when the end of the letter
was reached. See tl reset discussion in the Equations sectiRight Working mem-

ory size during the slow movement wiilx 7 (Right). (d) Conceptual diagram showing
storage of the total cerebellar output for the x movement synergy at time t in a working
memory buffer WMx When a memory modulated targé€R\V,, derived in Equation

(10), has been reached abW, (Equation 11) reaches a value less than or equal to

zero, then the next motor commam is read from the working memory buffer. Note

that the number dRx values stored in the working memory may vary with the speed of

the movement, as seen in (c). The data presented here were generated during the speed
scaling simulations depicted in Figure 3.22.

TheDVgis multiplied by a speed-controlling, fast-risi@@ signal to define the out-

flow movement velocity vector, which is integrated to form the Present Position Vector
for the x and y synergies:

Present Position Vector

dPPV(Y) _
TheGO signal is defined as follows:
GO Signal
dG
T = Va(-G+J) ®
GO = G(1) (9)

The size of the inpul determines the asymptote of 86 signal. J can be varied to alter

the movement speedl was varied between 19.25 and 20 during learning, and down to 7

after learning (see Figures 3.20, 3.21, 3.22). Paramgter = 8.
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During learning, a narrower range @0 signal sizes was chosen to prevent exces-
sively delayed error feedback to the spectra resulting from slow movement. Using sparser
spectral densities can extend the time during which spectra are active and subject to error-
feedback-based weight modification (Figure 3.20, Table 3.1), but if the feedback delay
grows too large, then the spectra will have become inactive and no longer subject to
weight modification when the error signal arrives. Learning would then be impaired.
After a letter has been learned, a wider rangé©fsignals can be used since no errors
are being committed and the weights are not modified.

Equation (7) is integrated to generate the movement trajectory. For simplicity, move-
ment commands to the hand/arm system are represented by four cerebellar memory divi-
sions. Each memory division controls one of the muscle synergies for either the positive
or negative horizontal or vertical movement direction.

TheGO signal is reset by settin= 0 whenDVg equals zero at the beginning of a
movement. Thus, when the lettais written, as in Figure 3.10, tl&&0 signal is reset at
the beginning of the letter, and then at each of the two stopping points during execution of
the letter. In order to shut ti&0 signal off when the end of the curve is reached, or when
the end of a segment is reached in a letter with multiple stopping points (Figure 3.10), the
following reset rule is used:

GO Reset Rule

The GO signal is reset at the start of a given synergy’s activation by séttng.

When opponent synergies switch control of a movement, theB@hsignal is shut off

for the prior synergy when the spectral component activagipfus that synergy have all
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decayed to a value less than 0.01. @@ signal for the newly activated synergy is

turned on when its spectral components become active at thB¥pe R changes sign.

During visually guided movements, when particular regions of the letter have been
reached, such as intermediate stopping points at corners or points of x and y direction
reversal, (see the cursive letsgn Figure 3.10) or the end of the letter, then@@signal
for all synergies is reset if the movement velocity is below a threshold value or a direction
reversal occursJ is set to O for all synergies if tiPV is in a region near a stopping
point and both the x and y velocities are less than a threshold absolute value (chosen as
0.006), or if either the x or y velocity reverses sign near a stopping point, indicating that
the stopping point has been passed and thaG@eignal should be shut off, thereby
stopping the movement. Specifically, movement is stopped if the above conditions are
met and théPVis within a square with sides of 0.2 units centered on the stopping point.
The choice of the size of the square region is arbitrary and can be varied based on the
scale of the letter without adversely affecting the model’'s performance.

If visual feedback is lacking and/or memory alone controls the movement, then a prop-
rioceptive, velocity-dependef®O reset rule can be used. For example@@esignal can
be reset when the tangential velocity is below a threshold value and the acceleration is

negative.
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Figure 3.10.(a) Letterswritten by AVITEWRITE after 56 learning trials wit = 0.075,

At =0.2,J=20. The dotted tube represents attentional focus around the template curve.
(b) x (top) and y (bottom) velocity profiles, VX, Vy; (c) Learned cerebellar ourgy,t

Ry for the positive (top) and negative (bottom) x direction movement synergies; (d) Voli-
tional speed controllingO signals for the positive (top) and negative (bottom) x direc-
tion movement synergies; (e) Learned cerebellar oRpyIR ,, for the positive (top) and
negative (bottom) y direction movement synergies; (f) Volitional speed contr@king
signals for the positive (top) and negative (bottom) y direction movement synergies. In
(c) and (e), note th& for the positive synergies may become negative Rafiod the neg-

ative synergies may become positive. This situation arises because the weights in Equa-
tion (3) may be positive or negative. Since a positive vallfof the positive synergy
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corresponds to disinhibition of the cerebellar nuclei, negative weights for the positive syn-
ergy could be interpreted as potentiation of Purkinje cell activity that would lead to fur-
ther inhibition of cerebellar nuclei and of the given muscle synergy. The inverse relation
would hold for the negative synergy, so that a negative valRevoluld represent disinhi-
bition of the cerebellar nuclei.

Readout of the Working Memory buffer’s discrete movement commands is controlled

as follows. A memory-modulated targdiV,,) is generated for the x and y synergies as

follows:

Memory-Modulated Target
TPV (i+1) = TPV,(i)+DVg, (10)

It tracks the cumulativédVg through time. ThePPV is subtracted from th@PV,,

to form a

Gating Difference Vector

DV, = TPV,,—PPV . (11)

gate

DVgate CONtrols readout from the WM buffer. The next cerebellar command that has been
stored in Working Memory is read from the WM buffer wi#,, is less than or equal

to zero; that is, when the curréef®\},, has been reached or surpassed. By altering the
size of theGO signal, the rate at whichPV,, is reached by the outfloRPV can be con-

trolled. Thus, Working Memory readout is controlled by the speed of the movement,
which is determined bi?PV (see Figure 3.1). This gating rule ensures that the shapes of

the movement and its velocity profile are preserved as performance speed is changed by a



60

different choice of the volitionabO signal.

The movement velocity profiles generated by the model represent outflow movement
commands, not the actual performance of the arm/hand system. There is filtering of the
movement signal downstream of the central command by the peripheral muscle apparatus
(Contreras-Vidal et al., 1997). An assumption of low-pass filtering in the command path-
way is commonly made in muscle models (Barto et al., 1999, p.567). Therefore, the

Acceleration Profile

dPPV() dPPV(t- D)
dt dt (12)
D

A(t) =

generated by the present model is filtered using a first order differential equation:
Muscle-Filtered Acceleration Profile

% = (At +A() . (13

The step size in (12) 3 = 0.05. Without such filtering, the acceleration profile is jagged,
with sudden jumps (Figures 3.11b, 3.11e, and 3.12a) which occur due to the overlap of a
finite number of spectra (Figure 3.12c) whose Purkinje cell output is summed to form the
memory trace. For comparison, the acceleration can be filtered using standard signal pro-

cessing techniques, such as a fourth order Butterworth filter with a 7 Hz cutoff frequency,

as is often used in the processing of handwriting data (Figures 3.11d and 3.11g).
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Figure 3.11. (a) Letterl learned in 37 trials witlh, = 0.055,At = 0.1, and = 20; (b)
actual x acceleratioAx; (c) x acceleration filtered\,) using Equation (13); (d) x accel-
eration filtered A,) using a Butterworth filter with a 7 Hz cutoff frequency; (e) actual y
acceleratiorhy; (f) y acceleration filteredAfy) using Equation (13); (g) y acceleration fil-
tered fy,y) using a Butterworth filter with a 7 Hz cutoff frequency.
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Figure 3.12. (a) Close-up view of the jagged, unfiltered acceleration profyg) @ the

positive y synergy for the lettéishown in Figure 3.11. (b) Close-up view of the velocity
profile. (c) Close-up view of the finite number of overlapping spectral components whose
weighted, summed output is integrated in Equation (7) to generate the movement velocity.
Sparser spectral components would yield a more jagged acceleration profile, just as
denser spectral components would yield a smoother acceleration profile. The model
assumes that the acceleration is filtered by the peripheral muscle apparatus (Equation 13).



63

3.4 Simulations

Simulation results are now presented which demonstrate the following features of the
spectral handwriting learning model: (1) the model’s ability to learn to generate cursive
letters with realistic velocity profiles; (2) generation of an inverse relation between curva-
ture and tangential velocity; (3) generation of a Two-Thirds Power Law relation between
curvature and velocity; (4) the ability to vary the movement speed during learning, with a
gradual increase in speed as learning proceeds; (5) variable speed performance of learned
movements with preservation of the movement shape and the shape of the velocity pro-
file; (6) the ability to vary the size of movements while maintaining isochrony as well as
the shape of the velocity profiles; and (7) the ability to yield coarticulatory context effects,

such as variation of letter size and downstroke duration due to adjacent letters.

3.4.1 Learning a Letter

Figures 3.13 and 3.14 illustrate the learning process as AVITEWRITE learns to write
the cursive letter | by tracing a template curve for thirty-seven trials. On early trials, mis-
takes are made as the newly forming memory competes for control of the movement with
visually reactive movements to targets on the curve. Memory control is initially poor and
requires corrective reactive movements which yield a segmented trajectory and a velocity
profile that consists of several discrete peaks. As learning proceeds over multiple trials,
performance gradually improves and the writing time decreases until, on trial thirty-seven
in this case, the memory representation of the synergy activations is able to drive an accu-

rate, fast writing movement which does not deviate from the attentional radius around the
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template curve.
Figure 3.14 shows the dynamics of several model components during the learning pro-

cess. The visual difference vect@\,s from the present positiolPPV) to a target

(TPV) is integrated in Equation (1) and competes with menirip control the move-
ment. IfRis less than a threshold valuesof = 0.001 or if movement exceeds a distance
r, from the template curve, then a targdt\/ is chosen anBV, ;s grows toward the value

of TPV— PPV. If R> ¢ and the®?PVis within a distance, of the template curve, then
DV, ;s decays toward zero. The Purkinje cell population resp&ysejich forms the cer-
ebellar memory output, is shaped by learning as the parallel fiber/Purkinje cell synaptic
weights are modified in Equation (3) based on the error sighsl— PPV . Note that on
trial 37 (right side of figure), memory alone controls movement and keeps it within the
attentional radiusr, of the template curve. No errors are made 8w and

TPV - PPV equal zero throughout the learned movement.

Figure 3.15 shows the corresponding spectral activations during trial 37. Figure 3.16
shows a sample of how the model can learn the letters of the alphabet. Strokes that
require lifting of the pen from the page and hand repositioning, such as the cross of the

lettert or the dots of the lettersandj, are omitted for simplicity.
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Figure 3.13 The progression of learning the lettevith r, = 0.055,At =0.1, and =

20. Left: The attentional focus is illustrated by the tube around the dashed template
curve. Circles indicate tHeéPVwhen a new target, marked by a square, is chosen, either
because memory is too small or becausdPe has exceeded the distancg,from the

template curve.Middle: AVITEWRITE’s | viewed in isolation. Right: x (top) and y
(bottom) velocity profiles, Vx, Vy. (a) Learning trial 1; (b) Learning trial 12; (c) Final
learning trial 37. The letter is now drawn without deviating from the attentional radius
around the template curve. Note also that the writing time has decreased from over 25 to
under 11 time units.
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Figure 3.14 Model components during learning of the lettef Figure 3.12.Left: trial
1; Right: trial 37; Top: Positive and negative x synergi@attom: Positive and negative y
synergiesDV, ;5 is the visual difference vector which is integrated to drive reactive and

corrective movementsTPV— PPV s the signal used to fBM); in Equation (1) as

well as the climbing fiber error signal which leads to synaptic weight modification at the
parallel fiber/Purkinje cell synapse in Equation Bxp Rxn Ryp and Ryn are the
learned cerebellar outputs for the positive and negative, x and y synergies.
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Figure 3.15.Figures of model components for the generation of spectra and spectral syn-
ergy switching. See the text below for detalils.
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In Figure 3.15 above, (c) illustrates the response of the Purkinje cell spectra during trial
37 of learning the lettdr In (b), one sees the cerebellar step input which causes release
of glutamate from parallel fibers that triggers spectral activation of the positive and nega-
tive, x and y synergies, xp, Xn, yp, yn. Inputs to opponent synergies switch when the sum
R + DV,;s changes sign in (a). Whénh+ DV;s 20, Gly, =1 and Gly = 0. The opposite
relation, Gly = 0 and Gly = 1, holds whefiR+DV,;c<0. In (c) one sees the spectrum of

Purkinje cell responsesg)(generated using Equation (2). Note that input to the spectrum

of one synergy is shut off when the net movement direction, giv@\V@y + R, changes

sign. A new synergy and Purkinje cell spectrum are then activated. Such synergy switch-
ing occurs at approximately times t = 4 and 7 in the positive and negative x synergies
(left: gxp, gxn) and t = 6 and 9 in the positive and negative y synergies (ggbtgyn).

Figure 3.15d shows the pattern of learned Purkinje cell activatprisr(ned wherg is

gated by the parallel fiber/Purkinje cell synaptic weighia Equation 3) formed during

learning.
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Figure 3.16. The alphabet as learned by AVITEWRITE; Each panel contains a letter at
the top with the x velocity profile in the middle and the y velocity profile at the bottom.
All letters were learned at the relative scale shown here. Note that the crosg thehe
letterx, and the dots on theandj were omitted because they involved discontinuities in
the movement, with lifting of the pen from the page and hand repositioning. See Appen-
dix for parameter values and the number of learning trials required per letter.
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Figure 3.17. Left: Human writing with x and y veIOC|ty profiles (Vx,Vy), movement cur-
vature (C), and tangential velocity (Vtan) (Reproduced with permission from Edelman &
Flash, 1987).Right: Similar shapes learned by AVITEWRITE. The curvature was cal-
culated using acceleration filtered with Equation (13). The peaks in curvature near the
ends of the simulated trajectories are the result of the x and y velocities (Vx, Vy) getting

very small and are not seen in the human data because the curvature has been truncated
prior to the end of the velocity profile where velocity reaches zero. See Appendix for

model parameters.
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3.4.2 Inverse Relation between Curvature and Velocity

Figure 3.17 compares three letters learned by AVITEWRITE with similar letters writ-
ten by adult human subjects (Edelman & Flash, 1987). Note the unimodal x and y veloc-
ity profiles generated for each synergy by both humans and AVITEWRITE. Also observe
the inverse relation between tangential velocity and curvature. The peaks in curvature
near the ends of the simulated trajectories are the result of the x and y velocities (Vx, Vy)

getting very small, with Vx and Vy << 1. As seen in Equation (14):

c = (VXDAy) - (Vy DAY

(14)
(VX2 + Vy2)1.5

curvature C approaches infinity as the sum of smd V)5Z approaches zero. Note that
this effect is not seen in the human data shown in Figure 3.17 since the curvature has been
truncated prior to the end of the velocity profile where velocity reaches zero. Ax and Ay

are the x and y acceleration, respectively.

3.4.3 The Two-Thirds Power Law

As curvature increases, the angular velocity required to move through the curve in a
given amount of time also increases. Thus, angular velocity is a function of the curvature.
This relation is quantified by the Two-Thirds Power Law, which states that the angular
velocity is proportional to the curvature raised to the two-thirds power (Lacquaniti et al.,

1983):
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Two-Thirds Power Law

2
A = kC, (15)

whereA = angular velocityC = curvature, andk is a proportionality constant. Equiva-
lently,

[y

V.. =k, (16)

whereV,,, = tangential velocityy = radius of curvature (€), andk is a proportionality

constant. The law was originally reported to hold mainly for elliptical movements (Lac-
guaniti et al., 1983). Since then, others (Wann et al., 1988, p. 635) have reported that the
law holds for handwriting movements at fast speeds. The law is violated when “size dif-
ferences and translation are combined in a word” (Thomassen & Teulings, 1985, p. 260).
Nevertheless, the law holds under many conditions in human handwriting movements. It
is therefore of interest that the Two-Thirds Power Law relation emerges from the learning
process described in the current model (Figure 3.18). Although it is not immediately
clear why this relation should result from spectral learning of muscle synergy activations,
one should note that AVITEWRITE learns through an error-correcting process that works
to keep the hand within some minimum distance of the curve being traced. In other
words, AVITEWRITE effectively places bounds on the variance of the hand position rela-
tive to the template curve being traced. Harris and Wolpert (1998) found that a curved
movement trajectory which minimizes the positional variance of the hand will yield the
Two-Thirds Power Law relation. The emergence of this law from AVITEWRITE may

therefore be due to its approximation of a variance-minimizing movement learning strat-
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egy.
The Two-Thirds Power Law prediction of tangential velocity becomes unrealistically
large as the curvature of the movement becomes very small (C<<1), as may occur near
the beginning and end of a movement (Figure 3.17), causing the large spikes in the power
law predictions in Figure 3.18. Filtering the acceleration with Equation (13) reduces the
number of these spikes by preventing sudden drops in curvature due to the jagged, unfil-

tered acceleration of Figures 3.11 and 3.12.

. Vtan
Unfiltered

Filtered

Unfiltered

Filtered

u

Figure 3.18. Two-Thirds Power Law predictions (dotted lines) of tangential velocity
(Vtan) compared to the actual tangential velocity (solid lines) of AVITEWRITE for the
letters O, U, gamma, arid For each letter, the top panel shows the power law prediction
calculated using the unfiltered model acceleration profile, and the bottom panel shows the
prediction calculated using acceleration filtered with Equation (13). The values used for
the constant of proportionalitik)(in Equation (15) are as follows. O: 0.5; U: 0.6; gamma:
0.45; 1: 0.5.
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3.4.4 Variable Speeds During Learning

When a human learns a new task, the task must usually be performed more slowly dur-
ing the early stages of learning than at later stages. An attempt to increase the speed of
performance before the motor system has adequately learned the task results in increased
numbers of errors. Common examples of this gradual speed increase during learning are
learning to play musical instruments or learning a new language. A similar phenomenon
occurs during the learning of handwriting movements (Alston & Taylor, 1987, p. 115;
Burns, 1962, pp. 45-46; Freeman, 1914, pp. 83-84). Figures 3.13 and 3.20 show that this
gradual decrease of movement duration over multiple learning trials is a feature of
AVITEWRITE's learning as well. The decrease in movement duration over the course of
learning in AVITEWRITE may occur for two reasons. (1) In the early trials, the memory
is not yet fully developed. As a result, the movement repeatedly deviates from the atten-
tional radius around the template curve being traced, and the total distance moved may
exceed the length of the template curve (Figure 3.13a). As learning progresses, the move-
ment remains within the attentional radius more and more, so the total movement distance

may decrease (Figure 3.13b, and 3.13c). (2) Since fBWgk's have contributed to

forming the memory at earlier trials (the memory forms a cumulative representation of all

theDV,;s's over all past learning trials), the size of the memory sigmaay be smaller at

a given time for earlier trials as compared to later trials. As can be seen from equations
(5)-(7), the movement velocity is proportional to the size of the cerebellar memory out-
put,R. Thus, the increase in the size of the memory signal over the course of learning can

also lead to a speed increase and a decrease in movement duration as learning progresses.
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In addition to a decrease of movement duration resulting from the learning mechanism
described above, a person may also voluntarily alter the speed of a movement. The model
allows for such speed scaling during learning by varying the voliti@@akignal along
with the density of the cerebellar spectra which are sampling the movement error signals.
Note that altering spectral density also alters the size of the memory Blggaherated
at a given time. Since the movement velocity is proportional to the sRelu speed is

altered both by changes in t8®© signal and by changes in the spectral density.

20
J 19.6}
19.2L ‘ ‘ ‘ ‘
0.05 0.15 0.25
At

Figure 3.19. The functional relation betwed&BO signal size J) and spectral density,

given by the time separation between adjacent cell respofAtes, . This relation was
imposed algorithmically in order to define a range of spectral densitie€@rgignal

sizes capable of learning a letter at a wide range of speeds across learning trials. Figure
3.20 and Table 3.1 show that the range of movement durations during learning is greater
when theGO signal size and spectral density gradually increase during learning than
when they are held constant.

If the execution rate of movement commands stored in the working memory is reduced
by decreasing movement speed via @@ signal, error feedback to the cerebellum is
delayed. Reducing spectral density during learning increases the time span over which
spectra are active, thereby allowing synaptic weights to be modified by delayed error

feedback. Reducing spectral density therefore allows learning to continue despite varia-
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tions in movement speed.
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Figure 3.20. Letters learned with variable speed compared to learning at a constant, fast
speed. In (a) and (c), tl&O signal and spectral density were held constantZ0, At =

0.1). In (b) and (d), th&O signal and spectral density were incrementally increased
every two trials according to the function in Figure 3.19 (startidg=at9.25,At = 0.25;
ending at] = 20, At = 0.1). The result was an increase in the range of movement dura-
tions, as seen in Table 3.1. (a) through I(éft: Letter learned by AVITEWRITEMIid-
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dle: x and y velocity profiles, VX, VyRight: (top) trials versus movement duration (md);

(middle)J over the course of learning; (bottod)

over the course of learning.

(@)
Maximum Minimum LrilgLse:I
Condition Movement | Movement _ ]
for letter| Duration Duration tmatmin GOand Total Trials
() ) Spectral
ma min Density
Constant 26.45 11.80 2.24 18 18
GOandAt
Increasing 35.40 9.90 3.58 26 46
GO andAt
(b)
Maximum Minimum LriigLse:I
Condition Movement | Movement _ ]
for letter O | Duration Duration tmaxtmin GOand Total Trials
(tra) ) Spectral
ma min Density
Constant 23.35 10.45 2.23 13 13
GOandAt
Increasing 37.80 9.25 4.09 7 28
GO andAt

Table 3.1. Comparison of the range of movement durations and the number of learning
trials needed for error-free movement when@t@signal and spectral density are incre-
mentally increased during learning (Figure 3.20) or held constant at the maximum speed.
For both letter$ and O in tables (a) and (b), respectively, note that the range of movement
durations, and therefore speeds, is greater wheG@hsignal and spectral density are
gradually increased as learning progresses. For the llefeaver trials are needed to
learn the letter at a constant, high speed. However, the performance is slightly worse as
reflected in the more segmented velocity profiles of Figure 3.20 (a) compared to (b), in
which movement speed is volitionally increased during learning by increasir@Qhe
signal and spectral density. For the letter O, performance is very similar wh&®the
signal and spectral density are held constant or increased during learning, but fewer trials
are needed to learn the letter at the fastest speed whé®tbignal and spectral density

are gradually increased during learning.
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The results of simulations in which speed is gradually increased over the course of
learning by increasing th@O signal and the spectral density are shown in Figure 3.20
and Table 3.1. As learning progresses, the movement speed gradually increases as
reflected by the general decrease in movement duration across the learning trials (Figure
3.20). Eventually, the movement reaches a maximum speed at which learning converges
to error free performance with unimodal, bell-shaped velocity profiles for each synergy.

If the movement speed is kept constant at a low value with a sparser spectral density,

then a slower, more segmented movement is learned (Figure 3.21).

0.5

VX 0.3

Figure 3.21. Letterl learned when the speed-controlling, volitioG#D signal is kept low
(J=19.75) with a sparser spectral density (= 0.2) throughout leamjrg0.065.

3.4.5 Speed-Scaling of a Learned Movement
Previously learned movements can be written at a wide range of speeds with relatively

little distortion of the shape of the movement or the velocity profiles. Wright (1993) has
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shown that the speed of handwriting movements can be varied by a factor of about 2.8 (a
range of 0.6 to 1.66 times the baseline speed) without significantly altering the letter
shape. Presumably, there is no new learning taking place during such speed-scaling since
the letters have been written by the subjects for years.

The model yields speed-scaling by a comparable factor without shape or velocity pro-
file distortion, as shown in Figure 3.22. Speed is altered by varying the size@Dthe
signal by varying inpud in Equation (8). These results are obtained through the use of a
working memory buffer which transiently stores the outputs of the cerebellar long term
memory and sends them on to the motor apparatus at a rate which can be decreased rela-
tive to the rate of cerebellar readout (Equations 5-7, Figure 3.1). Since the rate of readout
from the working memory buffer is speed dependent, more motor command information
will be stored in the buffer as speed is decreased and the time required to reach a given

memory-modulated targetPV,,) is increased. Figure 3.22c shows the variable number

of elements stored in the working memory as the speed is varied. For the fast movement

(Figure 3.22c, Left), eachiPV,, is reached quickly, thereby triggering readout of the next

command from the working memory before many additional commands have been
received from the cerebellar long term memory. The number of elements stored in the
working memory therefore remains small. For the slow movement (Figure 3.22c, Right),
the cerebellar spectra responsible for the learned movement complete their activity at the
same time as for the fast movement (at about time t = 11), but the rate at which the com-
mands are read from the working memory is much slower becauseQlsgnal is

smaller. It therefore takes more time to reach a giMe¥,, and trigger readout of the
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next command from the working memory. A backlog of commands accumulates in the
working memory. When the cerebellar spectra finish their activation response and stop
sending additional commands to the working memory, the number of commands stored in
working memory begins to diminish as they are read out from the working memory. Each
time a command is read from the working memory, it is subsequently deleted from the
memory in order to make space in memory for additional commands. When no new com-

mands arrive, the size of the memory shrinks toward zero as each new command is exe-

cuted.
0.2 T T T T T |
01l /_\ 1
i VX 0 \_/ i
(a) -o1r I I | I I ]
05k 0 5 10 15 20 25 30
0.2 T T T
Vy 0 4/\ o
-0.2 \/
0 5 10 1‘5 2‘0 2‘5 30
05 T T T
VX /\

| | | |
0 5 10 15 20 25 30

(b) |

time

Figure 3.22. Speed scaling of the lettewith preservation of the letter shape and the
shape of the x and y velocity profiles, Vx, Vy. : (a¢tterl with theGO signal inputl =7
in Equation (8). (b)Letterl with theGO signal inputd = 20.
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If learning has been completed at some final spectral density, altering spectral density
thereafter results in distortions of the movement and its velocity profile. Thus, attempting
to control the speed of learned movements by altering spectral density alone may trigger
new movement errors, as seen in Figure 3.23. Instead, AVITEWRITE uses the volitional
GO signal in conjunction with the working memory system to yield speed scaling with
shape invariance. Since no new learning is required, and hence no delayed error feed-
back, the spectral density is kept constant at the value reached on the last learning trial at
which error-free movement was achieved. The model therefore assumes that an atten-
tional gate couples th8O signal and spectral density during attentive imitation, but that
they are decoupled during automatic performance of a previously learned letter.

Altering spectral density once error-free, memory-driven performance has been
achieved alters the shape of the spectral population o®parnd can yield trajectory dis-
tortions and errors due to deviation from the attentional radius around the curve which
would trigger new corrective movements and synaptic weight modification (Figure 3.23).
Although changing spectral density after learning in conjunction @ithsignal size
changes (Figure 3.19) does alter movement duration as seen in Figures 3.23a and 3.23b,
the letters and the velocity profiles are distorted relative to each other and to the loriginal
from Figure 3.20b due to disproportionate scaling of the summed spectral population out-
put as the degree of overlap of positively and negatively weighted spectral components is
altered (Figure 3.15d). This effect is particularly pronounced in Figure 3.23a at the direc-
tion reversal at the top of tHewhere the greater overlap of positively and negatively

weighted spectral components cancels the net population output and results in the shorter
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y direction movement amplitude seen in the letter.

Increasing th&O0O signal beyond the maximum value (the asymptot&=020 in Fig-
ure 3.19) causes the movement speed to exceed the rate of memory readout of upcoming
synergy activation commands, also leading to errors in the movement trajectory. The rate
at which memory output is sent from long-term storage in the cerebellum is therefore the

speed-limiting component of the model.

0.6
VX 0
-0.4 N
0 2 4 6 8
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0
-0.2
0 2 6 10 14
0.4
vy O \/
04532 6 10 14
time

(b)

Figure 3.23. The effect of altering the spectral density of the ldttgter learning with
At =0.1: (a) Spectral density is increased by decreasing the time sepatation  between

adjacent spectral components to 0.05. (b) Spectral density is decreased by inAteasing
to 0.13.
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3.4.6 Size Scaling and Isochrony

Size can be scaled in the model by varying the volitiGR@signalSin Equation (6).
Using the same value &for both horizontal and vertical directions will uniformly alter
the size of a letter without altering the ratio of height to width (Figure 3.24). However,
Wann & Nimmo-Smith (1990) have shown that humans do alter this ratio when scaling
letter sizes; that is, vertical and horizontal sizes can be scaled independently. In their
experiment of size scaling, subjects were found to increase the horizontal (xX) component
of movement by 46% and the vertical (y) component by 78% (p. 111). Figure 3.25 shows
the result of a simulation in which differe@ROvalues Sare used for the horizontal and
vertical directions, with the x synergieSRO signalSxincreased 46% an8yby 78%,

relative to the value used during learning.

0 1 VX
Tt . . w1 5=0.15

0 B Vy

. i
VX

C Il Il Il Il 1 1 1 1 1 1 ] —

0 1 2 3 4 5 6 7 8 9 10 11 S - 0-6

or 0 Vy

Figure 3.24.Size scaling with isochrony. The dashed ldtierthe template curve traced
during learning with a baseline, size-scaliBBOsignalS= 0.3. S= 0.15 for the smaller,
solid| written by AVITEWRITE, ands = 0.6 for the larger, solid Both the large and the
smalll are written in the same amount of time, as seen in the x and y velocity profiles, Vx,
Vy.
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One noteworthy feature of human handwriting is isochrony; namely, the tendency for
shapes of different sizes to be drawn in the same amount of time. Isochrony is also a fea-
ture of the model’s performance, as seen in Figures 3.24 and 3.25. Humans are capable of
isochrony only for a limited range of sizes. Isochrony is observed at small sizes, but it
fails at large sizes; that is, the isochrony principle is valid within the “neighborhood of
normal letter heights (approx. 0.5 cm) [but the] writing time will increase at some point
where force demands become too high” (Thomassen & Teulings, 1985, p. 255). “Writing
time is not invariant across changes in writing size, but increases by a small amount”

(Wright 1993, p. 49).

VX

Figure 3.25.Independent scaling of horizontal and vertical components of size. The
small, dashed lettdris the template curve traced during learning with a baseline, size-
scalingGROsignal parameter§ = §, = 0.3. The two largdfs both have a $SROsignal

parametel§, = 0.53. The large, dash-dottéthas an XGRO signal ofS, = 0.44 corre-
sponding to the dotted x velocity profile, Vx, while the large, datidsS, = 0.53 with a
solid x velocity profile.

The human limits to isochrony may be due to the physical limitations of the hand/arm
system and/or to some limit of the central force-control mechanisms of the brain, as

exemplified in the extreme case of Parkinson’s disease patients who appear to have a
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“reduced capability to maintain a given force level for the [prolonged] stroke time peri-
ods” required when letter size is greatly increased (Van Gemmert et al., 1999, p. 685).
Note that size isot altered in the simulations during learning, since the current
model’s error correction system assumes the template curve is being traced. In a tracing
task, altering size would be interpreted as an error. Issues related to copying a shape from

a page or from a chalkboard are treated in the Discussion section.

3.4.7 Coarticulatory Context Effects in Handwriting

The writing of a cursive letter may be affected by adjacent, connected letters. Thomas-
sen & Schomaker (1986) demonstrate context effects which they assume are due to coar-
ticulation; that is, “anticipatory and overlapping instructions to the motor system” (p.
257). Coarticulation is the concurrent activation of muscles working toward different
goals. Different sets of muscles with separate goals can be working simultaneously, or
the same set of muscles can be receiving motor commands to carry out separate goals. In
the latter case, the muscles’ movements may be a summation or averaging of the com-
mands they receive. If conflicting commands are received, some muscles in a group
which usually work together toward a common goal may carry out one command while
other muscles in the group carry out other commands (Ohman 1965, pp. 166, 168;
Fowler et al. 1993, p. 179).

Thomassen & Schomaker (1986) find that “more rapid writers... display stronger con-
text effects than slower writers” (p. 257). This finding is consistent with the observed

increase in speedarryover coarticulatiorwith increases in speaking rate. “Carryover”
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Figure 3.26.Simulated combinations of the letterandl. Left: The lettersMiddle: x
and y velocity profiles, VX, VyRight: Tangential velocity, Vtan. See Table 3.2 b for data
derived from these figures and compared to human data from Greer & Green (1983) in

Table 3.2a.



87

(“perseverative”, “left to right”) coarticulation occurs when movement changes occur
after different initial conditions (Ostry et al. 1996). For example, starting to write the let-
ter | when the hand position is still at a higher vertical position on a precediogn-

stroke would cause a carryover coarticulatory effect on the trajectory of the movement
that would yield shape differences compared tbthat starts from an initial condition of

zero velocity at a lower vertical position.

In order to test the idea that some of the observed context effects in handwriting are
due to carryover coarticulation, connected letters were simulated with varying degrees of
overlap of the corresponding spectral memories. In other words, the degree of superposi-
tion between adjacent letters was varied. The lettargll were learned by the modelled
system (Figures 3.26a, 3.26b). The learned memory traces were then read out succes-
sively with varying degrees of overlap. It was found that some of the downstroke duration
and size effects observed by Thomassen & Schomaker (1986) could be replicated by
varying the degree of superposition between adjacent letters. In the simulation of the
string eele shown in Figure 3.27, the relative timing of the loading of the previously
learned letter memories was varied and the sizes of the letters were compared. The sec-
onde can be made smaller than the otlieiby increasing its superposition with the large
vertical upstroke of the following |, thereby cancelling a large part o€ tth@wvnstroke
(Figures 3.27b, 3.27c). Increasing the time separation between letters can eliminate the

coarticulatory size effects in the model, as seen in Figure 3.27a.
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Figure 3.27. (a) through (c): Simulateeklewith varying degrees of overlap between the
letters. Timing relations are as follows. (a) 6.6, 6.6, 7 (The second letter begins 6.6 time
units after the first; the third starts 6.6 after the second, and the fourth starts 7 time units
after the third, corresponding to the second Vx zero crossings shown in Vx Overlap.)
Vx,Vy Overlap show the overlapping velocity profiles of the individual letters. (b) 5, 5,

7; (c) 6.6, 5, 7; (d) Human writing @eleby two subjects (Figure (d) reproduced with
permission from Thomassen & Schomaker, 1986). The dotted y velocity profile, Vy, cor-
responds to the dottexkle

Greer & Green (1983) reported that each letter (e or | in their study) has its own char-
acteristic upstroke Vmax (maximum velocity) for a particular size. A characteristic

Vmax is a also a feature of AVITEWRITE performance, since the velocity profile for
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each letter is the result of learning. Thus, each time AVITEWRITE writes a given learned
letter, the same learned movement commands are used and the same velocity profile is
generated. Different letters have different characteristic Vmax’'s because of the different
sequences of error signals generated during their learning. As the size of a learned letter
is varied by changing th@ROsignal, the Vmax will also vary, and it will be characteris-

tic of that letter for that particular size.

(a) Experimental Context Effects (b) Simulated Context Effects
Upstroke Time to Upstroke Time to
Vmax Vmax
Letter type . Vmax Letter type . Vmax
(units/ (sec) (units/ (sec)
sec) sec)

singlee 7.8 0.094 single 7.8 0.094
ee firste 8.5 0.090 ee firste 7.8 0.094
ee secondce 10.0 0.070 ee seconce 9.6 0.038
el e 9.2 0.085 el e 7.8 0.094
singlel 17.2 0.116 singlé 11.7 0.097
Il firstl 20.0 0.100 Il firstl 11.7 0.097
Il: second 21.6 0.080 II: second 15.9 0.038
el: | 19.8 0.090 el: | 12.8 0.049

Table 3.2.(a) Context effects observed in human subjects (Adapted with permission from
Greer & Green, 1983) compared to (b) those observed for the connected letters simulated
by AVITEWRITE and shown in Figure 3.26. The AVITEWRITE data are scaled relative

to the experimental data for ease of comparison. The actual AVITEWRITE data, with
arbitrary units, can be obtained by dividing the simulated Vmax value by 16.25 and the
Time to Vmax by 0.0348.



90

Greer & Green (1983) found that it takes less time to reach the Vmax of the lse@cond
[l than inel (Table 3.2a). The AVITEWRITE simulations also yielded such a result (Fig-
ure 3.26; Table 3.2b). Greer & Green also report that upstroke Vmax is higher for a given
letter if it is written in a pair than if it is written alone. This effect also emerges for con-
nected letters in the present model, due to the superposition of the last stroke of one letter
and the first stroke of the following letter. However, such superposition implies that the
Vmax of the upstroke of the first letter is the same as if the letter were written alone (since
there is no preceding letter with which it is superposed) (Figure 3.26; Table 3.2). Greer &
Green state that there was no reliable effect of letter position on the size of the Vmax for
two repeated letterdl (or ee. However, the data shown in their article and reproduced in
Table (3.2a) consistently show the upstroke Vmax of the second letter to be larger than
that of the first letter for boteeandll, as was the case in the current model simulations
(Table 3.2b).

The focus of the data in Table 3.2 is the qualitative effect of letter position on Vmax
and the time to Vmax in both human subjects and model simulations. However, one may
note that there are quantitative differences between the human data and the model data
even when the model data are scaled relative to the human data. Most strikingly, the
Vmax of the modellis consistently smaller than that of the hurhafhe quantitative dif-
ferences between the model data and the human data are probably due to a variety of fac-
tors, such as the fact that AVITEWRITE does not have a detailed representation of a real
arm and its muscle dynamics. Further, the relative scales o #mel| learned by

AVITEWRITE may not be the same as those from the averaged| data from Greer &
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Green’s eight subjects. Greer & Green (1983) do not show the actual letters written by
their subjects. One possible explanation for the difference in Vmax between
AVITEWRITE's | and thd from the averaged human data, written in the same context, is
that AVITEWRITE’s| is not as large relative to tieeas thel written by the human sub-
jects. If the height of AVITEWRITE’S relative to thee were smaller than that of the
human subjects’ letters, then AVITEWRITE’s Vmax fomight be smaller than that
observed in the human data. Finally, the Vmax scaling discrepancy could also be attrib-
uted to the use of a step-functi®® signal, unlike that used in all other versions of the
VITE model (including VITEWRITE).

Although superposition of the strokes of adjacent letters, such that the initial condi-
tions for starting a given letter vary depending on the identities of adjacenti¢iizr s,

carryover coarticulatioris an appealingly simple explanation for the above context
effects, there are some data which it may not explain. Greer & Green (1983) found that it
takes less time to reach the upstroke Vmax fagiait is followed by anl than if it is fol-

lowed by ane. Carryover coarticulation in the present simulations does not predict this
result (Figure 3.26; Table 3.2b). One possible reason for the failure of simulataars of
ryover coarticulation to generate all the observed context effects is that some may be due
to anticipatory coarticulation. Anticipatory coarticulation, occurs when the current pat-

tern of muscle activity is influenced by a future context.
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Figure 3.28. Conceptual diagram of anticipatory coarticulation. Preparation of a future
movement may affect execution of a current one.

Some features of one written letter may be affected by the perception that another par-
ticular letter must be written following it:. “Anticipatory coarticulation is observed as a
result of differences in the composition of the upcoming sequence... Anticipatory coartic-
ulation is presumed to involve explicit adjustments to account for upcoming context,
whereas carryover effects have been attributed to articulator mechanics” (Ostry et al.,
1996, pp. 1570-71). Thus, it is possible that when Greer & Green (1983) found that it
takes less time to reach the maximum upstroke velocity ferifai is followed by anl
than if it is followed by anotheg, they had found an example of anticipatory coarticula-
tion in handwriting. Greer & Green (1983) hypothesized that this effect was due to the
allocation of a limited amount of time for the writing of a letter pair, requiring the first let-
ter to reach Vmax more quickly in order to allow time to change muscle force parameters
for the writing of a different, second letter. Thus, the subject would have to anticipate the
need for additional writing time for the second letter and increase the acceleration of the
first letter.

Finally, note that several additional factors may play a role in handwriting context
effects, such as: maintenance of a variable force level over time, as exemplified in Parkin-

son’s disease patients (Van Gemmert et al., 1999); processing demands of size and slant
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variations which can decrease movement speed and fluency (van Den Heuvel et al.,
1998); and memory loading effects, such as the longer reaction time for the first response

in a learned sequence relative to later responses (Sternberg et al., 1980; Verwey, 1996).

CHAPTER IV

DISCUSSION

4.1 Data from Human Experiments

Much experimental research has been done on adult human handwriting in the last two
decades. Among the reasons for this focus of interest are the following. Handwriting is a
focal point, or confluence, for several motor control problems, such as temporal sequenc-
ing of stroke order, decomposition of movements into target-driven segments, character-
ization of mental movement coordinate systems, and the role of sensory feedback for
motor planning. Handwriting studies allow these issues to be investigated in non-inva-
sive, inexpensive, and easily executed experiments on human subjects.

Data about the nature of strokes (Teulings et al., 1986a; Viviani, 1986), motor planning
of movements (Rosenbaum et al., 1995; Teulings et al. 1986b), size and speed control of
movements (Plamondon & Alimi, 1997; Schillings et al., 1996; van Galen & Weber,
1998; Wann & Nimmo-Smith, 1990; Wright, 1993), and motor equivalence (the preserva-

tion of movement characteristics when done by different end effectors) (Wright, 1990)
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are a small sample of the wealth of data available from adult humans. Since the focus of
this research is the learning of human handwriting, data on adult generation of previously
learned movements, such as letters, is necessary but not sufficient for the development of
a model which describes how handwriting movements are learned. Much practice of
novel movement patterns is required before children master handwriting. In addition,
many handwriting studies have been done with children in order to improve the teaching
of handwriting (see below). These studies reveal the progression of movement profi-
ciency over years of practice. The fact that handwriting performance can improve over
years of practice suggests that it is the result of cumulative learning from many individual
writing trials. Unfortunately, few scientific studies of either adults or children address
short-term changes in handwriting performance due to learning on individual movement
trials.
4.2 Insights from the Pedagogy of Handwriting

“What a pupil can see (or visualize) he can make” (Burns, 1962, p. 14). One of the
most important elements in the learning of handwriting is vision. Although adults can
generate good handwriting even with the eyes closed, “the child... is largely dependent on
his sense of sight for the correct formation of the letters...” (Freeman, 1914, p. 19). “In
striving to copy the forms of the letters, he keeps their appearance in mind as well as he
can and watches the letter which he is making in order to see when it deviates from the
model and to bring back the stroke when it goes astray. He follows the stroke bit by bit
with the eye, and it is his eye which seems mainly to “control” the stroke. After he has

made the various letters over and over he gradually learns how it feels to make them... and
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he finds it no longer necessary to follow the stroke minutely” (Freeman, p. 28). The
above guotation concisely describes the abilities of both a child and of the AVITEWRITE
model.

The learning of handwriting involves an ongoing comparison between the child’s
motor output and some desired output, which may be defined by a shape on a page or a
blackboard, or by a shape “visualized” in the child’s mind. Much classroom instruction is
designed to highlight to the child the differences between his written output and a desired
form. For example, Hendricks (1976) described an exercise in which a letter is projected
on a chalkboard. The child must write the same letter on the board. By turning the pro-
jector on and off over the child’s writing, the differences between the child’s writing and
the desired output can easily be seen.

Two issues immediately arise: The first issue concerns the distinction between contin-
uous error correction during movement versus correction of future movements after past
mistakes are brought to the child’s attention. Whereas an error is corrected upon detec-
tion during tracing, a child told after movement completion that a particular feature needs
to be changed in a particular way must try to remember this corrective information and
apply it (with varying degrees of success) to future movements at the appropriate time
during the course of the movement. Although one can envision a working memory linked
to a timing mechanism which sends a stored error vector to the learning system at the
appropriate time during a future trial, such a mechanism is not directly addressed by the
AVITEWRITE model. The model does, however, introduce working memory and timing

mechanisms which can form the foundation for such a competence.
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The second issue concerns the visual-to-motor transformations required to make cor-
rective movements during copying from a page, copying from a chalkboard, or imitation
of another person’s movements, as opposed to the tracing of a shape. The relevance of
this issue is emphasized by Burns’ observation that “copying from the board... is very
difficult at the earliest stages of beginning work” in the teaching of children. “Children
having their own copy of work to be done as “seatwork” would appear to be a more desir-
able practice” (Burns, 1962, p. 16). It therefore appears that the ability to visually
remember a shape seen elsewhere and use it to guide movement is a non-trivial task
which must develop in the child. The related task of comparing a writing trace to a tem-
plate which is visible next to it requires a visual-to-motor transformation which allows the
child to make, for example, a corrective movement to the right based on a template curve
located to the left of the workspace. Similarly, movements can be guided by observing
the movements of another person. “Imitation of a person [is] better than imitation of a
copy merely” (Freeman, p. 74). Further, Hayes (1982) and Furner (1983) found that stu-
dents’ verbalization of stroke sequences is superior as a teaching aid to visual demonstra-
tion (imitation), copying, or tracing alone. There are therefore several sources of input
which can be used to learn a handwriting movement. In the AVITEWRITE model, the
mode of information input to the cortico-cerebellar system, be it from tracing, desktop
copying, chalkboard copying, imitation (lacoboni et al., 1999), verbal instruction, or even
from sound error signals in the teaching of handwriting to the blind (Itoh & Yonezawa,
1990), is not the key focus of the modelling effort. Tracing a curve is one possible means

of learning handwriting, but it is not the only one. The idea that continuous muscle syn-
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ergy activations for curved movements can be learned through the use of appropriate
error/teaching signals to cerebellar spectra can be used for learning with several modes of
sensory information input, including those mentioned above. Studies addressing some of
the sensory-to-motor transformation issues which would be required for AVITEWRITE

to learn from different types of sensory information have previously been done by Guen-
ther et al. (1994). For simplicity and convenience, the teaching/error vectors which drive
the cortico-cerebellar movement learning in the model are generated by errors in tracing a

template curve.

4.3 Applicability of the Target Selection Algorithm to other Learning Strategies

In view of the multiple possible modes of sensory input during handwriting learning,
the target selection algorithm described in detail in the Equations section may not always
be directly applicable to them all. Further, the details of the computer algorithm used to
select targets are not intended to represent a brain process in detail. The computer algo-
rithm can evaluate potentially hundreds of points as potential targets by sequentially cal-
culating the changing distance from the line segrheftom thePPV to each possible
target (Figure 3.7), to the template curve being traced. AVITEWRITE does not mean to
suggest that the brain carries out such intensive serial calcuations each time a target must
be selected. Itis more likely that targets are chosen through a less computationally inten-
sive algorithm, based on the attentional radius aroun@fhéwhich keeps th&PV as
close as possible to the template curve. Thus, the basic ideas which AVITEWRITE's tar-

get selection algorithm attempts to capture should be useful in describing handwriting
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learning through tracing or through other means, such as imitation of a teacher’s actual
movements or copying of a letter from a page or chalkboard. In each of these different
means of sensory input, AVITEWRITE leads one to expect an attentional focus around
regions of the shape being imitated which shifts along the curve ahead of the hand posi-
tion. Further, AVITEWRITE’s target selection algorithm suggests that a person chooses
targets for movement at the extreme of the attentional focus in order to learn the move-
ment with fewer, less segmented strokes. The model also predicts that movements early
during learning are more segmented than movements later during learning. Further, it
predicts that movement duration over the course of learning decreases due to a combina-
tion of less segmented movements with shorter trajectories, as well as a larger amplitude

memory trace.

4.4 Size Variation During Learning

As mentioned in the Simulations section, varying the size of either the template curve
being traced or the trajectory generated by the model during learning would be perceived
by the AVITEWRITE system as movement errors since such size variation would cause
trajectory deviation from the attentional radius around the template curve. This problem
highlights the limitations of a model of handwriting learning that is based solely on trac-
ing. In the case of copying a letter from a page or chalkboard, there can be large size dif-
ferences between the original letter and the curves drawn by the person. AVITEWRITE
would require a size transformation from the visual difference vectors formed on the tem-

plate curve to those used to drive reactive movements and form climbing fiber error sig-
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nals in order to compare its own trajectory to a template curve of different size without
triggering inappropriate error signals due to size differences as opposed to shape differ-

ences.

4.5 Evidence for a Cerebellar Role in Handwriting

It is known that there is cerebellar activity during drawing, and that the cerebellum is
more active when lines are retraced than in new line generation because error detection
(deviation from the lines) occurs during retracing but not new line generation (Jueptner &
Weiller, 1998) (Figure 4.1). Since the cerebellum is more active during error corrections,
it is likely that climbing fibers are signaling movement error, leading to LTD of Purkinje
cell-parallel fiber synapses (Gellman et al., 1985; Ito, 1991; Ito & Karachot, 1992;
Oscarsson, 1969; Simpson et al., 1996).

The cerebellum may also be involved in more complex tasks, such as sequential move-
ments. It is known that there is a cerebellar role in procedural memory. In a sequential
button press task, lesions to the dentate nucleus cause deficits in learning and memory (Lu
et al., 1998). Further, Doyon et al. (1998) demonstrated through studies using a sequen-
tial finger movement task that the cerebellum and striatum are involved in the automatiza-
tion and long-term retention of motor sequence behavior. The AVITEWRITE model
shows how the cerebellum may be involved in learning a sequential handwriting task.
AVITEWRITE also shows how the cerebellum may encode movement velocity. It is
known that Purkinje cell simple spike discharge is direction- and speed-dependent (Coltz

et al., 1999a; Ebner, 1998). Simple spikes result from summation of excitatory postsyn-
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aptic potentials at parallel fiber-Purkinje cell synapses, across multiple Purkinje cell den-
drites (Ghez, 1991, p. 631). AVITEWRITE assumes that movement context information,
such as the movement direction and speed, is carried via the parallel fibers to the Purkinje

cell populations controlling particular muscle synergies.
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‘ Retrace Line
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Figure 4.1. (a) lllustration of the findings of Jueptner & Weiller (1998); The cerebellum
was found to be more active during line retracing than in new line generation. (b)
AVITEWRITE hypothesizes that climbing fibers are carrying error signals generated dur-
ing line tracing which are used to shape a cerebellar memory of the muscle synergy acti-
vations required to draw the line or curve.
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Further, complex spike discharge of Purkinje cells is “spatially tuned and strongly related
to movement kinematics” (Fu et al., 1997). A complex spike results when a single action
potential is carried to a Purkinje cell via a climbing fiber, triggering a large Purkinje cell
action potential followed by a high-frequency burst of smaller action potentials (Ghez,
1991, p. 631). In AVITEWRITE, the climbing fiber inputs act as error-correcting signals
which train Purkinje cells that control particular muscle synergies to become hyperpolar-
ized at the appropriate times during movement. AVITEWRITE therefore assumes that
the climbing fiber signal is dependent on the direction and amplitude of a required correc-
tive movement. The required corrective movement is different from, and possibly in the
opposite direction to, the actual movement of that particular muscle synergy, which is
reflected in simple spike activity. In fact, Coltz et al. (1999b) have found that complex
spike discharge is direction- and speed-dependent, and that it is related to directions oppo-
site those of the corresponding simple spikes, and to speeds different from those of the
simple spikes. This appears to be further evidence that climbing fibers transmit a move-
ment error signal. The model suggests how, using a spectrum of phase-delayed Purkinje
cell activations based on adaptive timing mechanisms, learned cerebellar outputs may

code movement gain and velocity.

4.6 Continuous versus Discrete Error Signals
The error/teaching signals sent to the cerebellar spectra in the AVITEWRITE model
are continuously changing signals based on the time-varying value of the difference vec-

tor from the current hand position to the target. However, complex spikes triggered by
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real climbing fiber signals have an average frequency of 1 Hz (Ghez, 1991, p. 632), with
an increase to about 6 Hz which lasts approximately 500 msec when a monkey initially
reaches toward a target or changes the direction of an ongoing movement from one target
to a new target (Bloedel, 1994, pp. 71-72; Mano et al., 1986). In terms of the
AVITEWRITE model, these observations suggest that the difference vector-based error
signal should only be sent to the cerebellar spectra for a short time following the forma-
tion of the difference vector to a target. Although such simulations were not attempted
for the current model, it should be possible to adjust the AVITEWRITE model to learn to
write even with shorter lasting error signals. Two factors would allow such learning.
First, the cerebellar spectral components span overlapping periods of time, so that an
error signal arriving at time t and lasting until time A+t would alter the weights of all
spectral components that are active during that time interval. Since those spectral compo-
nents may remain active beyond the time& + t when the error signal is shut off, a short
error signal may affect movement beyond the termination time of that error signal. Sec-
ond, Equation (3) for the cerebellar synaptic weights contains a parameter, , which
scales the size of the climbing fiber error signal. Increasing the size of this parameter
should allow an error signal of short duration to have an effect on the synaptic weights
that is comparable to a prolonged error signal with a smaller valae of . In these ways,

the AVITEWRITE model could be altered to utilize more realistic climbing fiber signals.
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4.7 The Biochemistry of Spectral Timing

Fiala et al. (1996) hypothesized that the varying concentration of dendritic metabotro-
pic glutamate receptors (subtype mGIuR1) across the population of Purkinje cells allows
adaptively timed LTD. They suggested that a spectrum, or series, of time-delayed cal-
cium release patterns occurs across the Purkinje cell population in response to parallel
fiber-induced activation of mGIuR1. Since different cells may have different concentra-
tions of MGIuR1 just outside the synaptic junctions with parallel fiber terminals, the cells
may have different temporal patterns of calcium release over time. Cells with greater
concentrations of mGIuR1 will exhibit faster calcium release than cells with smaller con-
centrations of mGIuR1. In other words, they may have a “spectrum” of calcium release
with a corresponding spectrum of potential changes (depolarizations).

The spectrum of calcium release over a time span of up to four seconds (Fiala et al.,
1996, p. 3768) allows pairing of timed, Purkinje cell inhibition via long term depression
with a conditioned stimulus. Timed inhibition of Purkinje cells disinhibits the cerebellar
interpositus nucleus, allowing a movement response to be made at the appropriate time.
The sequence of events posited by Fiala et al. (1996) to allow timed long term depression
of Purkinje cells is outlined as follows. mGIluR1 activation is responsible, via a chain of
biochemical events (Figure 4.2) involving inositol 1,4,5-trisphosphatg, @iacylglyc-
erol (DAG), and release of intracellular calcium stores, for the phosphorylation and inac-
tivation of AMPA receptors. Phosphorylation of a?€adependent K channel protein

(gk) increases the conductance of the associatechKnnel (Fiala et al., 1996, p. 3765).

If mMGIuR1 alone is activated, then protein phosphatase-1 (PP-1) competitively dephos-
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phorylates, and reactivates, the AMPA receptors and reduceg tenductance. The

AMPA receptor will therefore maintain an equilibrium level of activation allowing

AMPA-mediated Excitatory Post-Synaptic Potentials (EPSPSs) in response to parallel fiber

inputs. The C%f'—dependent potassium channel will remain closed, thereby preventing

hyperpolarization.
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Figure 4.2. Biochemical processes mediating learning of a timed response in cerebellar
Purkinje cells. (Reproduced with permission from Fiala et al., 1996.)

If a climbing fiber input arrives at the Purkinje cell, another chain of biochemical

events occurs which inhibits PP-1. If the climbing fiber input arrives during the period of
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heightened calcium concentration which follows parallel fiber-induced mGIuR1 activa-

tion, then the AMPA receptors ang gemain phosphorylated. The Purkinje cell is there-

fore hyperpolarized after a delay due to the transierff” Gelease’s effect on the

C&*-dependent K channel and AMPA-mediated EPSPs are suppressed. This is how the
model of Fiala et al. (1996) proposes that long term depression of the Purkinje cell occurs.
Assuming that there is a spectrum of mGIuR1 concentrations across the Purkinje cell
population, then calcium release following parallel fiber-induced mGIuR1 activation will
peak at different times in different Purkinje cells (PCs). Hyperpolarization (and LTD)

will therefore occur to a varying degree in different PCs depending on the intracellular
C&* concentration at the time of climbing fiber activation (Figure 2.8a). In their model,

Fiala et al. (1996) suggest that the intracellula&f’@ancentration at the time of climbing
fiber activation is a function of the PC’s mGIuR1 receptor concentration. PCs with higher

calcium concentrations at the time of CF input arrival will have correspondingly higher

degrees of hyperpolarization and LTD. PCs whos& €ancentration has returned to
baseline by the time the CF input arrives will not experience any LTD.

Key aspects of the metabolic cascade for Purkinje cell LTD that was predicted above
have since been confirmed by Finch & Augustine (1998) and Takechi et al. (1998). In
particular, Takechi et al. (1998) reported that parallel fiber-PC “synaptic Ca2+ transients
are mediated by activation of metabotropic glutamate-responsive mGIluR1-type receptors

and require... [If] -mediated Ca2+ release from intradendritic stores” (p. 757). Finch &

Augustine (1998) found that “repetitive activation of the synapse between parallel fibres
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and Purkinje cells causes InsP3j]IPmediated Ca2+ release in the Purkinje cells...
[which is] restricted to individual postsynaptic spines, where both metabotropic glutamate
receptors and InsP3 receptors are located, or to multiple spines and adjacent dendritic

shafts” (p. 753). Further, they found that fduses prolonged depression of parallel

fiber-PC signals which is “limited to synapses where the Ca2+ concentration is raised” (p.

753).

4.8 Motor Equivalence

The term “motor equivalence” refers to the observation that humans can perform tasks
that were learned with one end effector using other end effectors. A common example of
motor equivalence is signing one’s name with a pen held in one’s toes or even in one’s
mouth. In this example, the task of signing, learned using a hand, is performed strikingly
well using a foot or the mouth. The style of the signature is often recognizable as belong-
ing to a particular writer, even when it is written with the foot or mouth. In its simplest
form, motor equivalence suggests that there is an abstract, effector-independent represen-
tation of the movement in the brain.

However, the matter becomes more complex when one considers the additional obser-
vation that movements learned using the dominant hanabéareproduced as accurately
using the non-dominant hand or foot. Further, the style of the writing using a non-domi-
nant hand or foot is not easily recognized as belonging to a given writer when compared
to writing by the dominant hand or foot. A quantitative study of the writing of dominant

versus non-dominant end-effectors was done by Wright (1990). He found that there were
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significant differences between the writing of the dominant end-effector and the non-
dominant one, implying the existence of separate motor programs for right and left limbs.
Based on these findings, one hypothesis is that the motor program, learned over many
years of practice for a given hand, must undergo a coordinate transformation in order for
it to be used for the contralateral, anatomically “reversed” limb. The coordinate transfor-
mation is imperfect, and the imperfections result in the observed differences in the writing
of left and right end-effectors. In the case of writing with the ipsilateral hand or foot, the
coordinate transformation is less complex since the homologous muscles require no
reversal of motor commands.

Evidence for either an abstract, effector independent representation of a movement,
and/or a coordinate transformation from one effector to another was found by Rijntjes et
al. (1999). The authors found that the regions of premotor cortex involved in a learned,
hand movement task were also active when the ipsilateral foot carried out the learned
movement, but not when the foot engaged in a spontaneous, unlearned movement. Thus,
either an abstract set of learned motor commands or “movement parameters” is stored and
used for the hand and foot, or else a hand-specific motor memory is undergoing a coordi-
nate transformation in order to allow the foot to benefit from the learned hand-movement
information.

How does AVITEWRITE deal with the issue of motor equivalence? Evidence sup-
ports a muscle/synergy specific cerebellar control system (Rispal-Padel, 1993; Thach et
al., 1993; Welsh & Llinas, 1997). Thus, the cerebellar muscle control signals learned by

the model would apply only to the muscle synergies involved in learning the handwriting
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task. What happens to the control signals which are sent to the cortex from the cerebellar
memory when a writing task must be accomplished by the foot? Do they undergo a coor-
dinate transformation so that the foot can benefit from the movement learned by the hand?
AVITEWRITE does not explicitly analyze the roles of cortical regions in sensory-motor
coordinate transformations. However, artists who draw by holding a brush in a foot or in
the mouth, possibly due to hand or spinal cord injury, may develop additional skill over
years of practice. AVITEWRITE suggests that spectral learning specific to the muscle
synergies required for mouth or foot-mediated drawing could allow such performance
improvement over time.

The above discussion of motor equivalence also raises the issue of the coordinate

scheme in which AVITEWRITE operates. The visual difference veElgyg are in spa-

tial/cartesian coordinates corresponding to planar hand movements. The cerebellar out-
put to the muscle synergies should be in motor coordinates, but it appears to be in spatial
coordinates in AVITEWRITE since it is combined, after temporary storage in the spectral
working memory buffer, witlbV,q in the size-scaled, memory enhanced difference vec-

tor, DVg  AVITEWRITE omits explicit modelling of the spatial-to-motor coordinate
transformations that would be needed to convert botibWg and the climbing fiber
error/teaching signals to motor coordinates since such transformations have been
addressed in previous work, such as the sector maps of saccade error correction in Gross-
berg and Kuperstein (1986, pp. 66-68), the DIRECT model of motor equivalent reaching
and tool use of Bullock et al. (1993a), and the DIVA model of speech production (Guen-

ther et al., 1998; Callan et al., 2000).
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4.9 Teaching versus Correction

One potential source of confusion in the AVITEWRITE model is the use of climbing
fiber “error” signals to learn movements when no errors have yet been committed. For
example, on the first learning trial in the model simulations, there is no pre-existing cere-
bellar memory for a given shape. As the reactive movement is made toward a target, what
triggers the climbing fiber activity even if the reactive movement generates no error?
Although evidence exists for a role of climbing fiber signals in error correction (Gellman
et al., 1985; Ito, 1991; Ito & Karachot, 1992; Oscarsson, 1969), no experiments have yet
been done to differentiate climbing fiber “error” signals from possible climbing fiber
“teaching” signals which may arise prior to error commission. The model assumes that

the Difference Vector to a visual target acts like a teaching signal whenever it occurs.

4.10 VITEWRITE and AVITEWRITE: Some Differences
In order to avoid potential confusion among readers familiar with the VITEWRITE

model of Bullock et al. (1993b), several of the key differences between AVITEWRITE
and VITEWRITE are highlighted here. The first difference which should be apparent is
that AVITEWRITE is adaptive. It can learn to generate the strokes for particular letters
which needed to be predefined through Planning Vectors in VITEWRITE. If VITE-
WRITE had been capable of learning and remembering how to write letters, then the
sequence of Planning Vectors would have constituted its memory.

AVITEWRITE's ability to learn came at the price of greater system complexity and the

need for a large memory capacity relative to VITEWRITE. One advantage of VITE-
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WRITE was that relatively few Planning Vectors were required to represent a letter. For
example, VITEWRITE would require only five Planning Vectors (three for the x synergy
and two for the y synergy) to represent the movement amplitudes and directions for the
letter . In contrast, AVITEWRITE’s spectra use approximately 200 Purkinje cells to
store the synergy activations to write the letteFurther, the spectral working memory
buffer used to transiently store spectral output and read it out at a speed-dependent rate
may store up to about 135 values of the spectral output (Figure 3.9). AVITEWRITE’s
larger memory capacity is needed because it learns and stores continuous, time-varying
information about muscle synergy activation which must be read from memory through-
out a given movement. However, the pattern of synergy activation in VITEWRITE arises
from the interaction of a discrete number of Planning Vectors and integrated Movement
Vectors with a gradually increasit@®O signal. Thus, VITEWRITE stores the pattern of
muscle synergy activation implicitly as abstract Planning Vectors that are used to form a
relatively small number of widely-spaced targets for movement. AVITEWRITE stores
the pattern of muscle synergy activation explicitly as synaptic weights which yield a con-
tinuous, time-varying pattern of Purkinje cell potentials. It then uses this continuous
memory signal to form many closely-spaced targets for the movement.

The nature of th&O signals used in the two models also differs. In AVITEWRITE, a
fast rising, effectively binariO signal is used which is reset at the start of a given syn-
ergy’s activation. When opponent synergies switch control of a movement, the@the
signal is shut off for the prior synergy and turned on for the current synergy. During visu-

ally guided movements, when particular regions of the letter have been reached, such as
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intermediate stopping points in segmented letens Figure 3.10m, w, etc.) or the end

of the letter, then th&O signal for all synergies is reset if the movement velocity is below

a threshold value or a direction reversal occurs. If visual feedback were lacking, then a
proprioceptive, velocity-depende@®O reset rule could be used (such as resetBQy

when the tangential velocity is below a threshold value and the acceleration is negative).
In AVITEWRITE, GO reset does not explicitly cause memory readout either from the
spectra or from the spectral working memory. It is the speed of movement, determined
by the size of th&O signal, which affects the rate of readout from the spectral working

memory by changing the rate at which the memory-modulated tarbeis,, are

reached.

In contrast, VITEWRITE uses a gradually and indefinitely increds®@gignal which
is reset for a given synergy when movement velocity returns to zero upon completion of a
planned DV component. Furth&Q reinitiation is linked to readout of the next Planning
Vector. In VITEWRITE, movement ends and B® signal is shut off when the last tar-
get, derived from the Planning Vector, has been reached.

In summary, what VITEWRITE lacks relative to AVITEWRITE is the ability to learn.
What AVITEWRITE lacks relative to VITEWRITE is memory sparseness and architec-
tural simplicity. Future directions for research include making AVITEWRITE more sim-
ilar to its predecessor with regard to these two attributes. The cerebellar-cortical learning
model of Rhodes and Bullock (Rhodes, 2000) is relevant here because it treats sequence
learning while assuming only a small capacity motor working memory. However, it has

not been applied to handwriting acquisition.
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4.11 Handwriting Models: General Overview

As the human handwriting database has grown, so too has the number of models which
attempt to replicate and/or explain the human data. Two general methodologies of hand-
writing modelling become apparent from a review of the literature. The first methodol-
ogy focuses on computational models which attempt to replicate features of human
handwriting, such as velocity and acceleration profiles, and relations between different
aspects of the movement dynamics, such as curvature and angular velocity. Plamondon
and Maarse (1989) refer to such models as exemplifying the “bottom-up” approach to
handwriting modelling. Such bottom-up models include optimization models (Edelman
& Flash, 1987; Flash & Hogan, 1985; Wada & Kawato, 1995) which minimize perfor-
mance measures such as the third and fourth time derivatives of position or the change in
torque, and oscillator models (Hollerbach, 1981; Saltzman & Kelso, 1987; Singer &
Tishby, 1994) which combine various velocity sinusoids to yield different movement
shapes. More recently, Plamondon and Guerfali (1998) describes a “delta-lognormal”
model which defines movement velocity as a Gaussian, or normal, function of nine motor
system parameters. Some bottom-up models adequately fit various constraints imposed
upon them by the human movement data. Unfortunately, most bottom-up models make
only passing reference to biological implementation of the computational system. The
goal of bottom-up models is to “produce handwriting forms and not to simulate the psy-
chomotor process” (Plamondon & Maarse, 1989, p. 1062). Little if any explanation is
usually given of how the human brain may carry out often intensive calculations that

require global knowledge of an entire planned movement trajectory, as in the optimization
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models. Further, most bottom-up handwriting models describe static systems, with no
ability to adapt to changes over time through learning.

The second methodology of handwriting modelling focuses on psychologically
descriptive models (Ellis, 1982; Kellogg, 1996; van Galen, 1991; van Galen et al., 1986).
These “top down” models usually summarize many of the requirements of a handwriting
system by addressing as much data as possible. Thus, they do address such issues as
learning, movement memory, planning, and sequencing, coarticulatory and task complex-
ity effects of strokes, etc., which are often omitted from bottom-up models. However,
most top-down models provide no mathematical description of their words and do not
attempt computer simulations to verify that their proposed systems can actually perform
the tasks they claim.

AVITEWRITE attempts to unify the two approaches to handwriting modelling
described above by addressing both the psychological and neurobiological constraints on

the task of learning to write.

4.11.1 Summary and Critique of Some Representative Models

Hollerbach (1981) described the handwriting process as a system of coupled, horizon-
tal and vertical direction oscillators superimposed on a rightward horizontal movement of
constant velocity. He used such a system to generate various cursive writing trajectories,
and was able to modify size and slant of the shapes by modifying frequency and ampli-
tude relations in the oscillatory system. Although Hollerbach did not explicitly address

speed scaling, one could imagine that altering the “constant” velocity horizontal progres-



114

sion along with some frequency changes in the oscillators would allow speed scaling.
Whether such speed scaling could be accomplished with relative shape invariance is an
open question. His model assumed the existence of some baseline oscillations, reminis-
cent of shape primitives (Edelman & Flash, 1987; Morasso, 1986), upon which sequences
of modulations are imposed to generate specific shapes. Hollerbach suggested that motor
programs, stored movement commands resulting from learning, consist of stored
sequences of phase and amplitude modulations of the fundamental oscillatory process.

Hollerbach’s model is clearly a “bottom-up model”, since it deals with trajectory for-
mation while avoiding such issues as cognitive representations of allographs or the details
of motor learning. Indeed, unless noted otherwise, none of the representative models dis-
cussed herein deal with the learning of handwriting. As attractive as Hollerbach’s model
is in its conceptual simplicity, it fails to provide a bridge between target-driven reaching
movements and the different, yet related, hand movements of writing. Further objections
to the idea of oscillatory motor control are raised by Schomaker et al. (1989) and include
the observation that humans have difficulty generating simple repetitive letter patterns for
longer than two seconds without errors, and that discrete stroke-to-stroke size and timing
variations occur often in handwriting.

Edelman & Flash (1987) presented a bottom-up model of trajectory formation based
on dynamic minimization of the square of the third (jerk) or fourth (snap) derivative of
hand position. The version which minimizes snap is reported to yield better correlation
with human experimental data. The model assumes that all letters are formed by a con-

catenation of shape primitives, such as “cup”, similar to a letter U, and “oval”, like a letter
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O. Further, the model generates each stroke primitive by use of a viapoint, an intermedi-
ate target prior to the end of the stroke. The model output is compared to human experi-
mental data, and strong correlations are reported between model-generated position,
velocity, and acceleration traces and the human counterparts. The inverse relation
between movement velocity and curvature seen in human writing is demonstrated by the
model. The use of numerical estimations of the degree of fit to the data is emphasized and
contrasted with the purely subjective fit estimates in some models.

Unfortunately, no discussion is given of how a human is expected to actually minimize
the fourth, or even the third derivative of hand position across an entire movement trajec-
tory. Golgi tendon organs measure muscle tension (Gordon & Ghez, 1991). Further,
Matthews (1972) showed that muscle receptors sensitive both to the length of the muscle
and to the velocity of stretching exist. Thus, the first derivative of hand position is proba-
bly available to higher motor control centers. However, evidence supporting neural com-
putation of higher derivatives of hand position is lacking. Is jerk or snap minimization
merely an epiphenomenon of human trajectory planning? Finally, the shape primitives
and corresponding viapoints are chosen arbitrarily in this model.

Schomaker et al. (1989) presented a production system model of handwriting with
both top-down and bottom-up elements. The top-down elements include internal abstract
categories of allograph symbols, as well as punctuation and “blanks” to drive horizontal
movement. The bottom-up portion generates planar target trajectories of the pen-tip. The
model is based on stroke chaining, in contrast to the continuous movement generation of

Hollerbach (1981). A stroke is defined as a “combined acceleration plus deceleration
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movement unit for a spatial axis in Cartesian space” (p. 157) with a near sinusoidal veloc-
ity profile. Unfortunately, no explanation is given of the manner in which humans gener-
ate such velocity profiles. Further, the model assumes “locked” x and y velocity
commands, in contrast to findings showing independent x and y velocity scaling (Wann &
Nimmo-Smith, 1990; Burton et al., 1990). Finally, Schomaker et al.'s model is descrip-
tive but not predictive for the following reason. The model requires that the stroke dura-
tion for generating a particular curve be specified in advance of the movement. The
authors obtain the stroke duration by analyzing previous samples of that movement.
Thus, their trajectory generation system is circular, in that a movement must already have
been completed in order to obtain a key parameter required for the model to generate that
movement.

Van Galen (1991) presented a top-down description of the handwriting task without
attempting actual trajectory generation. Based on various psychophysical data, a hierar-
chical architecture consisting of processing modules, ranging from the intention to write
through muscular adjustments, and memory storage buffers for each module was pre-
sented. Evidence suggesting concurrent long-term memory retrieval and short-term stor-
age of multiple upcoming strokes (p. 180) led Van Galen to hypothesize that the “output
from each [processing module] stage is transiently stored in working memories... [t0]
accommodate for time frictions between information processing activities in different
modules... A processor lower in the hierarchy can read information from the buffer with a
unit size which is appropriate for that stage” (p. 182). Van Galen further hypothesized

that the letter forms are stored in long-term memory as spatial codes for guiding the writ-
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ing movement, whereas handwriting size and speed are monitored in a separate stage.
These hypotheses are relevant to the proposed AVITEWRITE model. The accommoda-
tion of “time frictions” mentioned above is consistent with the mechanism for speed scal-
ing in the AVITEWRITE model.

The paper of Morasso and Sanguineti (1993) is a rare attempt to computationally
explain some top-down cortical phenomena in handwriting, which also demonstrates how
reaching and handwriting movements may be learned and generated by a common corti-
cal mechanism. The authors developed SOBo0S, a self-organizing body schema (a cortical
feature map) which is capable of “learning, during exploratory movements, ...motor to
sensory transformations” (p. 219). Motor planning is accomplished by minimizing the
task constraints using a gradient descent search across the cortical neural field. Learning
occurs through the application of a Hebbian learning rule to the “neighborhood of the res-
onant element” (p. 221); that is, to the group of cells most activated by a particular sen-
sory input pattern.

Since reaching experiments have shown that intermediate positions of the end-effector
“must be generated by the motor planner in addition to the final one” (p. 226), the authors
assumed that motor programs consist of sequences of targets, or via-points. Via-points
are smoothly joined by nonlinear movement integration to the target, reminiscent of the
VITE model (Bullock & Grossberg, 1988a, 1988b, 1991) described earlier. As in the
VITE model, realistic, asymmetric velocity profiles are generated using a speed-control-
ling GO signal, defined by Morasso and Sanguineti (1993) as a smoothly growing and

decaying Difference of Sigmoids (DOS). The authors believe such a DOS to be “more
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plausible for supporting the smooth chaining” of strokes than the “digital control that
shuts off theGO signal ...in the VITE model” (p. 227).

The only trajectory simulations presented by these authors are a few curves with asym-
metric velocity profiles. No mechanism of via-point selection or sequential learning was
presented. Finally, the model is mainly a cortical model, with brief reference to the basal
ganglia in regard to the O signal. No use is made of cerebellar processing, although the
authors claim that the model can “initiate actual movements by supplying the cerebral
motor cortex and the cerebellar cortex with the necessary planning patterns” (p. 233).

A further development of the dynamic optimization and via-point approach to bottom-
up handwriting modelling is presented by Wada and Kawato (1995). The two main inno-
vations of their model relative to earlier optimization/via-point models are the use of
torgue minimization as a trajectory criterion as well as a system for choosing and optimiz-
ing the number of via-points needed to regenerate a given shape with a particular error
threshold. Although the authors believe that either a minimum muscle-tension-change or
a minimum motor-command change criterion for trajectory formation would be a “bio-
logically more plausible model” (p. 4), they use the minimum torque-change criterion for
simplicity and ease of simulation. They also note that a minimum jerk model in joint
angle space (Flash & Hogan, 1985) is equivalent to the minimum torque-change model
when arm dynamics are linearly approximated.

The first difference between Wada & Kawato’s torque minimization approach and pre-
vious minimum jerk models is the use of a “biologically plausible neural network” to

achieve torque minimization, as opposed to the “implausible” matrix inversion required
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of the spline method of jerk minimization. The second difference is the use of a via-point
selection algorithm which chooses via-points to minimize the sum of the square error
between a template trajectory and the model's output. Via-points are iteratively added to
the movement path by defining the points at which maximum deviation from the template
trajectory occurs as via-points. The error-threshold at which a point is added to the list of
via-points can be modified to alter the accuracy of the model’s trajectory.

Such a flexible error-threshold is reminiscent of the type of attentional mechanism
which determines the accuracy of a movement in the AVITEWRITE model. The via-
point selection algorithm is suggestive of a possible learning mechanism which iteratively
stores an increasing number of via-points until a shape representation of desired accuracy
is obtained. However, Wada & Kawato’s model must complete an entire trajectory to a
final target before the global trajectory information is available for their algorithm to
choose a via-point. For example, their algorithm would make a straight line from the
starting point of a letter “U” to the last point of the letter on the first trial of via-point
selection. Thus their system is designed to make gross errors, approximating a U with a
straight line, on its early trials. In other words, their via-point selection algorithm maxi-
mizes error in order to choose via-points. A more biologically reasonable approach
would be to choose via-points so as to minimize error, just as targets are chosen by
AVITEWRITE. Wada & Kawato demonstrated that their model can reproduce a given
series of letters. However, no discussion was given of the model’s ability to match other
human performance data, such as velocity profiles or an inverse relation between curva-

ture and tangential velocity.
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Plamondon & Guerfali (1998) presented a bottom-up handwriting model using “delta-
lognormal synergies”. This name refers to the authors’ definition of the velocity of a
muscle synergy as a Gaussian function of the movement parameters that varies logarith-
mically with time. It is therefore not surprising to find that the model generates Gaussian,
bell-shaped velocity profiles similar to human bell-shaped velocity profiles. The model
uses superposition of strokes toward “virtual” via-points to generate continuous curves.
As in Schomaker et al. (1989), Plamondon & Guerfali (1998) suggest that stroke timing is
crucial in determining trajectory shape. However, as in Schomaker et al. (1989), no
mechanism to learn and store such timing relations is described. One noteworthy feature
of the Plamondon & Guerfali model is that the via-points are not necessarily ever reached.
A new stroke may be launched toward a via-point in a different direction and superim-
posed on the prior stroke so that the first “virtual” via-point is not reached. The authors
suggest that the subject is able to predict the amount of time it would take to reach a via-
point. “The next stroke can thus be initiated before the completion of the current one, as
though this latter stroke had been completed and its target had been reached” (p. 121).
But how does the subject know when to launch the next stroke in order to generate a par-
ticular shape? Instead of choosing a via-point which is far away and does not need to be
reached in order to generate a particular shape, why not choose a closer via-point and
reach it?

The authors demonstrate an impressive fit between the model output and human data.
Shape and tangential and angular velocities generated by the model are very close to

those of human subjects. Further, the Two-Thirds Power Law relation between angular
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velocity and curvature is demonstrated for the limited range of elliptical movements for
which the law accurately describes human handwriting. Size changes are simulated by
increasing the values of muscle synergy agonist and antagonist activation proportionally
so that movement duration is kept constant. Writing slant can be modified by uniformly
translating virtual via-point positions. Movement duration can be altered by changing
agonist and antagonist activations while keeping individual stroke length constant. The
authors state that there will be a loss in spatial precision as stroke duration is reduced.
However, human handwriting speed can be varied by a factor of about 2.8 with only small
shape changes (Wright, 1993). Plamondon et al. do not address this relative shape con-
stancy over such a wide range of speeds. Finally, it should be noted that the excellent per-
formance of the delta-lognormal model resulted after optimizing the model parameters
and timing for each stroke to fit the curvilinear velocity and angular velocity traces of the
human data.

It would be of interest to determine whether the trajectories and velocity profiles gen-
erated by AVITEWRITE could be accurately described by the delta-lognormal model
which has yielded such good empirical fits to human curved trajectories. However, as
noted previously in section 3.4.7 when describing the quantitative differences between the
maximum letter upstroke velocity of Greer and Green’s (1983) human subjects and the
corresponding maximum velocity for AVITEWRITE'’s letter AVITEWRITE lacks a
detailed description of an arm and uses a simplified central representation of arm muscle
synergies, thereby raising doubt about its ability to accurately predict features of muscle

dynamics during movement. Since it is not clear what features of human curved move-
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ments allow for the delta-lognormal description’s accuracy, it is difficult to predict
whether AVITEWRITE’s performance could be described by the delta-lognormal rule.

Testing this possibility is one area for future research.

4.11.2 The Cerebellar Reaching Model of Barto et al. (1999)

A model similar in several respects to the current handwriting model was described by
Barto et al. (1999). In their model, the authors describe a simplified cerebellar system for
learning to reach to a target, utilizing climbing fiber error feedback to train the system to
avoid target overshoots or undershoots. Barto et al. state that “the central control prob-
lem... is to terminate the... command sent to the agonist muscle at an appropriate time dur-
ing the movement” (p.566). However, they also believe that “the dynamics of the stretch
reflex [in the antagonist muscle] should then bring the movement to a halt at a desired
endpoint” (p. 566). Although the stretch reflex may be sufficient to stop the movement
for a simple reaching task (Ghez & Martin, 1982), it is insufficient to learn the direction
reversals required for curved writing movements. Thus, not only must the agonist muscle
command be terminated at the appropriate time, but the antagonist muscle command must
be started at the appropriate time for curved writing movements. Such appropriately
timed synergy switching is an important part of the AVITEWRITE handwriting learning
model, and is detailed in the Model Description section.

Whereas AVITEWRITE attempts to unify features of an attentive cortico-cerebellar-
basal ganglia system whose patterns of synergy activations may be modified through

learning by populations of Purkinje cells (PCs), Barto et al.'s reaching model joins
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together a spring-mass system to represent the limb motor plant with a single Purkinje
cell. Thus, the Barto et al. model has more bottom-up components than the present
model. It also has a greater focus on the synaptic connections of the single Purkinje cell
modelled, including 2000 mossy fibers which are recoded into 40,000 binary parallel
fibers that synapse on the modelled Purkinje cell. Since AVITEWRITE uses populations
of Purkinje cells to represent complex movement sequences, it simplifies the representa-
tion of the synaptic connections to individual Purkinje cells. The 40,000 parallel fiber-
Purkinje cell (pf-PC) synapses are represented by a single synaptic weight for each of the
200 to 400 Purkinje cells involved in the writing of a typical letter by the model.

One assumption common to both Barto et al.'s reaching model and the present hand-
writing model is that the pattern of long term depression learned by the Purkinje cell(s)
causes a pattern of disinhibition of the cerebellar nuclei. The cortico-rubro-cerebellar
network is represented in the reaching model as “simply an inverting mechanism that con-
verts the inhibitory output of PCs into a positive command signal” (Barto et al., 1999,
p.570). Such a representation is equally applicable to the AVITEWRITE model and the
earlier spectral timing model of Fiala et al. (1996). Thus, the bell-shaped patterns of cer-
ebellar memory activity shown in Figures 3.10 and 3.14 represent patterns of Purkinje cell
long term depression summed across the Purkinje cell population. The pattern of PC
activity inhibition leads to a pattern of disinhibition at the cerebellar nuclei.

Barto et al. also address the problem of delayed error feedback. “The training informa-
tion in the form of CF activity is significantly delayed with respect to the relevant DZ

[Purkinje cell Dendritic Zone] activity due to the combined effects of movement duration
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and conduction latencies” (p. 11). To cope with this problem, they adopt Klopf’'s (1972,
1982) hypothesis of synaptic eligibility traces. “Appropriate activity at a synapse is
hypothesized to set up a synaptically-local memory trace that makes the synapse “eligi-
ble” for modification if, and when, the appropriate training information arrives within a
short time period” (p. 574). They compute the eligibility by simulating a second-order
linear filter, with binary inputs whose impulse response rises quickly and then decays
slowly after a “triggering event” (analogous to the conditioned stimulus in Fiala et al.,
1996). “A synapse is therefore maximally eligible 255 ms after the triggering event and
becomes effectively ineligible approximately 2 sec later, assuming no additional trigger-
ing events occur” (p. 575). The parallel fiber/PC synaptic weights are then modified in a
manner proportional to the synapse’s eligibility trace.

The idea of an “eligibility trace”, allowing synaptic modification over a relatively pro-
longed period of time after a parallel fiber input, is strikingly similar to the spectrum of
delayed Purkinje cell activations after a conditioned stimulus (CS) hypothesized in Fiala
et al. (1996), and incorporated into the AVITEWRITE model. As seen in Figure 4.3, even
the shape of the eligibility trace is qualitatively similar to a Purkinje cell activation
response as simulated using the Fiala et al. (1996) model equations. The key difference is
that Barto et al.'s eligibility trace occurs at the level of an individual synapse, whereas
Fiala et al.'s spectral timing occurs at the level of an entire Purkinje cell. Barto et al.'s eli-
gibility trace achieves selective modification of particular pf-PC synaptic strengths when
a cf input arrives within 2 seconds of a triggering event. Fiala et al.’s simulations of a

spectrum of phase delayed PC activations extend the period of time during which a cf
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input may alter synaptic weights to about 4 seconds.
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Figure 4.3. Two time spanning signals which allow synaptic modification following
delayed stimulus inputTop: Eligibility trace of Barto et al. (1999) (Reproduced with
permission);Bottom: A depolarization response of a single Purkinje cell generated from
the Fiala et al. (1996) model equations.
4.12 Conclusion

The AVITEWRITE model describes how a person may learn to make curved handwrit-
ing movements. This model incorporates aspects of two previous groups of models: the
spectral timing models of Fiala, Grossberg, & Bullock (1996), Grossberg & Merrill
(1992), and Grossberg & Schmajuk (1989); and the VITE and VITEWRITE models of
Bullock & Grossberg (1988a, 1988b, 1991) and Bullock, Grossberg, and Mannes (1993),
respectively.

The AVITEWRITE model clarifies how the cerebral cortex, the cerebellum, and basal
ganglia may interact during complex learned movements. There is both cooperation and

competition between reactive vision-based imitation and planned memory readout. The

cooperation includes interactions between cortical difference vectors and cerebellar,
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adaptively timed spectral learning. The competition arises between cerebellar control of
learned movements and error-driven, cortical control of reactive movements to attention-
ally chosen visual targets. The model suggests that there is an automatic shift in the bal-
ance of movement control between these cortical and cerebellar processes during the
course of learning. Reactive movements are made to attentionally chosen targets on a
curve at the same time as movement error signals are generated which allow the cortico-
cerebellar system to learn how to draw the curve. Memory-based movements gradually
supersede visually-driven movements as learning progresses. Finally, the model shows
how challenging psychophysical properties of planar hand movements may emerge from

this cortico-cerebellar-basal ganglia interaction.

Appendix: Parameter Values

The parameter values for the system equations are given in the text describing the
equations.  The variable parameters used during learning of the alphabet in Figure 3.16
are listed in Table A.1. The variable parameters used during learning of the O, U, and

gamma in Figure 3.17 are listed in Table A.2.
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Table A.1. Parameter values for the alphabet shown in Figure 3.3620.

Letter Attentional Sp_ectral Number of
radius €;) | density At ) Trials
a 0.080 0.10 16
b 0.150 0.10 11
c 0.060 0.10 77
d 0.080 0.15 10
e 0.035 0.08 74
f 0.100 0.15 15
g 0.0800 0.15 65
h 0.0900 0.10 8
[ 0.0800 0.20 14
j 0.1000 0.15 27
k 0.0900 0.10 14
I 0.0550 0.10 37
m 0.0700 0.10 15
n 0.0750 0.08 14
o] 0.0500 0.20 12
P 0.0825 0.15 7
q 0.1000 0.15 10
r 0.0650 0.10 9
S 0.0750 0.20 56
t 0.0800 0.15 8
u 0.0650 0.20 15
v 0.0700 0.10 10
w 0.0700 0.10 18
y 0.0875 0.10 31
z 0.1200 0.10 15
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Letter Attgntional Spgctral Num_ber of
radius €3) | density At ) Trials
0.050 0.07 13
U 0.050 0.05 18
y 0.055 0.10 49

Table A.2. Parameter values for the letters O, U, and gamma shown in FigureJ3z17.
20.
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