An Analytic View of Delusion

Paul FRANCESCHI
University of Corsica

p.franceschi@univ-corse.fr
http://www.univ-corse.fr/~franceschi

Abstract: The present article proposes a logical account of delusions, which are regarded as conclusions resulting from fallacious arguments. This leads to distinguish between primary, secondary, ..., n-ary types of delusional arguments. Examples of delusional arguments leading to delusion of reference, delusion of influence, thought-broadcasting delusion and delusion of grandeur are described and then analyzed. This suggests finally a way susceptible of improving the efficiency of cognitive therapy for delusions.

Keywords: cognitive-behavioral, psychosis, delusions, argument, fallacy

The purpose of this article is to present, as far as I know, a novel account of several types of delusions observed in psychoses. This account results from a logical analysis of delusions, where delusions classically found in psychoses are regarded as conclusions resulting from fallacious arguments. Although their conclusion appears obviously false, delusional arguments are described here as arguments for which the determination of the defective step can sometimes prove nontrivial. The description of delusions as fallacious arguments leads finally to several suggestions which could allow to reinforce the effectiveness of cognitive therapy.

1. Delusion as fallacious argument

In psychiatry, delusions are classically defined as abnormal beliefs which satisfy the following criteria: (i) they are held with absolute conviction; (ii) they are experienced as self-evident truths, usually of great importance; (iii) they are not amenable to reason, or modifiable by experience; (iv) their content is often fantastic or at best inherently unlikely; (v) the beliefs are not shared by those of a common social or cultural background. One traditionally distinguishes in psychoses between several types of delusions, among which: delusion of reference, delusion of influence, delusion of control, telepathy-like delusion, delusion of grandeur, delusion of persecution.

A significant part of analytical philosophy is devoted to the study of paradoxes. A paradox consists of an apparently valid argument whose conclusion is however unacceptable because it engenders a contradiction. In parallel, a significant field of investigation within analytical philosophy consists of the study of arguments whose conclusion is counterintuitive. There exists indeed philosophical problems which have the structure of an apparently valid reasoning and whose conclusion appears truly contrary to common sense. To the difference of paradoxes, such problems do not lead however to a contradiction. Nevertheless, the conclusion which results from them reveals strongly counterintuitive and contrary to common sense. Such arguments lead thus to an intuitively unacceptable conclusion.

In this context, an argument can be defined as a series of propositions whose last constitutes the conclusion. The propositions constituting the argument are either given at the time of the statement of the problem (the premises), or added by deduction from the premises, by application of logical laws. In general, in the study of paradoxes or arguments whose conclusion is counterintuitive, the analysis consists in the search and the precise description of the step in the reasoning which is erroneous. For this purpose, logicians who study fallacious arguments usually break up first the corresponding reasoning into as many precise steps, and then determine among these last on which specific step is located the flaw.

I will present in what follows an account of delusions as fallacious arguments. In this context, a delusion or delusional argument can be regarded as a particular case of fallacious argument. Moreover, what I suggest in the following developments is that certain types of delusional arguments met in psychoses, in spite of their obviously false conclusion, are not necessarily trivial.

2. Types of delusional arguments

At this stage, it is appropriate to describe several instances of delusional arguments met in psychoses and corresponding to classical types of delusions: delusion of reference, delusion of influence, thought-broadcasting delusion and delusion of grandeur. I will thus present these latter under the form of delusional arguments i.e. under the form of reasoning leading to a fallacious conclusion. In what follows, I will use T_1 and T_2 to denote two given temporal positions, T_1 being slightly anterior to T_2.

2.1 Primary delusional arguments

Let us begin with primary delusional arguments. Consider first primary delusional arguments leading to delusion of reference. Let us call primary delusional argument of reference the corresponding line of reasoning. Consider, to begin
with, an instance according to which the patient concludes that at a given time, television spoke in function of her thoughts:

(1) in T₁ I thought of leaving the hospital but the gate was closed
(2) in T₂ the organizer said 'Be free!'
(C3) ∴ it is because in T₁ I thought of leaving the hospital that in T₂ the organizer said 'Be free!'

Consider, second, primary delusional arguments leading to thought-broadcasting delusion. Let us call primary delusional argument of thought-broadcasting such a reasoning. In the following instance, the patient concludes in a delusional way that her thoughts were responsible for the fact that someone shouted at a given time:

(4) in T₁ I thought of x 'What an idiot!'
(5) in T₂ I heard x shout
(C6) ∴ in T₂ x shouted because in T₁ I thought of x 'What an idiot!'

Consider, third, primary delusional arguments leading to delusion of influence. Let us call such a reasoning primary delusional argument of influence. In the following instance, the patient concludes that her thoughts were responsible for some sizzles heard during a telephone call:

(7) in T₁ I thought of x 'He is an idiot!'
(8) in T₂ the telephone call of x has been disturbed by some sizzles
(C9) ∴ in T₂ the telephone call of x has been disturbed by some sizzles because in T₁ I thought of x 'He is an idiot!'

Consider also the following instance, approximately of comparable nature, where the patient is led in a slightly different way to the conclusion that the mere fact that she focused on a given person caused this last person to have a nervous twitch:

(10) in T₁ I focused myself on x
(11) in T₂ x had a nervous twitch
(C12) ∴ in T₂ x had a nervous twitch because in T₁ I focused myself on x

2.2 Secondary delusional arguments

Let us turn now to secondary delusional arguments. Such a line of reasoning can be defined as an argument whose premises are conclusions of primary delusional arguments. At this step, it is worth drawing a distinction between secondary delusional arguments emerging at the stage of the formation of delusion, and secondary delusional arguments occurring at the stage of the maintenance of delusional beliefs.

Let us begin with secondary delusional arguments that appear at the stage of the formation of delusion. Consider, first, secondary delusional arguments of reference. As an example, the following delusional argument which takes into account several instances of primary delusional arguments of reference, leads the patient to generalize to the conclusion that the presenters speak in function of her thoughts:

(13) in T₁ I thought of the presenter 'Idiot!'
(14) in T₂ I heard the presenter say, 'That is not good!'
(C15) ∴ in T₂ the presenter said 'That is not good!' because in T₁ I thought of the presenter 'Idiot!'
(16) in T₁ I felt fine and lucid
(17) in T₂ the host of the show said 'We are in great form!'
(C18) ∴ in T₂ the host of the show said 'We are in great form!' because in T₁ I felt fine and lucid
(19) in T₁ I was distressed
(20) in T₂ the host said 'Stop stressing!'
(C21) ∴ in T₂ the host said 'Stop stressing!' because in T₁ I was distressed
(C22) ∴ television speaks in function of my thoughts

One can term inductive delusional argument of reference this last type of reasoning. The preceding example thus comprises three instances of primary delusional arguments of reference. The patient generalizes then from these three instances, by an inductive reasoning. The structure of the argument is thus as follows:

(A23) delusional argument of reference₁ whose conclusion is: in T₂ television spoke in function of my thoughts
(A24) delusional argument of reference₂ whose conclusion is: in T₄ television spoke in function of my thoughts
Consider, second, **secondary delusional arguments of thought-broadcasting**. One has also the following generalization from several instances of primary delusional arguments of thought-broadcasting. Here, the patient concludes more generally that other people react to her thoughts:

(28) in T1 I thought of x_1 'What an idiot!'
(29) in T2 I hear that x_1 was annoyed
(C30) \[\therefore\] in T2, x_1 was annoyed because in T1 I thought of x_1 'What an idiot!'
(31) in T3 I thought of x_2 'He is stupid!'
(32) in T4 I heard x_2 shout
(C33) \[\therefore\] in T4, x_2 shouted because in T3 I thought of x_2 'He is stupid!'
(34) in T5 I thought of x_3 'Bastard!'
(35) in T6 I heard x_3 to make noise
(C36) \[\therefore\] in T6, x_3 made noise because in T5 I thought of x_3 'Bastard!'
(C37) \[\therefore\] people react to my thoughts

This is an **inductive delusional argument of thought-broadcasting**. This example is composed of three instances of primary delusional argument of thought-broadcasting, from which the patient proceeds, in an inductive way, to a generalization. Its structure is clearly identical to that of the **inductive delusional argument of reference**:

(A38) delusional argument of thought-broadcasting 1 whose conclusion is: in T2 x_1 reacted to my thoughts
(A39) delusional argument of thought-broadcasting 2 whose conclusion is: in T4 x_2 reacted to my thoughts
(A40) delusional argument of thought-broadcasting 3 whose conclusion is: in T6 x_3 reacted to my thoughts
...
(A41) delusional argument of thought-broadcasting n whose conclusion is: in T2n x_n reacted to my thoughts
(C42) \[\therefore\] people react to my thoughts

The foregoing secondary delusional arguments are **inductive secondary delusional arguments**, i.e. secondary delusional arguments occurring at the stage of the formation of delusion. Let us consider now secondary delusional arguments emerging at the stage of the maintenance of delusion. Under these circumstances, the conclusion resulting from inductive secondary delusional arguments is already established, and the corresponding line of reasoning takes into account a novel instance of primary delusional argument. An example of this pattern of reasoning is thus as follows:

(48) television speaks in function of my thoughts
(49) in T100 television spoke in function of my thoughts
(C50) \[\therefore\] this confirms that television speaks in function of my thoughts

In this context, the secondary delusional argument of reference has the form of a **confirmatory** secondary delusional argument.

2.3 Tertiary delusional arguments

Let us proceed now to examine **tertiary delusional arguments**. The corresponding line of reasoning can be defined as an argument whose premises are conclusions of secondary delusional arguments. Consider, first, **tertiary delusional**
arguments of reference. An instance of this last type of reasoning is as follows, where the patient presents the delusional argument according to which television speaks about her:

\[(51)\] the presenters speak in function of my thoughts
\[\Rightarrow\text{ television speaks about me}\]

Consider, second, tertiary delusional arguments of thought-broadcasting. In this case, the patient concludes in a delusional way that other people can hear (or read) her thoughts. An instance of this pattern of reasoning is as follows:

\[(53)\] people act in function of my thoughts
\[\Rightarrow\text{ people hear my thoughts (people read my thoughts)}\]

Consider, third, tertiary delusional arguments leading to delusion of influence. The following instance is an instance of tertiary delusional argument of influence. The patient concludes then that she disturbs people:

\[(55)\] people are perturbed by my thoughts
\[\Rightarrow\text{ I disturb people (I influence people)}\]

2.4 Quaternary delusional arguments

Let us turn now to quaternary delusional arguments. Such a type of reasoning can be defined as an argument whose premises are conclusions of tertiary delusional arguments. Consider for example an argument leading to delusion of grandeur. The following instance thus constitutes a delusional argument of grandeur:

\[(57)\] I have the capacity to influence people
\[(58)\] television and the media speak about me
\[(59)\] people hear my thoughts
\[\Rightarrow\text{ I am an exceptional person}\]
\[\Rightarrow\text{ I am extraterrestrial}\]

Here, it appears that such an argument has the following structure:

(A62) ternary delusional argument of influence, whose conclusion is: I have the capacity to influence people
(A63) ternary delusional argument of reference, whose conclusion is: television and the media speak about me
(A64) ternary delusional argument of thought-broadcasting, whose conclusion is: people hear my thoughts
(C65) \[\Rightarrow\text{ I am an exceptional person}\]
(C66) \[\Rightarrow\text{ I am extraterrestrial}\]

3. Analysis of delusional arguments

3.1 Analysis of primary delusional arguments

It is worth attempting now to analyze the delusional arguments which have been just described, and to diagnose for each of them the particular step leading to the fallacious conclusion. Consider first an instance of primary delusional argument of thought-broadcasting:

\[(67)\] in T, I thought of x 'Bitch!'
\[(68)\] in T, I heard x shout
\[\Rightarrow\text{ in T, x shouted because in T, I thought of x 'Bitch!'\}

One needs here to determine which of the steps (67)-(C69) proves to be faulty. It appears first that the premise (67) constitutes a fact and the corresponding proposition is thus true. In the same way, the premise (68) also constitutes an established fact and the corresponding proposition is also true. Thus the premises (67) and (68) appear true. Since the remaining step (C69) is false, it is therefore the inference from (67)-(68) to (C69) which is erroneous.

Let us analyze thus in detail the step (C69). The corresponding proposition concludes that there is a relation of causality between two facts: \(\phi_1\) (in T, I thought of \(x\ 'Bitch!'\)) and \(\phi_2\) (in T, x shouted). In fact, there is only a relation of anteriority between \(\phi_1\) and \(\phi_2\). The fact that \(\phi_1\) is anterior to \(\phi_2\) is a logical consequence of (67) and (68). Indeed, the implicit step according to which:

\[(70)\] I thought of x 'Bitch!' just before I heard x shout
results from (67) and (68). However, such a relation of *anteriority* between \(\varphi_1 \) and \(\varphi_2 \) does not involve the existence of a relation of *causality* between \(\varphi_1 \) and \(\varphi_2 \). Thus, the conclusion appears too strong. As one can see, the reasoning corresponding to the primary delusional argument of thought-broadcasting shows finally the following structure:

\[
\begin{align*}
(71) \quad & \varphi_1 \text{ is slightly anterior to } \varphi_2 \\
(72) \quad & \therefore \varphi_1 \text{ is the cause of } \varphi_2
\end{align*}
\]

This reasoning appears thus fallacious because the conclusion proves too strong. The premise is true, but the conclusion is false. Informally, the fallacy is as follows: given the fact that an event \(\varphi_1 \) slightly precedes an event \(\varphi_2 \), I cannot conclude that \(\varphi_1 \) is the cause of \(\varphi_2 \). The flaw in the corresponding argument is thus the step which assigns a relation of *causality* between the two facts \(\varphi_1 \) and \(\varphi_2 \). Therefore the inference from (71) to (72) is faulty because it unduly transforms a relation of *anteriority* between two facts \(\varphi_1 \) and \(\varphi_2 \) into a relation of *causality*. It appears thus that the essence of the fallacious reasoning in the *delusional argument of thought-broadcasting* is the following: *anteriority does not imply causality*. In fact, such a reasoning is classically described as a fallacious argument termed *post hoc fallacy*, which finds its origin in the Latin sentence 'Post hoc, ergo propter hoc'. The corresponding error of reasoning appears when it is concluded that an event \(\varphi_1 \) is the cause of an event \(\varphi_2 \) simply because \(\varphi_1 \) occurred before \(\varphi_2 \). Nevertheless, the error lies in the fact that one does not have sufficient evidence to allow such a conclusion.\(^{11}\)

Let us now investigate a bit further the mechanism that triggers primary delusional arguments. It seems here that the inference from the anteriority step to the causality step results from the fact that the quasi-simultaneous occurrence of \(\varphi_1 \) and \(\varphi_2 \) does not appear random to the patient. From the fact that she considers that this double occurrence is non-random, the patient infers a causal relationship between the two events. An the point is that, given their intrinsic nature, these two events are plausibly compatible. In other words, the patient makes here a *misinterpretation of random events*. The corresponding fallacious reasoning can thus be rendered as follows:

\[
\begin{align*}
(73) \quad & \varphi_1 \text{ is slightly anterior to } \varphi_2 \\
(74) \quad & \therefore \text{ the fact that } \varphi_1 \text{ is slightly anterior to } \varphi_2 \text{ is non-random} \\
(75) \quad & \therefore \varphi_1 \text{ is the cause of } \varphi_2
\end{align*}
\]

At this step, it is worth delving more deeply in this particular case of misinterpretation of random events. It appears that such a line of reasoning is related to *misinterpretation of random data*.\(^{12}\) Classically, the fallacies related to misinterpretation of random data come in two forms.\(^{13}\) On the one hand, the following argument is an instance of a fallacious reasoning known as the *clustering illusion*:

\[
\begin{align*}
(76) \quad & \text{the sequence } '...0111010...' \text{ has 4 repetitive digits} \\
(77) \quad & \therefore \text{this sequence is non-random}
\end{align*}
\]

From the fact that a repetition of identical alternatives\(^{14}\) occurs in a sequence\(^{15}\), one is led erroneously to the conclusion that the sequence is non-random. However, such repetitive patterns occur frequently in random sequences. The fallacy comes here from the fact that one intuitively underestimates the occurrence of such repetitive patterns in random sequences.

On the other hand, it is worth considering another fallacious reasoning relating to the probability of coincident random numbers. As an example, it appears that one has a tendency to strongly underestimate the probability of coincident birthdates\(^{16}\), in a sample of say, 23 persons. For in a random sample of 23 persons the chance that at least two of them will have the same birthdate equals 0.5073. Hence, the corresponding fallacious argument can be rendered as follows:

\[
\begin{align*}
(78) \quad & \text{the sequence } '223,-5y-276,-1214-565-159y-576,-310y-357y-...-8922-24623' \text{ has 2 identical numbers} \\
(79) \quad & \therefore \text{this sequence is non-random}
\end{align*}
\]

Let us analyze now in more detail how these last two fallacious arguments are involved in primary delusional arguments. For consider the following combination of the *clustering illusion* which has been just mentioned, and the case of underestimation of the probability of coincident numbers in a series. Consider then a sequence of 23 numbers, drawn in the range 1-365 and the following argument:

\[
\begin{align*}
(80) \quad & \text{the sequence } '223,-5y-206,-1214-565-159y-310,-310y-357y-...-8922-24623' \text{ has 2 repetitive numbers} \\
(81) \quad & \therefore \text{this sequence is non-random}
\end{align*}
\]

It should be apparent here that this last argument is a combination of the clustering illusion and the underestimation of the probability of coincident numbers described above.

Now this last erroneous line of reasoning can be applied straightforwardly to the interpretation of random events. For consider now a series of events, considered from the viewpoint of a patient. Let us draw a distinction between internal (thoughts\(^{17}\)) and external (facts) events. Let us then denote an internal event relating to a given person\(^{18}\) \(x \) and the associated - positive or negative\(^{19}\) mood by \([x^y] \). Let us also denote an external event whose agent is a given person \(y \)
and the corresponding - positive or negative20 - mood by \(y \). For example, \(x + \) denotes a positive thought directed to \(x \), while \(y - \) denotes that \(y \) expresses a negative emotion such as anger. The conclusion that \(\phi_1 \) is the cause of \(\phi_2 \) is grounded on the fact that the quasi-simultaneous occurrence of \(\phi_1 \) and \(\phi_2 \) is construed as a causally meaningful coincidence. With the relevant machinery in place, we are now in a position to describe the structure of the above instance of primary delusional argument:

\[
\text{(82)} \quad \text{the sequence } \phi_1[223^+]\phi_2[5^-\phi_3[206^-\phi_4[121^-\phi_5[56^-\phi_6[159^-\ldots\phi_9[310^-\phi_{10}[310^-\phi_{11}[310^-\phi_{12}[310^-\phi_{13}[310^-\phi_{14}[310^-\phi_{15}[310^-\phi_{16}[310^-\phi_{17}[310^-\phi_{18}[310^-\phi_{19}[310^-\phi_{20}[310^-\phi_{21}[310^-\phi_{22}[310^-\phi_{23}[310^-\phi_{24}[310^+ \text{ of events has occurred}
\]

\[
\text{(83)} \quad \phi_{19}[310^-] \text{ is slightly anterior to } \phi_{20}[310^-]
\]

\[
\text{(C84) } \therefore \text{ the repetitive occurrence of } \phi_{19}[310^-] \text{ and } \phi_{20}[310^-] \text{ is non-random}
\]

\[
\text{(85)} \quad \phi_{19}[310^-] \text{ is virtually compatible with } \phi_{20}[310^-]
\]

\[
\text{(C86) } \therefore \phi_{19}[310^-] \text{ is the cause of } \phi_{20}[310^-]
\]

where \(\phi_{19}[310^-] \) and \(\phi_{20}[310^-] \) respectively correspond to 'in T 1 I thought of } x_{310} 'Bitch!' and ' in T 2 x_{310} shouted'. To conclude now. The above analysis reveals that the mechanism that triggers primary delusional arguments can be analyzed as a special case of misinterpretation of random data applied to plausibly compatible events that facilitates the ensuing post hoc fallacy21.

Moreover, it appears that the cause of the error of reasoning inherent to the primary delusional argument of thought-broadcasting can be generalized to delusional arguments of reference or of influence. Indeed, the structure of these latter arguments appears from this viewpoint, completely identical to that of the primary delusional argument of thought-broadcasting. Consequently, it is thus the same type of error of reasoning which engenders the conclusion resulting from these primary delusional arguments.

3.2 Analysis of secondary delusional arguments

At this stage, it is also worth providing an analysis of the various types of inductive secondary delusional arguments described above, occurring at the stage of formation of delusion. Consider first the secondary delusional argument of thought-broadcasting, whose structure is as follows:

\[
\text{(A87) delusional argument of thought-broadcasting 1 whose conclusion is: in T_2 x_1 reacted to my thoughts}
\]

\[
\text{(A88) delusional argument of thought-broadcasting 2 whose conclusion is: in T_4 x_2 reacted to my thoughts}
\]

\[
\text{(A89) delusional argument of thought-broadcasting 3 whose conclusion is: in T_6 x_3 reacted to my thoughts}
\]

\[
\ldots
\]

\[
\text{(A90) delusional argument of thought-broadcasting n whose conclusion is: in T_{2n} x_n reacted to my thoughts}
\]

\[
\text{(C91) } \therefore \text{ people react to my thoughts}
\]

In such an argument, the parts (A87), (A88), (A89) et (A90) can be analyzed like as many instances of the primary delusional argument of thought-broadcasting described above. In this case we have three different instances of this last type of reasoning. By contrast, the conclusion which results from (C91) has a different logical base and constitutes the conclusion of an inductive reasoning, whose structure is as follows:

\[
\text{(92) in T_2 x_1 reacted to my thoughts}
\]

\[
\text{(93) in T_4 x_2 reacted to my thoughts}
\]

\[
\text{(94) in T_6 x_3 reacted to my thoughts}
\]

\[
\ldots
\]

\[
\text{(95) in T_{2n} x_n reacted to my thoughts}
\]

\[
\text{(C96) } \therefore \text{ people react to my thoughts} \quad [(92), (93), (94), \ldots, (95), \text{ induction}]
\]

Insofar as the premises (92)-(95) are regarded as true, this type of inductive reasoning appears completely correct. It is a strong inductive generalization, given that the premises (92)-(95) are considered as true.22

However, it should be pointed out that the inductive reasoning is correct in the restricted domain of reference considered by the patient. This last domain of reference only includes events of the following type:

\[
\text{(97) in T_1 I thought of } x_1 'Bitch!'\]

\[
\text{(98) in T_2 I heard } x \text{ shout}
\]

In contrast, this last inductive reasoning is incorrect in the extended domain of reference that includes instances of the form:

\[
\text{(99) in T_{96} I thought of } x_1 'What an idiot!'\]

\[
\text{(100) in T_{97} I did not hear that } x_1 \text{ was annoyed}
\]

or else:
(101) in T98 I did not thought of x1 'What an idiot!'
(102) in T99 I hear that x1 was annoyed

that are not taken into account by the patient.
At this stage, it also appears that the analysis relating to the inductive delusional argument of thought-broadcasting can be applied to the inductive delusional argument of reference as well as to the inductive delusional argument of influence. Indeed, it proves that the structure of these last delusional arguments appears completely identical to that of the inductive delusional argument of thought-broadcasting.

Let us turn now to confirmatory secondary delusional arguments, emerging at the stage of maintenance of delusion. Consider then the following instance:

(103) television speaks in function of my thoughts
(104) in T100 television spoke in function of my thoughts
(C105) ∴ (104) confirms that television speaks in function of my thoughts

The corresponding argument is a valid one. Nevertheless, it should be pointed out that the argument is valid in the restricted domain of reference mentioned above and consisting of confirmatory instances of the generalization (103). In contrast, the argument is invalid in the extended domain of reference consisting of both confirmatory and disconfirmatory instances of the generalization (103). An the point is that this last class includes all relevant facts with regard to (103). For in this extended reference class, the corresponding line of reasoning, taking into account the disconfirmatory instances, is as follows:

(106) television speaks in function of my thoughts
(107) in T100 television spoke in function of my thoughts
(C108) ∴ (107) confirms that television speaks in function of my thoughts
(109) in T101 television did not spoke in function of my thoughts
(C110) ∴ (109) disconfirms that television speaks in function of my thoughts

Thus, since the patient considers a restricted domain of reference in inductive secondary delusional arguments instead of the more relevant extended one, the whole pattern of argument can be analyzed as a confirmatory bias, a tendency to privilege confirmatory instances of a given generalization, instead of considering both confirmatory and disconfirmatory instances.

3.3 Analysis of tertiary delusional arguments
Let us now turn to tertiary delusional arguments. Consider the following instances, corresponding respectively to tertiary delusional argument of reference, of thought-broadcasting and of influence:

(111) the presenters speak in function of my thoughts
(C112) ∴ television speaks about me
(113) people act in function of my thoughts
(C114) ∴ people hear my thoughts (people read my thoughts)
(115) people are perturbed by my thoughts
(C116) ∴ I disturb people (I influence people)

In all these cases, given the content of the premise, it appears that the corresponding line of reasoning is not an unreasonable conclusion inasmuch as the premise is considered as true. Such a line of reasoning can be construed as a patient’s attempt to explain and make sense of the perplexing situation corresponding to the premise.

3.4 Analysis of quaternary delusional arguments
Let us turn now to quaternary delusional arguments. Consider an argument leading to delusion of grandeur. Let us recall indeed that the structure of this type of argument described above is as follows:

(A117) inductive delusional argument of influence: whose conclusion is: I disturb people
(A118) inductive delusional argument of reference: inductive delusional: television speaks about me
(C119) ∴ I am an exceptional person [(A117), (A118), deduction]
(C120) ∴ I am extraterrestrial [(C119), deduction]
Here, it proves that the conclusion (C120) is too strong, given the premise (C119). Thus (C120) appears false. However, the conclusion (C119) appears true since the premises consisting of the conclusions of (A117) and (A118) are regarded as true.

4. Cognitive techniques for delusional arguments

The foregoing developments suggest that cognitive therapy applied to delusions could be the subject of an adaptation, susceptible of improving its effectiveness. The general idea is that cognitive therapy should focus on the fallacious arguments revealed by the analysis of the delusional arguments presented by the patient. For this purpose, the questions posed to the patient by the therapist could be adapted so as to make the patient become aware of the errors of reasoning at the origin of her delusional arguments.

Taking into account what precedes, let us consider thus how cognitive therapy could be adapted. Let us consider first the first stage, which is that of the precise description of the various delusional arguments presented by the patient. Such a stage could be carried out, I suggest, with the help of a trained logician. Each type of delusional argument presented by the patient should then be successively analyzed and described step-by-step. It would be worth here considering conclusions such as 'I am extraterrestrial', 'people hear my thoughts' or 'in T2 I disturbed x'. At this stage, questions of the type 'and what makes you think that?' could usefully be posed, in order to determine with precision the various steps of the argument leading the patient to such conclusions.

Once the delusional arguments of the patient accurately defined, the therapist and the logician could then determine with precision the fallacious arguments in the delusional arguments presented by the patient. This would then make it possible to the cognitive therapist to adapt her questions and her assertions so as to firstly allow the patient to identify the flaw in her reasoning. Preferably, the questions posed by the cognitive therapist should thus focus on the erroneous steps in the various instances of delusional arguments. The cognitive therapy would concentrate thus in priority on these defective parts, which constitute the weak point of the patient's reasoning.

The foregoing analysis also shows that multiple instances of a special case of post hoc fallacy could play a dominating role in the development of delusional beliefs met in psychoses. This also suggests that it could also be useful to make the patient understand first how this general line of reasoning appears fallacious. For this purpose, it would be also useful to make the patient aware of the faulty reasoning resulting from misinterpretation of random events and confirmatory bias.

In a general way, the refutation of an instance of the primary delusional argument of reference, of influence or of thought-broadcasting could be performed as follows. Such an argument has the following structure, which is that of the post hoc fallacy:

\[
\begin{align*}
(121) & \quad \phi_1 \text{ is slightly anterior to } \phi_2 \\
(122) & \quad \therefore \phi_1 \text{ is the cause of } \phi_2
\end{align*}
\]

As the conclusion of the argument is relevant to causation, it is useful here to make use of the conditional theory of causation, a simple kind of theory of causation. According to this theory, \(\phi_1 \) cause \(\phi_2 \) just when \(\phi_1 \) is sufficient (\(\phi_1 \) is always followed of \(\phi_2 \)) and necessary (non-\(\phi_1 \) is always followed of non-\(\phi_2 \)) for \(\phi_2 \). In a general way, one could suggest here to the patient that (i) \(\phi_1 \) can occur without \(\phi_2 \) not succeeding to it, i.e. \(\phi_1 \) is not a sufficient condition of \(\phi_2 \); and in addition (ii) that \(\phi_1 \) can occur without \(\phi_2 \) not preceding it, i.e. \(\phi_1 \) is not a necessary condition of \(\phi_2 \). The questions intended to lead the patient to become aware of the erroneous step of her reasoning could be thus of various types: (i) and if \(\phi_2 \) had been caused by another cause that \(\phi_1 \), for example \(\phi_1 \); (ii) and if the fact that \(\phi_1 \) is followed of \(\phi_2 \) were a mere coincidence? Moreover, in all cases, it should be stressed on the need to have evidence that \(\phi_1 \) is both a sufficient and a necessary condition of \(\phi_2 \), to allow to conclude that \(\phi_1 \) is the cause of \(\phi_2 \).

For this purpose, it could be very helpful to make the patient aware of the techniques of reality-testing applied to possibly causally related events. Such a technique of causality testing could be presented along the following lines. Consider for example the hypothesis that events of type \(\phi_1 \) are the cause of events of type \(\phi_2 \). In order to eliminate random factors and possible coincidences, one must establish that \(\phi_1 \) is both a sufficient and a necessary condition of \(\phi_2 \). In this context, the consecutive events that are relevant are not just confirmatory instances of the sufficient condition, as the restricted domain of reference considered by the patient only contains. Rather, the relevant consecutive events are confirmatory and disconfirmatory instances of both the sufficient condition and the necessary condition. One should then test several times if \(\phi_1 \) is followed of \(\phi_2 \) (confirmation of the sufficient condition) or of non-\(\phi_2 \) (disconfirmation of the sufficient condition), and if non-\(\phi_1 \) is followed of non-\(\phi_2 \) (confirmation of the necessary condition) or of \(\phi_2 \) (disconfirmation of the necessary condition). The result of the test would have the following structure (to fix ideas, the elements of the primary delusional argument mentioned above are used here):
I thought of x 'Bitch!' just before I heard x shout 1 confirmatory instances of the sufficient condition
I thought of x 'Bitch!' just before I did not heard x shout 18 disconfirmatory instances of the sufficient condition
I did not thought of x 'Bitch!' just before I did not heard x shout 254 confirmatory instances of the necessary condition
I did not thought of x 'Bitch!' just before I heard x shout 3 disconfirmatory instances of the necessary condition

At this step, it would normally be possible to the patient to agree with the therapist that her primary delusional arguments were fallacious. Furthermore, it seems that at this stage, the behavioral part of cognitive-behavioral therapy could normally take place, namely, a gradual exposition of the patient to the situations that engender primary delusional arguments.25

What precedes also sheds light, I think, on the reason why questions usually posed during the classical cognitive therapy are only imperfectly effective against the delusional arguments described above. For such questions do not reach the core of the fallacious reasoning. Let us thus consider a patient who concludes 'people hear my thoughts'. If one poses the question to the patient: 'Do you think that people can read your thoughts?', it is quite possible that the patient internally reconstitutes the inductive delusional argument of thought-broadcasting which has led her to the conclusion that people hear her thoughts, in the following way:

\[(123) \text{ in } T_2 x_1 \text{ reacted to my thoughts} \]
\[(124) \text{ in } T_4 x_2 \text{ reacted to my thoughts} \]
\[(125) \text{ in } T_6 x_3 \text{ reacted to my thoughts} \]
\[...\]
\[(126) \text{ in } T_{2n} x_n \text{ reacted to my thoughts} \]
\[(C127) \text{ people react to my thoughts } \left(123\), \(124\), \(125\), ..., \(126\), induction\]
\[(C128) \text{ people hear my thoughts } \left(C127\right)\]

By proceeding thus and since she considers that the premises \((123), (124), (125), ..., (126)\) are true, the patient concludes correctly by a strong inductive reasoning, that people react to her thoughts, and then by a further step concludes that people hear her thoughts. For as noted above, this part of the inductive delusional argument of thought-broadcasting which is based on an inductive reasoning reveals strong. And such a part of the inductive delusional argument of thought-broadcasting is strong because it does not include those erroneous steps which have been identified as at the origin of the conclusions of primary delusional arguments.

Finally, the main point that results from the preceding analysis is that cognitive therapy should address firstly primary delusional arguments. The above developments finally suggest a priority, leading to focus on the treatment of primary delusional arguments.

5. Conclusion
The above developments lead to the suggestion that the effectiveness of the cognitive therapy of psychoses could be reinforced by several aspects suggested by an account of delusions as delusional arguments. First, it would be helpful, I suggest, if a trained logician could collaborate with the psychiatrist at the stage of the analysis of the delusions presented by a patient suffering from psychosis. The psychiatrist and the logician could then analyze the patient's delusions as delusional arguments and sub-arguments, and then identify the faulty steps in each corresponding delusional argument. At this stage, the cognitive therapist could adapt the corresponding therapy according to the defective steps thus determined. Finally, the contribution to cognitive therapy which result from the current analysis could consist in the definition of a priority concerning primary instances of delusional arguments in the treatment of delusions in cognitive therapy. Once this task accomplished, the classical cognitive therapy could then take place.

Lastly, an interesting feature that also ensues from the present account is that it seems that, once the therapist and the patient have agreed that the conclusion of primary delusional arguments results from a fallacious reasoning, the behavioral part of cognitive-behavioral therapy could normally follow.

The above considerations finally suggest that such an approach could usefully be the subject of a controlled study. Such an experimental study would thus associate a psychiatrist specialized in cognitive therapy for psychosis and a trained logician. If the results of such experimentation were to appear positive, such collaboration could constitute a way of reinforcing the impact of cognitive therapy applied to psychoses.27

References

This account is not exclusive of other accounts of delusional ideas. It consists simply here in a supplementary facet of delusion. In particular, the present logical analysis of delusion is compatible with Paul Chadwick's & al. (1996) adaptation of Albert Ellis' ABC-analysis to delusional thinking. The Cs of ABC-analysis which are the consequences of delusional arguments and the target of the therapy are not mentioned here, but can be easily inserted in the present account. The present framework also fits well with Hemsley & Garety's (1986) bayesian framework.

Here I follow the definition of delusion given by Mullen (1979) and mentioned by Hemsley & Garety (1996).

A valid argument is one whose conclusion is always true when its premises are true.

There exists many paradoxes which are the subject of studies by contemporary analytical philosophers. Among those, one can mention: the liar paradox, the sorites paradox, the surprise examination paradox, Newcomb's paradox, Goodman's paradox, etc.

Among such arguments, one can mention for example the Doomsday Argument. In particular, the Doomsday Argument leads to the conclusion that our birth rank within the human race leads to a vigorous bayesian shift in favor of the probability of a nearest extinction of the human race. Such a conclusion appears completely counterintuitive. However, the problem of diagnosing the flaw in the Doomsday Argument appears as a task of great difficulty for which there does not exist at present time one consensual solution.

To fix ideas, one can consider that the difference between T₁ and T₂ is only of a few seconds.

The symbol ⊢ denotes the conclusion.

Where x₁, x₂, ..., xₙ denote n different people.

More generally, we have the following definition: n-ary delusional arguments are arguments whose premises are conclusions of (n-1)-ary delusional arguments.

The post hoc fallacy can also be regarded as a particular case of cognitive distortion usually referred to as arbitrary inference (or jumping to conclusions).

The passage from misinterpretation of random data to misinterpretation of random events in the case of the clustering illusion is explicitly mentioned by Bressan (2002, p. 18): 'People who underestimate the probability that two identical digits occur one after another by chance may, in everyday life, underestimate the probability that two similar events occur one after another by chance.'.

Here I follow the terminology from Bressan (2002).

Birthdates are considered here as numbers that are drawn in the range 1-365.

Of any length.

In a wider framework, one could consider here a given being (including persons, animals, etc.).

Where the internal event is denoted by \([x^+]\) if the mood is positive (joy, warmth, friendliness, etc.) or by \([x^-]\) if the mood is negative (anger, frustration, fear, etc.).

Where the external event is denoted by \([y^+]\) if the mood is positive or by \([y^-]\) if the mood is negative.

The role of the clustering illusion in the formation of delusions has notably been mentioned by Tom Carroll (2002). Cf. in particular, the article on the clustering illusion (retrieved June 1, 2002): 'Combining the clustering illusion with confirmation bias is a formula for self-deception and delusion.'.

A paradigm case of inductive generalization is as follows. An urn contains 100 balls. I draw 99 balls from the urn and these last are red. By induction, I conclude that the 100th ball will also be red. Such an inductive generalization yields a conclusion which is not certain but appears nevertheless strongly probable. For the conclusion resulting from an inductive generalization is based on the existence of a supposed law which explains, in this example, that all the balls are red.

Such a simple theory has some defects but it proves adequate for present purposes.

Such an approach which consists in suggesting alternative causes ('discuss alternatives') is explicitly mentioned by Kingdon & Turkington (1994, p. 156).

This behaviourial part seems inadequate for secondary, ternary, ..., n-ary (n > 1) delusional arguments.

What I suggest here must be clearly distinguished from the idea according to which cognitive therapy could be implemented by a logician. The idea which is expressed here is only that the task of determining the various steps in delusional arguments met in psychoses as well as the determination of the fallacious steps, should be carried out with the help of a trained logician. Given its complexity and specificity, cognitive therapy must necessarily remain the prerogative of experienced psychiatrists.

I am very grateful to David Kingdon, Eugen Fischer and Robert Chapman for very helpful and detailed comments on an earlier draft.