
Abstract
Evolvability is the capacity to evolve. This paper
introduces a simple computational model of
evolvability and demonstrates that, under certain
conditions, evolvability can increase indefinitely,
even when there is no direct selection for evolva-
bility. The model shows that increasing evolvabil-
ity implies an accelerating evolutionary pace. It is
suggested that the conditions for indefinitely
increasing evolvability are satisfied in biological
and cultural evolution. We claim that increasing
evolvability is a large-scale trend in evolution.
This hypothesis leads to testable predictions about
biological and cultural evolution. 

1 INTRODUCTION
The idea that there is progress in evolution has been widely
criticized (Gould, 1988, 1997). Progress implies that there
is a large-scale trend and that the trend is good (Ayala,
1974, 1988). For example, it is commonly believed by the
layperson that there is a large-scale trend in evolution
towards increasing intelligence, and that this trend is good.
McShea (1998) prefers to focus on the question of whether
there are any large-scale trends, without regard to their
value. He examines eight candidates for large-scale trends:
entropy, energy intensiveness, evolutionary versatility,
developmental depth, structural depth, adaptedness, size,
and complexity (McShea, 1998). In this paper, we propose
that evolvability (Dawkins, 1989, 1996) should be added to
the list of candidates. We contend that evolvability is dis-
tinct from the eight candidates examined by McShea
(1998). In particular, evolvability is not the same as adapt-
edness nor evolutionary versatility, although it might be
argued that it subsumes these candidates.

It is difficult to define evolvability, beyond saying that it is
the capacity to evolve. We suggest the following sufficient
(but not necessary) condition for evolvability: If individu-
als A and B are equally fit but the fittest child of A is likely
to be more fit than the fittest child of B, then A is more
evolvable than B.1 The point of this condition is that evolu-
tion does not directly select for evolvability, since (by
hypothesis) A and B are equally fit. This is what makes

evolvability especially interesting to evolutionary theorists.
As Dawkins (1996) puts it, “This is not ordinary Darwinian
selection but it is a kind of high-level analogy of Darwinian
selection.” There is no direct selection for evolvability, but
there is nonetheless a large-scale trend towards increasing
evolvability.

This might seem at first counter-intuitive. How can there be
a large-scale trend towards increasing evolvability when
evolvability does not enhance fitness? We present a simple
computational model of evolvability and show that, in this
model, evolvability increases, although it does not enhance
fitness. This model is presented in the spirit of Hinton and
Nowlan’s (1987) influential computational model of the
Baldwin effect. The idea of the model is to simplify to a
bare minimum, in order to shed light on evolvability. In this
model, part of the genome directly describes the phenome.
The fitness of the phenome is completely determined by
this part of the genome. The remainder of the genome influ-
ences evolvability. By construction, the rest of the genome
can have no effect on fitness. However, in spite of this, our
simulations show that there is a trend towards increasing
evolvability. This model is similar to the model of Bedau
and Seymour (1995).

After presenting the simple computational model of evolv-
ability and the results of our simulations, we briefly discuss
some of the possible mechanisms by which evolvability
may increase in biology and in evolutionary computation.
These mechanisms include kaleidoscopic development
(Dawkins, 1989, 1996), modularity (Altenberg, 1994;
Wagner and Altenberg, 1996; Simon, 1962; Turney, 1989),
and the Baldwin effect (Hinton and Nowlan, 1987; Turney,
1996).

Finally, we discuss some of the testable (in principle) pre-
dictions of the claim that there is a large-scale trend
towards increasing evolvability. The claim that evolvabil-
ity is increasing implies that we should see an accelerating
rate of evolution. We believe that analysis of biological and
cultural evolution will support this prediction. 

Increasing Evolvability 
Considered as a Large-Scale Trend in Evolution

Peter D. Turney
Institute for Information Technology
National Research Council of Canada

Ottawa, Ontario, Canada
K1A 0R6

peter.turney@iit.nrc.ca

1We assume here that fitness is measured directly from the
individual’s phenotype. We do not mean fitness as measured
by the long-term production of descendents. 



2 A MODEL OF EVOLVABILITY
Our model of evolvability was implemented by modifying
Whitley’s (1989) GENITOR software.2 GENITOR is a
steady-state genetic algorithm (as opposed to a genera-
tional genetic algorithm) in which children are born one-at-
a-time. A new child replaces the least fit member of the
current population. We fixed the population size at 2000
individuals. The initial population of 2000 individuals was
generated randomly. We then created a series of 5,000,000
children, using mutation, crossover, and selection. 

In our model, an individual’s genome is a string of 100 bits.
The bits are arranged in pairs, where the first member of the
pair (the odd bit) specifies the evolvability of the second
member of the pair (the even bit). For a given genome, the
corresponding phenome is the string of 50 bits that results
when all the odd bits (the evolvability bits) are deleted from
the genome. We measure the fitness of a phenome by com-
paring it with a target string of 50 bits. The bits in the target
string are initially set randomly. Once every 8000 children,
the target string is modified by randomly mutating 10% of
its bits. We call this interval of 8000 children an era. 

Parents are randomly selected, with a bias of 2.0 in favour
of fitter individuals (see Whitley (1989) for details). We
use single-point crossover, with the constraint that the
crossover point cannot occur within a pair; it must occur
between two pairs.3 Mutation is randomly applied to 50%
of the children, after crossover. If a child is chosen for
mutation, then the odd bits (evolvability bits) are randomly
mutated with a probability of 0.0001. The even bits (phe-
nome bits) are mutated with a probability of 0.01, but only
if the corresponding evolvability bit is set to 1. When the
evolvability bit is set to 0, the phenome bit cannot mutate.

The fitness of a phenome is calculated by counting the
number of bits that match with the 50 bit target string. This
number is converted to a frequency by dividing it by 50.
The fitness is then calculated by raising the frequency to
the power of 10. Thus a perfect match yields a fitness of
1.0. A match of 49 bits yields a fitness of 0.817. This fitness
function gives a strong incentive to match all the target bits. 

This model has been designed so that the evolvability bits
can have no direct impact on the fitness. By design, there
can be no direct selection for evolvability. However, since
the target shifts once each era, there is an advantage to
being able to adapt to the shifting target.

Figure 1 shows the result of a typical run of this model. We
measure evolvability by the percentage of odd bits in the
genome that have the value 1. We measure the fitness at the
start and end of an era. The measurements of evolvability
and fitness are averages over the whole population of 2000
individuals. The population averages are calculated once
every 500 children. These averages are then combined for

each group of 100,000 children. Thus each curve begins at
the 100,000th child, at which point we have 200 observa-
tions of the population’s average evolvability (100,000
divided by 500) and 12 observations of the population’s
average fitness at the start and end of an era (100,000
divided by 8000).

Since the initial population is random, the expected aver-
age evolvability of the population at the time of the first
child is 50%. This rapidly climbs to about 60% by the time
the 100,000th child is born. When we reach the 5,000,000th
child, the evolvability is about 95%. At this point, it
appears to have achieved an equilibrium point with the
mutation rate for evolvability bits (0.0001). If we run the
simulation until the 10,000,000th child, the evolvability is
still about 95%.

As evolvability increases, the average fitness increases, at
both the start and end of an era. We define the fitness
improvement during an era as the average fitness at the end
of an era minus the average fitness at the start of an era. The
fitness improvement is an indicator of the pace of evolu-
tion. The second plot in Figure 1 shows that the fitness
improvement is increasing. Thus the second plot shows
that evolution is accelerating. 

3 DISCUSSION
In our model, evolvability cannot increase without limit,
because the genome length is fixed at 100 bits. However,
we believe that this limitation could be overcome (at the
cost of increased complexity in the model) by allowing the
genome length to vary. If the genome length can grow
without bound, evolvability can increase without limit.

Although the model is relatively simple, we do not fully
understand its behaviour. There are many parameters in
this model (the population size, the phenome bit mutation
rate, the evolvability bit mutation rate, the length of an era,
the fitness function, etc.). We would like to be able to spec-
ify the parameter settings for which evolvability will
increase until it reaches the limits set by the genome length
and the evolvability bit mutation rate. It will require many
experiments to explore the parameter space of this model.

One preliminary observation is that the model is sensitive
to the relative values of the mutation rates for the evolva-
bility bits (0.0001) and the phenome bits (0.01). The evolv-
ability bits are not directly selected, unlike the phenome
bits, which means that the evolvability bits are more vul-
nerable to disruption by mutation. For evolvability to
increase, the evolvability bits must persist long enough for
their value to become apparent. This observation may be
helpful for practical applications of evolutionary computa-
tion. In practical applications, to ensure evolvability, it may
be necessary to design evolutionary systems with a built-in
mechanism for protecting parts of the genome from the dis-
ruptive effects of high mutation rates. We predict that this
also applies to biological evolution. Of course, our model
strictly separates the genes for evolvability from the genes
for the phenome, for illustrative purposes. In cases where
there is not such a strong separation, there will be less need
for different mutation rates.

2GENITOR is written in C. The source code is available on the
Internet at ftp://ftp.cs.colostate.edu/pub/GENITOR.tar. 

3In other words, the bit to the left of the crossover point is even
and the bit to the right is odd. We have not empirically tested
whether this constraint has any effect. It seemed sensible to
prevent crossover from breaking up pairs. 



Another preliminary observation is that the length of the
era is important. If the era is too long, there is an advantage
to setting the evolvability bits to 0, in order to lock-in the
phenome bits that match the target, to protect them from
mutation. If an era is too short, there is not enough time for
the advantage of evolvability to become apparent. We pre-
dict that this also applies to biological evolution. For evolv-
ability to increase, environmental change must occur
within certain bounds. If there is too little change, there is
no advantage to evolvability. If there is too much change,
evolution cannot move fast enough to track the changes.

The model presented here is highly abstract. It does not
consider the mechanisms necessary to achieve evolvability
in biological evolution or applied evolutionary computing.
However, we believe that the mechanisms for evolvability
that have been discussed in the literature are consistent with
this abstract model. Kaleidoscopic development (Dawkins,
1989, 1996), modularity (Altenberg, 1994; Wagner and
Altenberg, 1996; Simon, 1962; Turney, 1989), and the
Baldwin effect (Hinton and Nowlan, 1987; Turney, 1996)
can all be viewed as mechanisms that enable a certain
aspect of the phenotype to change by genetic mutation,

where such mutation would be detrimental without these
mechanisms. In effect, without evolvability, certain muta-
tions are forbidden; certain evolutionary paths are closed.
We model this very simply and abstractly, by locking bits
so that they cannot mutate.

The model was partly inspired by Hinton and Nowlan’s
(1987) model of the Baldwin effect. Hinton and Nowlan
(1987) demonstrated that phenotypic plasticity (specifi-
cally, lifetime learning by individuals) can enable an evo-
lutionary system to find optima that would be very difficult
to find without plasticity. Our model is also related to
Anderson’s (1995) model of the Baldwin effect. In Ander-
son’s (1995) model, the effect of learning is represented as
an increase in the variance of selection. He derives equa-
tions and equilibrium conditions for a population of learn-
ing individuals under fixed and variable environmental
selection. Other related work is the model of Bedau and
Seymour (1995). In Bedau and Seymour’s (1995) model,
mutation rates are allowed to adapt to the demands of the
environment. They find that mutation rates adapt to an opti-
mal level, which depends on the evolutionary demands of
the environment. 

Figure 1: The plot at the top shows increasing trends in evolvability, fitness at the start of an era, and fitness at the end
of an era. The plot at the bottom shows that the spread between the fitness at the start and end of an era is also increas-
ing. This implies that the pace of evolution is increasing. All of the curves have been fitted with straight lines, using
linear regression, to make it easier to see the trends.



One of the most interesting implications of the model is
that increasing evolvability results in accelerating evolu-
tion. We believe that the pace of biological and cultural
evolution is accelerating. None of the eight candidates for
large-scale trends (entropy, energy intensiveness, evolu-
tionary versatility, developmental depth, structural depth,
adaptedness, size, and complexity) that were examined by
McShea (1998) imply that the pace of evolution should
accelerate.4 

It is difficult to objectively verify the claim that the pace of
evolution is accelerating. We can look at the historical fre-
quency of innovations, but the analysis is complicated by
several factors. One confounding factor is that our record
of the recent past (both the fossil record of biological evo-
lution and the record of cultural evolution) is superior to
our record of the distant past, which may give the illusion
that there are more innovations in the recent past than the
distant past. For cultural evolution, another confounding
factor is population growth. We may expect more innova-
tions in recent cultural history simply because there are
more innovators. A third factor is difficulty of counting
innovations. We need to set some kind of objective thresh-
old on the importance of the innovations.

We suggest some tests that avoid these objections. In pale-
obiology, we predict that the fossil record will show (1) an
accelerating rate of spread of life into various previously
sterile territories, (2) decreasing recovery time from major
catastrophes (e.g., mass extinction events, ice ages, meteor-
ites), and (3) a decrease in the average lifetimes of species,
as they are out-competed by more recent species at any
accelerating rate (i.e., acceleration of obsolescence). These
three tests do not involve counting the frequency of inno-
vations, which makes them relatively objective. 

We believe that accelerating evolution due to increasing
evolvability is also manifest in cultural evolution. For
example, consider the decrease in the average lifetime of
new technology (acceleration of obsolescence). However,
technologies do not form species, which makes it difficult
to objectively measure the lifetime of a technology. We
also need to correct for population growth, perhaps by
comparing the estimated pace of cultural evolution to the
estimated pace of population growth. 

Kurzweil (1999) points out that the rate of evolution of
computing machinery is accelerating. For many years, the
speed of computers has roughly doubled every two years.
More recently, the doubling time has reduced to 18 months.
We predict that many other technologies will display this
same pattern of evolution. For example, we could look at
the information density in magnetic recording media. The
problem with specific measures of this type (e.g., computa-
tion speed, information density) is that they may be inap-
propriate when there is a major revolution in technology
(e.g., quantum computers, holographic memory).

Acknowledgements

Thanks to Russell Anderson and the anonymous referees
for helpful comments.

References

Altenberg, L. (1994). The evolution of evolvability in
genetic programming. In: Advances in Genetic Program-
ming, K. E. Kinnear Jr., (ed.). MIT Press. 

Anderson, R.W. (1995). Learning and evolution: A quanti-
tative genetics approach. Journal of Theoretical Biology,
175, 89-101.

Ayala F.J. (1974). The concept of biological progress. In
Studies in the Philosophy of Biology, ed. F.J. Ayala, T.
Dobzhansky,19:339-55. New York: Macmillan.

Ayala F.J. (1988). Can “progress” be defined as a biologi-
cal concept? In Evolutionary Progress, ed. M Nitecki, pp.
75-96. Chicago: University of Chicago Press.

Bedau, M.A. and Seymour, R. (1995). Adaptation of muta-
tion rates in a simple model of evolution. Complexity Inter-
national, 2. [http://www.csu.edu.au/ci/vol2/mab2nd/mab2nd.
html]

Dawkins, R. (1989). The evolution of evolvability. In: Arti-
ficial Life, C. Langton, (ed.). Addison-Wesley. 

Dawkins, R. (1996). Climbing Mount Improbable. New
York: W.W. Norton and Co.

Gould S.J. (1988). Trends as changes in variance: A new
slant on progress and directionality in evolution. Journal of
Paleontology, 62, 319-29.

Gould S.J. (1997). Full House: The Spread of Excellence
from Plato to Darwin. New York: Harmony.

Hinton, G.E., and Nowlan, S.J. (1987). How learning can
guide evolution. Complex Systems, 1, 495-502.

Kurzweil, R. (1999). The Age of Spiritual Machines: When
Computers Exceed Human Intelligence. Viking Press.

McShea, D.W. (1998). Possible largest-scale trends in
organismal evolution: Eight “Live Hypotheses”. Annual
Review of Ecology and Systematics, 29, 293-318. [http://bio-
medical.AnnualReviews.org/cgi/content/abstract/4/29/293]

Simon, H.A. (1962). The architecture of complexity. Pro-
ceedings of the American Philosophical Society, 106, 467-
482.

Turney, P.D. (1989). The architecture of complexity: A
new blueprint. Synthese, 79, 515-542.

Turney, P.D. (1996). How to shift bias: Lessons from the
Baldwin effect. Evolutionary Computation, 4, 271-295.

Wagner, G.P. and Altenberg, L. (1996). Complex adapta-
tions and the evolution of evolvability. Evolution, 50, 967-
976. [http://pueo.mhpcc.edu/~altenber/PAPERS/CAEE/]

Whitley, D. (1989). The GENITOR algorithm and selec-
tive pressure. Proceedings of the Third International Con-
ference on Genetic Algorithms (ICGA-89), pp. 116-121.
California: Morgan Kaufmann. 

4Unfortunately there is not enough space here to properly
defend this claim. Note that McShea (1998) points out that
several of the candidates imply that the average lifetime of
species should be increasing, whereas we predict that the
average lifetime of species should be decreasing, due to accel-
erated obsolescence. 


