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Abstract

We present experiments in which a group
of autonomous mobile robots learn to per-
form fundamental sensor-motor tasks through
a collaborative learning process. Behavioural
strategies, i.e. motor responses to sensory
stimuli, are encoded by means of genetic
strings1 stored on the individual robots,
and adapted through a genetic algorithm
(Mitchell, 1998) executed by the entire robot
collective: robots communicate their own
strings and corresponding fitness2 to each
other, and then execute a genetic algorithm
to improve their individual behavioural strat-
egy.

The robots acquired three different sensor-
motor competences, as well as the ability to
select one of two, or one of three behaviours
depending on context (“behaviour manage-
ment”). Results show that fitness indeed in-
creases with increasing learning time, and the
analysis of the acquired behavioural strategies
demonstrates that they are effective in accom-
plishing the desired task.

1. Introduction

1.1 Motivation

For certain applications of autonomous mobile
robots — surveillance, cleaning or exploration come
immediately to mind — it is attractive to employ
multi-robot scenarios. Such tasks are easily divis-
ible between independent robots, and using several
robots simultaneously promises a speedup of task ex-
ecution, as well as more reliable and robust perfor-
mance.

To determine a suitable control strategy for a mo-
bile robot operating in noisy and possibly dynamic

1Vectors encoding such a behavioural strategy — see fig-
ure 2 for an example.

2A numerical value indicating to what extent the robot’s
behaviour achieves pre-defined targets, i.e. a measure of suc-
cess of the developed behavioural strategy.

environments requires — if learning mechanisms are
to be used — the search through a very large state
space. By parallelising this process through the use
of several robots and collaborative learning, we aim
to accelerate the search and therefore the learning
process.

Fixed behavioural strategies, defined by the user,
can be used to control robots in such multi-robot
scenarios. However, we argue that such an approach
will usually be brittle in practice, due to the noisy
and partly unpredictable nature of the real world.
Instead of using fixed behavioural strategies, we sug-
gest that using learning controllers will result in more
robust control strategies.

1.2 Related Work

That individual (i.e. single robot) learning of
sensor-motor competences is possible, has al-
ready been demonstrated (Daskalakis, 1991,
Mahadevan and Connell, 1991, Nehmzow, 1992,
Ramakers, 1993, Colombetti and Dorigo, 1993,
Nehmzow, 2000). In a multi-robot scenario, how-
ever, it would be beneficial to exploit the fact that
several robots are exploring the perception-action
space simultaneously, using a collaborative learning
strategy. Related work with this focus is described,
for instance, in (Billard and Dautenhahn, 1999),
where a teacher-learner scenario in a multi-robot
scenario is presented. In contrast to Billard’s and
Dautenhahn’s work, the experiments presented here
do not use a hierarchical teacher-learner scenario,
but a collaborative learning strategy in which all
robots involved contribute equally to the learning
process.

(Watson et al., 1999, Ficci et al., 1999) present a
multi-robot learning scenario in which a genetic al-
gorithm (strings are the weights of an artificial neu-
ral network controlling the robot) is used to acquire
a single competence, phototaxis. Their implementa-
tion is similar to the one presented in this paper, in
that physical robots perform the task, and modify
their strings through communication. Contrary to



our approach, however, only strings are exchanged,
not fitnesses. Strings are broadcast to the entire pop-
ulation of 8 robots, and the individual robot makes a
decision as to whether or not to replace a string with
a received one, based on its own fitness alone. Con-
sequently, the resulting convergence times are quite
long. After more than 80 minutes the developed abil-
ity to move towards a light source matches that of a
hand-coded program.

(Lee et al., 1998) present a simulate-and-transfer
mechanism, in which a controller is developed using
a genetic algorithm on a simulator, and the solution
is afterwards transferred to a physical robot. The
single acquired task is that of pushing a box towards
a light source.

(Mataric, 1998) presents experiments with two
legged robots that learn to push a box collabora-
tively towards a goal position, using radio communi-
cation in the process. Robots learned a reactive map-
ping between sensory perceptions and pre-installed
fixed behaviours, by means of reinforcement learn-
ing. Communication was used to overcome sensory
limitations (for instance caused by obstructed views
of one robot). In contrast to this use of commu-
nication to overcome hidden state problems, in the
experiments presented here communication was used
to establish a “global” learning process across robots,
in which the individual robot’s exploration of sensor-
motor space was used to increase the fitness of the
entire robot group.

There are also software simulations of multi-robot
scenarios that employ genetic algorithms to acquire
behavioural policies. (Wilson, 1998) for instance de-
veloped a system for the RoboCup domain, in which
simulated robots learn to move towards the ball by
means of a genetic algorithm. Whether such algo-
rithms are applicable to real world robot scenarios,
however, remains an open question.

Learning in the experiments presented here is ac-
complished by means of a genetic algorithm. As
this algorithm is physically embedded on real robots,
rather than executed by software agents, we refer
to it as a physically embedded genetic algorithm
(PEGA).

2. Experimental Setup

2.1 Hardware

All experiments reported here were conducted us-
ing two small mobile robots, which were equipped
with sonar, infrared (IR), ambient light and tactile
sensors (see figure 1). Most importantly for the ex-
periments discussed in this paper, the robots were
also able to communicate with each other by means
of infrared sensors. Communication speeds were low
(not more than 200 Baud), and possible if the robots
were within 1 metre of each other.

Figure 1: One of the mobile robots used in the experiments.

2.2 Software

For all initial experiments, described in section 3.,
the robots were equipped with the pre-installed com-
petences of obstacle avoidance (using IR and tactile
sensors), seeking the other robot, and communica-
tion via IR with the other robot. This aided the
process of acquiring a further competence through
the physically embedded genetic algorithm.

In the later experiments described in section 4.,
more competences were acquired through the PEGA,
and fewer were implemented by the designer.

In addition to these pre-installed competences,
each robot had an on-board implementation of a ge-
netic algorithm. This included the fitness evaluation,
mutation, crossover and executing the control strat-
egy encoded by the string.

In software implementations of genetic algorithms,
the population size is chosen large, each software
agent executing one particular string. In a phys-
ical implementation this is not easily done: too
many robots will eventually interfere with each other
so much, that a principled exploration of the ac-
tion search space is impossible. In our implementa-
tion, each robot carried two strings (i.e. behavioural
strategies): the “active” one that was being evalu-
ated by the GA, and the “best” one found so far.
The latter was used as a fallback option if the GA
did not produce a “better” solution than the “best”
one so far. “Better” was defined here by a higher
fitness value of the evaluated string.

2.3 Experimental Procedure

The experimental procedure adopted in all exper-
iments was this: the two robots were left to exe-
cute the behavioural strategy encoded by the cur-
rent string for a certain amount of time, evaluating
the fitness while they were doing this. After the al-
loted time had expired, the robots initiated a search
behaviour (based on infrared signal emissions) to lo-
cate the other robot. This ensured that robots were
within communication distance of one another. Once
found, robots faced each other and exchanged their
current strings and corresponding fitnesses.



2.3.1 Implementation of the PEGA

Crossover. After the robots had exchanged the
strings and their corresponding fitnesses, crossover
and mutation were applied in the following manner.
If the received remote string was fitter than the lo-
cal one, one half of the local string (either the first
or the second half, determined by a random process),
was replaced by the corresponding part of the remote
string.

If the local string had a higher fitness than the
remote one, no crossover between local and remote
string happened. However, if in this case the locally
stored “best” string had a higher fitness than the
currently used local string, there was a 30% proba-
bility that a randomly selected bit (binary digit) of
the current string was replaced by the corresponding
bit of the “best” string. In the remaining 70% of
cases, mutation was applied to the current string.

Mutation. If invoked, the likelihood of mutation
of a string was dependent upon a string’s fitness.
This probability pm of changing one randomly se-
lected bit is given by pm = R 100−F

100 , where F stands
for the fitness of the string, and R is a constant cho-
sen to be R = 0.3.

3. Experiments: Acquisition of Single
Competences

3.1 Phototaxis

The first task that the robots were to learn, using
the PEGA algorithm, was to move towards a light
source placed at a random location in the experi-
mental arena.

3.1.1 Phototaxis: Implementation of the
Genetic Algorithm

The string used to represent the robot’s behavioural
repertoire is shown in figure 2. It consists of four
elements, each containing a motor response for the
case that the brightest light in the environment is de-
tected at the front, rear, right or left of the robot re-
spectively. Each of these fields contains one of three
possible motor responses (forward, left or right).

Figure 2: Learning phototaxis: String representation.

The fitness FP of a string was determined by
FP = L

T 100, with L being the number of program

loops during which the robot was facing the bright-
est light, and T being the total number of program
loops processed.

3.1.2 Phototaxis: Experimental Results

Ten experiments were conducted, each over 30 gener-
ations (where one generation denotes one modifica-
tion to a string). The change in fitness over those 30
generations in each of the 10 runs is shown in figure 3,
a clear upward trend with time is visible. Figure 4
shows the average fitness of those ten runs against
learning time. The convergence of solutions is visi-
ble from the decreasing standard deviations with in-
creasing learning time.

Figure 3: Learning phototaxis: Individual fitnesses (in %) of

10 separate runs against training time (generations). Total

learning time: 30 generations.

Figure 4: Learning phototaxis: Mean fitness (in %) and

standard deviation of ten runs against learning time (gener-

ations). Total learning time: 30 generations.

Table 1 shows the frequencies of acquired sensor-
motor pairs. It is clear from that table that a suc-
cessful phototaxis competence was acquired.

3.2 Obstacle Avoidance

The second single competence to be acquired was the
ability to steer away from obstacles by means of the
robot’s infrared sensors.



Sensor Input Forward Left Right
Strongest light ahead 19 1 1
Strongest light on left 0 20 0
Strongest light on right 1 2 17
Strongest light behind 0 17 3

Table 1: Learning phototaxis: Frequency of acquired input-

output associations.

3.2.1 Obstacle Avoidance: Implementation
of the Genetic Algorithm

The string used to encode the behavioural strategy of
the robot is given in figure 5. It consists of four fields.
representing the motor response (forward/left/right)
in case IR sensors were triggered to the left and right,
left, right, or not at all.

Figure 5: Structure of the string to achieve obstacle avoid-

ance.

The fitness FA of a string was determined by
FA = A

T 100, with A being the number of program
loops during which neither the robot’s left IR nor
its right IR detected an object nearer than a preset
threshold, and T being the total number of program
loops processed.

3.2.2 Obstacle avoidance: Experimental
Results

Again, 10 runs of 30 generations each were executed.
The fitnesses of individual runs are given in figure 6.
The noticeably low fitness of one of the 10 runs was
due to a hardware fault of one IR sensor, which was
only detected after the experiment was concluded.

The average fitness of all 10 runs against learning
time is given in figure 7, the acquired sensor-motor
pairings are shown in table 2. Again, clear upward
trends in fitness with decreasing standard deviations
are shown, as is a successful behavioural strategy.

3.3 Robot seeking

In order to communicate with one another, the
robots need to face each other, and need to be less
than 1 metre apart. The robots detect that this
is the case, i.e. that communication is possible, by
exchanging initialisation messages through their in-
frared sensors. Once communication is possible, a

Figure 6: Individual fitnesses (in %) of 10 runs against

number of generations learning time when learning obstacle

avoidance.

Figure 7: Mean fitness (in %) and standard deviation of ten

runs against learning time (in generations) when learning

obstacle avoidance, against learning time.

fixed, error correcting protocol is used to exchange
information (Nix, 2000).

For the first two experiments just discussed —
phototaxis and obstacle avoidance — a fixed robot-
seeking behaviour was implemented, and the purpose
of the following experiment was to establish a robot-
seeking competence through the PEGA.

3.3.1 Robot seeking: Implementation of the
Genetic Algorithm

The string used to acquire the robot-seeking com-
petence is given in figure 8. This string is largely
identical to the one used for obstacle avoidance (fig-
ure 5), with the difference that the case of “no IR
reflection detected” is mapped onto a collection of
four actions. When invoked, these four actions are
executed cyclically in sequence, until an IR signal is
detected.

The fitness FRS was determined by FRS = 100−T ,
with T being the amount of time that it takes the
robot to position itself correctly with respect to the
other robot.



Sensor Input Forward Left Right

Left IR triggered 0 1 19

Right IR triggered 2 18 0

Left & right IR triggered 1 8 11

None triggered 19 1 0

Table 2: Obstacle avoidance: frequencies of acquired

sensor-motor mappings.

Figure 8: String used to acquire robot-seeking behaviour.

3.3.2 Robot seeking: Experimental Results

Figure 9 gives the fitness against time of individual
runs, figure 10 the mean fitness. Again, there is a no-
ticeable increase in fitness over time, comparable to
that observed in the obstacle avoidance experiment
(bearing in mind that only fitness change per time
unit, not absolute values can be compared, due to
the task-specific definition of fitnesses).

Figure 9: Learning to find other robots: Fitnesses (in %) of

ten individual runs against learning time (in generations).

4. Experiments: Managing Multiple
Competences

Given the evidence that acquisition of single compe-
tences is indeed possible, using a physically embed-
ded genetic algorithm, we were interested to investi-
gate whether multiple competences could be acquired
by the same mechanism. In the first experiment on
multi-competence learning, the robots’ task was to
learn when to select one of two preprogrammed be-

Figure 10: Learning to find other robots: Mean fitnesses

(in %) and standard deviation of ten runs, against learning

time (in generations).

haviours: either obstacle avoidance, or phototaxis.

4.1 Action Selection: Phototaxis and Ob-
stacle Avoidance

4.1.1 Action Selection: Implementation of
the Genetic Algorithm

Figure 11 gives the string used to acquire this compe-
tence. The four sensory fields each encode whether in
the particular sensory situation the robot should se-
lect the obstacle avoidance action, or the phototaxis
action.

Figure 11: String used to select either phototaxis or obsta-

cle avoidance behaviour.

4.1.2 Experimental Results

Figure 12 shows the fitness of 10 individual runs
against learning time, figure 13 shows the mean fit-
ness.

Table 3 shows an interesting result: almost always
the phototaxis strategy was selected, irrespective of
sensory perception. The post-hoc explanation was
that the experiment were carried out in an environ-
ment in which approaching an attractor automati-
cally meant avoiding obstacles! Obvious future ex-
periments are to conduct the same investigation in
differently structured environments.



Figure 12: Selecting phototaxis or obstacle avoidance: Fit-

nesses (in %) of ten individual runs against learning time

(in generations).

Figure 13: Selecting phototaxis or obstacle avoidance:

Mean fitnesses (in %) and standard deviation of ten runs,

against learning time (in generations).

4.2 Phototaxis, Obstacle Avoidance and
Robot Seeking

The final set of experiments, concerning the acqui-
sition of a triple competence of phototaxis, obstacle
avoidance and robot seeking, consisted of two sepa-
rate experiments. In the first (“phase 1”), the robot
had to acquire the ability to manage behaviours, and
to select one of three behaviours, depending on con-
text (these were the competences acquired in the
experiments described in sections 3.1, 3.2 and 3.3).
In the second (“phase 2”), the robots attempted to
learn the three competences simultaneously, while
using a pre-supplied management strategy.

Action selection was achieved by means of a be-
haviour managing module (see figure 14), which se-
lected the competence to be used to drive the robot.

In phase 1, the three previously learned compe-
tences were pre-supplied, and the PEGA had to learn
the management strategy. In phase 2, a fixed man-
agement strategy was supplied, the three compe-
tences were acquired through the PEGAs described
in sections 3.1, 3.2 and 3.3.

Sensor Input Object avoid. Phototaxis

Left IR triggered 2 18

Right IR triggered 1 19

Left & right IR trigg. 7 13

None triggered 0 20

Table 3: Managing phototaxis and obstacle avoidance:

Sensor-motor mappings acquired.

Figure 14: Behaviour manager for triple-competence acqui-

sition.

4.2.1 Triple Competence: Implementation
of the Genetic Algorithm

Figure 15 shows the string used in both phases of
the experiment. The leftmost four fields determine
the robot’s behaviour during the first 60 seconds of
a generation, the rightmost four entries the strategy
for the next 100 seconds. If after those 160 seconds
no other robot is detected, a pre-supplied seek be-
haviour is initiated.

Figure 15: String used to manage phototaxis, obstacle

avoidance and robot-seeking behaviour.

The fitness in this final set of experiments was de-
termined as the average fitness of the three individual
behaviours.

4.2.2 Experimental Results

Individual fitnesses of 5 runs and the average fitness
in phase 1 are shown in figures 16 and 17.



Figure 16: Selecting phototaxis, obstacle avoidance or

robot-seeking (experiment 1): Fitnesses (in %) of ten in-

dividual runs against learning time (in generations).

Figure 17: Selecting phototaxis, obstacle avoidance or

robot-seeking (Experiment 1): Mean fitnesses (in %) and

standard deviation of ten runs, against learning time (in

generations).

Likewise, individual fitnesses of 10 runs and the av-
erage fitness in phase 2 are given in figures 18 and 19.
In all cases, fitnesses increase with learning time, and
the robots exhibited successful behaviour.

5. Summary and Conclusion

5.1 Motivation and Context of this Work

For certain real world applications of mobile
robots — especially those that are easily divisible
into subtasks — it is beneficial to let groups of robots
perform the task concurrently. Examples of such
tasks are cleaning, surveillance, or exploration.

Due to the partial unpredictability of the real
world and the noise inherent to it, it is also desir-
able to use learning controllers, which are (because
of their ability to adapt to real world circumstances)
less brittle and more robust than pre-coded, fixed
control algorithms.

Learning in individual robots has pre-
viously been achieved (Daskalakis, 1991,
Mahadevan and Connell, 1991, Nehmzow, 1992,
Ramakers, 1993, Colombetti and Dorigo, 1993,

Figure 18: Learning phototaxis, obstacle avoidance and

robot-seeking (experiment 2): Fitnesses (in %) of ten in-

dividual runs against learning time (in generations).

Figure 19: Learning phototaxis, obstacle avoidance and

robot-seeking (experiment 2): Mean fitnesses (in %) and

standard deviation of ten runs, against learning time (in

generations).

Nehmzow, 2000), but learning in multi-robot
scenarios has only recently received atten-
tion. Work carried out at Brandeis University
(Watson et al., 1999, Ficci et al., 1999) is the clos-
est to work presented here, in terms of experimental
procedure — the main difference being the number
of competences being learned (phototaxis only
in (Watson et al., 1999, Ficci et al., 1999), five
different competences in the experiments reported
here), and the learning time needed (2hrs versus
about 20 to 30 minutes in the work reported here).
(Lee et al., 1998) present a simulate-and-transfer
GA approach to box pushing.

(Billard and Dautenhahn, 1999) have presented
multi-robot learning scenarios in which a teacher
conveys knowledge to a learner robot. In a teacher-
learner scenario the emphasis is on propagating
knowledge. However, there is another interesting as-
pect to multi-robot situations, which we aimed to
exploit in the experiments presented here. A robot
interacting with its environment is in essence explor-
ing a sensor-motor space, in which it tries to establish
meaningful mappings between perception and action,



with respect to a given task. Multiple robots can ob-
viously explore this sensor-motor space quicker, and
it would therefore be interesting to devise a learn-
ing scenario in which all robots contribute equally
to the learning process, by pooling their knowledge.
The way we aimed to achieve this goal was to im-
plement a physically embedded genetic algorithm on
each of a group of robots.

5.2 The Physically Embedded Genetic Algo-
rithm (PEGA)

5.2.1 Experimental setup

For the experiments reported in this paper, two au-
tonomous mobile robots were used (see figure 1).
Besides sensory capability to perceive their environ-
ment, these robots were able to communicate with
each other by means of infrared transmissions.

Each robot was controlled by a genetic string that
encoded the robot’s behavioural policy in response
to certain sensory situations. Both robots executed
their behavioural policy for a certain amount of time,
at the same time determining the “fitness” (i.e. the
quality of performance of the given task) of their cur-
rent string. They then communicated their strings
and corresponding fitnesses to each other, and used
a genetic algorithm to modify their strings in an at-
tempt to achieve a higher fitness in the next “gen-
eration” (i.e. the next round of the abovementioned
cycle).

5.2.2 Differences between conventional
GAs and the PEGA

While the PEGA uses strings to encode behavioural
policy, and crossover and mutation operators like a
standard genetic algorithm (GA), there are some im-
portant differences between the PEGA and a GA.
Typically, a GA uses a large number of agents (sev-
eral hundreds), each carrying one string. For real
world robot scenarios, it is not feasible to use hun-
dreds of robots, because the physical interaction of
robots with one another would eventually interfere
with task-oriented behaviour (apart from more mun-
dane reasons such as sensor crosstalk or cost). The
search for better policies is therefore more difficult
in the PEGA.

Although the task each robot performs is essen-
tially a single-robot task, we believe — without be-
ing able to demonstrate this at this stage — that
through the multi-robot learning scenario we achieve
a faster exploration of the search space than with a
single robot; and that therefore the individual robot
benefits from being part of a society. The question
of speedup in learning in multi-robot scenarios, in
contrast to single-robot learning scenarios, is an in-
teresting aspect of future research.

The way we overcame the difficulty of searching for
better control policies in the experiments presented
here, was to employ a mixture of fixed, pre-installed
behaviours and an adaptive GA component. The
fixed behaviours effectively reduced the search space
and thus aided the search process for better policies.

Besides the use of pre-installed behaviours, each
robot also carried two strings, rather than one as
in standard GAs. The “current” string was the one
actually being used, but a copy of the “best string
so far” was carried as a fallback position. In case the
GA resulted in a lower fitness, robots were able to
resort to the “best so far” string, preventing a fall in
fitness.

5.3 Results

Single sensor-motor competences as well as
behaviour-management competences were ac-
quired by our robots, using the PEGA. In a first
set of three experiments, the robots acquired the
single competences of phototaxis, obstacle avoidance
and robot-seeking. In a second set of experiments,
the robots learned to select between phototaxis
or obstacle avoidance behaviour, depending on
context, and in a third set of two experiments the
robots learned to manage the triple competence of
phototaxis, obstacle avoidance and robot seeking.

In all experiments, a marked increase in fitness
with increasing learning time was noted. In all cases,
the robots also acquired a task-achieving compe-
tence.

There were differences between tasks, some fitness
curves rising faster than others, which indicates i)
that there are tasks that are better suited to the
PEGA than others, and ii) that there might be tasks
that cannot be accomplished by the PEGA at all.
Future work would have to address this question, by
scaling up the complexity of the tasks, the number
of tasks acquired simultaneously, and the complexity
of the environment the robots operate in.

5.4 Conclusion

The main point that the experiments reported in this
paper make is that physically embedded learning in
robot colonies is possible, in real time, using simple
hardware and a simple learning strategy — that of a
physically embedded genetic algorithm.

Given the simplicity of the algorithm, robot pro-
gramming was straightforward and required only a
moderate amount of programming time. The advan-
tages gained by using a learning controller, rather
than a “hardwired” one, however, are numerous:
adaptation to changing environments, robustness in
the presence of sensor noise and contradictory sen-
sor information, and the acquisition of behavioural
strategies that would not have been obvious to a hu-



man designer, due to the fact that our view of the
world differs from that of a robot. In addition to
this, using a global learning algorithm that is dis-
tributed over a colony of robots further advantages:
potentially faster exploration of state space, faster
acquisition of competences, and robustness (e.g. the
failure of one member of a colony will not result in
any drastic loss of competence).

5.5 Future Work

The experiments with the PEGA reported in this
paper are just a starting point to further research.
We believe that the following aspects are particularly
interesting for future work.

We have used a “colony” of two robots. Clearly,
experiments with a larger number of robots need to
be conducted to investigate whether the expected
benefits of this distributed learning algorithm will
actually materialise in larger colonies. The question
of optimal colony size (cooperation versus interfer-
ence) also deserves attention.

In our experiments, the robots acquired either
sensor-motor competences or the ability to select be-
tween different behaviours. An obvious extension to
these experiments is to let the robots acquire both
behaviours and management strategies.

Finally, it would be interesting to investigate the
question of scaling these experiments up, by increas-
ing the state space of the robots (more sensor modal-
ities, higher resolution, more complex tasks and en-
vironments).
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