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Abstract

Thereis agrowing debateamongdevelopmentaltheoristscon-
cerningtheperceptionof causalityin younginfants.Somethe-
oristsadvocatea top-down view, e.g.,thatinfantsreasonabout
causaleventsonthebasisof intuitivephysicalprinciples.Oth-
ersargueinsteadfor a bottom-upview of infantcausalknowl-
edge,in which causalperceptionemergesfrom a simple set
of associative learningrules. In orderto testthe limits of the
bottom-upview, we proposeanoptimalcontrolmodel(OCM)
of infantcausalperception.OCM is trainedto find anoptimal
patternof eye movementsfor maintainingsightof a targetob-
ject. We first presenta seriesof simulationswhich illustrate
OCM’s ability to anticipatethe outcomeof novel, occluded
causalevents,andthencompareOCM’sperformancewith that
of 9-month-oldinfants. The implicationsfor developmental
theoryandresearcharediscussed.

Introduction
How doesthe perceptionof causalitydevelop? Do we per-
ceive cause-and-effect relationsat birth, or are monthsof
experiencenecessary?Developmentalresearchershave ap-
proachedthesequestionsby studyinginfants’perceptualre-
actionsto causalevents(e.g.,Baillargeon,1986;Keil, 1979;
Leslie,1982;Oakes& Cohen,1990). Much of this research
dependson the tendency for infants to anticipatethe out-
comesof causalevents,oftenshowing surpriseto unexpected
outcomes(asinferredby measuresof attention).

Considerthe pair of causaleventspresentedin Figure1.
The first (1a) is a simple, occludedmovementdisplay; by
age 6 months, infants will quickly learn to anticipatethe
block’s reappearance(Bower, Broughton,& Moore, 1971;
Rutkowska,1993). Thesecondevent(1b), however, is more
complex. A wall obstructsthe pathof the block; note that
the wall is partially occludedby the screen,revealingonly

a)

b)

Figure1: Occludedcausalevents.In (a),theblockpassesbe-
hind theoccludingscreenandreappearson theoppositeside.
In (b), a partially-visiblewall obstructsthepathof theblock;
afterpassingbehindthescreen,theblock fails to reappear.

theupperandlower portionsof the wall. While bothevents
begin in a similarmanner, they enddifferently, dependingon
thepresenceof thewall.

Two broadtheoreticalviewshavebeenproposedto explain
infants’ reactionsto eventslike thosein Figure1. First, sev-
eral researchersadvocatea top-down view of infant causal
knowledge(Baillargeon,1994;Spelke, 1998). Accordingto
this view, infantsusenaive or intuitive physicalprinciplesto
predict, reasonabout,or deducethe outcomesof occluded
causalevents. Two recentcomputationalmodelshelp illus-
tratehow the representationsunderlyingthis type of predic-
tion systemmightdevelop(Mareschal,Plunkett,& Harris,in
press;Munakata,McClelland,Johnson,& Siegler, 1997).

Alternatively, severalinfantcausalperceptionstudieshave
drawn attentionto the role of simpleperceptualpreferences
and associative learning rules (Bogartz& Shinskey, 1998;
Rivera,Wakeley, & Langer, in press;Schilling,1997).These
researchersarguefor a bottom-upview of causalperception.
Accordingto thisapproach,predictionis notana priori goal,
nor is representationof hiddenobjectsnecessaryfor theper-
ceptionof causalityin occludedevents.

It is theoreticallypossible,if not likely, thatbothtop-down
andbottom-upfactorsplay a role in infants’ causalpercep-
tion. How shouldthetwo views bereconciled?Thestrategy
thatwe proposeis to constructa modelbasedon thebottom-
upview, andthento testtheextentof its perceptual“abilities”
whenpresentedwith causaleventslike thoseshown to young
infants. Any gapsor limitations in the performanceof the
modelcouldthenbeaddressed,weassume,by usingthetop-
down approach.

Ratherthansimulatingcausalperceptionasa representa-
tional task (cf., Mareschalet al., in press;Munakataet al.,
1997),wemodelthephenomenonasanoptimalcontrolprob-
lem. The optimal control model (OCM) is a sensorimotor
model of infant causalperception. Unlike humaninfants,
OCM: (1) hasno intuitive knowledge,(2) cannotgenerate
predictions,and (3) learnsonly by trial-and-error. OCM’s
objective is to learna sequenceof eye movementsthat best
maintaina targetobjectin view. After trainingOCM to track
a target, we then test OCM’s reactionsto novel, occluded
causaleventslike the onepresentedin Figure1b. We next
briefly describeOCM.

The Optimal Control Model
The Tracking Display
Figure2a presentsa snapshotof the 2-dimensionaltracking
displayusedto train OCM. During eachtrial, theblock (rep-
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Figure 2: The OCM: (a) the tracking display (the target is representedby the solid black square,while the visual field is
indicatedby theblackframe);(b) OCM’s visualinput for thecorrespondingdisplay.

resentedby theblacksquare)movesfrom left to right, at the
rateof 1 unit per timestep. At the startof the trial, OCM’s
visual field (the large, squareframe) is positionedwith the
block in thecenterof thefield. Eachtrial lasts50 timesteps.

The displayis 100 units wide and20 units high. OCM’s
visualfield coversa20-unitsquareregionof thedisplay, per-
mitting only lateraleye movements.The block is an 8-unit
square,while thescreen(whenpresent)is 20 unitswide and
12 unitshigh.

Objectsin OCM’s visual field activate correspondingin-
put units on its retina(seeFigure2b). Becausethe block is
OCM’stargetobject,its activationontheretinais1 (i.e.,max-
imumsalience).Thebackgroundhasanactivationof 0, while
thewall andscreen’sactivationlevelsare0.6and0.2,respec-
tively.

Model Architecture

OCM’s sensorimotor“knowledge”is representedby a multi-
layer, artificial neural network. There are two input sys-
tems. First, OCM receives visual input from its 20-by-20
unit retina.Figure2b illustratesa typicalvisualinputpattern.
OCM alsoreceivesanadditionalinput indicatingtheposition
of thevisualfield with respectto thedisplay, normalizedfrom
0 to 1.

Thereare20 hiddenunits,and5 output(motor)units.The
network is fully connected,with only feedforward connec-
tions. Eachof the motor units controlsone of 5 possible
eye movements: � -4, -1, 0, 1, 4 � . On eachtimestep,the
movementcorrespondingto themostactivemotorunit is per-
formed.

Learning Algorithm

OCM is rewardedfor generatingeyemovementswhich keep
the block within the visual field; OCM learnsby trial-and-
errorto find apatternof eyemovementswhichoptimizesight
of theblock(i.e.,maximizethetotal reward).Any movement
which is followedby sight of the block is rewarded;the re-
wardrangesfrom 0 to 1, asafunctionof theproportionof the
block in thevisualfield aftertheeyemovement(e.g.,1 when
fully visible,0.5whenhalf visible,etc.).

The outputof eachmotor unit is an estimateof the value
(i.e.,probabilityof reward)for performingthecorresponding
eye movement. We employed the Sarsalearningalgorithm,
an unsupervised,online version of reinforcementlearning
methods(seeSutton& Barto, 1997) to train OCM. Using
standardgradientdescentmethods,the Sarsaalgorithm at-
temptsto minimizethedifferencebetweentheestimatedand
observedrewardsaftereacheyemovement.

Consequently, the directionandmagnitudeof the weight
changesfor the output layer dependon the eye move-
mentchosen,andthe correspondingreward, during a given
timestep. Theseweight changesare thenpropagatedback-
wardsto thehiddenlayer (seeLin, 1991,for a discussionof
reinforcementlearningandback-prophybridmodels).

Simulation Overview
We conducteda seriesof simulation studieswhich assess
OCM’s ability to learnto trackvisible andoccludedtargets.
In eachstudy, OCM wasfirst trainedto tracka targetduring
two typesof events. In theoccludedevent,theblock passed
behindascreenandreappearedontheotherside.In theother
(fully visible) event, the block encountereda wall and then
remainedin place. After OCM learnedto optimally track
theblockduringtheseevents,wethentestedOCM’s tracking
duringanovel,occludedcausaleventwhichincludedboththe
screenandthewall. In Studies1 and2, thewall waspartially
occludedby thescreen,while it wascompletelyoccludedin
Study3.

Study 1: Tall Wall
Study1 addressesthequestionof how OCM will respondto a
partially occludedcausalevent. Figure3 displaystheevents
usedto trainandthentestOCM.

Method
Training. During training, OCM was presentedwith two
causalevents. On Screentrials, a screenoccludedthe cen-
tral portion of the display. On Wall trials, an obstaclewas
positionedin thecenterof thedisplay;theblock remainedin
placeaftermakingcontactwith thewall.

ScreenandWall trials alternatedrandomly. Trainingcon-
tinued until OCM’s total rewards during both Screenand
Wall trials were at least95% optimal over 10 consecutive
trials (i.e., maximumtotal rewardswere 30 and 50 points
for ScreenandWall trials, respectively). If criterionwasnot
reachedby 300 trials, the run wasterminated,the datawere
discarded,anda new setof randominitial weightsweregen-
erated.

Testing. After training, all weights in the network were
frozen(i.e., learningwas turnedoff1). OCM wasthenpre-
sentedwith 10 Wall-Screentrials. DuringWall-Screentrials,
the wall was positionedbehindthe screen;when the block
passedbehindthescreen,its pathwasobstructedby thewall

1This was doneto prevent OCM’s responsesduring early test
trials from contaminatinglatertrials.
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Study1
Training Testing

SCREEN SCREEN

WALL WALL−SCREEN

Figure3: Trainingandtesteventspresentedto OCM in Study1. Note that theScreentrial typewasidenticalduring training
andtesting.

(asduringWall trials),andconsequentlydid not reappear. In
addition,OCM wasalsopresentedwith 10 Screentrials, in
order to assessOCM’s ability to track an occluded,unob-
structedobject.

Results

Training. Figure4a presentsthe averagenumberof trials
to criterionin Study1, averagedacross50runs(36additional
runswere discarded).OCM reachedcriterion on Wall and
Screentrials after 65.5and93.2 training trials, respectively.
The differenceis statisticallysignificant(t(98) = 1.78, p

�
.05). Likehumaninfants,OCM learnsto tracka fully visible
targetbeforeit learnsto track an occludedtarget. However,
anaverageof 148.8trialswerenecessarybeforereachingcri-
terionon both trial typesconcurrently.
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Study 1:  Tall Wall
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Study 2:  Back Wall
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Study 3:  Short Wall

Figure4: Trials to criterion during training in Studies1, 2,
and3. Seetext for details.

Testing. Our analysesof the test trials focus on OCM’s
tracking behavior once the block disappearsbehind the
screen,andhow the presenceor absenceof the wall affects
this behavior. In particular, we are interestedin whetheror
notOCM movesits visualfield to theright edgeof thescreen
before or after theblockreappears,duringScreentrials. Con-
sequently, wedefinetracking latency asthedifferencein time
betweenOCM’s first fixation of theright edgeof thescreen,
andtheblock’s reappearanceat theright edgeduringScreen
trials. Although the block doesnot reappearduring Wall-
Screentrials,wecanusethesametemporalindex to compute
OCM’s tracking latency (i.e., assumingreappearanceof the
block,hadit not beenobstructed).A positive latency (or de-
lay) meansthatOCM fixatestheright edgeof thescreenafter
the block has(or would have) reappeared,while a negative
latency meansthatOCM anticipatesthe reappearanceof the
block.

Figure5 presentsOCM’s trackinglatenciesduringthetest
phaseof Study1. During Screentrials, OCM anticipatedthe
block’sreappearance,fixating theright edgeof thescreen8.9
timestepssoonerthan the reappearanceof the block (t(49)
= 7.03, p

� .01). In contrast,OCM’s averagetracking la-
tency was significantly delayedby the presenceof the tall
wall duringWall-Screentrials; on average,OCM fixatedthe
right edgeof thescreen18.9timestepsafteranunobstructed
blockwould havereappeared(t(49)= 4.21,p � .01).
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Figure5: Meantrackinglatenciesin the testphaseof Study
1, for Wall-ScreenandScreentrials. OCM anticipatedthe
reappearanceof theblockduringScreentrials,while tracking
wasdelayedduringWall-Screentrials.

Discussion
OCM’s learning trajectory parallelsthat of humaninfants.
OCM learnsto tracka fully visible objectbeforeit learnsto
track the movementsof an occludedobject. After training,
OCM appearsto reactas if it “knows” when the occluded
pathof theblock will, or will not beobstructed.OCM antic-
ipatesthereappearanceof theoccludedobjectduringScreen
trials,but not Wall-Screentrials.

It is temptingto concludethatOCM learnsto usethepres-
enceof the wall as a cue for tracking the occludedblock.
However, thereis morethanoneway to explain OCM’s be-
havior. Oneexplanationis that OCM learnsnothing about
thewall whentrainingon Wall trials; rather, it only learnsto
hold the visual field in placewhenthe block stopsmoving.
According to this explanation,the presenceof the partially
visible wall, during Wall-Screentrials, simply disruptsthe
trackingpatternlearnedduring Screentrials. Alternatively,
we might arguethatOCM learnsto associatethesightof the
wall with its effecton theblock.

Thesetwo explanationscanbe testedby placingthe wall
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Study2
Training Testing

SCREEN SCREEN

WALL WALL−SCREEN

Figure6: Trainingandtesteventspresentedto OCM in Study2. Unlike Study1, a thinnerwall wasincludedin thedisplay,
representingawall whichhasbeenmovedbackrelativeto its positionin Study1. DuringWall andWall-Screentrials,theblock
passedin front of thewall.

“back” (fromtheperspectiveof OCM),beyondthepathof the
block. Thus,the movementof the block is identicalduring
Screenand Wall-Screentrials. If sight of the wall is used
as a cue, OCM shouldanticipatethe block on both Screen
andWall-Screentrials;otherwise,if thewall disruptstracking
during Wall-Screentrials, thenOCM shouldonly anticipate
theblock duringScreentrials. Study2 teststhesealternative
hypotheses.

Study 2: Back Wall
Study1 wasrepeated,replacingthetall wall which obstructs
theblock’smovementwith a wall placed“back” (i.e., farther
from the observer’s point of view), beyond the path of the
block. Becausethe displayis a 2-dimensionalprojectionof
a 3-dimensionalworld, we representedthe perceptualeffect
of moving the wall backby decreasingits width (from 4 to
2 units). Consequently, theblock passedin front of thewall
duringbothWall andWall-Screentrials (seeFigure6).

Results
Training. Figure4b presentsthe meannumberof trials to
criterion, during training in Study2, across50 runs(28 ad-
ditional runswerediscarded).Comparedto Study1, fewer
trials wereneededto independentlyreachcriterion on Wall
andScreentrials (41.0and61.3,respectively).

Testing. Figure7 presentsOCM’s meantrackinglatencies,
during testing,for theWall-ScreenandWall events.Placing
the wall backsignificantly reducedOCM’s tracking latency
duringWall-Screentrials,comparedto thetall-wall condition
in Study1 (-3.12versus18.9timesteps;t(98)= 4.11,p � .01).
However, OCM’santicipatorytrackingwasslightly sloweron
Wall-Screentrials, thanduringScreentrials (seeFigure7).

A closeranalysisrevealedthat during 6 of the 50 runs,
trackingof theblockwasin factcompletelyinterruptedby the
partially visible backwall, during Wall-Screentrials. How-
ever, whenthe remaining44 runsareanalyzed,OCM’s av-
eragetrackinglatenciesduringWall-ScreenandScreentrials
are-10.37and-10.5timesteps,respectively. During thema-
jority of the runsin Study2, therefore,sight of the wall did
not disruptOCM’santicipatorytracking.

Discussion
Study2 replicatesandextendsthefindingsof Study1. In both
studies,OCM spontaneouslylearnsto anticipatethe reap-
pearanceof the occludedblock. Further, when the wall is

WALL−SCREEN SCREEN
−10

−5

0

5

10

15

20

25

30

La
te

nc
y 

(in
 ti

m
es

te
ps

)

Figure7: Meantrackinglatenciesin thetestphaseof Study2,
for Wall-ScreenandScreentrials. OCM anticipatedthereap-
pearanceof the block during both Screenand Wall-Screen
trials.

positionedso as to have no effect on the movementof the
block,it doesnotdisruptOCM’santicipatorytracking.Taken
together, theresultsof Studies1 and2 supporttheconclusion
thatOCM learnsto useboth thescreenandthewall ascues
for perceptualaction.

In contrastto Studies1 and2, a numberof infant causal
perceptionstudiespresentperceptualcuesto infantsprior to,
rather than during the occlusionevent (e.g.,occludedcolli-
sion events,studiedby Baillargeon,1986; Lucksinger, Co-
hen,& Madole,1992). Becausethe pairsof testeventsare
identicalin thesestudies,infantsmustremember and recruit
information madeavailable to them before eachoccluded
eventis presented.

We cansimulatethis typeof causaleventby reducingthe
heightof the wall; whenoccluded,a shortwall is no longer
visible. While Studies1 and2 presentedOCM with partially
occludedcausalevents,Study3 simulatesOCM’s reactionto
a completely occludedcausalevent.

Study 3: Short Wall
Figure8 presentsadisplayof thetrainingandtesteventsused
in Study3. Threemodificationsweremadeto themethodem-
ployed in Study1. First, the heightof thewall wasreduced
from 16 to 10 units. Second,20 new input unitswereadded
to OCM’s neuralnetwork. These“context” units were ac-
tivatedvia recurrentconnectionsfrom OCM’s hiddenlayer,
providing afunctionalmemoryof pastinternalstates(Elman,
1990).

Third, eachtrial wasprecededby a preview. During the
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Study3
Training Testing

SCREEN SCREEN

WALL WALL−SCREEN

Figure8: Training andtesteventspresentedto OCM in Study3. Unlike Study1, a shortwall was includedin the display,
which wasfully occludedby the screenduringWall-Screentrials. Note thatafter the preview, ScreenandWall-Screentrials
areperceptuallyidentical;paststateinformationis necessaryto differentiatethesetwo trial types.

preview, OCM’svisualfield washeldat thecenterof thedis-
play for 10 timesteps.During ScreenandWall-Screentrials,
the screenwasnot includedin the preview (i.e., OCM saw
whatwas“behind” thescreen).Learningwasturnedoff dur-
ing thepreview. After thepreview, eachtrial proceededasin
Studies1 and2.

Results
Training. Figure 4c presentsthe meantrials to criterion,
duringtrainingin Study3, across50 runs(21 additionalruns
werediscarded).Whencomparedwith Study1, therewere
no significantdifferencesin training time afterchangingthe
tall wall to theshortwall.

Testing. OCM appearsto “forget”abouttheshortwall once
it is occludedby the screen.As Figure9 indicates,OCM’s
trackinglatenciesduringScreenandWall-Screentrials were
identical; regardlessof whetheror not the short wall was
present,OCM anticipatedthe reappearanceof the block by
7.34timesteps(t(49)= 4.12,p � .01).
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Figure9: Meantrackinglatenciesin the testphaseof Study
3, for Wall-ScreenandScreentrials. Unlike Study1, OCM
anticipatedthereappearanceof theblock duringbothScreen
andWall-Screentrials.

Discussion
In contrastto theresultsof Study1, OCM’strackingbehavior
wasnotaffectedby thepresenceof ashortwall. Thefindings
from Study3 suggestthatOCM reliedon its immediateper-
ceptualinput, while ignoringor failing to useits memoryof
theshortwall.

However, it is important to rememberthat therewas no
pressureon OCM during training to learn to usememory.

First, during the fully visible wall trials, memoryis unnec-
essary. Second,during theScreentrials, OCM learnsto use
thesightof thescreen(ratherthanan internalrepresentation
of theoccludedblock)asaperceptualcuefor anticipatingthe
block’s reappearance.Thus, the task constraintsoperating
duringtrainingmaketheuseof memoryredundant.

General Discussion
Theresultsfrom the threesetsof simulationshighlight both
thestrengthsandlimitationsof theoptimalcontrolmodelof
infantcausalperception.Therearetwo majorfindings.First,
OCM quickly learnsa setof optimal trackingstrategies for
following a moving object. Second,whenpresentedwith a
novel causalevent, OCM appropriatelyanticipatesthe out-
comeof partially occluded,but not fully occluded,versions
of theevent.

We canevaluatetheperformanceof themodelby directly
comparingtheresultswith dataobtainedfrom younginfants.
Berthieret al. (in preparation)conducteda seriesof experi-
mentswith 9-month-oldinfants,correspondingto Studies1
through3. Figure10 presentsa summaryof the testresults
for OCM, andthe comparableaveragetrackinglatencies(in
seconds)for threegroupsof 9-month-olds.Acrossall three
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Figure10: Meantrackinglatenciesin thetestphaseof Studies
1-3for theOCM (toppanel)and9-month-oldinfants(bottom
panel;from Berthieretal., in preparation).
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studies,� theperformanceof OCM providesaclosequalitative
fit to theperformanceof humaninfants.LikeOCM,9-month-
old infantsalsousethepartially visible wall asa cue,but not
thefully occludedwall, toguidetheirtrackingof theoccluded
target.

When taken together, the humanandsimulationfindings
carrya numberof implicationsfor developmentaltheoryand
researchontheperceptionof causalityin younginfants.First,
many causalperceptionresearchers:(1) assumethat infants
explicitly predict theoutcomesof theeventsthey watch,and
(2) infer, on the basisof looking-time measures,when in-
fants’predictionsareconfirmedor violated.While theresults
from OCM arenotintendedto provideareductionistaccount,
they suggestthat learningduringthehabituationor familiar-
izationphasemaydrivetheprocessof anticipation,helpingto
shapeinfants’causalexpectations(seeRiveraet al., in press;
Schilling,1997).

A secondimplication concernsthe role of internal repre-
sentationsof occludedobjectsandevents. Again, it is often
assumedthatinfantsmustoperateon mentalrepresentations,
ratherthan direct perceptions,when the critical objectsare
occludedoroutof sight.However, whentrackinganoccluded
target, OCM relies on sensorimotor ratherthan representa-
tional strategiesfor anticipatingthetarget.

For example,theresultsfrom Study1 demonstratethatan-
ticipatorybehavior canemergeasa consequenceof learning
anoptimaltrackingstrategy, without theneedfor memoryor
prediction. Indeed,having memorydoesnot seemto facili-
tateOCM’s learningto track the block during Screentrain-
ing trials (compareFigures4a and4c), althoughtherewere
fewerdiscardedrunswhenOCM wastrainedwith arecurrent
network (i.e., in Study 3). We suspectthat in many causal
perceptionstudies,infantsemploy somecombinationof sen-
sorimotorand representationalstrategies. Simulationswith
modelslike OCM help to determineif andwhenthe senso-
rimotor strategiesaresufficient to accountfor theperceptual
phenomenon.

This point echoesa questionraisedin the introduction:
what arethe performancelimits of OCM?On the onehand,
there is surprisingly close agreementbetweenthe perfor-
manceof OCM andtherecentfindingsof Berthieretal. Nev-
ertheless,thisfit mayin partbedueto thespecificconstraints
of learningto track,andtheway in which this taskfavorsan
optimalcontrolsolution(e.g.,like learningto reachor gener-
atesaccades).Thus,two currentweaknessesof a bottom-up
view in general,andanoptimalcontrolapproachin particu-
lar are:(1) thatsometasksmaynecessarilyrequirepredictive,
representationalstrategies,and(2) thatOCM maynotbeable
to accountfor infants’ perceptualbehavior in othercontexts
(e.g.,preferencefor “surprising” or impossibleevents). We
are currently exploring an elaboratedversionof the model
which addressestheseissues.
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