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Abstract

Thereis agrowving debateamongdevelopmentatheoristscon-
cerningtheperceptiorof causalityin younginfants.Somethe-
oristsadwocatea top-davn view, e.g.,thatinfantsreasorabout
causakventson the basisof intuitive physicalprinciples.Oth-
ersamueinsteadfor a bottom-upview of infantcausaknowl-
edge,in which causalperceptionemegesfrom a simple set
of associatie learningrules. In orderto testthe limits of the
bottom-upview, we proposeanoptimalcontrolmodel(OCM)
of infantcausalperception OCM is trainedto find anoptimal
patternof eye movementsfor maintainingsightof atarmgetob-
ject. We first presenta seriesof simulationswhich illustrate
OCM'’s ability to anticipatethe outcomeof novel, occluded
causakvents,andthencompareéDCM'’s performancavith that
of 9-month-oldinfants. The implicationsfor developmental
theoryandresearclarediscussed.

I ntroduction

How doesthe perceptionof causalitydevelop? Do we per
ceive cause-and-&ct relationsat birth, or are months of
experiencenecessary?Developmentalresearcherbiave ap-
proachedhesequestionshy studyinginfants’ perceptuate-
actionsto causalevents(e.g.,Baillargeon,1986;Keil, 1979;
Leslie, 1982; Oakes& Cohen,1990). Much of this research
dependson the tendeng for infantsto anticipatethe out-
comesof causakvents,oftenshawving surpriseto unexpected
outcomegasinferredby measuresf attention).
Considerthe pair of causaleventspresentedn Figure 1.
The first (1a) is a simple, occludedmovementdisplay; by
age 6 months, infantswill quickly learn to anticipatethe
block’s reappearancéBower, Broughton,& Moore, 1971,
Rutkowska,1993). The secondevent (1b), however, is more
complex. A wall obstructsthe path of the block; note that
the wall is partially occludedby the screen revealingonly
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Figurel: Occludedcausakvents.In (a), theblock passede-
hindthe occludingscreerandreappearsn theoppositeside.
In (b), a partially-visiblewall obstructghe pathof the block;
after passingoehindthe screentheblock fails to reappear

the upperandlower portionsof thewall. While both events
begin in a similar mannerthey enddifferently, dependingpn
thepresencef thewall.

Two broadtheoreticaliews have beenproposedo explain
infants’reactiongo eventslik e thosein Figurel. First, sev-
eral researcheradwcatea top-dovn view of infant causal
knowledge(Baillargeon,1994; Spelle, 1998). Accordingto
this view, infantsusenaive or intuitive physicalprinciplesto
predict, reasonabout, or deducethe outcomesof occluded
causalevents. Two recentcomputationalmodelshelpillus-
tratehow the representationanderlyingthis type of predic-
tion systemmight develop(MareschalPlunkett, & Harris,in
pressMunakataMcClelland,Johnson& Siegler, 1997).

Alternatively, severalinfantcausalperceptiorstudieshave
drawn attentionto the role of simple perceptuapreferences
and associatie learningrules (Bogartz& Shinsley, 1998;
Rivera,Wakeley, & Langer in press;Schilling, 1997).These
researcherarguefor a bottom-upview of causalperception.
Accordingto this approachpredictionis notana priori goal,
nor is representationf hiddenobjectsnecessaryor the per
ceptionof causalityin occludedevents.

It is theoreticallypossiblejf notlikely, thatbothtop-dovn
and bottom-upfactorsplay a role in infants’ causalpercep-
tion. How shouldthe two views bereconciled?The stratgy
thatwe proposés to constructa modelbasedon the bottom-
upview, andthento testtheextentof its perceptuatabilities”
whenpresentedvith causakventslik e thoseshaovn to young
infants. Any gapsor limitations in the performanceof the
modelcouldthenbeaddressedye assumeby usingthetop-
down approach.

Ratherthan simulatingcausalperceptionas a representa-
tional task (cf., Mareschalet al., in press;Munakataet al.,
1997),we modelthe phenomenoasanoptimalcontrolprob-
lem. The optimal control model (OCM) is a sensorimotor
model of infant causalperception. Unlike humaninfants,
OCM: (1) hasno intuitive knowledge, (2) cannotgenerate
predictions,and (3) learnsonly by trial-and-error OCM’s
objective is to learna sequencef eye movementsthat best
maintainatargetobjectin view. After trainingOCM to track
a target, we then test OCM'’s reactionsto novel, occluded
causaleventslik e the one presentedn Figure 1b. We next
briefly describeOCM.

The Optimal Control M odel

The Tracking Display

Figure 2a presentsa snapshobf the 2-dimensionatracking
displayusedto train OCM. During eachtrial, the block (rep-
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Figure 2: The OCM: (a) the tracking display (the targetis representedby the solid black square,while the visual field is
indicatedby theblackframe);(b) OCM'’s visualinput for the correspondinglisplay

resentedy theblack square)movesfrom left to right, atthe
rate of 1 unit pertimestep. At the startof the trial, OCM’s
visual field (the large, squareframe)is positionedwith the
blockin the centerof thefield. Eachtrial lasts50 timesteps.

The displayis 100 units wide and 20 units high. OCM’s
visualfield coversa 20-unitsquareregion of thedisplay per
mitting only lateraleye movements. The block is an 8-unit
squarewhile the screenlwhenpresent)s 20 unitswide and
12 unitshigh.

Objectsin OCM’s visual field activate correspondingn-
put units on its retina(seeFigure 2b). Becausehe block is
OCM'stargetobject,its activationontheretinais 1 (i.e.,max-
imumsalience).Thebackgroundasanactivationof 0, while
thewall andscreers activationlevelsare0.6and0.2,respec-
tively.

Modd Architecture

OCM's sensorimototknowledge”is representetly a multi-
layer, artificial neural network. There are two input sys-
tems. First, OCM receves visual input from its 20-by-20
unit retina. Figure2billustratesatypical visualinput pattern.
OCM alsorecevesanadditionalinputindicatingthe position
of thevisualfield with respecto thedisplay normalizedrom
Oto1l.

Thereare20 hiddenunits,and5 output(motor) units. The
network is fully connectedwith only feedforward connec-
tions. Eachof the motor units controls one of 5 possible
eye movements: <-4, -1, 0, 1, 4>. On eachtimestep,the
movementorrespondindo the mostactive motorunitis per
formed.

Learning Algorithm

OCM is rewardedfor generatingeye movementsvhich keep
the block within the visual field; OCM learnsby trial-and-
errorto find a patternof eye movementavhich optimizesight
of theblock (i.e., maximizethetotal reward). Any movement
which is followed by sight of the block is rewarded;the re-
wardrangedrom 0to 1, asafunctionof theproportionof the
blockin thevisualfield afterthe eye movement(e.g.,1 when
fully visible, 0.5whenhalf visible, etc.).

The outputof eachmotor unit is an estimateof the value
(i.e., probability of reward)for performingthe corresponding
eye movement. We employed the Sarsaearningalgorithm,
an unsupervisedpnline version of reinforcementlearning
methods(see Sutton& Barto, 1997) to train OCM. Using
standardgradientdescentmethods,the Sarsaalgorithm at-
temptsto minimize the differencebetweerthe estimatecand
obsenedrewardsaftereacheye movement.

Consequentlythe direction and magnitudeof the weight
changesfor the output layer dependon the eye move-
mentchosen,andthe correspondingeward, during a given
timestep. Theseweight changesare then propagatedack-
wardsto the hiddenlayer (seeLin, 1991, for a discussiorof
reinforcementearningandback-prophybrid models).

Simulation Overview

We conducteda seriesof simulation studieswhich assess
OCM'’s ability to learnto trackvisible and occludedtargets.
In eachstudy OCM wasfirst trainedto track a targetduring
two typesof events. In the occludedevent,the block passed
behinda screerandreappearedntheotherside.In theother
(fully visible) event, the block encountered wall andthen
remainedin place. After OCM learnedto optimally track
theblock duringtheseavents,we thentestedOCM'’s tracking
duringanovel, occludedtausakventwhichincludedboththe
screerandthewall. In Studiesl and2, thewall waspartially
occludedby the screenwhile it wascompletelyoccludedin
Study3.

Study 1. Tall Wall

Study1 addressethequestiorof how OCM will respondoa
partially occludedcausalevent. Figure 3 displaysthe events
usedto train andthentestOCM.

Method

Training. During training, OCM was presentedvith two
causalevents. On Screertrials, a screenoccludedthe cen-
tral portion of the display On Wall trials, an obstaclewas
positionedn the centerof the display;the block remainedn
placeafter makingcontactwith thewall.

ScreenandWall trials alternatedandomly Training con-
tinued until OCM'’s total rewards during both Screenand
Wall trials were at least 95% optimal over 10 consecutie
trials (i.e., maximum total rewardswere 30 and 50 points
for ScreerandWall trials, respectiely). If criterionwasnot
reachedby 300trials, the run wasterminatedthe datawere
discardedanda new setof randominitial weightsweregen-
erated.

Testing. After training, all weightsin the network were
frozen (i.e., learningwas turnedoff!). OCM wasthen pre-
sentedwith 10 Wall-Screertrials. During Wall-Screertrials,
the wall was positionedbehindthe screen;whenthe block
passedehindthe screenjts pathwasobstructedy the wall

1This was doneto prevent OCM'’s responsesluring early test
trials from contaminatindatertrials.
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Figure3: Training andtesteventspresentedo OCM in Study 1. Note thatthe Screertrial type wasidenticalduring training

andtesting.

(asduring Wall trials), andconsequentlylid not reappearin
addition, OCM wasalso presentedvith 10 Screentrials, in
orderto assesOCM'’s ability to track an occluded,unob-
structedobject.

Results

Training. Figure 4a presentshe averagenumberof trials
to criterionin Study1, averagedacros$0 runs(36 additional
runswere discarded). OCM reachedcriterion on Wall and
Screerntrials after 65.5and 93.2 training trials, respectiely.
The differenceis statistically significant(t(98) = 1.78,p <
.05). Like humaninfants,OCM learnsto trackafully visible
targetbeforeit learnsto track an occludedtarget. However,
anaverageof 148.8trials werenecessarpeforereachingeri-
terionon both trial typesconcurrently

Study 1: Tall Wall

Study 2: Back Wall Study 3: Short Wall
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Figure4: Trials to criterion during training in Studiesl, 2,
and3. Seetext for details.

Testing. Our analysesof the test trials focus on OCM'’s

tracking behaior once the block disappearsbehind the
screenandhow the presencer absencef the wall affects
this behavior. In particular we areinterestedn whetheror

not OCM movesits visualfield to theright edgeof thescreen
before or after theblockreappearsjuringScreertrials. Con-
sequentlywe definetracking latency asthedifferencan time

betweenOCM'’s first fixation of the right edgeof the screen,
andthe block’'s reappearancat the right edgeduring Screen
trials. Although the block doesnot reappearduring Wall-

Screertrials, we canusethe sametemporalindex to compute
OCM's tracking lateng (i.e., assumingeappearancef the
block, hadit not beenobstructed) A positive lateng (or de-
lay) meanghatOCM fixatestheright edgeof the screerafter
the block has(or would have) reappearedwhile a negative
lateny meansthat OCM anticipateghe reappearancef the
block.

Figure5 present®©OCM’s trackinglatencieduringthetest
phaseof Study1. During Screertrials, OCM anticipatecthe
block’'sreappearancéixating theright edgeof thescreer8.9
timestepssoonerthan the reappearancef the block (t(49)
= 7.03,p < .01). In contrast,OCM’s averagetracking la-
teng/ was significantly delayedby the presenceof the tall
wall during Wall-Screertrials; on average OCM fixatedthe
right edgeof the screenl8.9timestepsafteranunobstructed
blockwould have reappearet(49) = 4.21,p < .01).
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Figure5: Meantrackinglatenciesin the testphaseof Study
1, for Wall-Screenand Screentrials. OCM anticipatedthe
reappearancef theblock during Screertrials, while tracking
wasdelayedduringWall-Screertrials.

Discussion

OCM'’s learningtrajectory parallelsthat of humaninfants.
OCM learnsto tracka fully visible objectbeforeit learnsto
track the movementsof an occludedobject. After training,
OCM appeardo reactasif it “knows” whenthe occluded
pathof theblock will, orwill not beobstructed OCM antic-
ipatesthereappearancef the occludedobjectduring Screen
trials, but not Wall-Screertrials.

It is temptingto concludethat OCM learnsto usethe pres-
enceof the wall as a cue for tracking the occludedblock.
However, thereis morethanoneway to explain OCM'’s be-
havior. One explanationis that OCM learnsnothing about
thewall whentraining on Wall trials; rather it only learnsto
hold the visual field in placewhenthe block stopsmoving.
Accordingto this explanation,the presenceof the partially
visible wall, during Wall-Screentrials, simply disruptsthe
tracking patternlearnedduring Screerntrials. Alternatively,
we might arguethat OCM learnsto associatehe sightof the
wall with its effect on the block.

Thesetwo explanationscan be testedby placingthe wall
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Figure6: Trainingandtesteventspresentedo OCM in Study?2. Unlike Study1, a thinnerwall wasincludedin the display
representingwall which hasbeenmovedbackrelative to its positionin Study1. During Wall andWall-Screertrials, the block

passedn front of thewall.

“back” (fromtheperspectie of OCM), beyondthepathof the

block. Thus,the movementof the block is identicalduring

Screenand Wall-Screentrials. If sight of the wall is used
asa cue, OCM shouldanticipatethe block on both Screen
andWall-Screertrials; otherwisejf thewall disruptstracking

during Wall-Screertrials, then OCM shouldonly anticipate
theblock during Screertrials. Study? teststhesealternatie

hypotheses.

Study 2: Back Wall

Study1 wasrepeatedreplacingthetall wall which obstructs
theblock’'s movementwith awall placedback” (i.e., farther
from the obsener’s point of view), beyond the path of the
block. Becausehe displayis a 2-dimensionaprojectionof

a 3-dimensionalwvorld, we representedhe perceptuakffect

of moving the wall backby decreasingts width (from 4 to

2 units). Consequentlythe block passedn front of thewall

duringbothWall andWall-Screertrials (seeFigure6).

Results

Training. Figure4b presentdhe meannumberof trials to
criterion, during training in Study 2, across50 runs (28 ad-
ditional runswere discarded). Comparedo Study 1, fewer
trials were neededo independentlyreachcriterion on Wall
andScreertrials (41.0and61.3,respectiely).

Testing. Figure7 present©DCM’s meantrackinglatencies,
duringtesting,for the Wall-ScreerandWall events. Placing
the wall backsignificantly reducedOCM's trackinglateng

duringWall-Screertrials, comparedo thetall-wall condition
in Study1 (-3.12versusl8.9timestepst(98)=4.11,p < .01).

However, OCM’s anticipatontrackingwasslightly sloweron

Wall-Screertrials, thanduring Screertrials (seeFigure?).

A closeranalysisrevealedthat during 6 of the 50 runs,
trackingof theblockwasin factcompletelyinterruptedoy the
partially visible backwall, during Wall-Screentrials. How-
ever, whenthe remaining44 runsare analyzed OCM’s av-
eragetrackinglatenciesduring Wall-ScreerandScreertrials
are-10.37and-10.5timestepsrespectiely. During the ma-
jority of therunsin Study2, therefore sight of the wall did
notdisruptOCM'’s anticipatorytracking.

Discussion
Study2 replicatesandextendsthefindingsof Studyl. In both

studies,OCM spontaneouslyearnsto anticipatethe reap-
pearanceof the occludedblock. Further whenthe wall is

Latency (in timesteps)

0
-
-5

-10
WALL-SCREEN

SCREEN

Figure7: Meantrackinglatenciesn thetestphaseof Study2,

for Wall-ScreerandScreertrials. OCM anticipatedhereap-
pearanceof the block during both Screenand Wall-Screen
trials.

positionedso asto have no effect on the movementof the
block, it doesnotdisruptOCM’s anticipatorytracking. Taken
togethertheresultsof Studiesl and2 supporttheconclusion
that OCM learnsto useboththe screenandthe wall ascues
for perceptuahction.

In contrastto Studiesl and2, a numberof infant causal
perceptiorstudiegpresenperceptuatuesto infantsprior to,
rather than during the occlusionevent(e.g.,occludedcolli-
sion events, studiedby Baillargeon,1986; Lucksinger Co-
hen,& Madole,1992). Becausehe pairsof testeventsare
identicalin thesestudiesjnfantsmustremember and recruit
information made available to them before eachoccluded
eventis presented.

We cansimulatethis type of causaleventby reducingthe
heightof the wall; whenoccluded,a shortwall is no longer
visible. While Studiesl and2 presenteddCM with partially
occludedcausakvents,Study3 simulateSOCM’s reactionto
acompletely occludedcausalevent.

Study 3: Short Wall

Figure8 presentadisplayof thetrainingandtesteventsused
in Study3. Threemodificationsveremadeto themethodem-
ployedin Study1l. First, the heightof the wall wasreduced
from 16 to 10 units. Second 20 new input units wereadded
to OCM’s neuralnetwork. These“context” units were ac-
tivatedvia recurrentconnectionfrom OCM’s hiddenlayer,
providing afunctionalmemoryof pastinternalstategElman,
1990).

Third, eachtrial was precededoy a preview. During the
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Figure8: Training andtesteventspresentedo OCM in Study 3. Unlike Study 1, a shortwall wasincludedin the display
which wasfully occludedby the screenduring Wall-Screentrials. Note that after the preview, ScreenandWall-Screertrials
areperceptuallyidentical;paststateinformationis necessaryo differentiatethesetwo trial types.

preview, OCM's visualfield washeldat the centerof thedis-
play for 10 timesteps.During ScreerandWall-Screertrials,
the screenwas not includedin the preview (i.e., OCM saw
whatwas"“behind” the screen).Learningwasturnedoff dur-
ing the preview. After the preview, eachtrial proceededsin
Studiesl and?2.

Results

Training. Figure 4c presentghe meantrials to criterion,
duringtrainingin Study3, acrossb0runs(21 additionalruns
werediscarded).Whencomparedwith Study 1, therewere
no significantdifferencedn trainingtime after changingthe
tall wall to theshortwall.

Testing. OCM appearso “for get” abouttheshortwall once
it is occludedby the screen.As Figure9 indicates,OCM'’s
trackinglatenciesduring ScreerandWall-Screertrials were
identical; regardlessof whetheror not the short wall was
present,OCM anticipatedthe reappearancef the block by
7.34timestepgt(49)=4.12,p < .01).
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Figure9: Meantrackinglatenciesin the testphaseof Study
3, for Wall-Screenand Screertrials. Unlike Study 1, OCM
anticipatedhereappearancef the block duringboth Screen
andWall-Screertrials.

Discussion
In contrasto theresultsof Studyl, OCM’strackingbehaior
wasnot affectedby the presencef ashortwall. Thefindings
from Study3 suggesthat OCM relied on its immediateper
ceptualinput, while ignoring or failing to useits memoryof
theshortwall.

However, it is importantto rememberthat therewas no
pressureon OCM during training to learnto use memory

First, during the fully visible wall trials, memoryis unnec-
essary Secondduring the Screentrials, OCM learnsto use
the sight of the screen(ratherthananinternalrepresentation
of theoccludedblock) asa perceptuatuefor anticipatingthe
block’s reappearance.Thus, the task constraintsoperating
duringtrainingmake the useof memoryredundant.

General Discussion

The resultsfrom the threesetsof simulationshighlight both

the strengthsandlimitations of the optimal control modelof

infantcausalperception.Therearetwo majorfindings. First,

OCM quickly learnsa setof optimal tracking stratejies for

following a moving object. Second when presentedvith a
novel causalevent, OCM appropriatelyanticipateshe out-

comeof partially occluded,but not fully occluded,versions
of theevent.

We canevaluatethe performanceof the modelby directly
comparingtheresultswith dataobtainedfrom younginfants.
Berthieretal. (in preparationconducteda seriesof experi-
mentswith 9-month-oldinfants,correspondindo Studiesl
through3. Figure 10 presentsa summaryof the testresults
for OCM, andthe comparableaveragetrackinglatencies(in
seconds¥or threegroupsof 9-month-olds.Acrossall three
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Figurel10: Meantrackinglatenciesn thetestphaseof Studies
1-3for the OCM (top panel)and9-month-oldinfants(bottom
panel;from Berthieretal., in preparation).
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studiesthe performancef OCM providesa closequalitative
fit to theperformancef humaninfants.Like OCM, 9-month-
old infantsalsousethe partially visible wall asa cue,but not
thefully occludedwall, to guidetheirtrackingof theoccluded
tamget.

When taken togethey the humanand simulationfindings
carryanumberof implicationsfor developmentatheoryand
researctontheperceptiorof causalityin younginfants.First,
mary causalperceptionresearchers(l) assumehatinfants
explicitly predict the outcomef the eventsthey watch,and
(2) infer, on the basisof looking-time measuresywhenin-
fants’predictionsareconfirmedor violated. While theresults
from OCM arenotintendedo provideareductionistaccount,
they suggesthatlearningduringthe habituationor familiar
izationphasanaydrivethe proces®f anticipation helpingto
shapdnfants’causalexpectationgseeRiveraetal., in press;
Schilling, 1997).

A secondimplication concernghe role of internal repre-
sentation®f occludedobjectsandevents. Again, it is often
assumedhatinfantsmustoperateon mentalrepresentations,
ratherthan direct perceptionswhen the critical objectsare
occludedor outof sight. However, whentrackinganoccluded
target, OCM relies on sensorimotor ratherthan representa-
tional strategjiesfor anticipatingthetarget.

For example theresultsfrom Study1 demonstrat¢hatan-
ticipatory behaior canemege asa consequencef learning
anoptimaltrackingstratey, without the needfor memoryor
prediction. Indeed,having memorydoesnot seemto facili-
tate OCM'’s learningto track the block during Screentrain-
ing trials (compareFiguresd4a and 4c), althoughtherewere
fewer discardedunswhenOCM wastrainedwith arecurrent
network (i.e., in Study 3). We suspecthatin mary causal
perceptiorstudiesjnfantsemploy somecombinationof sen-
sorimotorand representationatrateyies. Simulationswith
modelslike OCM helpto determineif andwhenthe senso-
rimotor stratgiesaresufficient to accountfor the perceptual
phenomenon.

This point echoesa questionraisedin the introduction:
whatarethe performancdimits of OCM? On the onehand,
there is surprisingly close agreementbetweenthe perfor
manceof OCM andtherecentfindingsof Berthieretal. Nev-
erthelessthisfit mayin partbedueto the specificconstraints
of learningto track,andtheway in which this taskfavorsan
optimalcontrolsolution(e.g.,like learningto reachor gener
atesaccades)Thus,two currentweaknessesf a bottom-up
view in generalandan optimal control approachin particu-
lar are: (1) thatsometasksmaynecessarilyequirepredictive,
representationatratgies,and(2) thatOCM maynotbeable
to accountfor infants’ perceptuabehaior in othercontexts
(e.g.,preferencdor “surprising” or impossibleevents). We
are currently exploring an elaboratedversionof the model
which addressetheseissues.
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