Periodicity in wide-band time series

Bullock, T.H. and McClune, M.C. and Enright, J.T. (2002) Periodicity in wide-band time series. (In Press)

Full text available as:



Summary: To test the hypotheses that (i) electroencephalograms (EEGs) are largely made up of oscillations at many frequencies and (ii) that the peaks in the power spectra represent oscillations, we applied a new method, called the Period Specific Average (PSA) to a wide sample of EEGs. Both hypotheses can be rejected.

Item Type:Other
Keywords:EEG, rhythmic, periodicity, wide-band time series
Subjects:Neuroscience > Neurophysiology
Neuroscience > Behavioral Neuroscience
ID Code:2805
Deposited By: Bullock, Theodore Holmes
Deposited On:03 Mar 2003
Last Modified:11 Mar 2011 08:55

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

Achimowicz, J. Z., Bullock, T. H., 1993. Nonlinear properties of local field potentials in brain implications for biological neural networks modelling. Proc. Ann. Res. Symp. Inst. Neural Comput., University of California, San Diego 3, 29-49.

Ba ar, Erol. 1998. Brain function and oscillations Springer series in synergetics, E. Ba ar.ed. ; v.1, 0172-7389,/, Berlin ; New York : Springer,

Ba ar, E. 1988. Dynamics of sensory and cognitive processing by the brain : integrative aspects of neural networks, electroencephalography, event-related potentials, contingent negative variation, magnetoencephalography, and clinical applications. Series title: Springer series in brain dynamics, edited by Erol Basar ; with editorial assistance by Theodore Melnechuk. Berlin ; New York : Springer-Verlag, xiii, 406 pp.

Binkley, S., Adler, K., Taylor, D.H., 1973. Two methods for using period length to study rhythmic phenomena. J. Comp. Physiol. 8, 363-371.

Bullock, T. H., 1945. Problems in the comparative study of brain waves. Yale J. Biol. Med. 17, 657-679.

Bullock, T. H., 1989a. The micro-EEG represents varied degrees of cooperativity among wide-band generators: spatial and temporal microstructure of field potentials. In: Ba ar, E., Bullock, T. H. (Eds.), Brain Dynamics: Progress and Perspectives. Springer-Verlag, Berlin, pp. 5-12.

Bullock, T. H., 1989b. Evolution of compound field potentials in the brain. In: Ba ar, E., Bullock, T. H. (Eds.), Brain Dynamics: Progress and Perspectives. Springer-Verlag, Berlin, pp. 258-266.

Bullock, T. H., 1991. New descriptors for the activity of brain cell assemblies: requirements and opportunities. In: Schuster, H. G. (Ed.), Nonlinear Dynamics and Neuronal Networks. VCH, Weinheim, pp. 257-266.

Bullock, T. H., 1992. Introduction to induced rhythmsa widespread, heterogeneous class of oscillations. In: Ba ar, E., Bullock, T. H. (Eds.), Induced Rhythms in the Brain. Birkhäuser, Boston, pp. 1-26.

Bullock, T. H., 1993a. Integrative systems research on the brain resurgence and new opportunities. Annu. Rev. Neurosci. 16, 1-15.

Bullock, T. H., 1993b. How Do Brains Work? Papers of a Neurophysiologist. Birkhäuser, Boston.

Bullock, T. H., 1997. Signals and signs in the nervous system: the dynamic anatomy of electrical activity is probably information-rich. Proc. Natl. Acad. Sci. U.S.A. 94, 1-6.

Bullock, T. H., 1999. Slow potentials in the brain: still little understood but gradually getting analytical attention. Brain Res. Bull. 50, 315-316

Bullock, T. H., 2000. Introduction to the Workshop on Gamma Activity in the Human EEG, (Hermann, C., Ed. ). Int. J. Psychophysiol. 38, ix-xi.

Bullock, T. H., 2002a. Biology of brain waves natural history and evolution of an information-rich sign of activity. In: Arikan, K., Moore, N. C. (Eds.), Advances in Electrophysiology in Clinical Practice and Research. (In press)

Bullock, T. H., 2002b. Grades in neural complexity: how large is the span? Am. Zool. (In press)

Bullock, T. H., Achimowicz, J. Z., 1994. A comparative survey of oscillatory brain activity, especially gamma-band rhythms. In: Pantev, C., Elbert, T., Lütkenhöner, B. (Eds.), (NATO A Life Sciences series, vol. 271), Plenum Press, New York, pp. 11-26.

Bullock, T. H., Ba ar, E., 1988. Comparison of ongoing compound field potentials in the brains of invertebrates and vertebrates. Brain Res. Rev. 13, 57-75.

Bullock, T. H., McClune, M. C., 1989. Lateral coherence of the electrocorticograma new measure of brain synchrony. Electroencephalogr. Clin. Neurophysiol. 73, 479-498.

Bullock, T.H., Hofmann, M. H., New, J. G., Nahm, F. K., 1991. Dynamic properties of visual evoked potentials in the tectum of cartilaginous and bony fishes, with neuroethological implications. J. Exp. Zool. Suppl. 5, 142-155.

Bullock, T. H., Achimowicz, J. Z., McClune, M. C., 1992. Forays into microstructure of EEG in space and time. Proc. Ann. Res. Symp., INC, University of California, San Diego, pp 41-47

Bullock, T. H., Karamürsel, S., Hofmann, M. H., 1993. Interval-specific event related potentials to omitted stimuli in the electrosensory pathway in elasmobranchs: an elementary form of expectation. J. Comp. Physiol. A 172, 501-510.

Bullock, T. H., Karamürsel, S., Achimowicz, J. Z., McClune, M. C., Ba ar-Eroglu, C. 1994. Dynamic properties of human visual evoked and omitted stimulus potentials. Electroencephalogr. Clin. Neurophysiol. 91, 42-53.

Bullock, T. H., McClune, M. C., Achimowicz, J. Z., Iragui-Madoz, V. J., Duckrow, R. B., Spencer, S. S., 1995a. EEG coherence has structure in the millimeter domain:subdural and hippocampal recordings from epileptic patients. Electroencephalogr. Clin. Neurophysiol. 95, 161-177.

Bullock, T. H., McClune, M.C., Achimowicz, J. Z., Iragui-Madoz, V. J., Duckrow, R. B., Spencer, S. S., 1995b Temporal fluctuations in coherence of brain waves. Proc. Natl. Acad. Sci. U.S.A. 92, 11568-11572.

Bullock, T. H., Achimowicz, J. Z., Duckrow, R. B., Spencer, S. S., Iragui-Madoz, V. J., 1996. Bicoherence of intracranial EEG. Proc. 3rd Joint Symp. on Neural Computation, University of California, San Diego 6, 83-87.

Bullock, T. H., Enright, J. T., Chong, K. M., 1998a. Forays with the additive periodogram applied to the EEG. It gives a different picture of brain rhythms from the power spectrum. Proc. 5th Joint Symp. on Neural Computation, University of California, San Diego, 8, 25-28.

Bullock, T. H., Achimowicz, J. Z., Duckrow, R. B., Spencer, S. S., Iragui-Madoz, V. J., 1998b. Bicoherence of intracranial EEG in sleep, wakefulness and seizures. Electroencephalogr. Clin. Neurophysiol. 103, 661-678.

Buzsáki G, Traub RD. 1997. Physiological basis of EEG activity. In: Engel J, Jr., Pedley TA, editors. Epilepsy: A Comprehensive Textbook. Philadelphia: Lippincott-Raven Publishers, pp. 819-830.**

Buzsaki, G. and Vanderwolf, C.H. 1985. Electrical activity of the archicortex Budapest : Akademiai Kiado, x, 404 pp.

Efron, B., Tibshirani, R. J., 1993. An introduction to the bootstrap. New York Chapman & Hall, [see p.5, D]

Enright, J. T., 1965. The search for rhythmicity in biological time-series. J. Theoret. Biol. 8, 426-468.

Enright, J. T., 1990. Comparisons between periodograms and spectral analysis: don't expect apples to taste like oranges. J. Theoret. Biol. 143, 425-430.

Gilbert, D. A., Joosting, A. C. C., 1994. The inverse periodogram, a linearizing, inverting modification of norm-analysis. BioSystems 32191-193.

Harris KD, Csicsvari J, Buzsáki G. 2001 Characterization of non-stationary and non-gaussian nature of local field potentials. J Neurosci Methods .

Herrmann, C. S., Mecklinger, A., Pfeifer, E., 1999. Gamma responses and ERPs in a visual classification task. Clin. Neurophysiol. 110, 636-642.

Herrmann, C. S., Mecklinger, A., 2001. Gamma activity in human EEG is related to high-speed memory comparisons during object selective attention. Visual Neurosci. 8, 593-608.

Hofmann, M. H., Bullock, T. H., 1995. Induced rhythms and apparent expectation in retina and optic tectum of an elasmobranch. Proc. 2nd Joint Symp . on Neural Computation, University of California, San Diego 5, 115-125.

Jung T-P, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ. Analysis and visualization of single-trial event-related potentials. Hum Brain Mapping 2001; 14.

Ref ID: 15880

Karamürsel, S., Bullock, T. H., 1994. Dynamics of event-related potentials to trains of light and dark flashes Responses to missing and extra stimuli in rays. Electroencephalogr. Clin. Neurophysiol. 90, 461-471.

Karamürsel, S., Bullock, T.H., 2000. Human auditory fast and slow omitted stimulus potentials and steady-state responses. Int J. Neurosci. 100, 1-20.

Kendall, K. G., 1946. Contribution to the Study of Oscillatory Time-series. London, Cambridge Univ. Press.

F.H. Lopes da Silva, W. Storm van Leeuwen, A. Remond. 1986. Clinical applications of computer analysis of EEG and other neurophysiological signals. In Handbook of electroencephalography and clinical neurophysiology ; rev. ser., v. 2 edited by F.H. Lopes da Silva, W. Storm van Leeuwen, A. Remond. : Elsevier ; New York, NY, USA :xvi, 508 p.

Makeig S, Westerfield M, Jung T-P, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ. Dynamic brain sources of visual evoked responses. Science 2002; 295:690-694.

Makeig S, Westerfield M, Jung T-P, Covington J, Townsend J, Sejnowski TJ, Courchesne E. Functionally independent components of the late positive event-related potential during visual spatial attention. J Neurosci 1999; 19:2665-2680.

Mehta, M. R., Bergman, H., 1995. Loss of frequencies in auto correlations and a procedure to recover them. J. Neurosci. Methods 62, 65-71.

Niedermeyer, E. and Lopes da Silva, F. 1982. Electroencephalography, basic principles, clinical applications, and related fields , [edited by] Ernst Niedermeyer and Fernando Lopes da Silva. Baltimore : Urban & Schwarzenberg, x, 752 pp


Prechtl, J. C., Bullock, T.H., Kleinfeld, D., 2000. Direct evidence for local oscillatory current sources and intracortical phase gradients in turtle visual cortex. Proc. Natl. Acad. Sci. U.S.A. 97, 877-882.

Ramón, F., Hernández, O. H., Bullock, T. H., 2001. Event-related potentials in an invertebratecrayfish emit "omitted stimulus potentials." J. Exp. Biol. 204, 4291-4300.

Refinetti, R., 1993. Laboratory instrumentation and computingcomparison of six methods for the determination of the period of circadian rhythms. Physiol. Behav. 54, 869-875.

Schürmann M, Ba ar E. 1999. Alpha oscillations shed new light on relation between EEG and single neurons. Neurosci Res 33:79-80.

Schuster, A., 1898. An investigation of hidden periodicities with application to a supposed 26-day period of meteorological phenomena. Terrestrial Magnetism 3, 13-41.

Schütt, A., Bullock, T. H., Ba ar, E., 1999. Dynamics of potentials from invertebrate brain. In: Ba ar, E. (Ed.), Brain Functions and Oscillations. II: Integrative Brain Function. Neurophysiology and Cognitive Processes. Springer, Berlin, pp. 91-108.

Smith, S. W., Odell, R. H., 1976. Detection by a permutation test of periodicities in biological time series: dependence of sensitivity on measurement precision. Ann. Biomed. Eng. 4, 68-77.

Von Holst, E., 1936. Vom Dualismus der motorischen und der automatisch-rhythmischen Funktion im Rückenmark und vom Wesen des automatischen Rhythmus. Pflügers Arch. Ges. Physiol. d Mensch u d Tiere 237, 356-378.

Von Holst, E., 1939. Die relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalyse. Ergebn. Physiol. 42, 228-306.

Watanabe, A., Bullock, T. H., 1960. Modulation of activity of one neuron by subthreshold slow potentials in another in lobster cardiac ganglion. J. Gen. Physiol. 43, 1031-1045.

Whittaker, E., Robinson, G., 1924. The calculus of observations. London, Blackie & Son.


Repository Staff Only: item control page