
 

 

 

 

 

Neural Blackboard Architectures  

of Combinatorial Structures in Cognition 

 

 

 

Frank van der Velde 

 

 

Unit of Cognitive Psychology 

Leiden University  

Wassenaarseweg 52, 2333 AK Leiden 

The Netherlands 

vdvelde@fsw.leidenuniv.nl 

 

 



 

 2

Abstract 
Human cognition is unique in the way in which it relies on combinatorial (or 
compositional) structures. Language provides ample evidence for the existence of 
combinatorial structures, but they can also be found in visual cognition. To understand 
the neural basis of human cognition, it is therefore essential to understand how 
combinatorial structures can be instantiated in neural terms. In his recent book on the 
foundations of language, Jackendoff formulated four fundamental problems for a neural 
instantiation of combinatorial structures: the massiveness of the binding problem, the 
problem of 2, the problem of variables and the transformation of combinatorial structures 
from working memory to long-term memory. This paper aims to show that these 
problems can be solved by means of neural ‘blackboard’ architectures. For this purpose, a 
neural blackboard architecture for sentence structure is presented. In this architecture, 
neural structures that encode for words are temporarily bound in a manner that preserves 
the structure of the sentence. It is shown that the architecture solves the four problems 
presented by Jackendoff. The ability of the architecture to instantiate sentence structures 
is illustrated with examples of sentence complexity observed in human language 
performance. Similarities exist between the architecture for sentence structure and 
blackboard architectures for combinatorial structures in visual cognition, derived from 
the structure of the visual cortex. These architectures are briefly discussed, together with 
an example of a combinatorial structure in which the blackboard architectures for 
language and vision are combined. In this way, the architecture for language is grounded 
in perception.   
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1. Introduction 
Human cognition is unique in the manner in which it processes and produces complex 
combinatorial (or compositional) structures (e.g., Anderson 1983; Newell 1990; Pinker 
1998). Therefore, to understand the neural basis of human cognition, it is essential to 
understand how combinatorial structures can be instantiated in neural terms. However, 
combinatorial structures present particular challenges to theories of neurocognition, 
which have not been widely recognized in the cognitive neuroscience community 
(Jackendoff 2002).  

A prominent example of these challenges is given by the neural instantiation (in 
theoretical terms) of linguistic structures. In his recent book on the foundations of 
language, Jackendoff (2002; see also Jackendoff in press) analyzed the most important 
theoretical problems that the combinatorial and rule-based nature of language presents to 
theories of neurocognition. He summarized these problems under the heading of ‘four 
challenges for cognitive neuroscience’ (pp. 58-67). As recognized by Jackendoff, these 
problems arise not only with linguistic structures, but with combinatorial cognitive 
structures in general.  

This paper aims to show that neural ‘blackboard’ architectures can provide an 
adequate theoretical basis for a neural instantiation of combinatorial cognitive structures. 
In particular, I will discuss how the problems presented by Jackendoff (2002) can be 
solved in terms of a neural blackboard architecture of sentence structure. I will also 
discuss the similarities between the neural blackboard architecture of sentence structure 
and neural blackboard architectures of combinatorial structures in visual cognition and 
visual working memory (Van der Velde 1997; Van der Velde & de Kamps 2001; 2003a). 

To begin with, I will first outline the problems described by Jackendoff (2002) in 
more detail. This presentation is followed by a discussion of the most important solutions 
that have been offered thus far to meet some of these challenges. These solutions are 
based on either synchrony of activation or on recurrent neural networks1.  

 
2. Four challenges for cognitive neuroscience 
The four challenges for cognitive neuroscience presented by Jackendoff (2002) consists 
of: the massiveness of the binding problem that occurs in language, the problem of 
multiple instances (or the ‘problem of 2’), the problem of variables, and the relation 
between binding in working memory and binding in long-term memory. I will discuss 
these problems in turn.  
 
2.1. The massiveness of the binding problem 
In neuroscience, the binding problem concerns the way in which neural instantiations of 
elements (constituents) can be related (bound) temporarily in a manner that preserves the 
structural relations between the constituents. Examples of this problem can be found in 
visual perception. Colors and shapes of objects are partly processed in different brain 
areas, but we perceive objects as a unity of color and shape. Thus, in a visual scene with a 
green apple and a red orange, the neurons that code for green have to be related 
(temporarily) with the neurons that code for apple, so that the confusion with a red apple 
(and a green orange) can be avoided.  

In the case of language, the problem is illustrated in figure 1. Assume that words like 
cat, chases and mouse each activate specific neural structures, such as the ‘word 
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assemblies’ discussed by Pulvermüller (1999). The problem is how the neural structures 
or word assemblies for cat and mouse can be bound to the neural structure or word 
assembly of the verb chases, in line with the thematic roles (or argument structure) of the 
verb. That is, how cat and mouse can be bound to the role of agent and theme of chases 
in the sentence The cat chases the mouse, and to the role of theme and agent of chases in 
the sentence The mouse chases the cat. 

Figure 1. (a). Illustration of the neural structures (‘neural word assemblies’) activated by the 
words cat, chases and mouse. Bottom: An attempt to encode sentence structures with specialized 
‘sentence’ neurons. In (b), a ‘sentence’ neuron has the assemblies for the words cat, chases and 
mouse in its ‘receptive field’ (as indicated with the cone). The neuron is activated by a specialized 
neural circuit when the assemblies in its receptive field are active in the order cat chases mouse. 
In (c), a similar ‘sentence’ neuron for the sentence mouse chases cat.  

 
 
A potential solution for this problem is illustrated in figure 1. It consists of 

specialized neurons (or populations of neurons) that are activated when the strings cat 
chases mouse (figure 1b) or mouse chases cat (figure 1c) are heard or seen. Each neuron 
has the word assemblies for cat, mouse and chases in its ‘receptive field’ (illustrated with 
the cones in figures 1b and 1c). Specialized neural circuits could activate one neuron in 
the case of cat chases mouse and another neuron in the case of mouse chases cat, by 
using the difference in temporal word order in both strings. Circuits of this kind can be 
found in the case of motion detection in visual perception (e.g., Hubel 1995). For 

mouse chases catcat chases mouse

mouse
cat

mouse

chases cat
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mouse
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‘sentence’ neurons ‘sentence’ neurons
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instance, the movement of a vertical bar that sweeps across the retina in the direction 
from A to B can be detected by using the difference in activation time (onset latency) 
between the ganglion cells in A and B. A similar specialized circuit can detect a vertical 
bar moving from B to A.   

However, a fundamental problem with this solution in the case of language is its lack 
of productivity. Only specific and familiar sentences can be detected in this way.  But any 
novel sentence of the type Noun chases Noun or, more generally, Noun Verb Noun will 
not be detected because the specific circuit (and neuron) for that sentence will be missing. 
Yet, when we learn that Dumbledore is headmaster of Hogwarts, we immediately 
understand the meaning of Dumbledore chases the mouse, even though we have never 
encountered that sentence before.  

The difference between language and motion detection in this respect illustrates a 
fundamental difference in nature between these two cognitive processes. In the case of 
motion detection there is a limited set of possibilities, so that it is possible (and it pays 
off) to have specialized neurons and neural circuits for each of these possibilities. 
However, this solution is not feasible in the case of language. Linguists typically describe 
language in terms of its unlimited combinatorial productivity. Words can be combined 
into phrases, which in turn can be combined into sentences, so that arbitrary sentence 
structures can be filled with arbitrary arguments (e.g., Webelhuth 1995; Sag & Wasow 
1999; Chomsky 2000; Pullum & Scholz 2001; Jackendoff 2002; Piattelli-Palmarini 
2002). In theory, an unlimited amount of sentences can be produced in this way, which 
excludes the possibility of having specialized neurons and circuits for each of these 
sentences.   

One could argue that many of the sentences that are theoretically possible may be too 
complex for humans to understand (Christiansen & Chater 1999). However, unlimited 
(recursive) productivity is not necessary to make a case for the combinatorial nature of 
language, given the number of sentences that can be produced or understood. For 
instance, the average English-speaking 17-year-old knows more than 60.000 words 
(Bloom 2000). With this lexicon, and with a limited sentence length of 20 words or less, 
one can produce a set of sentences in natural language in the order of 1020 or more 
(Pinker 1998). A set of this kind can be characterized as a ‘performance set’ of natural 
language, in the sense that (barring a few selected examples) any sentence from this set 
can be produced or understood by a normal language user. Such a performance set is not 
unlimited, but it is of ‘astronomical’ magnitude (e.g., 1020 exceeds the estimated lifetime 
of the universe expressed in seconds). By consequence, most sentences in this set are 
sentences that we have never heard or seen before. Yet, because of the combinatorial 
nature of language we have the ability to produce or understand arbitrary sentences from 
a set of this kind.  

Hence, the set of possibilities that we can encounter in the case of language is 
unlimited in any practical sense. This precludes a solution of the binding problem in 
language in terms of specialized neurons and circuits. Instead, a solution is needed that 
depends on the ability to bind arbitrary arguments to the thematic roles of arbitrary verbs, 
in agreement with the structural relations expressed in the sentence. Moreover, the 
solution has to satisfy the massiveness of the binding problem as it occurs in language, 
which is due to the often complex and hierarchical nature of linguistic structures. For 
instance, in the sentence The cat that the dog bites chases the mouse, cat is bound to the 
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role of theme of the verb bites, but it is bound to the role of agent of the verb chases. In 
fact, the whole phrase The cat that the dog bites is bound to the role of agent of the verb 
chases (with cat as the head of the phrase). Each of these specific bindings has to be 
satisfied in an encoding of this sentence. Further examples can be seen in a simple 
syntactic structure like beside a big star (Jackendoff 2002). Here, one can identify 
relationships like ‘it is a prepositional phrase’, ‘it is a part of a verb phrase’, ‘it follows a 
verb’, and ‘it has a preposition and noun phrase parts’. Binding problems occur for each 
of these relationships.   
 
2.2. The problem of 2 
The second problem presented by Jackendoff (2002) is the problem of multiple instances, 
or the ‘problem of 2’. Jackendoff illustrates this problem with the sentence The little star 
is beside a big star2. The word star occurs twice in this sentence, the first time related 
with the word little and the second time related with the word big. The problem is how in 
neural terms the two occurrences of the word star can be distinguished, so that star is 
first bound with little and then with big, without creating the erroneous binding of little 
big star. The problem of 2 results from the assumption that any occurrence of a given 
word will result in the activation of the same neural structure (e.g., its word assembly, as 
illustrated in figure 1). But if the second occurrence of a word only results in the 
reactivation of a neural structure that was already activated by the first occurrence of that 
word, the two occurrences of the same word are indistinguishable (Van der Velde 1999).  

Perhaps the problem could be solved by assuming that there are multiple neural 
structures that encode for a single word. The word star could then activate one neural 
structure in little star and a different one in big star, so that the bindings little star and big 
star can be encoded without creating little big star. However, this solution would entail 
that there are multiple neural structures for all words in the lexicon, perhaps even for all 
potential positions a word could have in a sentence (Jackendoff 2002).  

More importantly even, this solution disrupts the unity of word encoding as the basis 
for the meaning of a word. For instance, the relation between the neural structures for cat 
and mouse in cat chases mouse could develop into the neural basis for the long-term 
knowledge (‘fact’) that cats chase mice. Similarly, the relation between the neural 
structures for cat and dog in dog bites cat could form the basis of the fact that dogs fight 
with cats. But if the neural structure for cat (say, cat1) in cat1 chases mouse is different 
from the neural structure for cat (say, cat2) in dog bites cat2, then these two facts are 
about different kinds of animals. 
 
2.2.1. The problem of 2 and the symbol grounding problem    
It is interesting to look at the problem of 2 from the perspective of the symbol grounding 
problem that occurs in cognitive symbol systems. Duplicating symbols is easy in a 
symbol system. However, in a symbol system, one is faced with the problem that 
symbols are arbitrary entities (e.g., strings of bits in a computer), which therefore have to 
be interpreted to provide meaning to the system. That is, symbols have to be ‘grounded’ 
in perception and action if symbol systems are to be viable models of cognition (Harnad 
1991; Barsalou 1999).  

Grounding in perception and action can be achieved with neural structures such as 
the word assemblies illustrated in figure 1. In line with the idea of neural assemblies 
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proposed by Hebb (1949), Pulvermüller (1999) argued that words activate neural 
assemblies, distributed over the brain (as illustrated with the assemblies for the words cat, 
mouse and chases in figure 1). One could imagine that these word assemblies have 
developed over time by means of a process of association. Each time a word was heard or 
seen, certain neural circuits would have been activated in the cortex. Over time, these 
circuits will be associated, which results in an overall cell assembly that reflects the 
meaning of that word. For instance, assemblies for words with a specific visual content 
would stretch into the visual cortex, whereas words that describe particular actions (e.g., 
‘walking’ vs ‘talking’) would activate assemblies that stretch into specific parts of the 
motor cortex, as observed by Pulvermüller et al. (2001).  

But, as argued above, word assemblies are faced with the problem of 2. Thus, it 
seems that the problem of 2 and the symbol grounding problem are complementary 
problems. To provide grounding, the neural structure that encodes for a word is 
embedded in the overall network structure of the brain. But this makes it difficult to 
instantiate a duplication of the word, and thus to instantiate even relatively simple 
combinatorial structures such as The little star is beside a big star. Conversely, 
duplication is easy in symbol systems (e.g., if ‘1101’ = star, then one would have The 
little 1101 is beside a big 1101, with little and big each related to an individual copy of 
1101). But symbols can be duplicated easily because they are not embedded in an overall 
structure that provides the grounding of the symbol3. 

 
2.3. The problem of variables 
The knowledge of specific facts can be instantiated on the basis of specialized neural 
circuits, in line with those illustrated in figure 1. But knowledge of systematic facts, such 
as the fact that own(y,z) follows from give(x,y,z), cannot be instantiated in this way, that 
is, in terms of a listing of all specific instances of the relation between the predicates own 
and give (e.g., from give(John, Mary, book) it follows that own(Mary, book); from 
give(Mary, John, pen) it follows that own(John, pen); etc.).  

Instead, the derivation that own(Mary, book) follows from give(John, Mary, book) is 
based on the rule that own(y,z) follows from give(x,y,z), combined with the binding of 
Mary to the variable y and book to the variable z. This raises the question of how rule-
based derivation with variable binding can be instantiated in the brain.  

The ability of rule-based derivation with variable binding provides the basis for the 
systematic nature of cognition (Fodor & Pylyshyn 1988). Cognition is systematic in the 
sense that one can learn from specific examples and apply that knowledge to all examples 
of the same kind. A child will indeed encounter only specific examples (e.g., that when 
John gives Mary a book, it follows that Mary owns the book) and yet it will learn that 
own(y,z) follows from all instances of the kind give(x,y,z). In this way, the child is able to 
handle novel situations, such as the derivation that own(Harry, broom) follows from 
give(Dumbledore, Harry, broom). 
 
2.4. Binding in working memory versus long-term memory 
Working memory in the brain is generally assumed to consist of a sustained form of 
activation (e.g, Amit 1995; Fuster 1995). That is, information is stored in working 
memory as long as the neurons that encode the information remain active. In contrast, 
long-term memory results from synaptic modification. In this way, the connections 
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between neurons are modified (e.g., enhanced) so that when some of the neurons are 
reactivated, they will reactivate the others neurons as well. The neural word assemblies, 
illustrated in figure 1, are formed by this process.  

Both forms of memory are related in the sense that information in one form of 
memory can be transformed into information in the other form of memory. Information is 
initially stored in working memory before it is stored in long-term memory. Conversely, 
information in long-term memory can be reactivated and stored in working memory. This 
raises the question of how the same combinatorial structure can be instantiated both in 
terms of neural activation and in terms of synaptic modification, and how these different 
instantiations can be transformed into one another. 
 
2.5. Overview 
It is clear that the four problems presented by Jackendoff (2002) are interrelated. For 
instance, the problem of 2 also occurs in rule-based derivation with variable binding, the 
massiveness of the binding problem is found in combinatorial structures stored in 
working memory and in combinatorial structures stored in long-term memory. Therefore, 
a solution of these problems has to be an integrated one that solves all four problems 
simultaneously. In this paper, I will discuss how all four problems can be solved in terms 
of neural blackboard architectures in which combinatorial structures can be instantiated.   

First, however, I will discuss two alternatives for a neural instantiation of 
combinatorial structures. In the next section I will discuss the use of synchrony of 
activation as a mechanism for binding constituents in combinatorial structures. In the 
section after that, I will discuss the view that combinatorial structures can be handled 
with recurrent neural networks.  
 
3. Combinatorial structures with synchrony of activation 
An elaborate example of a neural instantiation of combinatorial structures in which 
synchrony of activation is used as a binding mechanism is found in the model of reflexive 
reasoning presented by Shastri and Ajjanagadde (1993). In their model, synchrony of 
activation is used to show how a known fact such as John gives Mary a book can result in 
an inference such as Mary owns a book.  

The proposition John gives Mary a book is encoded by a ‘fact node’ that detects the 
respective synchrony of activation between the nodes for John, Mary and book, and the 
nodes for giver, recipient and give-object. These nodes encode for the thematic roles of 
the predicate give(x,y,z). In a simplified manner, the reasoning process begins with the 
query own(Mary, book)? (i.e., does Mary own a book?). The query results in the 
respective synchronous activation of the nodes for owner and own-object of the predicate 
own(y,z) with the nodes for Mary and book. In turn, the nodes for recipient and give-
object of the predicate give(x,y,z) are activated by the nodes for owner and own-object, 
such that owner is in synchrony with recipient and own-object is in synchrony with give-
object. As a result, the node for Mary is in synchrony with the node for recipient and the 
node for book is in synchrony with the node for give-object. This allows the fact node for 
John gives Mary a book to become active, which produces the affirmative answer to the 
query.  

A first problem with a model of this kind is found in a proposition like John gives 
Mary a book and Mary gives John a pen. With synchrony as a binding mechanism, a 
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confusion arises in this proposition between John and Mary in their respective roles of 
giver and recipient in this proposition. In effect, the same pattern of activation will be 
found in the proposition John gives Mary a pen and Mary gives John a book. Thus, with 
synchrony of activation as a binding mechanism, both propositions are indistinguishable. 
It is not difficult to see the problem of 2 here. John and Mary occur twice in the 
proposition, but in different thematic roles. The simultaneous but distinguishable binding 
of John and Mary with different thematic roles cannot be achieved with synchrony of 
activation.  

To solve this problem, Shastri and Ajjanagadde allowed for a duplication (or 
multiplication) of the nodes for the predicates. In this way, the whole proposition John 
gives Mary a book and Mary gives John a pen is partitioned into the two elementary 
propositions John gives Mary a book and Mary gives John a pen. To distinguish between 
the propositions, the nodes for the predicate give(x,y,z) are duplicated. Thus, there are 
specific nodes for, say, give1(x,y,z) and give2(x,y,z), with give1(x,y,z) activated by John 
gives Mary a book and give2(x,y,z) activated by Mary gives John a pen. Furthermore, for 
the reasoning process to work, the associations between predicates have to be duplicated 
as well. Thus, the node for give1(x,y,z) has to be associated with a node for, say, own1(y,z) 
and the node for give2(x,y,z) has to be associated with a node for own2(y,z).  

This raises the question of how these associations can be formed simultaneously 
during learning. During its development, a child will learn from specific examples. Thus, 
it will learn that, when John gives Mary a book, it follows that Mary owns the book. In 
this way, the child will form an association between the nodes for, say, give1(x,y,z) and 
own1(y,z). But the association between the node for give2(x,y,z) and own2(y,z) would not 
be formed in this case, because these nodes are not activated with John gives Mary a 
book and Mary owns the book. Thus, when the predicate give(x,y,z) is duplicated into 
give1(x,y,z) and give2(x,y,z), the systematicity between John gives Mary a book and Mary 
gives John a pen is lost.  
 
3.1. Nested structures with synchrony of activation 
The duplication solution discussed above fails with nested (or hierarchical) propositions. 
For instance, the proposition Mary knows that John knows Mary cannot be partitioned 
into two propositions Mary knows and John knows Mary, because the entire second 
proposition is the y argument of knows(Mary, y). Thus, the fact node for John knows 
Mary has to be in synchrony with the node for know-object of the predicate know(x,y). 
The fact node for John knows Mary will be activated because John is in synchrony with 
the node for knower and Mary is in synchrony with the node for know-object. However, 
the fact node for Mary knows Mary will also be activated in this case, because Mary is in 
synchrony with both knower and know-object in the proposition Mary knows that John 
knows Mary. Thus, the proposition Mary knows that John knows Mary cannot be 
distinguished from the proposition Mary knows that Mary knows Mary. Likewise, the 
proposition Mary knows that John knows Mary cannot be distinguished from the 
propositions John knows that John knows Mary and John knows that Mary knows Mary, 
because John is in synchrony with knower in each of these propositions. 
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3.2. Productivity with synchrony of activation 
A further problem with the use of synchrony of activation as a binding mechanism is its 
lack of productivity. The model of Shastri and Ajjanagadde depends on the use of fact 
nodes, such as the fact node for John gives Mary a book, to detect the synchrony of 
activation between arguments and thematic roles. The use of fact nodes is needed because 
synchrony of activation has to be detected to process the information that it encodes 
(Dennett 1991). But fact nodes, and the circuits that activate them, are similar to the 
specialized neurons and circuits illustrated in figure 1. It is excluded to have such nodes 
and circuits for all possible verb-argument bindings that can occur in language, in 
particular for novel instances of verb-argument binding. As a result, synchrony of 
activation as a binding mechanism fails to provide the productivity given by 
combinatorial structures.  

The problems analyzed here, the inability to solve the problem of 2, the inability to 
deal with nested structures, and the lack of systematicity and productivity, are also found 
in other domains in which synchrony of activation is used as a binding mechanism, such 
as visual cognition (Van der Velde & de Kamps 2002).  

 
4. Processing linguistic structures with recurrent neural networks 
The argument that combinatorial structures are needed to obtain productivity in cognition 
has been questioned (Elman 1991; Churchland 1995, Port & Van Gelder 1995). In this 
view, productivity in cognition can be obtained in a ‘functional’ manner (‘functional 
compositionality’, Van Gelder 1990), without using explicit combinatorial structures. The 
most elaborate approach of this kind is found in the processing of linguistic structures 
with recurrent neural networks (Elman 1991; Miikkulainen 1996; Christiansen & Chater 
2001; Palmer-Brown et al. 2002). 

A recurrent neural network (RNN) is a multilayer (usually three-layer) feedforward 
network, in which the activation pattern in the hidden (middle) layer is copied back to the 
input layer, where it serves as part of the input to the network in the next learning step. In 
this way, RNNs are capable of processing and memorizing sequential structures. Elman 
(1991) used RNNs to predict what kind of word would follow next at a given point in a 
sentence. For instance, in case of the sentence Boys who chase boys feed cats, the 
network had to predict that after Boys who chase a noun would follow, and that after 
Boys who chase boys a plural verb would occur. To perform this task, the network was 
trained with sentences from a language generated with a small lexicon and a basic phrase 
grammar. The network succeeded in this task, both for the sentences that were used in the 
training session and with other sentences from the same language.  

A more complex model was presented by Miikkulainen (1996). The model consisted 
of multiple parts (including a ‘parser’), based on RNNs. The purpose of the model was to 
assign thematic roles (agent, act, patient) to the words in a clause. The model succeeded 
in this task, even with embedded clauses (however, clauses were restricted to two or three 
word clauses, which resulted from the fact that the output layer of the parser had three 
nodes). 

Thus, it seems that RNNs are capable to process linguistic structures in a 
noncombinatorial manner. However, as Christiansen and Chater (2001) noted, all RRNs 
model languages derived from small vocabularies (in the order of 10 to 100 words). In 
contrast, the vocabulary of natural language is huge, which results in an ‘astronomical’ 
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productivity when combined with even limited sentence structures (e.g., sentences with 
20 words or less, see section 2.1.). Therefore, I will discuss this form of ‘combinatorial’ 
productivity in the case of language processing with RNNs in more detail.  
 
4.1. Combinatorial productivity with RNNs  
In Elman (1991), the RNN was trained and tested with a language in the order of 105 

sentences, based on a lexicon of about 20 words. In contrast, the combinatorial 
productivity of natural language is in the order of 1020 sentences or more, based on a 
lexicon of 105 words. A basic aspect of such a combinatorial productivity is the ability to 
insert words from one familiar sentence context into another. For instance, if one learns 
that Dumbledore is headmaster of Hogwarts, one can also understand Dumbledore 
chases the mouse, or The dog sees Hogwarts, even though these specific sentences have 
not been encountered before. RNNs should have this capability as well, if they are to 
approach the combinatorial productivity of natural language.  

Using the prediction task of Elman (1991), we investigated this question by testing 
the ability of RNNs to recognize a sentence consisting of a new combination of familiar 
words in familiar syntactic roles (Van der Velde et al. 2003). In one instance, we used 
sentences like dog hears cat, boy sees girl, dog loves girl and boy follows cat to train the 
network on the word prediction task. The purpose of the training sentences was to 
familiarize the RNNs with dog, cat, boy and girl as arguments of verbs. Then, a verb like 
hears from dog hears cat was inserted into another trained sentence like boy sees girl to 
form the test sentence boy hears girl, and the networks were tested on the prediction task 
for this sentence.  

To strengthen the relations between boy, hears and girl, we also included training 
sentences like boy who cat hears obeys John and girl who dog hears likes Mary. These 
sentences introduce boy and hears, and girl and hears, in the same sentence context 
(without using boy hears and hears girl)4. In fact, girl is the object of hears in girl who 
dog hears likes Mary, as in the test sentence boy hears girl.  

However, although the RRNs learned the training sentences to perfection, they failed 
with the test sentences. Despite the ability to process boy sees girl and dog hears cat, and 
even girl who dog hears likes Mary, they could not process boy hears girl. The behavior 
of the RNNs with the test sentence boy hears girl was in fact similar to the behavior in a 
‘word salad’ condition, which consisted of random word strings, based on the words used 
in the training session. Analysis of this ‘word salad’ condition showed that the RNNs 
predicted the next word on the basis of direct word-word associations, based on all two-
word combinations found in the training sentences. The similarity between ‘word salads’ 
and the test sentence boy hears girl suggests that RNNs resort to word-word associations 
when they have to process novel sentences composed of familiar words in familiar 
grammatical structures.  

The results of these simulations indicate that RNNs do not posses a minimal form of 
the combinatorial productivity that underlies human language processing. To put this in 
perspective, it is important to realize that the lack of combinatorial productivity observed 
in these simulations is not just a negative result, that could have been avoided by using a 
better learning (training) algorithm. The training sentences were learned to perfection. 
The best that another algorithm could do is to learn these sentences to the same level of 
perfection. It is unclear how this could produce a different result on the test sentences.  
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Furthermore, the crucial issue here is not learning, but the contrast in behavior 
exhibited by the RNNs in these simulations. The RRNs were able to process 
(‘understand’) boy sees girl and dog hears cat, and even girl who dog hears likes Mary, 
but not boy hears girl. This contrast in behavior is not found in humans, regardless of the 
learning procedure used. It is not found in human behavior due to the structure of the 
human language system. This is what the issue of systematicity is all about: if you 
understand boy sees girl, dog hears cat and girl who dog hears likes Mary, you cannot 
but understand boy hears girl. Any failure to do so would be regarded as pathological5.  
 
4.2. RNNs and the massiveness of the binding problem 
The simulations discussed above again show that RNNs are capable of processing learned 
sentences like girl who dog hears obeys Mary, and other complex sentence structures. 
Thus, even though RRNs fail in terms of combinatorial productivity, they could be used 
to process sentence structures in abstract terms. That is, they could process a sentence 
structure in terms of Nouns (N) and Verbs (V), such as N-who-N-V-V-N in the case of 
sentences like girl who dog hears obeys Mary.  

Sentence processing in terms of N-V strings can be related with the word assemblies 
illustrated in figure 1. Words of a similar category, like verbs or nouns, would have a 
common part in their cell assemblies that reflects that they are verbs or nouns. The RRNs 
could be trained to process sentences in terms of these common parts, thus in terms of N-
V strings. However, when used in this way, RRNs can only be a part of a neural model of 
human language performance. Consider, for instance, the sentences cat chases mouse and 
mouse chases cat. Both sentences are N-V-N sentences, and thus indistinguishable for 
these RRNs. Yet, the two sentences convey very different messages, and humans can 
understand these differences. In particular, they can produce the correct answers to the 
‘who does what to whom’ questions for each of these sentences, which cannot be 
answered on the level of the N-V-N structure processed by RRNs.  

This raises two important questions for the use of RRNs in this manner. First, how is 
the difference between cat chases mouse and mouse chases cat instantiated in neural 
terms? The lack of combinatorial productivity discussed above shows that this cannot be 
achieved with RRNs. Second, given a neural instantiation of cat chases mouse and mouse 
chases cat, how can the structural N-V information processed by the RRNs be related 
with the specific content of each sentence? This is a ‘binding’ problem, because it 
requires that, for instance, the first N in N-V-N is bound to cat in the first sentence and to 
mouse in the second sentence.  

However, even if these problems are solved, sentence processing in terms of N-V 
strings is still faced with serious difficulties, as illustrated with the following sentences: 

 
The cat that the dog that the boy likes bites chases the mouse   (1) 
The fact that the mouse that the cat chases roars surprises the boy  (2) 
 

The abstract (N-V) structure of both sentences is the same: N-that-N-that-N-V-V-V-N. 
Yet, there is a clear difference in complexity between these sentences (Gibson 1998). 
Sentences with complement clauses (2) are much easier to process than sentences with 
center-embeddings (1). This difference can be explained in terms of the bindings 
(dependencies) within the sentence structures. In (1) the first noun is related with the 
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second verb as its object (theme) and with the third verb as its subject (agent). In (2), the 
first noun is only related with the third verb (as its subject). This difference in structural 
dependency (binding) is not captured in the sequence N-that-N-that-N-V-V-V-N.  

The structural dependencies that constitute the difference between sentences (1) and 
(2) again illustrate the massiveness of the binding problem that occurs in linguistic 
structures. Words and clauses have to be bound correctly to other words and clauses in 
different parts of the sentence, in line with the hierarchical structure of a sentence. These 
forms of binding are clearly beyond the capacity of language processing with RNNs. 
Similar limitations are found with RNNs in case of the problem of variables (Marcus 
2001).   
 
5. Blackboard architectures of combinatorial structures  
A combinatorial structure consists of parts (constituents) and their relations. Briefly 
stated, one could argue that the lack of combinatorial productivity with RNNs, as 
discussed above, illustrates a failure to encode the individual parts (words) of a 
combinatorial structure (sentence) in a productive manner. In contrast, synchrony of 
activation fails in particular to instantiate even moderately complex relations in the case 
of variable binding. These examples show that neural models of combinatorial structures 
can only succeed if they provide a neural instantiation of both the parts and the relations 
of combinatorial structures.  

In computational terms, a blackboard architecture provides a way to instantiate the 
parts and the relations of combinatorial structures. A blackboard architecture consists of a 
set of specialized processors (or ‘demons’, Selfridge 1959) that interact with each other 
by means of a blackboard (or ‘workbench’, or ‘bulletin board’). Each processor can 
process and modify the information that is stored on the blackboard. In this way, the 
architecture can process or produce information that exceeds the ability of each 
individual processor. In the case of language, one could have processors for the 
recognition of words and (other) processors for the recognition of specific grammatical 
relations. These processors could then communicate by using a blackboard in the 
processing of a sentence. Thus, with the sentence The little star is beside a big star, the 
word processors could store the symbol for star on the blackboard, the first time in 
combination with the symbol for little, and the second time in combination with the 
symbol for big. Other processors could then determine the relation (beside) between these 
two copies of the symbol for star. Jackendoff (2002) discusses blackboard architectures 
of this kind for phonological, syntactic and semantic structures.  

In the next section, I will propose and discuss a neural blackboard architecture for 
sentence structure based on neural assemblies. To address the problems described by 
Jackendoff (2002), neural word assemblies are not copied in this architecture. Instead, 
they are temporarily bound to the neural blackboard, in a manner that distinguishes 
between different occurrences of the same word, and that preserves the relations between 
the words in the sentence. For instance, with the sentence The cat chases the mouse, the 
word assembly for cat is bound to the blackboard as the subject or agent of chases, and 
the assembly for mouse is bound as the object or theme of this verb.  

With the neural structure of The cat chases the mouse, the architecture can produce 
correct answers to questions like “Who chases the mouse?” or “Whom does the cat 
chase?”. Questions like these can be referred to as ‘binding questions’, because they test 
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the ability of an architecture to ‘bind’ familiar parts in a (potentially novel) combinatorial 
structure. A neural instantiation of a combinatorial structure such as The cat chases the 
mouse fails if it cannot produce the correct answers to the questions stated above. In 
language, binding questions in fact query ‘who does what to whom’ information, which 
is the characteristic form of information provided by a sentence (e.g., Pinker 1994; Calvin 
& Bickerton 2000). Aphasic patients, for instance, are tested on their language abilities 
using non-verbal ‘who does what to whom’ questions (e.g., Caplan 1992). In general, the 
ability to answer binding questions is of fundamental importance for cognition, because it 
is related with the ability to select information needed for purposive action (e.g., Van der 
Heijden & van der Velde 1999).  

 
6. A neural blackboard architecture of sentence structure 
In line with Pulvermüller (1999), words are assumed to be encoded in terms of neural 
‘word’ assemblies, as illustrated in figure 1 (section 2.1.). It is clear that the relations 
between the words in a sentence cannot be encoded in terms of direct associations 
between word assemblies. For instance, the association of mouse-chases-cat does not 
distinguish between the sentences The mouse chases the cat and The cat chases the 
mouse.  

However, relations between words can be encoded, and the problems discussed by 
Jackendoff (2002) can be solved, if word assemblies are embedded in a neural 
architecture in which structural relations can be formed between the word assemblies. A 
neural architecture of this kind can be formed by means of ‘structure’ assemblies that 
interact with the word assemblies. The structure assemblies provide the possibility to 
encode different instantiations of the same word assembly (thereby solving the ‘problem 
of 2’), and they can be used to bind word assemblies in terms of the syntactic structure of 
the sentence.  

Figure 2 illustrates the neural structure of the sentence The mouse chases the cat in 
this architecture. It consists of word assemblies, structure assemblies for noun phrases 
(NPs) and verb phrases (VPs), gating circuits used for dynamic control, and memory 
circuits used to bind assemblies temporarily. In figure 2, the assemblies for mouse and cat 
are bound to NP assemblies (N1 for cat and N2 for mouse), and the assembly for chases is 
bound a VP assembly (V1). The structure assemblies are then bound to each other, in a 
manner that encodes the verb-argument structure of the sentence. For this purpose, each 
structure assembly in the architecture is composed of a main assembly (Ni for NP 
assemblies and Vi for VP assemblies) and one or more subassemblies. In figure 2, the NP 
and VP assemblies have subassemblies for the arguments agent (a) and theme (t)6. To 
encode cat as the agent of chases, N1 is bound with V1 by means of their agent 
subassemblies. In turn, N2 and V1 are bound with their theme subassemblies, to provide 
the neural structure for mouse as the theme of chases. 

Main assemblies and subassemblies are assumed to have the ability for reverberating 
activity, in line with the reverberating activity found in the prefrontal cortex (e.g., Fuster 
1973; Amit 1995; Durstewitz et al. 2000). As a result, they will remain active for a while 
after they have been activated, unless they are inhibited. Subassemblies are connected to 
main assemblies by means of gating circuits, which control the flow of activation within 
structure assemblies. For instance, a main assembly can be active, but its subassemblies 
not, or vice versa. The ability to control the internal dynamics of structure assemblies is 
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of crucial importance for the neural architecture of sentence structure proposed here. 
Before illustrating this in more detail, I will first discuss the gating and memory circuits 
used in this architecture.  

Figure 2. Illustration of the neural sentence structure of cat chases mouse in the neural blackboard 
architecture presented here. The words are encoded with the word assemblies illustrated in figure 
1 (section 2.1.). Sentence structure is encoded with ‘structure assemblies’ for noun-phrases (NP 
assemblies) and verb-phrases (VP assemblies). A structure assembly consists of a main assembly 
and a number of subassemblies, connected to the main assembly by means of gating circuits. The 
labeled subassemblies represent the thematic roles of agent (a), and theme (t). Binding between 
assemblies is achieved with active memory circuits. Here, the assembly for cat is bound to the NP 
assembly N1, the assembly for chases is bound to the VP assembly V1, and the assembly for 
mouse is bound to the NP assembly N2. N1 and V1 are bound by means of their agent 
subassemblies and V1 and N2 are bound by means of their theme subassemblies. 
 
 
6.1. Gating and memory circuits 
A gating circuit in the architecture consists of a disinhibition circuit, as described by 
Gonchar and Burkhalter (1999). Figure 3 (left) illustrates a gating circuit in the direction 
from assembly X to assembly Y. The circuit controls the flow of activation between the 
two assemblies by means of an external control signal. It operates in the following 
manner. If the assembly X is active, it activates an inhibition neuron (or group of 
neurons) ix, which inhibits the flow of activation from X to Xout. When ix is inhibited by 
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another inhibition neuron (Ix), that is activated by an external control signal, X activates 
Xout. In turn, Xout activates Y. A gating circuit from Y to X operates in a similar manner. 
Control of activation can be direction specific. Thus, by producing a control signal in the 
direction from X to Y, activation will flow in this direction (if X is active), but not in the 
direction from Y to X. The symbol illustrated in figure 3 (left) will be used to represent 
the combination of gating circuits in both directions (as in figure 2).  

Figure 3. Left: A gating circuit in the direction from assembly X to assembly Y, based on a 
disinhibition circuit. The large circles depict neural assemblies. The small circles depict (groups 
of) inhibitory neurons (i). A combination of two gating circuits in the directions X to Y and Y to 
X is depicted in other figures with the symbol illustrated at the bottom. Right: A memory (gating) 
circuit in the direction from assembly X to assembly Y, based on a gating circuit with a delay 
assembly for control. A combination of two memory circuits in the directions X to Y and Y to X 
is depicted in other figures with the symbols illustrated at the bottom, one for the inactive state 
and one for the active state of this combined memory circuit.  
 
 

A memory circuit in the architecture consists of a gating circuit in which the control 
signal results from a ‘delay assembly’. Figure 3 (right) illustrates a memory circuit in the 
direction of X to Y. However, each memory circuit in the architecture in fact consists of 
two such circuits in both directions (X to Y and Y to X). The delay assembly (that controls 
the flow of activation in both directions) is activated when X and Y are active 
simultaneously (see below), and it remains active for a while due to the reverberating 
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nature of the activation in this assembly. As a result, a memory circuit can be in two 
states: active and inactive. Each state will be represented with the symbol illustrated in 
figure 3 (right). If the memory circuit is inactive, activation cannot flow between the 
assemblies connected by the memory circuit. On the other hand, if the memory circuit is 
active, activation will flow between the assemblies it connects, if one of these assemblies 
is activated. In this way, an active memory circuit binds the two assemblies it connects. 
The memory circuits in figure 2 are active, so that word assemblies and structure 
assemblies are bound in line with the structure of the sentence.  

 
6.2. Overview of the architecture  
Figure 4 illustrates the part of the architecture in which nouns can be bound as arguments 
to verbs. This part is illustrative of the architecture as a whole.  

Figure 4. A neural blackboard architecture for verb-argument binding. Word assemblies for verbs 
are connected to the main assemblies of VP structure assemblies by means of (initially) inactive 
memory circuits. Word assemblies for nouns are connected to the main assemblies of NP 
structure assemblies by means of (initially) inactive memory circuits. The agent (a) and theme (t) 
subassemblies of the VP and NP structure assemblies are connected by means of (initially) 
inactive memory circuits. Only subassemblies of the same kind are connected to each other. The 
main assemblies of VP assemblies are mutually inhibitory. Likewise for NP structure assemblies. 
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Each noun (word) assembly is connected to the main assembly of each NP assembly 
by means of a memory circuit, which is initially inactive. Likewise, each verb (word) 
assembly is connected to the main assembly of each VP assembly by means of an 
initially inactive memory circuit. Main assemblies of the same kind are mutually 
inhibitory. Each NP and VP main assembly is connected to a number of subassemblies by 
means of gating circuits. The gating circuits can be activated in a selective manner by 
neural control circuits (not shown in the figure). For instance, the gating circuits between 
the main assemblies and the agent subassemblies can be activated without activating the 
gating circuits for the theme subassemblies. Finally, all subassemblies of the same kind 
are connected by means of memory circuits. For instance, each agent subassembly of the 
NP assemblies is connected to each agent subassembly of the VP assemblies by means of 
an (initially inactive) memory circuit.  

In the processing of a sentence it is assumed that one of the NP assemblies will be 
activated whenever the assembly for a noun is activated. It is arbitrary which of the NP 
assemblies is activated, provided that the assembly is ‘free’. A structure assembly is 
‘free’ when it is not already bound to a sentence structure, that is, when all memory 
circuits connected with that assembly are inactive7. As illustrated in figure 4, only one NP 
main assembly can be active at the same time, due to the competition between the NP 
main assemblies that results from their mutual inhibition. It is assumed that the active NP 
assembly will remain active until a new NP assembly is activated by the occurrence of a 
new noun in the sentence8. The selection of a VP assembly proceeds in the same manner. 

In all, in the order of 102 VP assemblies and 102 NP assemblies would probably be 
needed in this architecture. When a sequence of structure assemblies has been activated, 
the first assemblies in the sequence will return to the inactive state (i.e., will again be 
‘free’), due to the decay of delay activity in the memory circuits connected with these 
assemblies. In this way, only a subset of the structure assemblies will be concurrently 
active in the blackboard architecture. 
 
 
6.2.1. Connection structure for binding in the architecture 
Figure 5 (right) illustrates that the connection structure between the agent subassemblies 
in figure 4 basically consists of a matrix-like array of ‘columns’. This connection 
structure is illustrative of every connection between assemblies by means of memory 
circuits. Each column contains a (combined) memory circuit (figure 3, right), including 
the delay assembly that can activate the memory circuit. Each column also contains a 
circuit that can activate the delay assembly (figure 5, left). This circuit is also a 
disinhibition circuit, in which the delay assembly will be activated if the neurons Nin and 
Vin are active at the same time. The neurons Nin and Vin, in turn, are activated by the 
respective agent subassemblies of a NP assembly and a VP assembly.  

The activated agent subassembly of a given NP assembly activates the Nin neurons in 
a horizontal row of columns (as illustrated with Nx in figure 5, right). Likewise, the 
activated agent subassembly of a given VP assembly activates the Vin neurons in a 
vertical row of columns (as illustrated with Vi in figure 5, right). The delay assembly in 
the column on the intersection of both rows will be activated if the agent subassemblies 
of Nx and Vi are active at the same time. This results in the binding of these agent 
subassemblies (illustrated with the shaded memory circuit symbol in figure 5, right).  
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The columns within each horizontal and vertical row (figure 5, right) are mutually 
inhibitory. Inhibition is initiated by the active delay assemblies9 (figure 5, left). Thus, 
when the agent subassemblies of Nx and Vi are bound by an active memory circuit, the 
active delay assembly in their mutual column initiates the inhibition of all columns in the 
same horizontal and vertical row. This prevents a second binding of Nx with another VP 
assembly, or of Vi with another NP assembly, by means of agent subassemblies.  

Figure 5. Connection structure for the agent subassemblies in figure 4. Left: a delay assembly in a 
memory circuit (figure 3, right) is activated when the subassemblies connected by the memory 
circuit are concurrently active (using a disinhibition circuit). Right: Each agent subassembly of all 
NP assemblies is connected to each agent subassembly of all VP assemblies with a specific 
‘column’ in an array of columns. Each column consists of the memory circuits that connect both 
subassemblies, together with the circuit in figure 5 (left). The active subassembly of Nx will 
activate all Nin neurons in its horizontal row of columns. Likewise, the active subassembly of Vi 
will activate all Vin neurons in its vertical row of columns. This results in the activation of the 
delay assembly in the (combined) memory circuit in their corresponding column. Columns in 
horizontal and vertical rows are mutually inhibitory. Inhibition is initiated by active delay 
assemblies in the memory circuits.  
 
 

The binding process of the sentence in figure 2 proceeds as follows. When the 
assembly for cat is activated, a NP assembly is activated as well, and the assembly for cat 
is bound to this NP assembly by the activated memory circuit that connects the two 
assemblies. In the same manner, the assembly for chases will be bound to a VP assembly. 
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To achieve the binding of cat as the agent of chases, the gating circuits between the NP 
and VP main assemblies and their agent subassemblies have to be activated. The active 
NP and VP main assemblies (i.e., the NP and VP main assemblies bound to cat and 
chases) will then activate their agent subassemblies. In line with the process illustrated in 
figure 5, this will result in the binding of these two agent subassemblies.  

In this architecture, it is assumed that gating circuits are activated by neural control 
circuits. Basically, the control circuits instantiate syntactic operations, based on the active 
word assemblies and the activation state of the blackboard. In the example above, these 
circuits will detect that in a sequence like cat chases (or N-V), cat is the agent of the verb 
chases. In response, they will activate the gating circuits for the agent subassemblies of 
all NPs and VPs. This results in a binding between the active NP assembly and the active 
VP assembly by means of their agent subassemblies, in the manner discussed above. The 
binding of mouse as the theme of chases proceeds in a similar manner. I will discuss the 
operations of these control circuits in somewhat more detail later on. First, however, I 
will discuss how this neural blackboard architecture for sentence structure can solve the 
‘four challenges for cognitive neuroscience’ presented by Jackendoff (2002), and 
discussed in section 2.    

 
6.3. Multiple instantiation and binding in the architecture 
Figure 6 illustrates the neural structures of the sentences The cat chases the mouse, The 
mouse chases the cat and The cat bites the dog in the neural blackboard architecture. The 
words cat, mouse and chases occur in more than one sentence, which creates the problem 
of multiple instantiation (the problem of 2) for the assemblies of these words. Figure 6 
shows that the problem of multiple instantiation is solved by binding each word assembly 
to a unique structure assembly. For instance, the word assembly for cat is bound to the 
NP assemblies N1, N4 and N5. Similarly, different VP assemblies (V1 and V2) encode the 
verb chases in different sentences. The different structure assemblies can be bound in line 
with the structure of each sentence. In this way, cat can be the agent of chases in one 
sentence (by binding N1 and V1 with their agent subassemblies) and the theme of chases 
in another sentence (by binding N4 and V2 with their theme subassemblies). Furthermore, 
cat can also be the agent of another verb (bites) in a third sentence, using N5. This 
illustrates how the binding problem in language can be solved (on the level of verb-
argument binding), even with multiple instantiations of words. 

The internal structure of the NP and VP assemblies, given by the gating circuits, is of 
crucial importance in this respect. Without this internal structure, the neural structures in 
figure 6 would collapse into direct associations between neural assemblies, which would 
result in a failure to distinguish between, for instance, The cat chases the mouse and The 
mouse chases the cat. With the control of activation provided by gating circuits, the 
neural structures of these two sentences can be selectively (re)activated.  

 
6.3.1. Answering binding questions 
Selective reactivation of a sentence structure is necessary to retrieve information from the 
blackboard architecture. In particular, to answer specific binding questions, such as the 
question “Whom does the cat chase?”. The question provides the information that cat is 
the agent of chases and it asks for the theme of chases in that sentence (i.e., it asks for x 
in the sentence cat chases x). The production of the answer consists of the selective 
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activation of the word assembly for mouse. This can be achieved through a competition 
process between the VP assemblies, in which V1 emerges as the winner. After that, the 
activation of the gating circuits for theme will result in the activation of N2 by V1, and 
thus in the activation of mouse as the answer to the question10.  

Figure 6. Combined instantiation of the sentences cat chases mouse, mouse chases cat and cat 
bites dog in the architecture illustrated in figure 4 (ignoring the for the moment). The multiple 
instantiations of cat, chases, and mouse in different sentences (and in different thematic roles) are 
distinguished by the different NP or VP structure assemblies to which they are bound.  
 
 

The competition between the VP assemblies is determined by the information 
provided by the question, which results in the activation of the assemblies for cat and 
chases, and the gating circuits for agent. Inspection of figure 6 shows that V1 receives the 
most activation in this case, because it is activated by chases and N1 (through cat), 
whereas V2 is only activated by chases and V3 is only activated by N5 (through cat). The 
mutual inhibition between VP main assemblies (figure 4) will then result in V1 as the 
winner of the VP competition. This analysis has been confirmed by pilot simulations, 
using populations of spiking neurons to simulate the assemblies (Van der Velde & de 
Kamps 2003b).  

In contrast with the question “Whom does the cat chase?”, the question “Who chases 
the cat?” will result in a VP competition in which V2 is the winner. The difference is 
given by the selective activation of the gating circuits. Both questions result in the 
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activation of the assemblies for cat and chases, but they activate different gating circuits. 
The first question defines cat as the agent of chases. This information can be used to 
produce the activation of the gating circuits for agent, which results in V1 as the winner 
of the VP competition, as analyzed above. The second question defines cat as the theme 
of chases. In this case, the theme gating circuits will be activated, so that N4 (activated by 
cat) can activate V2. This route of activation was blocked in case of the first question. 
Thus, with the second question, V2 emerges as the winner because it receives the most 
activation in this case. Then, mouse can be produced as the answer, because the question 
asks for the agent of chases (i.e., it asks for x in x chases cat).  

Figure 6 illustrates that the neural blackboard architecture can solve the binding 
problem in language on the level of verb-argument binding. However, extensions of the 
neural blackboard architecture presented thus far are needed to handle the more massive 
form of binding found in linguistic structures (Jackendoff 2002).  

 
6.4. Extending the blackboard architecture 
A first extension of the architecture is introduced in figure 7. As Bickerton argued 
(Calvin & Bickerton 2000), an important step in the evolution of language consisted of 
the transformation illustrated in the top-half of figure 7. The diagram on the left is a 
sentence structure as it occurs in protolanguage (a precursor of modern language), 
whereas the diagram on the right is a basic sentence structure in modern language 
(language with syntax, as Bickerton puts it). The difference resides in the fact that one of 
the arguments of the verb is placed outside the verb’s direct influence (i.e., the verb-
phrase), and occupies a controlling position of its own in the sentence (as the subject).  

The bottom-half of figure 7 shows a similar transition in terms of the neural 
architecture proposed here. The structure on the left is the sentence structure of figure 2. 
For convenience, I have introduced a shorthand presentation of this structure in figure 7. 
The gating and memory circuits are not shown, connected subassemblies are presented as 
one, and words are simply written close to their structure assemblies. However, the full 
structure of figure 2 is still implied. The shorthand version does not result in ambiguities: 
subassemblies are always connected to their main assemblies with gating circuits, 
subassemblies are only bound to other subassemblies of the same kind (and always with 
active memory circuits), and word assemblies are always bound to structure assemblies 
of the corresponding type (e.g., nouns to NP assemblies).  

The sentence structure on the left in the bottom-half of figure 7 resembles the diagram 
on the left in the top-half of the figure. In turn, the sentence structure on the right in the 
bottom-half of the figure (also in shorthand presentation) resembles the diagram on the 
right in the top-half of the figure. In this sentence structure, the NP of cat is not directly 
bound to the VP of chases. Instead, it is bound to a new sentence structure assembly (S). 
Binding is achieved through the noun subassembly (n) of the NP assembly (not shown in 
figure 4), and the corresponding noun subassembly of the S assembly. Likewise, the VP 
assembly is bound to S with verb subassemblies (v).  

The connection structures of the noun subassemblies and the verb subassemblies are 
similar to the connection structure of the agent subassemblies illustrated in figure 5. 
Furthermore, the S main assemblies are mutually inhibitory, similar to the NP and VP 
main assemblies (figure 4). This does not mean that only one sentence at a time could be 
stored in the blackboard. As illustrated in figure 6, information is stored in the blackboard 
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by means of active delay assemblies, which are not mutually inhibitory (except in the 
manner illustrated in figure 5). The inhibitory interaction between main assemblies of the 
same kind is important for the dynamic control of the activation process in the blackboard 
when information is stored or retrieved, as in the process of answering binding questions.  

Figure 7. Top: Transformation of sentence structure in proto-language (left) to sentence structure 
in modern language (right), after Calvin & Bickerton (2000). Bottom: similar transformation in 
terms of neural sentence structures. The neural sentence structure of cat chases mouse on the left 
is the same as in figure 2, but in a ‘shorthand’ presentation. The neural sentence structure of cat 
chases mouse on the right (also in ‘shorthand’ presentation) consists of a new structure assembly 
for sentence (S), with subassemblies for noun (n) and verb (v). The dotted line between the noun 
and verb subassemblies represents the possibility of encoding agreement between subject and 
verb by means of these subassemblies.  
 
 

The dotted line between the noun and verb subassemblies indicates that these 
subassemblies can be used to encode agreement between the subject cat and the verb 
chases (as in cat chases versus cats chase). For instance, S assemblies could have 
different noun and verb subassemblies for single and plural, which can be activated 
selectively. Once a noun is bound to the noun subassembly for single, this subassembly 
will enforce a binding of the verb to a verb subassembly for single as well.  

Further extensions of the architecture proceed along similar lines. Basically, they 
consist of the introduction of new structure assemblies, and new subassemblies needed 
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for appropriate binding. The architecture can be extended with new structure assemblies 
because of its modular connection structure. New structure assemblies and the 
subassemblies needed for binding can be added on without affecting the other connection 
structures in the architecture.  

 
6.4.1. The modular nature of the blackboard architecture 
The modular nature of the blackboard architecture is illustrated in figure 8, which 
presents the structure for Jackendoff’s sentence The little star is beside a big star. The 
new structure assemblies in this sentence structure are determiner assemblies (D1 and 
D2), adjective phrase assemblies (Adj1 and Adj2), and prepositional phrase assemblies 
(P1). The Di assemblies are bound to NP assemblies with determiner subassemblies (d), 
the Adji assemblies are bound to NP assemblies with adjective subassemblies (adj), and 
the Pi assemblies are bound to VP assemblies with preposition-verb subassemblies (pv) 
and to NP assemblies with preposition-noun subassemblies (pn). The connection 
structure of each of these new kinds of subassemblies is again similar to the connection 
structure illustrated in figure 5. Furthermore, main assemblies of the same kind are again 
mutually inhibitory.  

Figure 8. Neural sentence structure for The little star is beside a big star. The structure assemblies 
are similar to those in figure 7 (bottom-right), with new structure assemblies for determiner (Di), 
adjective phrase (Adji) and prepositional phrase (Pi), and new subassemblies for determiner (d), 
adjective (adj), preposition-verb (pv) and preposition-noun (pn).  
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The sentence structure in figure 8 (again) illustrates the solution of the problem of 2 
provided by the architecture, and it illustrates the solution of the massiveness of the 
binding problem in linguistic structures. Even though there is only one word assembly for 
star, it can participate in two different constituents of the sentence, due to the fact that it 
is bound to two different NP assemblies. Bound to N1, star has the determiner the and the 
adjective little, and it constitutes the subject of the sentence, which is bound directly to S. 
Bound to N2, star has the determine a and the adjective big, and it is bound to the 
preposition beside, which in turn is bound to the verb of the sentence.  

Questions can be again be answered by selectively activating structure assemblies and 
gating circuits. Consider, for instance, the question “Which star is beside a big star?”. In 
global terms, the answer can be produced if S1 is activated (to inhibit other Si 
assemblies), so that the gating circuits for the noun subassemblies can be activated 
(because the question asks for the adjective of the subject). This will result in the 
activation of N1, and, in turn, of D1 and Adj1, which produces the answer the little star. S1 
will be activated due to the information is beside a big star provided by the question. The 
phrase a big star results in the activation of N2, which thus initially wins the competition 
over N1. However, after the selection of S1, N1 will be activated due to the activation of 
the ‘subject’ gating circuits. Conversely, the question “Where is the little star?” produces 
the activation of S1 and V1, and it asks for the prepositional phrase of the sentence. The 
answer will result from activating the gating circuits for the preposition-verb 
subassemblies.  

The introduction of the new structure assemblies in figure 8 raises the question of 
how many different kinds of structure assemblies would be needed in the neural 
blackboard architecture. A preliminary answer at this stage is that the architecture would 
have a particular kind of structure assembly for each kind of constituent that can occur in 
a linguistic structure. Later on, I will illustrate this point with the encoding of embedded 
clauses. First, however, the two remaining problems presented by Jackendoff (2002) have 
to be solved: the problem of variables, and the problem of how a linguistic structure in 
working memory can be transferred into long-term memory (i.e., constituent binding by 
means of activation versus constituent binding by means of synaptic modification). I will 
discuss a solution of these two problems in the next two subsections, beginning with the 
latter problem.  
 
6.5. Constituent binding in long-term memory 
An important role in the storage of information in long-term memory is played by the 
hippocampus and surrounding areas (or hippocampal complex, Nadel & Moscovitch 
2001).  The hippocampal complex (HC) has the ability for rapid storage of information 
by means of synaptic modifications (Rolls & Treves 1998). A prominent view of the role 
of the HC is given by the ‘Hebb-Marr’ model (McNaughton & Nadel 1990). In this view, 
HC neurons form a conjunctive encoding of those neurons that are concurrently active in 
the cortex (Rolls & Treves 1998; O'Reilly & Rudy 2001). The encoding results from the 
modification of the synapses between the active neurons in the cortex and the active 
neurons in the HC. These neurons then combine into an auto-associator (Marr) or a cell 
assembly (Hebb), that can be reactivated as a whole when only a part of it has been 
reactivated. In this way, the HC forms a ‘snapshot-like’ memory of an event with the 
duration of about a second (Rolls & Treves 1998). Given the connection structure within 
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the HC (sparse connectivity), different events or episodes can be separated in memory, 
because they can be encoded with different and non-overlapping groups of neurons in the 
HC (O'Reilly & Rudy 2001).   

A crucial aspect of encoding with HC neurons is the fact that the storage of 
information is unstructured (Roll & Treves 1998). That is, the HC acts as a simple 
binding device, which forms a conjunctive encoding of the input that is concurrently 
available. However, the HC does not, by itself, encode systematic relations within the 
input (O'Reilly & Rudy 2001). Therefore, in the words of O'Reilly & Rudy (2001, p. 
320): “all relationship information must be present in the inputs to the hippocampus, 
which can then bind together the relational information with other information about the 
related items in a conjunction”.   

Figure 9. Left: conjunctive encoding of the assemblies for cat, chases and mouse with a neuron 
(or group of neurons) in the hippocampus complex (HC). Right: conjunctive encoding of the 
neural sentence structure of cat chases mouse with a neuron (or group of neurons) in the 
hippocampus complex (HC). 
 
 

Figure 9 (left) illustrates what this means in terms of the word assemblies activated 
(within a second or so) by the sentence The cat chases the mouse. The HC will form a 
conjunctive encoding of the word assemblies, but not of their relations11. As a result, the 
same conjunctive encoding of the word assemblies will be formed with the sentence The 
mouse chases the cat. Thus, HC conjunctive encoding of word assemblies creates the 
familiar binding problem. Reactivation by the HC will reactivate the word assemblies for 
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cat, mouse, and chases, but not the structure of either The cat chases the mouse or The 
mouse chases the cat. 

The problem can be solved by including relationship information in the input to the 
HC, as described by O'Reilly & Rudy (2001). This will occur if the activity in the neural 
blackboard architecture for sentence structure is included in the input to the HC, as 
illustrated in figure 9 (right). In this way, the HC can reactivate a neural sentence 
structure by reactivating the neural blackboard. Thus, figure 9 (right) illustrates that a 
neural blackboard architecture plays a crucial role in the storage of combinatorial 
structures in long-term memory (i.e., in terms of synaptic modification). Even a 
conjunctive encoding as provided by the HC is sufficient, if the activity in the blackboard 
is included in the encoding. 

Figure 10. Encoding of the neural sentence structure of The little star is beside a big star (figure 
8) with two different neurons (or groups of neurons) in the hippocampus complex (HC). Each 
neuron encodes a part (‘episode’) of the sentence structure. Both parts can be overlapping.  
 

 
With longer sentences, it is likely that the HC will encode the sentence structure in 

terms of a sequence of events, each consisting of a conjunctive encoding of a part of the 
sentence structure. Figure 10 illustrates this process for the structure of the sentence The 
little star is beside a big star presented in figure 8. Two different HC neurons encode two 
different parts of the sentence, which could be partly overlapping. The whole sentence 
structure can be reactivated in the blackboard if one of the HC neurons reactivates the 
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part of the sentence structure it encodes. The overlap between the two structural parts can 
then result in the activation of the other HC neuron, which will reactivate the remaining 
part of the sentence structure.  

  
6.5.1. One-trial learning 
In particular, the activity of the delay assemblies in the memory circuits has to be 
included in the input to the HC, because the structure of a sentence is completely 
determined by the set of active delay assemblies. In fact, as hinted at in figure 9 (right), 
the HC encoding would not have to include all (or even any) of the word assemblies of 
the sentence. The overall structure can be retrieved (i.e., binding questions can be 
answered) as long as the delay assemblies can be reactivated by the HC (in line with the 
sentences presented in figure 6). 

The fact that HC encoding of the active delay assemblies is sufficient to store the 
sentence structure in memory constitutes an important aspect of the use of delay activity 
as a binding mechanism. The delay assemblies in the blackboard can remain active 
concurrently without causing interference, unlike the word and structure assemblies. The 
reverberating activity of delay assemblies will then provide sufficient time for the process 
of synaptic modification to proceed. This solves the problem of one-trial learning, as 
described by Jackendoff (2002, p. 66): “It is usually argued that transient connections 
have the effect of gradually adjusting synaptic weights (so-called Hebbian learning). But 
what about cases in which one trial is sufficient for learning? For example, you say to me, 
I’ll meet you for lunch at noon. I reply, OK, and indeed I do show up as agreed. My long-
term memory has been laid in on the basis of one trial; there hasn’t been any opportunity 
to adjust synaptic weights gradually”.  

Figure 9 (right) illustrates how one-trial learning can proceed by means of the 
blackboard architecture. The word assemblies in The cat chases the mouse are indeed 
activated briefly, to prevent the interference effects that would otherwise occur. But the 
delay assemblies can remain active for a longer period, because they do not interfere with 
each other. This provides the opportunity to adjust the synaptic weights between the HC 
and the delay assemblies gradually, in line with Hebbian learning. In this way, a long-
term memory of a sentence structure can be formed on the basis of one trial.  

 
6.5.2. Explicit encoding of sentence structure with synaptic modification 
Although the conjunctive encoding of the blackboard by the HC provides an encoding of 
sentence structure in terms of synaptic weights, retrieval of information from long-term 
memory still requires that the blackboard activation of the sentence structure is 
reactivated by the neurons in HC, probably in a sequence as illustrated in figure 10. 
However, one could imagine that a more explicit encoding of sentence structure in terms 
of synaptic weights would be possible, which on its own could be used to retrieve 
information. An important function of the HC is indeed to provide a quick but temporal 
storage of information, so that the interaction between the HC and the cortex can result in 
a (slower) transference of that information to the cortex, where it can be incorporated in 
the existing knowledge base (e.g., O’Reilly & Rudy 2001). After such a process, a 
sentence structure could be encoded explicitly in the cortex in terms of synaptic 
modification.  
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Figure 11 presents a neural structure of The cat chases the mouse in terms of synaptic 
modification (the structure in the brackets represents the shorthand version). As in figure 
2, the structure consists of word assemblies, structure assemblies, and the appropriate 
bindings between the assemblies. The word assemblies in figure 11 are the same as those 
in figure 2. The structure assemblies in figure 11 are of the same kind as those in figure 2 
(NP and VP). Structure assemblies in figure 11 also consist of main assemblies and 
subassemblies, connected with gating circuits. However, binding in figure 11 is not 
achieved by memory circuits (as in figure 2), but instead consists of synaptic 
modification. In this way, the word assemblies are directly connected to the main 
assemblies. Subassemblies of the same kind are also directly connected to each other, 
effectively forming a single assembly.  

Figure 11. Explicit encoding of neural sentence structure in long-term memory, illustrated with 
the sentence cat chases mouse. Word assemblies are bound to main assemblies of structure 
assemblies with synaptic modification, with nouns to noun phrase (NP) assemblies and verbs to 
verb phrase (VP) assemblies. Subassemblies of the same kind are bound with synaptic 
modification. This effectively results in a single subassembly, as illustrated with the agent (a) and 
theme (t) subassemblies of NP and VP assemblies. A ‘shorthand’ presentation of the sentence 
structure is given in brackets.   
 
 

The structure assemblies in figure 11 do not belong to the blackboard architecture to 
which the structure assemblies in figure 2 belong (i.e., the architecture of figure 4). 
Binding in the architecture of figure 4 is always temporary, depending on the activity of 
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the delay assemblies in the memory circuits. When the delay assemblies in the memory 
circuits connected to a structure assembly are no longer active, the structure assembly can 
be used to encode a different sentence structure (again temporarily). This characteristic is 
the basis of the productivity of the architecture in figure 4. With the ability to reuse the 
structure assemblies, the architecture can encode arbitrary and novel sentence structures 
on the fly.  

In contrast, the structure assemblies in figure 11 cannot be reused in this way. Due to 
binding with synaptic modification, the structure in figure 11 is of a more permanent 
nature, created specifically for this particular sentence structure. As a result, a knowledge 
base of this kind consists of a collection of sentence structures (‘facts’), each one created 
after a prolonged learning process, in line with the transference of information between 
the HC and the cortex discussed above. Thus, it is possible that the sentence The cat 
chases the mouse belongs to this knowledge base, but the sentence The mouse chases the 
cat does not.  
 
6.6. Variable binding  
The knowledge base illustrated with the sentence structure in figure 11 can be used in a 
rule-based derivation with variable binding, such as the derivation that own(Mary, book) 
follows from give(John, Mary, book). Here, I will discuss how the binding question 
“What does Mary own?” can be answered on the basis of the fact (proposition) John 
gives Mary a book and Mary gives John a pen. In section 3, I argued that the model of 
Shastri and Ajjanagadde (1993), based on synchrony of activation, is faced with serious 
difficulties in the case of such a proposition, due to the multiplication of the arguments 
John and Mary in different roles in the proposition (i.e., the problem of 2).  

Figure 12 shows how the combination of the facts John gives Mary a book and Mary 
gives John a pen will be encoded in terms of the neural structure introduced in figure 11 
(using the shorthand presentation). The verb give(x,y,z) has three arguments (agent, 
recipient, and theme), thus the VP and NP assemblies have an additional subassembly for 
recipient (r). The word assembly for give is connected to two VP main assemblies (V1 
and V2), which are mutually inhibitory. V1 is bound to the NP assemblies for John (N1), 
Mary (N2), and book (N3), in the manner that it encodes the fact give(John, Mary, book). 
Similarly, V2 is bound to the NP assemblies for Mary (N4), John (N5), and pen (N6), in 
the manner that it encodes the fact give(Mary, John, pen).  

Even though the fact Mary owns a book does not belong to the knowledge base, the 
question “What does Mary own?” can be answered on the basis of the fact John gives 
Mary a book if the information provided by the question is transformed into information 
related with give(x,y,z). The question “What does Mary own?” provides the information 
that Mary is the agent of own, and it asks for the theme in the proposition. In short, the 
question provides information of the form own(Mary, ?). In terms of give(x,y,z), the 
question provides the information that Mary is the recipient of give, and it asks for the 
theme in the proposition. In short, the question provides information of the form give(-, 
Mary, ?). In general, information of the form own(X,?) can be transformed into 
information of the form give(-,X,?) on the basis of a long-term association between own-
agent and give-recipient (as in the model of Shastri and Ajjanagadde, 1993).  

In line with the process of answering binding questions (section 6.3.1.), the 
information of the form own(X, ?) will produce the activation of the assembly for own 
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and the gating circuits for agent. In contrast, the information of the form give(-,X, ?) will 
produce the activation of the assembly for give and the gating circuits for recipient. 
Therefore,  the activation produced by own(X,?) cannot be concurrently active with the 
activation produced by give(-,X,?). In figure 12, this would result in the activation of give 
and the combined activation of the gating circuits for agent and recipient. The VP 
assemblies V1 and V2 would then receive an equal amount of activation when the 
assembly for X (Mary) is active, so that book and pen would have an equal probability of 
being produced as the answer to the question.   

Figure 12. The explicit encoding of the (combined) neural structures of John gives Mary a book 
and Mary gives John a pen in long-term memory, in the manner of the structure presented in 
figure 11 (with ‘shorthand’ presentation). The subassemblies include a new subassembly for 
recipient (r). VP main assemblies are mutually inhibitory.  
 
 

Concurrent activation produced by own(X,?) and give(-,X,?) would be prevented if 
the activation produced by own(X,?) consists of an ‘attractor’ state (Amit, 1995) of a 
control network, which is associated with the attractor state in the control network 
produced by give(-,X,?). First, the control network will be in the attractor state related 
with own(X,?). But when an answer is not produced in this way (because own(Mary, 
book) does not belong to the knowledge base), the attractor state in the control network 
would change into the associated attractor state that corresponds with give(-,X,?)12. 
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When the information related with give(-, Mary, ?) is singled out, the answer can be 
produced by activating Mary and give, and the gating circuit for recipient. As illustrated 
in figure 12, this will results in V1 as the winner of the competition between the VP 
assemblies. After, that, the answer can be produced by activating the gating circuits for 
theme.  

The transformation of the information related with own(X,?) into information related 
with give(-,X,?) does not depend on Mary, or on any of the other variables in figure 12 
(i.e., book, pen, or John). It only depends on the association between own-agent and give-
recipient. Thus, the derivation of own(Mary, book) from give(John, Mary, book) is a rule-
based derivation with variable binding. The same process can operate on the blackboard 
architecture in figure 4, so that a novel structure like give(Dumbledore, Harry, broom) 
can result in the answer to the question “What does Harry own?”.  

 
6.6.1. Neural structure versus spreading of activation 
In the neural structure illustrated in figure 12, the fact give(John, Mary, book) can be used 
to answer the question “What does Mary own”, even though the fact give(Mary, John, 
pen) is also instantiated in the architecture. The two facts do not interfere, because the 
gating circuits control the flow of activation in the structure assemblies. 

Figure 13. Illustration of the collapse of the neural structures presented in figure 12 when the 
gating circuits are removed. The result is a network of assemblies based on spreading of 
activation. 
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Figure 13 shows the collapse of the structure presented in figure 12 when the gating 
circuits are removed, to illustrate the importance of activation control provided by the 
gating circuits in the neural structures presented here. Without the gating circuits, a main 
assembly and its subassemblies merge into a single assembly. In fact, the NP assemblies 
can be omitted altogether, because the word assemblies for the nouns are now directly 
connected with the VP main assemblies V1 and V2. Because all assemblies are now 
directly connected with excitatory or inhibitory connections, processing only depends on 
spreading of activation. The information related with give(-, Mary, ?) results in the 
activation of the assemblies for give and Mary. Due to the uncontrolled spreading of 
activation, the activation of give and Mary results in an equal activation of V1 and V2, so 
that a correct answer to the question cannot be given without ambiguity or error.  

In fact, any question will result in ambiguities or error in this uncontrolled spreading 
of activation network. For instance, a question like “Who gives a book?” will result in the 
activation of both John and Mary as potential answers, even though V1 will win the 
competition over V2. In contrast, in the structure in figure 12, the question “Who gives a 
book?” will result in John as the answer, because the question will result in the activation 
of the gating circuits for agent after V1 has won the VP competition.  
 
 
6.7. Structural dependencies in the blackboard architecture  
As Jackendoff (2002) noted, a solution of the ‘four challenges for cognitive 
neuroscience’ would allow a more productive interaction between neural network 
modeling and linguistic theory to begin. To illustrate the possibility of such an 
interaction, I will discuss the neural blackboard structures of the sentences (1) and (2), 
discussed in section 4.2. They are repeated here for convenience:  
 

The cat that the dog that the boy likes bites chases the mouse               (1) 
The fact that the mouse that the cat chases roars surprises the boy       (2) 

 
In section 4.2, I argued that these two sentences pose a problem for models that 

process sentences in terms of word strings or strings of word category labels (N-V 
strings). Both sentences have the same word category structure (N-that-N-that-N-V-V-V-
N), but they are different in terms of complexity (Gibson 1998), with (1) rated as far more 
complex than (2). The difference in complexity between the sentences is related with the 
different bindings between the constituents in both sentences. As such, they form an 
interesting example of the massiveness of the binding problem that occurs in language.  

A neural instantiation of sentence structure has to account for the differences in 
constituent binding illustrated with sentences (1) and (2), as any linguistic theory of 
sentence structure would have to do. But a neural instantiation of sentence structure 
should also provide an explanation of the observed differences in complexity between 
these sentences (and other performance effects, Van der Velde 1995). 

The structural difference between sentences (1) and (2) is related with the embedded 
clauses they contain. The instantiation of clauses in the architecture is discussed below.  
 
 
 



 

 35

6.7.1. Embedded clauses in the blackboard architecture 
Figure 14a presents the structure of the sentence The cat that bites the dog chases the 
mouse (without the determiners the). This sentence contains the subject-relative clause 
that bites the dog. To encode and bind this clause, a new clause structure assembly (C) is 
introduced, with a new clause subassembly (c).  

Figure 14. (a). Illustration of the neural sentence structure of The cat that bites the dog chases the 
mouse (without the determiners). The structure is based on the sentence structure presented in 
figure 7 (bottom-right), with the addition of a clause structure assembly (C) and a clause 
subassembly (c). The dotted lines represent agreement between subject and verb. (b). Illustration 
of the sentence structure of The cat that the dog bites chases the mouse, using the same kind of 
structure assemblies as in (a).  
 
 

C assemblies play a role in the encoding of a clause that is similar to the role played 
by S assemblies in the encoding of the main sentence (cat chases mouse in figure 14a). 
Nevertheless, they are a different kind of structure assemblies. Unlike S assemblies, C 
assemblies have to be bound to one of the structure assemblies in the sentence, as 
illustrated with the binding between C1 and N1 in figure 14a. This requirement entails a 
structural difference between C and S assemblies. In particular, it requires a new kind of 
subassembly (c), which is used to bind C assemblies to other assemblies. Furthermore, 
the word assemblies of complementizers can bind with C assemblies, as illustrated with 
that in figure 14a13. 
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Like S assemblies, C assemblies can be used to encode agreement between subject 
and verb. In the case of a subject-relative clause, agreement exists between subject of the 
main sentence (cat) and the verb of the relative clause (bites), as indicated with the dotted 
line between the clause and verb subassemblies of the C assembly in figure 14a.  

Figure 14b presents the structure of the sentence The cat that the dog bites chases the 
mouse. This sentence contains the object-relative clause that the dog bites. Encoding and 
binding is achieved with the same kind of structure assemblies as in figure 14a. However, 
in this case, dog is the subject of bites, so it is bound to the noun subassembly of C1, and 
agreement between dog and bites is encoded by agreement between the noun and verb 
subassemblies of C1, as indicated with the dotted line.   

In an object-relative sentence like The cat that the dog bites chases the mouse, the 
subject of the main sentence is the theme of the verb in the relative clause. In the 
structure presented in figure 14b, this is instantiated by the binding of cat (N1) with bites 
(V2) by means of their theme subassemblies. This poses a problem for the control of 
binding in this sentence. When V2 is active, N2 is the active NP assembly, not N1. 
Therefore, the theme subassembly of N1 has to be activated before the activation of N2 (a 
subassembly can remain active even if its main assembly is deactivated). Thus, the gating 
circuits for theme have to be activated before the activation of the main assembly of N2. 

With the object-relative sentence in figure 14b, the control circuits could conclude 
from the sequence cat that dog (or N that N) that cat is the theme of the next verb, so that 
the gating circuits for theme have to be activated before the activation of N2. This control 
of activation is not needed for the subject-relative sentence in figure 14a. Furthermore, 
the structure in figure 14b requires an additional binding (between C1 and N2 with noun 
subassemblies). These activation differences between the structures in figure 14b and 
figure 14a could be the basis for the fact that object-relative sentences are more difficult 
to process that subject-relative sentences (Gibson 1998).   

 
6.7.2. Multiple embedded clauses  
Figure 15a presents the structure of The cat that the dog that the boy likes bites chases the 
mouse (1). Sentence (1) contains the double center-embedded object-relative clause that 
the dog that the boy likes bites. Sentences of this type are notoriously hard to process, to 
the point that they can be classified as unprocessable (Gibson 1998).  

The encoding of the phrase The cat that the dog proceeds in the same way as in figure 
14b, so that the theme subassembly of N1 (cat) will be activated to bind with the theme 
subassembly of the next verb. However, another embedded clause is introduced, instead 
of a verb. The phrase the dog that the boy is structurally similar to the phrase the cat that 
the dog, so that the theme subassembly of N2 (dog) will be activated to bind with the 
theme subassembly of the next verb. Thus, when the first verb (likes) appears, there are 
two subassemblies that can bind with the theme subassembly of this verb, whereas the 
verb should bind with dog (N2) as its theme argument. The situation is similar with the 
second verb (bites), which should bind with cat (N1) as its theme argument. The two 
problematic bindings are indicated with the dashed lines in figure 15a.  

Figure 15b shows the structure of the sentence The fact that the mouse that the cat 
chases roars surprises the boy (2). The structure of (2) is very similar to the structure of 
(1), except for the fact that roars (V2) does not have a theme argument. A phrase 
beginning with The fact that will be interpreted as a complementary clause, so that the 
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theme subassembly of N1 (fact) will not be activated. When the object-relative clause in 
the mouse that the cat chases appears, the theme subassembly of N2 (mouse) will be 
activated to bind mouse as the theme of chases (as in figure 15a). However, in contrast 
with the structure of (1) in figure 15a, mouse (N2) can bind with the first verb (chases) as 
its theme because the theme subassembly of N2 is the only active theme subassembly at 
that moment.  

Figure 15. (a). Illustration of the neural sentence structure of The cat that the dog that the boy 
likes bites chases the mouse, with the same kind of structure assemblies as used in figure 14b. (b). 
Likewise, the neural structure of the sentence The fact that the mouse that the cat chases roars 
surprises the boy.  
 
 

Thus the difference in complexity between (1) and (2) results from a difference in 
structural dependency between both sentences. In (1) the subject of the main sentence 
(cat) is also the theme of a verb in an object-relative clause. In combination with the 
second object-relative clause, this results in an ambiguity of the binding of cat (N1) or 
dog (N2) as the theme of likes (V1) or bites (V2). In contrast, in (2) the subject of the main 
clause (fact) is not bound to any of the verbs in the embedded clauses, so that the 
ambiguities in (1) do not arise in (2).  

At face value, the binding problem that arises with the theme subassemblies of the 
sentence structure in figure 15a would also have to arise with the verb subassemblies in 
both sentence structures in figure 15, in particular for the verb assemblies connected to 
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the C assemblies (the verb assembly of the S assembly could be activated after the 
binding of C assemblies has been completed). The activation of C2 will inhibit the 
activation of C1 in both sentence structures, thus the verb subassembly of C1 has to be 
activated before C2 is activated. But the first verb in the sentence (likes or chases) has to 
be bound to C2, which requires the activation of the verb subassembly of C2 as well. 
However, the binding problem with the verb subassemblies can be solved in terms of the 
dynamics of the binding process, as discussed below.  

 
6.7.3. Dynamics of binding in the blackboard architecture 
The binding of subassemblies (of the same kind) occurs in a connection structure as 
illustrated in figure 5. Figure 16 illustrates the process of subassembly binding between 
two arbitrary structure assemblies A and B.  

In figure 16a, the subassembly of Ai-1 has activated its horizontal row of columns in 
the connection structure. If a Bj subassembly would activate its vertical row of columns 
in the connection structure, a binding would result between Ai-1 and Bj, in the manner as 
discussed in section 6.2.1. However, the subassembly of Ai is activated first, which 
results in the activation of a second horizontal row of columns.  

In figure 16b, the subassembly of Bj activates its vertical row of columns in the 
connection structure. At this moment, a conflict arises between the binding of Ai-1 with Bj 
and the binding of Ai with Bj. Due to the inhibitory interaction between the columns in 
the vertical row of Bj (initiated by activated delay assemblies), only the stronger of these 
two bindings will survive. Figure 16c illustrates that Ai will bind with Bj if the activation 
in the horizontal row of Ai is stronger than the activation in the horizontal row of Ai-1.  

When the binding process of Ai and Bj has been completed, the columns in the 
horizontal row of Ai (and the vertical row of Bj) will be inhibited due to the active delay 
assembly in the column that binds Ai with Bj. However, as illustrated in figure 16d, the 
columns in the horizontal row of Ai-1 are still active (with the exception of the column in 
the vertical row of Bj). Thus, the subassembly of Ai-1 can bind with another B 
subassembly if that is activated.   

The process illustrated in figure 16 shows that two A subassemblies can bind in 
sequence with B subassemblies if there is a clear difference in activation strength 
between the two A subassemblies. In that case, the stronger activated A subassembly will 
bind with the first active B subassembly and the other A subassembly will bind with the 
second B subassembly. In theory, one could have a whole series of A subassemblies that 
can bind in sequence with B subassemblies, if the A subassemblies have distinguishable 
differences in their activation strengths. 

Pulvermüller (2000) suggested that a gradual decay of activation in reverberating 
assemblies (such as the delay assemblies in the memory circuits) could form the basis of 
a neural pushdown stack. Figure 16 illustrates this possibility. If the subassemblies of Ai-n 
to Ai have been activated that order, and if the activation strength of the subassemblies 
decays over time, then the subassembly of Ai would have the strongest activation and it 
would bind to the first B subassembly, as illustrated in figure 16. Then, the subassembly 
of Ai-1 would bind to the next B subassembly, as illustrated in figure 16d. In the same 
manner, all the subassemblies of Ai-n to Ai would bind to B subassemblies in the reverse 
order of their activation, in line with the notion of a pushdown stack14.  
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Figure 16. Four stages in the process of subassembly binding between arbitrary structure 
assemblies A and B, with the connection structure as illustrated in figure 5. (a). The 
subassemblies of Ai-1 (first) and Ai (second) have activated their horizontal row of columns. (b). 
The subassembly of Bj has activated its vertical row of columns. (c). Binding occurs between Ai 
and Bj, because the activation in the row of Ai is stronger than the activation in the row of Ai-1. 
(d). After completion of the binding process in (c), Ai-1 can bind to another B assembly. In this 
way, the connection structure can operate as a pushdown stack.  
 

 
It is not clear whether such a distinctive and reliable decay of reverberating activity 

will be found in the brain, due to the fluctuations that can occur in this kind of activity 
(Amit 1989). However, in one circumstance one can find a clear difference in activation 
strength between reverberating assemblies. Fuster et al. (1985) investigated the relation 
between reverberating activity in the prefrontal cortex and the visual cortex. First, they 
identified neurons in both areas of the cortex that responded to the same objects and that 
maintained their activation in a delay period. Then, they applied a technique of reversible 
cooling to one of the areas involved. In this way, the activity of the neurons in that area 
can be blocked temporarily, but the activity will reappear when the temperature is 
increased to a normal level. Fuster et al. (1985) observed that blocking the activity of 
neurons in one area also reduced the activity of the neurons in the other area. The activity 
in the second area increased again when the activity in the first area reappeared (by 
terminating the cooling in that area).  
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6.7.4. Dynamics of binding and complexity  
The results of Fuster et al. (1985) indicate that reverberating activity in a neural assembly 
is stronger when the assembly also receives activation from outside. In this way, the 
binding of the verb subassemblies in the sentence structures in figure 15 can be 
explained. The main assembly of C2 is active when the first verb (likes or chases) 
appears. Therefore, the verb subassembly of C2 is also activated by the main assembly, 
unlike the verb subassembly of C1. As a result, the activity of the verb subassembly of C2 
is stronger than the activity of the verb subassembly of C1. In line with the binding 
process illustrated in figure 16, the verb subassembly of C2 will bind with the verb 
subassembly of V1 (likes or chases), and the verb subassembly of C1 will bind with the 
VP assembly (V2) of the next verb (bites or roars).    

In contrast, the main assembly of N2 in figure 15a is not active, due to the activation 
of N3 (boy), which is needed to bind boy with likes. Without a clear distinction in 
activation strength between the theme subassemblies of N1 and N2, the binding process 
illustrated in figure 16 will not succeed, which results in the complexity associated with 
sentence (1).  

The influence of the dynamics of binding on complexity in the blackboard 
architecture is further illustrated in figure 17. Figure 17a presents the structure of the 
sentence: 

 
The cat that the dog that you like bites chases the mouse                      (3) 

 
Sentence (3) is similar to sentence (1) with the exception of the indexical pronoun (you) 
instead of boy. Yet, with an indexical pronoun, sentences of the type (3) are rated as far 
less complex (Gibson 1998). Indexical pronouns (I, you) play a distinctive role in 
language because they introduce the speaker and hearer in a conversation. In this way, 
they could make a different demand on working memory compared to regular nouns, 
which explains the reduced complexity of (3) versus (1) in Gibson’s (1998) complexity 
theory.  

In terms of the blackboard architecture, indexical pronouns could have their own kind 
of structure assemblies, in line with the suggestion made in section 6.4.1. With this 
assumption, sentence (3) will have the neural structure presented in figure 17a. The 
difficulties with the binding of the theme subassemblies of N2 (dog) and N1 (cat) in the 
structure presented in figure 15a do not arise here. In the structure presented in figure 
17a, N2 is the last activated NP assembly, so that the main assembly of N2 is active when 
the first verb (likes) appears. In line with the process illustrated in figure 16, N2 (dog) will 
bind with V1 (like) as its theme, and N1 (cat) will bind with V2 (bites) as its theme. 

Figure 17b presents the structure of the German sentence (4), ignoring the adjective 
schlechte (bad): 

 
Der Bauer der die Kuh die schlechte Milch gab schlachtete ist krank          (4) 

 
              (The farmer who the cow which bad milk gave killed is sick)  
              (The farmer who killed the cow which gave bad milk is sick)  
 
 



 

 41

Figure 17. (a). Illustration of the neural sentence structure of The cat that the dog that you like 
bites chases the mouse, with the same kind of structure assemblies as presented in figure 15a, and 
a new structure assembly for indexical pronoun (IP). (b). Illustration of the neural sentence 
structure of the German sentence Der Bauer der die Kuh die (schlechte) Mich gab schlachtete ist 
krank, with the same kind of structure assemblies as presented in figure 15a.   
 
 
The complexity of double center-embedding that occurs in (1) does not arise with this 
sentence, even though (4) is also a sentence with a double center-embedding (Hawkins 
1994; Lewis 1999). However, in contrast with (1), the embedded clauses in (4) are 
subject-relative clauses. As a result, the problems related with the binding of the theme 
subassemblies in (1) do not appear in (4). The difference is that in figure 17b the theme 
subassemblies of N2 and N3 have to bind to a verb, instead of the theme subassemblies of 
N1 and N2 in figure 15a. Consequently, the main assembly of N3 (Milch) is active when 
the first verb V1 (gab) appears, so that N3 will bind with V1 as its theme. After that, N2 
(Kuh) will bind with V2 (schlachtete) as its theme.  

In the sentence structures presented in figure 15 and 17, sentence complexity results 
from binding problems that arise when a number of structure assemblies of the same kind 
have to bind in sequence with the overall sentence structure. The nature of these 
problems is in line with the notion of similarity-based interference as the basis of 
sentence complexity (Lewis, 1999).  
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6.8. Further development of the architecture  
The neural blackboard architecture for sentence structure outlined here provides a 
solution to the ‘four challenges for cognitive neuroscience’ presented by Jackendoff 
(2002). The discussion in section 6.7 also illustrates that the architecture can potentially 
account for structural and performance aspects of language processing. However, further 
research is clearly needed to provide a more complete fulfillment of this potential. A few 
directions of further research can be indicated with the architecture presented thus far. 

One line of research would concern the development of the architecture, both in terms 
of evolution and in terms of growth and learning. In terms of evolution, an important 
issue is the development of the connection structure presented in figure 5. A benefit of an 
explicit model as the one in figure 5 is that the model can be used as a target in computer 
simulations. Thus, starting with more elementary structures, one could investigate 
whether such a connection structure could develop in an evolution-like process. In terms 
of growth and learning, an important issue is the question of how specific bindings with 
connection structures like the one in figure 5 could develop. That is, assuming that an 
undifferentiated connection structure exists for undifferentiated assemblies, one can 
investigate whether a learning process could reorganize the undifferentiated connection 
structure into a connection structure in which distinctions are found between different 
kinds of structure assemblies and subassemblies. Furthermore, one could investigate 
whether different languages used in the learning process would result in a different 
reorganization of the initial connection structure.   

Another line of research concerns the instantiation of the neural circuits that control 
the binding process in the architecture. As noted earlier, the control circuits instantiate 
basic syntactic operations. Thus, they will be sensitive to the coding principles used in 
languages to express structural information, like word order, or case marking in 
languages with free word order (Van Valin 2001). However, the neural control circuits 
will also be sensitive to the pattern of activation that arises in the blackboard during 
sentence processing. Figure 16 provides an illustration. An active subassembly produces 
a significant amount of activation in its connection structure (i.e., its row of columns), 
which provides the information that a specific binding is required. This information can 
be used by the control circuits to initiate the activation of a subassembly of the same kind 
(e.g., a VP theme subassembly when a NP theme subassembly active). In this way, the 
neural control circuits are engaged in a form of pattern recognition and pattern 
completion, in which the current state of activation in the blackboard together with the 
active word assemblies constitute the input pattern and the new state of activation in the 
blackboard constitutes the output pattern. Pattern recognition is a core capability of 
networks (Bechtel & Abrahamsen 2002). The fact that a neural blackboard architecture of 
sentence structure could transform syntactic operations into forms of pattern recognition 
is an attractive prospect of further research. 

A third line of research is the relation between the architecture for sentence structure 
and other architectures for combinatorial structures in language (Jackendoff 2002) and 
cognition in general. For instance, words can have an internal structure of their own, 
which does not seem to agree with word encoding by means of (unstructured) word 
assemblies (Bierwisch 1999). However, the word assemblies used here can be seen as the 
interface between word structure and sentence structure. That is, a word assembly is the 
part of a neural word structure that connects (or ‘anchors’) that structure within the 
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sentence structure. An example is given in figures 2 and 11, in which the assemblies for 
cat, chases and mouse form the interface between sentence structures in working memory 
(figure 2) and sentence structures long-term memory (figure 11). In a similar manner, 
word assemblies could form the interface between sentence structures and cognitive 
structures outside language, such as structures in visual cognition. This issue is addressed 
in more detail below.  

 
7. Neural blackboard architectures of combinatorial structures in vision 
The aim of this paper is to show that combinatorial structures can be encoded in neural 
terms by means of neural ‘blackboard’ architectures. Although combinatorial structures 
are the ‘quintessential property’ of language (Pinker 1998), they can also be found in 
visual cognition. Therefore, I will briefly discuss neural blackboard architectures of 
combinatorial structures in visual cognition, in particular for binding visual object 
features like shape, color and (relative) location15. Furthermore, I will discuss how the 
architectures for visual cognition and language can be combined in a combinatorial 
structure like The little star is beside a big star.  

Figure 18. A neural blackboard architecture of combinatorial structure in visual cognition. The 
‘blackboard’ consists of the retinotopic areas in the visual cortex (e.g., V2 to PIT). Information 
about visual features (color, form, motion, location) is processed in feedforward pathways leading 
to ‘feature domains’ in specialized areas in the visual cortex (e.g., AIT for shape information, PP 
for location information). In turn, the feature domains send information to the retinotopic areas by 
means of feedback connections. (AIT = anterior infero-temporal cortex, PIT = posterior infero-
temporal cortex, PFC = prefrontal cortex, PP = posterior parietal cortex).  
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In a blackboard architecture for visual cognition, one would have processors for the 
recognition of shape, color, location and other visual object features. Combined, these 
processors would correctly process a visual display of objects, such as a blue cross on the 
left and a yellow diamond on the right, if they could communicate with each other 
through a blackboard. In this way, the architecture could answer binding questions like 
“What is the color of the cross?" or "What is the shape of the yellow object?".  

A neural blackboard architecture for combining visual object features in this manner 
is illustrated in figure 18. The architecture is based on the pathways that determine the 
structure of the visual cortex (e.g., Livingstone & Hubel 1988; Felleman & van Essen 
1991; Oram, & Perrett 1994; Farah et al. 1999). The ventral pathway in the visual cortex 
includes the areas V2, V4, the posterior inferotemporal cortex (PIT) and the anterior 
inferotemporal cortex (AIT). This pathway is involved in the processing and selection of 
‘object features’ (e.g., shape and color). Objects are identified through a feedforward 
network of areas, going from the primary visual cortex (V1) to the higher areas in the 
temporal cortex (e.g., AIT). The network gradually transforms retinotopic encoding in the 
lower areas (e.g., V2 to PIT) into a location-invariant identity (e.g., shape, color) 
encoding in the higher areas (e.g., AIT). The dorsal pathway in the visual cortex leads to 
the posterior parietal cortex (PP). This pathway is involved in the processing and 
selection of spatial information (e.g., location of objects) and spatial transformations 
(e.g., for making eye movements). Both pathways start from the primary visual cortex 
(V1), but they are also interconnected on the levels of V2, V4 and PIT. Both pathways 
project to the prefrontal cortex.  

Figure 19 (left) illustrates how the shape and the color of two objects, a blue cross 
and a yellow diamond, would be processed in this architecture. After the primary visual 
cortex V1 (not shown), the features are processed initially in a feedforward manner 
(Oram & Perrett 1994). Each object produces a pattern of distributed activation in the 
areas V2 to PIT that corresponds to the retinotopic location of the object. The activated 
neurons could respond to one feature (e.g., shape) or to conjunctions of features, like 
conjunctions of elementary shapes and color (Motter 1994).  

The retinotopic object information in the lower layers is gradually transformed into 
location invariant information, due to the increase in the receptive field size from layer to 
layer (illustrated with the cones in figure 19). Furthermore, feature encoding is separated 
in the higher levels of the architecture, where distinctions are made between, for instance, 
color encoding (e.g., blue vs. yellow) and shape encoding (e.g., cross vs. diamond). The 
distinctions between object features at this level form the basis for the constituents (parts) 
that are used to identify combinatorial visual structures.  

In human cognition, object features as illustrated in figures 18 and 19 form the basis 
for conceptual knowledge (e.g., Barsalou 1999; Barsalou et al. 2003). Human language 
provides ample evidence for the ability to encode object features like shape and color 
separately, that is, independent of any conjunction of these features. For instance, we can 
use a word (e.g., red) to instruct a viewer to select an object in a visual display based on 
its color, irrespective of its shape or location (e.g., see Van der Heijden et al. 1996).  
 
7.1. Feature binding  
Figure 19 illustrates the binding of shape and color in the blackboard architecture 
(binding of other features proceeds in a similar manner). The shape of the cross is given 
as a cue, for instance by the binding question "What is the color of the cross?". The 
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binding process in the architecture consists of an interaction between a feedforward 
network and a feedback network.  

Figure 19. The process of answering the binding question “What is the color of the cross?” in the 
neural blackboard architecture of figure 18. Left: The shapes, cross and diamond, and the colors, 
blue (b) and yellow (y), of two objects are processed in feedforward pathways in the retinotopic 
areas. The receptive field size of neurons increases in higher areas (as indicated with the cones), 
until encoding is location invariant in the feature domains. Middle: The shape of the target object 
(the cross) is selected as a cue in the shape feature domain. The selected cue initiates feedback 
activation in the retinotopic areas. Right: Interaction between feedforward and feedback 
activation in the retinotopic areas results in the selection (enhancement) of the activation related 
with the target object in these areas. In turn, this results in the selection of the other features of the 
target object (its color in this example) in the feature domains. In this way, the features of the 
target object (‘cross’ and ‘blue’) are bound by the interaction in the neural blackboard 
architecture.  
 
 

The feedforward network (figure 19, left) processes the visual display, which results 
in the identification of the features of the cross and the diamond in the feature domains. 
The activation pattern in the feedforward network that produces object identification is 
object selective. That is, when an object is presented on a particular location in the 
display, it produces a pattern of (distributed) activation in the retinotopic areas in the 
feedfoward network. This pattern of activation is sufficiently different from the pattern of 
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activation produced by another object, presented on the same location in the display. 
(Otherwise, a selective identification of the object could not succeed.)  

The feedback network in figure 19 (middle) carries information about the selected 
feature (cue) from the feature domains back to the lower retinotopic areas in the 
architecture. The feedback network should be seen as lying ‘on top’ of the feedforward 
network. That is, neurons in the retinotopic areas of the feedforward network have 
corresponding neurons in the retinotopic areas of the feedback network. The 
corresponding neurons in both networks could belong to different layers of the same 
cortical column. Feedback connections are found between almost all areas in the visual 
cortex (e.g., Felleman & van Essen 1991).  

Through the feedback connections, information processed at the level of object 
features (figure 18) can interact with information processed in the lower retinotopic areas. 
Thus, the blackboard nature of the visual cortex, as discussed here, basically results from 
the feedback connections in the visual cortex (Van der Velde 1997; Bulier 2001). The 
activation patterns in the feedback network are also object selective. This can be achieved 
by adapting the connections in the feedback network with Hebbian learning, using the 
selective activation patterns in the feedforward network that occur in the process of 
object identification (Van der Velde & de Kamps 2001).  

The cue-related information in the feedback network (figure 19, middle) interacts 
with the processing of the display in the feedforward network (figure 19, left). The 
interaction enhances (‘selects’) the neural activation related with the cue (cross) in the 
retinotopic areas. The selection of cue-related activation results from the match between 
the object selective activation in the feedforward network and the object selective 
activation in the feedback network, as produced by the Hebbian learning procedure in the 
feedback network described above. The enhanced (selected) cue-related activation in the 
retinotopic areas can be used to select the color (and the other object features) of the cued 
object (cross) in the feature domains, as illustrated in figure 19 (right).  

The process illustrated in figure 19 shows that the basis for the blackboard 
architecture in figure 18 is given by the interaction between the retinotopic areas, in 
which elementary information about the features of an object is combined, and the feature 
domains, in which identity information of object features is separated. In this way, the 
visual features of an object can be bound in a combinatorial manner by selecting one of 
the features (e.g., its shape or color) in the feature domains. Using the interaction process 
described above, the activation related with the selected object feature will be enhanced 
in the retinotopic areas. In turn, this enhanced activation will produce the selection of the 
other features of the object in the feature domains. In particular, a novel combination of 
familiar visual features (e.g., a purple cow16) can be identified in this way. A similar 
process could occur in visual working memory as well. 

 
7.2. A neural blackboard architecture of visual working memory 
Neuroimaging studies in humans have shown overlapping areas of activation in the 
prefrontal cortex (PFC) with spatial and object memory tasks (e.g., Prabhakaran et al. 
2000; D’Esposito 2001). Neurons that selectively respond to both identity and location 
information have been found in monkey PFC as well (Rao et al. 1997; Rainer et al 1998). 
These results indicate an integrative role of (lateral) PFC in memory tasks (Fuster 2001; 
Duncan 2001).  
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Figure 20. Left: A putative relation between the neural blackboard architecture in the visual 
cortex and a neural blackboard architecture in visual working memory (WM) in the prefrontal 
cortex (PFC). Right: An interaction between feature domains and the WM blackboard in PFC can 
be used to bind the features of an object (e.g., ‘cross’, ‘blue’, and ‘left’) in working memory, 
similar to the binding process illustrated in figure 19.  
 
 

A combined selectivity to spatial and object information in PFC is in line with the 
notion of a blackboard architecture for visual working memory. The neurons in a 
blackboard visual working memory will respond selectively to combined (elementary) 
object and location information, similar to the neurons in the retinotopic areas of the 
visual cortex. Figure 20 (left) illustrates a putative connection between both blackboard 
architectures. One or more areas in the blackboard of the visual cortex (e.g, PIT) could be 
connected with a ‘working memory’ (WM) blackboard in lateral PFC. A display of 
objects could then be encoded in both areas in a similar manner. The difference between 
the two areas will be found in the nature of the activation. Whereas the activation in the 
blackboard of the visual cortex results from the processing of the visual display, the 
activation in the WM blackboard is a form of self-sustained or reverberating activity, in 
line with WM activity found in PFC (Fuster 1995; Amit 1995; Durstewitz et al. 2000).  
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7.2.1. Feature binding in visual working memory 
The reverberating activity in the WM blackboard can be used retrieve (select) and bind 
the features of the objects in a visual working memory task. Figure 20 (right) illustrates 
that selection and binding of features (again) results from interactions between a 
blackboard and neurons that encode object features. These neurons could be located in 
PFC as well (e.g., Wilson et al. 1993), but they could also consist of the neurons that 
encode object features in the visual cortex. In the latter case, visual working memory will 
consist of interactions between neurons in PFC and neurons in posterior visual areas 
(Ruchlin et al. in press).  

The nature of the WM blackboard produces the behavioral effects reported by Luck 
& Vogel (1997). They observed that the number of objects that can be maintained in 
working memory is limited, but the number of their features is not. In terms of the WM 
blackboard, too many objects in a display will cause an interference between their 
distributed activations in the WM blackboard. This interference results in a limitation of 
the number of objects that can be maintained in working memory (Van der Voort van der 
Kleij et al. 2003). However, the number of features for each object is not limited. That is, 
all features of an object can be selected by means of the interaction with the blackboard 
(figure 20, right) as long as the object activations in the WM blackboard do not interfere.   
 
7.3. Feature binding in long-term memory 
Feature binding in visual working memory, as described above, is instantiated in terms of 
the sustained activation in the WM blackboard. As discussed in section 2.4, this raises the 
question of how feature binding can be achieved in terms of synaptic modification, which 
forms the basis of long-term memory. In the case of linguistic structures, this question 
was answered in terms of the process illustrated in figure 9. The answer proceeds along 
similar lines for visual feature binding.  

Figure 21 (left) illustrates the role of the HC in the case of visual features. A neuron 
in the HC forms a conjunctive encoding of the object features that are activated by a 
display of two objects (a blue cross on the left and a yellow diamond on the right). In this 
way, the neurons that encode the object features can be reactivated when the neuron in 
the HC is reactivated. However, it is clear that the conjunctive encoding by the HC 
neuron results in the familiar binding problem (Von der Malsburg 1987), because the 
relations between the object features are lost in this form of encoding. A display of, say, a 
yellow cross and a blue diamond (on any of the two locations) would activate the same 
object features, and would thus be encoded in the same way by the HC neuron as the 
display in figure 21.  

However, as in figure 9, the relations between the object features can be encoded by 
the HC neurons, if a neural blackboard (e.g., the WM blackboard) is included in the 
conjunctive encoding, as illustrated in figure 21 (right). In this case, the relationship 
information is part of the input to the HC (as described by O'Reilly & Rudy 2001), so that 
the HC can encode the relationship information (the blackboard) together with the object 
features. When the HC neurons reactivate the blackboard and the object features, the 
relations between the features of the objects in the display can be retrieved in the manner 
illustrated in figure 20. The encoding of different events (episodes) in this architecture 
can proceed in a manner similar to the process illustrated in figure 10.  
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Figure 21. Left: Conjunctive encoding of the object features (e.g., shape, color, location) of two 
objects with a neuron (or group of neurons) in the hippocampus complex (HC). Right: 
Conjunctive encoding of the object features and a neural blackboard with a neuron (or group of 
neurons) in the hippocampus complex (HC). 
 
 

Figure 21 illustrates again how a blackboard architecture can be play an important 
role in the storage of combinatorial structures in long-term memory (i.e., in terms of 
synaptic modification). Even a conjunctive encoding as provided by the HC is sufficient, 
if the blackboard activations are included in the encoding. In fact, as in figure 9, the 
encoding of the blackboard alone would suffice.  

Furthermore, figure 21 again illustrates the importance of using delay activity as a 
binding mechanism. The sustained activity in the WM blackboard provides the time for 
the synaptic modifications to occur. In contrast, if synchrony of activation is used to bind 
features in visual working memory (e.g., Luck & Vogel 1997; Raffone & Wolters 2001), 
it is not clear how the relations between the features can be preserved in the transition 
from working memory to long-term memory, that is, how information encoded with 
synchrony of activation can be stored in terms of synaptic modifications. If the HC forms 
a conjunctive encoding of the neurons that are active in a time window (event) of about 1 
second (Rolls & Treves 1998), it will form a conjunctive encoding of the features of all 
objects in a display, in the manner illustrated in figure 21 (left). In that case, the relations 
between the features, expressed with synchrony of activation, are lost in the transition 
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from working memory to long-term memory.  
 

7.4. Integrating combinatorial structures in language and vision  
Figure 22 illustrates the combinatorial structure of The little star is beside a big star in 
terms of the architectures in figures 18 and 20. This structure can be combined with the 
sentence structure in figure 8. In particular, the neural assemblies for words will be 
connected  with neurons that encode visual features or visual operations (e.g., 
translations, visual selections). Figure 22 illustrates in a schematic fashion how the 
question “Where is the little star?” can be answered in this way.  

Figure 22. The structure of The little star is beside a big star in the neural blackboard 
architectures of figure 18 and 20. (a). Selection of the shape of the star (related with the word 
star) in the shape feature domain, which results in an interaction in the blackboard (B) and a 
selection of location and size information in the location (L) domain. (b). Selection within the 
location domain of the smaller size (related with the word little), which is now the focus of 
attention. (c). Shift of attention (related with the word beside) in the location domain to the 
location beside the attended location in (b). The newly selected location is now the focus of 
attention. (d). Feedback activation from the location domain interacts with the activation in the 
blackboard. This results in the selection of the feature in the shape domain (star, related with the 
word star) that corresponds with the location and the size (related with the word big) of the newly 
attended object in (c).     
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In figure 22a, the word star has selected the shape of the star as a cue in the shape 
feature domain. As a result, the cue-related activation in the feature domain is enhanced 
(in line with Chelazzi et al. 1993). In terms of the process illustrated in figure 19, the 
selection of the cue initiates an interaction in the visual blackboard (B), where the 
information of the visual display is processed or maintained. The interaction produces an 
enhancement of cue-related activation in the blackboard, which results in the selection 
(enhancement) of the neurons in the location domain (L) that encode the locations of the 
stars (Van der Velde & de Kamps 2001). The neurons in this domain also encode the 
spatial magnitude of the objects in a display.  

In figure 22b, the word little initiates a enhancement (selection) of the neural activity 
in the location domain that encodes the location of the smaller object (which can result 
from selecting the neuron with the smallest receptive field that fully covers an object). 
The enhancement of neural activity in the location domain constitutes a form of spatial 
attention (Posner & Petersen 1990), so that the location of the little star is now the 
attended location.  

In figure 22c, a shift of spatial attention is produced in the location domain. As a 
result, the neural activity that encodes the location of another object in the vicinity of the 
attended location in figure 22b is enhanced. If spatial information is (initially) encoded in 
eye-centered coordinates (Batista et al. 1999), a shift of spatial attention will produce a 
spatial transformation in terms of eye-centered coordinates. The spatial transformation 
involved can be used to activate the associated word assembly (beside). 

In figure 22d, the newly selected neural activity in the location domain can be used to 
obtain a measure of the spatial magnitude of the newly attended object (‘big’, in 
comparison with the previous object). It can also be used to influence processing in the 
blackboard, so that the shape of the newly attended object can be selected in the shape 
feature domain. Both selections can produce the activation of their associated word 
assemblies (big and star).  

The process illustrated in figure 22 would operate in a similar manner with a structure 
like The little triangle is beside a big triangle. The only difference would be the selection 
of the shape of the triangle in the shape feature domain. The processes in the other 
domains are not affected by the change from star to triangle. Thus, for instance, the 
attention shift in figure 22c operates in the same manner for the shift from a little star to a 
big star as for the shift from a little triangle to a big triangle, because it is only based on 
the information in the location domain. Likewise, in a structure like The little diamond is 
above a big square, the process in figure 22a is only affected by the (initial) selection of 
the shape of the diamond (instead of the star or the triangle), and the process in figure 22c 
is only affected by the nature of the spatial transformation (above, instead of beside).  

The similarity between these examples emphasizes the combinatorial nature of the 
process illustrated in figure 22. Each of the individual processes operates only on 
information that is available in its own domain. However, by using the blackboard, a 
process in one domain can influence the processes in the other domains. In this way, a 
combinatorial structure can be produced by the architecture as a whole. For instance, with 
The little diamond is above a big square, the attention shift in figure 22c will produce the 
square as the second object selected in the shape feature domain (instead of the star or the 
triangle in the other examples), by the interaction process in the blackboard illustrated in 
figure 22d.   
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The interactions between object (feature) information and spatial information, 
illustrated in figure 22, have a clear relation with attentional processes in the cortex (e.g., 
as in the ‘bias competition’ model of attention, Desimone & Duncan 1995). The 
blackboard architecture in the visual cortex (figure 18) and the blackboard architecture of 
visual working memory (figure 20) can be combined in a ‘closed-loop attention model’ 
(Van der Velde et al, in press). The interaction between neural sentence structures (figure 
8) and visual blackboard structures, as illustrated in figure 22, could also form the basis 
of a model that combines pictorial and propositional aspects of mental imagery (see 
Pylyshyn 2002, for a discussion on that topic).  

 
8. Conclusion 
Combinatorial structures as found in human cognition can be instantiated in terms of 
neural blackboard architectures. In particular, neural blackboard architectures provide a 
solution of the four fundamental problems that a neural instantiation of combinatorial 
structures is faced with (Jackendoff 2002): the massiveness of the binding problem, the 
problem of 2, the problem of variables and the relation between combinatorial structures 
in working memory and long-term memory.    

Neural blackboard architectures can be formulated for sentence structure and for 
combinatorial structures (feature binding) in visual cognition. There are clear structural 
differences between these architectures, which derive from the nature of the information 
processing in which they are involved (in particular, the spatial arrangement of visual 
features in a visual display versus the sequential arrangement of words in a sentence). 
However, there are also important similarities between the different blackboard 
architectures.  

One such similarity concerns the manner in which the neural blackboard architectures 
afford the possibility of a selective flow of activation. This selective flow of activation 
forms the basis of binding constituents in combinatorial structures, as exemplified in the 
manner in which binding questions can be answered in these architectures. Thus, the 
binding of features in the visual blackboard architectures consists of a selective flow of 
activation from one feature domain to another, determined by the interaction process in 
the blackboard. Likewise, the blackboard architecture for sentence structure produces a 
selective flow of activation in the process of answering a ‘binding’ question.  

Another similarity between the architectures concerns the transition from working 
memory to long-term memory, and the role of delay activity as a binding mechanism. 
Combinatorial structures can be stored in long-term memory (using synaptic 
modification) when the blackboard activity is included in a conjunctive form of encoding 
as provided by the hippocampus complex. The delay activity in the blackboard provides 
the time for the synaptic modifications (Hebbian learning) to occur, even in the case of 
one-trial learning.  

It is clear that a substantial amount of work, both theoretically and empirically, is 
needed for the further development of the neural basis of combinatorial structures in 
human cognition. However, the similarities between the neural instantiation of 
combinatorial sentence structure and the (more familiar) neural instantiation of 
combinatorial structures in visual cognition provide the hope that such a development can 
be successful in the near future.  
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NOTES 
1. Tensor networks could perhaps be included here as well. However, as Fodor and 
McLaughlin (1990) already showed, tensor networks fail to instantiate combinatorial 
structures. Basically, this results from the fact that a tensor is just a list of constituents, 
organized in a particular fashion (i.e., as a n-dimensional list for a rank-n tensor). Any 
operation on a tensor consists of selecting a k-dimensional subset of the constituents in 
the tensor (with k ≤ n). But all selected subsets have to be listed in the tensor beforehand, 
which limits the instantiation of novel structures. Furthermore, adding constituents to the 
tensor increases the dimensions of the tensor, which requires adjustments to all 
components in the cognitive system that can interact with the tensor. This limits the 
productivity of the cognitive system as a whole.    
  
2.  The sentence presented by Jackendoff (2002) is The little star's beside a big star, with 
the clitic z ('s) to emphasize the phonological structure of the sentence. Phonological 
structure is not discussed here, therefore the clitic z is omitted.  
 
3. When a symbol is copied and moved elsewhere, it is detached from its network of 
relations and associations. One could try to reestablish these relations and associations 
from time to time, but this requires an active process, executed by a control structure. 
Active control would be needed constantly, to decide how many of these relations and 
associations have to be reestablished (and how often). The frame problem in cognition 
could probably related with the difficulty of providing this form of control.  
 
4. Pilot simulations showed that RNNs are very good at reproducing learned word-word 
associations. Thus, with the test sentence boy hears girl, we wanted to avoid 
combinations like boy hears and hears girl in the training sentences. Other than that, we 
wanted to train as much relations between these words as possible. In the case of this test 
sentence, the RNNs have learned the relation boy Verb girl. Furthermore, they learned the 
relation dog Verb girl with dog hears Noun, and the relation boy Verb cat with Noun 
hears cat. 
 
5. In fact, I am not aware of pathological behavior of this kind. Broca's aphasics, for 
instance, often fail on sentences like girl who dog hears obeys Mary, but they can still 
understand sentences like boy hears girl (Grodzinsky 2000). 
 
6. Verbs can have one, two, or three arguments, or thematic roles. Although in semantic 
terms many different kinds of arguments can be distinguished, they can be grouped into 
‘semantic macroroles’(Van Valin 2001). For simplicity, I will refer to these as ‘agent’, 
‘theme’, and (later on) ‘recipient’.   
 
7. When a NP assembly is bound to a sentence structure, at least one of the memory 
circuits connected to the assembly is active. This activation can be used as a signal that 
the NP assembly is not free. Or, one could have an ‘inhibition of return’ that prevents the 
reactivation of a structure assembly that has been active recently.  
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8. The inhibition of the active NP assembly could result from the high transient activity 
that is frequently found in the cortex whenever a new stimulus appears. Due to this 
transient activity, the new NP assembly will win the competition before its activity 
reduces to a steady state. Or, the occurrence of a new noun could result in the inhibition 
of the active NP assembly before a new NP assembly is generated. 
 
9. The delay assemblies do not produce inhibition directly because they consist of 
excitatory neurons. Instead, the delay assemblies will activate inhibitory interneurons, 
which in turn produce the inhibition. 
 
10. With the question cat chases x?, the activation of the theme gating circuits, needed to 
produce the answer, should occur after the VP competition has been decided. This form 
of control does not depend on content information, e.g., on information about the specific 
VP assembly that has won the competition. Instead, it is a form of dynamic control that 
depends on (and regulates) the dynamics of the interaction process in the blackboard. See 
Van der Velde and de Kamps (2003b) for a more detailed discussion of this form of 
control in the blackboard architecture.   
 
11. Although the structure in figure 9 (left) resembles those in figure 1 (bottom), they are 
not the same. Figure 9 (left) represents a conjunctive encoding that results from direct 
associations between each of the word assemblies and the HC neuron. In figure 1 
(bottom), it is assumed that a specific neural circuit will activate a ‘sentence’ neuron, 
when the word assemblies have been activated in the correct order. Circuits of this kind 
are much harder to develop than the conjunctive encoding in figure 9.  
 
12. Transitions from an attractor state into an associated attractor state have been 
observed in the cortex by Yakovlev et al. (1998).  
 
13. Another motivation for a distinction between S and C assemblies is found in the 
formation of questions. A sentence like The dog bites the cat can be transformed into the 
question Whom does the dog bite? or The dog bites whom?. But in The cat that the dog 
bites chases the mouse, the clause that the dog bites cannot be transformed into the 
question dog bites whom?, to be inserted in the main sentence. Thus, the processor has to 
know whether dog bites cat is a main sentence or a relative clause.  
 
14. The connection structure illustrated in figure 16 was not specifically designed to 
operate as a pushdown stack. Instead, it was designed to satisfy two constraints. First, the 
constraint of combinatorial productivity, which entails that every A subassembly should 
be able to bind with every B subassembly (and vice versa). This constraint is satisfied 
with the matrix-like array of columns in the connection structure. Second, the uniqueness 
constraint, which entails that a given A subassembly can only bind with one B 
subassembly (and vice versa). This constraint is satisfied with the inhibition within the 
horizontal and vertical rows of columns. The connection structure that results from both 
constraints operates as a pushdown stack if the reverberating activity in the structure 
decays over time.  
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15. A more detailed discussion of these architectures can be found in Van der Velde 
(1997), Van der Velde & de Kamps (2001; 2003a) and De Kamps & van der Velde 
(2001). 
 
16. The image of a purple cow is used in an advertisement campaign of a brand of milk 
chocolate bars, which are sold in a purple wrap.   
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