Cogprints

How Does Our Visual System Achieve Shift and Size Invariance?

Wiskott, Laurenz (2004) How Does Our Visual System Achieve Shift and Size Invariance? [Book Chapter] (In Press)

Full text available as:

[img]
Preview
PDF
279Kb
[img]
Preview
Postscript
523Kb

Abstract

The question of shift and size invariance in the primate visual system is discussed. After a short review of the relevant neurobiology and psychophysics, a more detailed analysis of computational models is given. The two main types of networks considered are the dynamic routing circuit model and invariant feature networks, such as the neocognitron. Some specific open questions in context of these models are raised and possible solutions discussed.

Item Type:Book Chapter
Keywords:visual system, invariances, computational models
Subjects:Neuroscience > Computational Neuroscience
ID Code:3321
Deposited By: Wiskott, Laurenz
Deposited On:27 Dec 2003
Last Modified:11 Mar 2011 08:55

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

Biederman, I. and E. E. Cooper (1991). Evidence for complete translational and reflectional invariance in visual object priming. Perception 20, 585-593.

Biederman, I. and E. E. Cooper (1992). Size invariance in visual object priming. Journal of Experimental Psychology: Human Perception and Performance 18 (1), 121-133.

Bienenstock, E. and C. von der Malsburg (1987). A neural network for invariant pattern recognition. Europhysics Letters 4 (1), 121-126.

Buonomano, D. V. and M. Merzenich (1999). A neural network model of temporal code generation and position-invariant pattern recognition. Neural Computation 11 (1), 103-116.

Cavanagh, P. (1978). Size and position invariance in the visual system. Perception 7, 167-177.

Desimone, R. and J. Duncan (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience 18, 193-222.

Dill, M. and M. Fahle (1998). Limited translation invariance of human visual pattern recognition. Perception and Psychophysics 60 (1), 65-81.

Felleman, D. J. and D. C. Van Essen (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1, 1-47.

Földiák, P. (1991). Learning invariance from transformation sequences. Neural Computation 3, 194-200.

Fukushima, K. (1986). A neural network model for selective attention in visual pattern recognition. Biological Cybernetics 55, 5-15.

Fukushima, K., S. Miyake, and T. Ito (1983). Neocognitron: A neural network model for a mechanism of visual pattern recognition. IEEE Trans. on Systems, Man, and Cybernetics 13, 826-834. Reprinted in Neurocomputing, J. A. Anderson and E. Rosenfeld, Eds., MIT Press, Massachusetts, pp. 526-534.

Furmanski, C. S. and S. A. Engel (2000). Perceptual learning in object recognition: Object specificity and size invariance. Vision Research 40 (5), 473-484.

Gochin, P. M. (1994). Properties of simulated neurons from a model of primate inferior temporal cortex. Cerebral Cortex 5, 532-543.

Hummel, J. E. and I. Biederman (1992). Dynamic binding in a neural network for shape recognition. Psychological Review 99 (3), 480-517.

Ito, M., H. Tamura, I. Fujita, and K. Tanaka (1995). Size and position invariance of neural responses in monkey inferotemporal cortex. J. of Neurophysiology 73 (1), 218-226.

Jacobs, R. A., M. I. Jordan, and A. G. Barto (1991). Task decomposition through competition in a modular connectionist architecture: The what and where vision task. Cognitive Science 15, 219-250.

Kobatake, E. and K. Tanaka (1994). Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J. of Neurophysiology 71 (3), 856-867.

Koch, C. and S. Ullman (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology 4 (4), 219-227.

Konen, W., T. Maurer, and C. von der Malsburg (1994). A fast dynamic link matching algorithm for invariant pattern recognition. Neural Networks 7 (6/7), 1019-1030.

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation 1 (4), 541-551.

Mel, B. W. and J. Fiser (2000). Minimizing binding errors using learned conjunctive features. Neural Computation 12 (2), 247-278.

Mel, B. W., D. L. Ruderman, and K. A. Archie (1998). Translation-invariant orientation tuning in visual complex cells could derive from intradendritic computations. The Journal of Neuroscience 18 (11), 4325-4334.

Merigan, W. H. and J. H. R. Maunsell (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience 16, 369-402.

Nazir, T. A. and J. K. O'Regan (1990). Some results on translation invariance in the human visual system. Spatial Vision 5 (2), 81-100.

Nowak, L. G. and J. Bullier (1997). The timing of information transfer in the visual system. In Rockland et al. (Eds.), Cerebral Cortex, Volume 12, Chapter 5, pp. 205-241. New York: Plenum Press.

Olshausen, B. A., C. H. Anderson, and D. C. Van Essen (1993). A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J. of Neuroscience 13 (11), 4700-4719.

Oram, M. W. and D. I. Perrett (1994). Modeling visual recognition from neurobiological constraints. Neural Networks 7 (6/7), 945-972.

Postma, E. O., H. J. van den Herik, and P. T. W. Hudson (1997). SCAN: A scalable neural model of covert attention. Neural Networks 10 (6), 993-1015.

Reid, M. B., L. Spirkovska, and E. Ochoa (1989). Simultaneous position, scale, and rotation invariant pattern classification using third-order neural networks. International Journal of Neural Networks - Research & Applications 1 (3), 154-159.

Reitböck, H. J. P. and J. Altmann (1984). A model for size- and rotation-invariant pattern processing in the visual system. Biological Cybernetics 51, 113-121.

Salinas, E. and L. F. Abbott (1997). Invariant visual responses from attentional gain fields. Journal of Neurophysiology 77 (6), 3267-3272.

Subramaniam, S., I. Biederman, P. Kalocsai, and S. R. Madigan (1995). Accurate identification, but chance forced-choice recognition for RSVP pictures. In Proc. Association for Research in Vision and Ophtalmology, ARVO 95, Ft. Lauderdale, Florida.

Thorpe, S., F. Fize, and C. Marlot (1996). Speed of processing in the human visual system. Nature 381, 520-522.

Tovée, M. J., E. T. Rolls, and P. Azzopardi (1994). Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. J. of Neurophysiology 72 (3), 1049-1060.

Ullman, S. and S. Soloviev (1999). Computation of pattern invariance in brain-like structures. Neural Networks 12 (7/8), 1021-1036.

Ungerleider, L. G. and M. Mishkin (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield (Eds.), Analysis of Visual Behaviour, Chapter 18, pp. 549-586. Cambridge, MA: MIT Press.

Wallis, G. and E. Rolls (1997). Invariant face and object recognition in the visual system. Progress in Neurobiology 51, 167-194.

Wiskott, L. (1999). Learning invariance manifolds. In Proc. Computational Neuroscience Meeting, CNS 98, Santa Barbara. Special issue of Neurocomputing 26/27, 925-932.

Wiskott, L. and C. von der Malsburg (1996). Face recognition by dynamic link matching. In J. Sirosh, R. Miikkulainen, and Y. Choe (Eds.), Lateral Interactions in the Cortex: Structure and Function, Chapter 11. http://www.cs.utexas.edu/users/nn/web-pubs/htmlbook96/: The UTCS Neural Networks Research Group, Austin, TX. Electronic book, ISBN 0-9647060-0-8.

Metadata

Repository Staff Only: item control page