Collaboration Development through

Interactive Learning between Human and Robot

Tetsuya OGATA?

1) RIKEN
Brain Science Institute
2-1, Hirosawa, Wako-shi, Saitama, Japan
E-mail: ogata@brain.riken.go.jp

Abstract

In this paper, we investigated interactive learning be-
tween human subjects and robot experimentally, and its
essential characteristics are examined using the dynami-
cal systems approach. Our research concentrated on
the navigation system of a specially developed human-
oid robot called Robovie and seven human subjects
whose eyes were covered, making them dependent on
the robot for directions. We compared the usual feed-
forward neural network (FFNN) without recursive con-
nections and the recurrent neural network (RNN). Al-
though the performances obtained with both the RNN
and the FFNN improved in the early stages of learning,
as the subject changed the operation by learning on its
own, all performances gradually became unstable and
failed. Results of a questionnaire given to the subjects
confirmed that the FFNN gives better mental impres-
sions, especially from the aspect of operability. When
the robot used a consolidation-learning algorithm us-
ing the rehearsal outputs of the RNN, the performance
improved even when interactive learning continued for
a long time. The questionnaire results then also con-
firmed that the subject’s mental impressions of the RNN
improved significantly. The dynamical systems analy-
sis of RNNs support these differences and also showed
that the collaboration scheme was developed dynami-
cally along with succeeding phase transitions.

1. Introduction

Recently, studies about welfare robots or pet robots, whose
purposes are to actualize flexible and cooperative work with
humans has attracted much attention. A humanoid robot, for
example, will not only have to help people work but also have
to establish a new relationship with people in daily life.

We focused on interactive learning between a human op-
erator and a robot system, in a fundamental form to design a
natural human-robot collaboration. It consists of the robot
system, which learns the task including a human operator,
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and the human, who learns the task including the robot sys-
tem. However, it is usually difficult to stabilize the system for
a long period of time of operation because the incremental
learning of such coupled and nested systems between hu-
mans and robots tends to generate quite complex dynamics.

Although there have already been some studies of learn-
ing systems in man-machine cooperation (Hayakawa, Y. et.
al, 2000) (Sawaragi, T. et. al, 1999), most of them only focused
on short period operations in which the cooperative relation
between the person and the machine is organized. Therefore,
they did not discuss important aspects such as the mutual
interaction after the relation organization, the collapse and
modification of the relation, and the long process of devel-
opment from a beginner to an expert.

Miwa et. al performed an experimental study (Miwa, Y. et.
al, 2001) exploring the collapse and modification of relation-
ships between people, but such phenomena are hard to ana-
lyze because human learning and cognitive processes can-
not be measured directly. Miyake et al. studied the walking
cooperation between a person and a robot model (Miyake, Y.
et. al, 1999), but because of their simple modeling using a
nonlinear oscillator, their analysis was limited to some simple
phenomena such as the synchronization and revision of the
walking rhythm.

To investigate interactive learning for a long period, we
developed a navigation task performed by a humanoid robot.
In this task, the interaction way does not converge to a pat-
tern but diverge to various patterns through the learning. It
is thought that the epigenetic process would be important to
understand these interactions. This paper describes the re-
sults of our experiments and the validity of the “consolida-
tion learning” method implemented to ensure the robustness
of neural network output.

2. Navigation Task

A navigation task is employed in which a humanoid robot,
Robovie, developed in ATR (Ishiguro, H. et. al, 2001), and a
human subject navigate together in a given workspace. Robo-



vie is a small robot as a humanoid type robot, 1200 mm in
height and weighing about 60 kg. It has various features
enabling it to interact with human beings: two arms with four
degrees of freedom, a humanlike head with audiovisual sen-
sors, and many tactile sensors attached to its body. Photo-
graphs of Robovie and the navigation task are shown in Fig-
ure 1. The experimental environment was a 4x4-m L shaped
course whose outside walls were marked red and blue for
every block (Figure 2). The robot and the human subject held
their arms together and attempted to travel clockwise in the
workspace as quickly as possible without hitting obstacles.
The actual movement of the robot and the subject is deter-
mined by adding two motor forces; one is the motor vector
determined from a neural network in the robot and the other
is the subject’s directional control force exerted to the robot’s
arms. The neural network in the robot is adapted incremen-
tally after each trial of travel based on the travel performance.
The performance is measured by the travel time period at
each trial.

An interesting point of this collaboration task is that the
sensory information is quite limited for both the robot and
the subject. The robot can access only local sensory infor-
mation such as ultrasonic sensors and a poor vision system
(it only detects vague color information of its surroundings),
but not for exact global position information. The subject’s
eyes are covered during the navigation task, however the
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Figure 1 Robovie and Navigation Task
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Figure 2 Experiment and Workspace

subject is allowed to look around the workspace before the
experiments begin. The subject has to guess his/her situa-
tion or position by means of the interactive force felt be-
tween the robot and his/her arms utilizing his’/her memorized
image of the workspace geometry. Both sides attempt to ac-
quire the forward model of anticipating the future sensory
image as well as the inverse model of generating the next
motor commands utilizing the poor sensory information of
different modalities from past experiences.

3. The Model and System

3.1 Neural Network Architecture

In many cases the actual states of the systems cannot be
identified explicitly just by looking at the current sensory
cues, however they do through more context-dependent man-
ners by utilizing the history of the sensory-motor experiences.
In our experiment case, the current sensory inputs may not
tell the exact position of the robot due to the sensory aliasing
problems. This is called the hidden state problems. Long-Ji
Lin (Lin, L., and Mitchell, T., 1992) as well as Tani (Tani, J.,
1996) have shown that the recurrent neural network (RNN)
can solve this problem where the so-called context units are
self-organized to store the contextual information. We ap-
plied the Jordan type recurrent neural network (RNN) (Jor-
dan, M. ,1986) in which context units are added to the usual-
feed forward neural network (FFNN) .

Figure 3 shows the RNN architecture design of the robot.
The RNN operated in a discrete time manner with the syn-
chronizing of each event, and the input layer of the RNN
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consisted of the current sensory input and the current motor
values. The sensory inputs are comprised of the output of
the ultrasonic range-sensors and the color area acquired from
the omni-direction camera mounted on the robot’s back. The
motors consist of the current forward velocity and rotation
velocity. The input layer has only seven units. The output
layer also has seven units, and its outputs are the prediction
of the next sensory input and the next motor values. This is
the implementation of the paired forward and inverse model
proposed by Kawato (Wolpert, D., and Kawato M., 1998).
There are forty context units in the input and output layers.
The activations of the context outputs in the current time
step is copied to those of the context inputs in the next time
step. It is noted that the context units activities are self-orga-
nized through learning processes such that they can repre-
sent the current state of the system corresponding to the
past input sequences.

In our application, the RNN is utilized not only as a map-
ping function from inputs to outputs but also as an autono-
mous dynamical system. Concretely, the RNN can have two
modes of operations as shown in Figure 4. The first mode is
the open-loop mode where one-step prediction of the sen-
sory-motor prediction is made using the inputs of the current
sensory-motor values. The second mode is the close-loop
mode in which the output re-entered the input layer through
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Figure 5 An Example of the result of RNN learning

the feed back connection. By iterating this with the closed
loop, the RNN can generate an arbitrary length of the look-
ahead prediction for future sequences with given initial states
in the input layer. This function for the look-ahead prediction
of the sensory-motor sequences can achieve the mental re-
hearsal (Tani, J., 1998) that will be described later in the expla-
nations of the consolidation learning. The middle layer had
thirty units. The RNN was trained by using the back propa-
gation through the time (BPTT) learning method (Rumelhart,
D.et. al, 1986).

Here, a pre-experimental result demonstrates how these
operations of the open-loop and the close-loop modes work.
Figure 5 shows the comparisons between the actual rotation
velocity and its prediction in the open-loop and the close-
loop modes while the robot travels in the workspace three
times after the off-line training of the RNN is completed with
30,000 learning steps. From this figure, it was confirmed that
the RNN had enough context neurons to memorize and re-
produce the sensor data which contained noise in the real
world.

3.2 Consolidation Learning

It is generally observed that if the RNN attempts to learn a
new sequence, the contents of the current memory are se-
verely damaged. One way to avoid this problem is to save all
the past teaching data in a database, add new data, and use
all the data to retrain the network. The problem with this
method, however, is that the learning time of the RNN is
increased by increasing the amount of stored data.

Therefore, we used the consolidation-learning algorithm
proposed by Tani (Tani, J., 1998). Observations in biology
show that some animals use the hippocampus for temporary
storage of episodic memory and consolidate them into neo-
cortical systems as long-term memory during sleep. Tani
modeled this process by using a RNN and a database. In this
method the newly obtained sequence pattern is stored in the
“hippocampal” database. The RNN, which corresponds to
the neocortex, rehearses the memory patterns, and these pat-
terns are also saved in the database. The rehearsal can be
performed in the close-loop mode described in the previous
section. Various sequence patterns can be generated by set-
ting the initial state of the RNN differently. The ensembles of
such various rehearsed sequences actually represent the
structure of the past memory in the dynamical systems sense.
The RNN is trained using both the rehearsed sequential pat-
terns which correspond to the former memory and the cur-
rent sequence of the new experience.

It is expected that this method enables the RNN to carry
out incremental learning while maintaining the structure as
much as possible. Although some robot studies using this
algorithm have been performed, its detailed characteristics
have not yet been clarified.

3.3 Navigation system

Figure 6 shows the navigation system developed in this
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Figure 6 Navigation system diagram

study. Since the robot moves using the RNN, its performance
is inadequate in the initial stage of learning. We therefore
implemented a collision avoidance system which overrides
the RNN commands when the minimum output of a range
sensor falls below the threshold value. This system is just
the reflection system tuned up by the designer. In our experi-
ments, the more overrides made by this man-made collision
avoidance system means the less performance of the RNN.
The robot obtained the color area, range sensor data, and
vehicle conditions every 0.1 seconds. This data was com-
pressed and transmitted to an external computer by wireless
LAN. The RNN receives this preprocessed data as input and
generates the output with a time interval of 2 seconds.

A simplified reinforcement-learning method was employed
for the RNN learning as follows. At each trial, the robot and
the subject go around the workspace together for a fixed
number of times. Then the time period taken for this travel is
measured. If the performance in terms of the time period is
better (less period) than the previous trial, the RNN is trained
with the sensory-motor sequence experienced with this trial
(with rehearsed ones in the consolidation learning). Other-
wise, no training is conducted on the RNN. At each trial,
3,000 steps of iterative learning is conducted off-line using
the external computer. In this way, the learning in the robot
side is conducted incrementally depending on the perfor-
mance achieved at each trial. Every 0.2 s the robot outputs
the action commands calculated by the linear complementa-
tion of the RNN output generated every 2 seconds.

3.4 Pre-experiments
To compare the adaptability of the RNN and the FFNN, we
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Figure 7 Performance comparison between FFNN and RNN

carried out experiments using only the robot. The RNN used
in this experiment was the same as that shown in Figure 3. In
this experiment we trained the RNN using the usual method
rather than the consolidation method described in the previ-
ous section. The FFNN had no context layer and had a middle
layer of 110 units. The total number of the neurons of both
neural networks was the same (124 neurons).

Figure 7 shows the results of the 15 trials, in each of which
the robot went around the workspace three times. The verti-
cal axis shows the travel time the robot needed for one trial. It
was confirmed that the RNN performed significantly better
than the FFNN. This result shows that in this task the acqui-
sition of the context information of the environment was ef-
fective. It also shows that as long as only the robot learns
the environment, instability of the learning process does not
cause the learning method to become a problem.

4. Experiments

The learning algorithms were evaluated and compared in 15-
trial navigation experiments with seven male subjects. In each
trial, the subject and the robot went around the workspace
two times. After each trial there was a one-minute break for
the questionnaire, which consisted of 11 items (Hayakawa, Y.
et. al, 2000). The indexes were achieved by the factor analy-
sis of 53 questions concerning 66 subjects engaged in work.
Additionally, at the end of each experiment, the subjects filled
out the questionnaire based on NASA-TLX (Hart, S.G. et. al
, 1988). NASA-TLX is a multi-dimensional rating procedure
that derives an overall workload score based on a weighted
average of ratings on six subscales. It can be used to assess
workload in various human-machine environments.

Three neural networks, the FFNN, the RNN with a usual
learning method, and the RNN with consolidation learning
explained in section 3.2 were compared in the experiments
involving the seven subjects. In consolidation learning, the
teaching data consisted of the current sequence pattern and
the three rehearsal patterns. These three rehearsal patterns
were generated in the close-loop mode with changes in the
initial value of the context units randomly. Here, the number
of rehearsal patterns is very crucial for the consolidation
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learning. In this experiment, three rehearsal patterns were
enough for the consolidation, because the RNN had to memo-
rize only one attractor corresponding to L-shaped course.
The order of the experiments was changed with the subjects
to avoid presenting subjects with a fixed order that might
influence the results. Subjects did not know which network
they were collaborating with until all experiments were fin-
ished.

4.1 Comparison of the Performances

Figure 8 shows the transitions of the travel time of three
neural networks. Each travel time is the average of the seven
subjects. The goal of this task was to decrease the travel
time. Although all performances improved in the first half of
the learning, differences appeared in the second half. The
performance of the FFNN tended to deteriorate gradually
and that of the RNN with the usual learning method tended
to stagnate. Only the performance of the RNN with the con-
solidation-learning algorithm continued to improve.

The override rates of the collision avoidance system, which
is equal to the operating rates of the neural networks are
shown in Figure 9. These are also the average of the seven
subjects. The rates showed almost the same tendency as the
performances, except that the operating rate of the RNN with
the usual learning method decreased in the second half of
the learning. It can be considered that the subject’s learning
maintained the same overall performance in spite of the de-
crease of the operation rate of the RNN.

Through the interactive learning, the subjects changed their
strategy at times. Since there were so many different ways to
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Figure 10 An Example of the Subject’s Input of Rotation Velocity
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Figure 11 An Example of the Subject’s Input of Forward Velocity



change their strategy, it was difficult to analyze them in gen-
eral. Figure 10 and 11 show a comprehensible example of the
subject's input to the robot. It was confirmed that though the
input of the rotation velocity did not change so much, the
input of the forward/backward velocity changed rapidly af-
ter the 7th or 8th trials. As a result, it can be said that the
subject's strategy changed from the “collision avoidance” to
the “speed up” in this experiment.

4.2 Mental Impression

The results of the NASA-TLX questionnaire and the 11-item
questionnaire are shown in Figures 12 and 13. In each ques-
tionnaire, the significant values of the levels of 1 % and 5 %
were calculated by a Scheffe test. It is easy to see that in both
questionnaires the RNN with the consolidation-learning al-
gorithm gave the best mental impressions.

It is interesting here to compare the results between the
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Figure 13 Results of Quesionnaire of 11 item evaluation

FFNN and the RNN with the usual learning method. In the
robot experiments described in section 3, the performance of
the RNN was better than that of the FFNN. In the navigation
experiments, however, the FFNN tends to give the subjects a
better impression than the RNN especially in “result of work”,
“fatigue free”, and “operability in the 11-item questionnaire.

5. Discussion

5.1 Robustness and Operability

In the experiment with only the robot, the RNN performed
effectively, because the robot could decide the action using
not only the sensor input including the noises but also the
information of the context layer. In the human-robot coop-
eration, however, the performance of the RNN with the usual
learning was worse than that of the FFNN. It is thought that
this is due to interactive learning including “incremental learn-
ing” which damaged the memory of the RNN. Therefore, the
context layer included wrong information and created an un-
desired output. As a result, the “operability” became worse
than that of the FFNN which has no context layer, because
the robustness of the RNN to the input noise decreased.
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Figure 14 Examples of the trajectory with input noises
(The RNN with usual-learning method)
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To analyze the effect of consolidation learning, we exam-
ined the robustness of the RNN dynamics by looking at its
initial sensitivity characteristics. Both RNNs obtained after
the usual learning and consolidation learning in our experi-
ments were tested to generate the output sequences in the
close-loop mode with the addition of three different sizes of
noise in the initial input values. Figures 14 and 15 shows the
motion trajectories of the robot re-constructed from the re-
hearsal motor output of the RNN. These represent how the
output trajectories developed with small differences in the
initial input conditions for the RNNs with usual learning and
consolidation learning. It is observed that output trajecto-
ries of the RNN by the usual learning tends to diverge more
than those by consolidation learning. This implies that the
usual learning scheme tends to generate more unstable dy-
namic structures in the trained RNN.

The following analysis was carried out to investigate this
property in detail. A sequence corresponding to one trial
(about 100 steps) was rehearsed in the close-loop mode by
the RNN. In this process, the random noises were added to
seven units in the input layer for all steps. Ten sequences
were rehearsed by this method. Figure 16 shows the step
error obtained from the difference between the average of
these ten sequences and the other sequence which was also
rehearsed by the same RNN without noise. The horizontal
axis is the maximum width of the noise at each step, and the
vertical axis is the average error of seven RNNs correspond-
ing to the subjects. This result also shows that the RNN with
a consolidation-learning algorithm is more robust than that
with the usual learning algorithm.

This robustness characteristic of the RNN seems to be
directly related to the “operability” in the mental impressions.
If the RNN tends to diverge largely even with small devia-
tions in the input sequences from the learned ones in the
past, it would be difficult for the subjects to harness the
robot in the right directions. In the usual RNN learning, if the
contents of the current memory conflict with the one to be
newly learned, the internal structure of the RNN could be
deflected severely and undesired pseudo memories could be
generated. Consolidation learning is beneficial in this aspect
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Figure 17 Transition of the Change of Rehearsal Trajectory

since this scheme allows iterative rehearsing of past experi-
ences. Also, training with enough number of rehearsed se-
quences could achieve a sort of generalization while attain-
ing the global structures in the internal representation.

5.2 Development of Collaboration

Miwa showed that the performance of human collaboration
was developed in the stages where the coherent phase and
incoherent phase were repeated (Miwa et. al, 2001). He ex-
plained that this was the process in which the human gener-
ated and/or modified the hypothetical strategy for the task
by using the context information.

We investigated whether the development process of the
RNN would include such stages. The trajectories were re-
hearsed by the RNN which is the same one trained in the
experiments described in section 4, and the amount of the
change of each trajectory was calculated. Figure 17 shows
examples of the amount of transition change of the trajec-
tory. It was confirmed that the transition with the consolida-
tion-learning method had three peaks (1st, 4th, and 8th trial)
and decreased gradually. This means that the phase transi-
tions occurred three times in the development process and it
became stable gradually. On the other hand, the transition
with the usual-learning method had no clear peak and in-
creased gradually. This means that there was no clear phase
transition in the process and it became unstable.

The trials in which the phase transition occurred in the
development process with the consolidation-learning method
corresponded to the trials in which the performance improved
drastically. The RNN with the consolidation-learning method
might have similar characteristics to humans.

6. Conclusion

In this paper, we showed that interactive learning is essential
and important for man-machine cooperation. We also pointed
out that it is difficult to actualize context dependence learn-
ing. The RNN was introduced as a learning algorithm system
which can treat the hidden state problem. The target task
was the human navigation by a humanoid robot called Robo-



vie. The FFNN and the RNN were compared as the learning
algorithm of Robovie. Although the performances of the RNN
and the FFNN both showed improvements in the early stages
of learning, they gradually became unstable as the subject
changed the operation by learning on its own. Finally, all
performances failed. The results obtained when the consoli-
dation-learning algorithm, which uses the rehearsal outputs
of RNN, was applied confirmed that this algorithm’s perfor-
mance was improved even when interactive learning contin-
ues for a long time and that the subject’s mental impressions
were better. Analyzing and comparing the characteristics of
RNNs produced results which support these differences and
showed that the collaboration scheme developed dynami-
cally along with succeeding phase transitions. This process
could be regarded as not just a learning process of the robot
but a emergence process of various forms of mutual interac-
tion. Consolidation learning which enable the robot to adapt
the human was essential to realize this process.

Two further studies should be carried out. One should be
a more detailed analysis of the characteristics of the consoli-
dation-learning algorithm with more subjects. Although the
robustness of the RNN have been compared in this paper,
the relation between the dynamic structure of the RNN and
the learning algorithm have not be analyzed mathematically
yet. The other study that should be carried out is a transition
structure analysis of the cooperation form between a human
and a machine in the interactive learning process. Although
we showed that the RNN with the consolidation-learning al-
gorithm was developed with the phase transition, the adap-
tation phenomenon that might be the changing process of
the cooperation form has not been analyzed in detail yet.
Although an example which shows this changing process in
section 5.2, the correspondence between the phase transi-
tion of the RNN structure and the development of human
operation should be investigated through more experiments.
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