SCALE AND TRANSLATION INVARIANT COLLABORATIVE FILTERING SYSTEMS
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ABSTRACT. Collaborative filtering systems are prediction algorithms over sparse data sets of user preferences. We modify

a wide range of state-of-the-art collaborative filtering systems to make them scale and translation invariant and generally
improve their accuracy without increasing their computational cost. Using the EachMovie and the Jester data sets, we
show that learning-free constant time scale and translation invariant schemes outperforms other learning-free constant time
schemes by at least 3% and perform as well as expensive memory-based schemes (within 4%). Over the Jester data set, we
show that a scale and translation invariant Eigentaste algorithm outperforms Eigentaste 2.0 by 20%. These results suggest
that scale and translation invariance is a desirable property.

1. INTRODUCTION

To be competitive, businesses need to help clients find quickly and accurately interesting products. Designing
software for this task becomes important as on-line shopping often does away with salespersons and offers a limited
view of the products to the prospective clients. Fortunately, businesses are often gathering large amounts of data about
their clients which makes automated recommendation systems possible. In a wider context, one of the most valuable
characteristic of the modern web is the ability to search through large amounts of dynamic data and any process that
can support these searches is valuable to the users.

Collaborative filtering systems are recommender systems where the recommendations are based on a database of
user ratings as opposed to content-based recommender systems which are based on the characteristics of the objects
to recommend. The basic principle behind collaborative filtering is that clients must first share some information
about themselves by rating some of the products or features they know, so that, in turn, they can get accurate recom-
mendations. Content-based recommender systems tend to work well with objects where the content can be processed
with some convenience such as text[[1, 13]. With other types of objects such as movies or books, it is not always
easy to access the content on-line, and even if possible, automated content processing is likely to be inaccurate. Also,
content-based filtering is sometimes difficult as the user may simply not have enough information about the product or
service required. Someone surfing on a e-commerce web site might not always have a specific request and the burden
is on the web site to provide an interesting recommendation. In such cases and if we can get some ratings from the
users either explicitly or implicitly, we may prefer collaborative filtering systems. In other cases where content-based
filtering is efficient, collaborative filtering may serve to help sort results.

However, one of the challenges we face is that most users rate only few objects and thus, we have to deal with
sparse data [6]. In many information retrieval tasks, the software is faced with large sets of accurate data and specific
gueries that must be matched. On the other hand, collaborative filtering has to deal with a severe lack of information
and the information available is both imprecise and inaccurate. Thus, collaborative filtering is a prediction rather than
a search problem.

From an algorithmic point of view, it is convenient to classify collaborative filtering algorithms in three classes
depending on their query and update costs: learning-free, memory-based and model-based. Obviously, there might
be many types of operations that could be described as an update or a query, but we focus our attention on adding
a user and its ratings to a database (update) or asking for a prediction of all ratings for a given user (query). We
say that an operation whose complexity is independent of the number of users offers constant-time performance
(with respect to the number of users). Essentially, the cheapest schemes are described as learning-free and have both
constant-time updates and queries while schemes involving a comparison with users in the database are classified as
memory-based and offer constant-time updates but linear-time queries, and finally the schemes requiring more than
linear time learning or more sophisticated updates are said to be model-based (§e Tab. 1). There are schemes that
would not fit in any one of these three classes of algorithms and others that would fit in more than one class.
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] | update [ query] learning]
learning-free | O(1) | O(1) | O(m)
memory-based O(1) | O(m) No
model-based| Variable| O(1) | Variable

TABLE 1. Typical complexities with respect to the number of useisf some classes of collabo-
rative filtering algorithms.

Typically, learning-free schemes are derived from vec{orsg that are computed in linear time irrespective of the
current user and the prediction is written as

Prediction(u) = % B (u)v)
K=o

where the result of the predictor is itself a vector where each component is the rating corresponding to an item. For
example, the simplest learning-free scheme is obtained Whe0, v(®) = 1wherel = (1,...,1) andPredictionu) =
U wheret is the average over the known ratings. Another such scheme is obtained\whén vlio) is the average
rating received by item numbé&r andPredictior(u) = v(?,

Memory-based collaborative filtering systems usually compute weighted averages over ratings already in the data-
base where the weights are given by a correlation megsirel[3, 12] or any similar measure [17] including probabilistic
ones[[10]. Generally, we can write a memory-based prediction as

Predictior(u) = F(u) + ) w(w,u)w

whereF(u) is a learning-free prediction and where themis over all users in the database wiifw,u) some

measure ofimilarity betweerw andu. Because not all users have rated all items, the sum can be different for each
item and we will make this point precise later. As there is little precomputation, updates to the database are fast, but
queries tend to be slow as we need to match the current user against the entire database each time. Memory-based
systems can outperform a wide range of model-based systeéms [3, 10] and accordingly, they are often used as reference
collaborative filtering systems for benchmarking purposes. The main drawback of memory-based scheme is their lack
of scalability. Some authors have proposed selecting the most representative or useful users from theldaiabase [18, 19]
making memory-based systems more balanced in terms of update and query performance while preserving and even
increasing slightly the accuracy. However, unlike learning-free and model-based schemes, memory-based systems
require access to a database at all time and thus there are privacy issues [4] and a memory-based system cannot run
conveniently on devices with very limited storage.

If all possible preference sets were equally likely, no prediction would be possible and since predictions have been
shown to be reliable [3], it must be that there are many hidden constraints and few remaining degrees of freedom
which suggests making predictions based on a model. Model-based collaborative filtering systems extract from the
database some key parameters and do not use the database directly to answer queries. Examples include Principal
Components Analysis (PCA)I[7], Factor Analysi$ [4], Singular Value Decomposition[5, 15], Bayesian Networks [3],
Item-Based model$ [16, 14] and Neural NetwoiKs [2]. Model-based systems tend to answer queries fast, most often
in constant time with respect to the number of users, but also run potentially expensive learning routines and are often
static in nature: updating the database can be expensive as it may require up to a completely new learning phase.
Another possible drawback is that most model-based systems assume a large database is available whereas we would
like collaborative filtering to work in a wide range of contexts.

One can test the accuracy of an algorithm by applying it on data where some of the ratings have been hidden.
While results vary depending on the data set and the experimental protocol, most published collaborative filtering
algorithms have similar prediction accuracies. For example, with the EachMovie data set, the accuracy improvement
in going from a naive prediction based on per-item average (learning-free) to a sophisticated Factor Analysis approach
is of no more than 17% [4]. Similarly, extensive work has been done to improve the Pearson correlation approach
[3[8] and yet, accuracy improvements do not exceed 20%. The differences between inexpensive schemes and more
sophisticated ones are even smaller when one upgrades simple averaging scheme to the Bias From Mean algorithm
introduced by Herlocker et al|[8]. In the results presented in this paper, the difference between the best and the
worse scheme is of the order of 33% irrespective of the data set. In this context, systematic improvements by small
percentages are significant.



One of the limitation researchers face is that there is no established set of desirable properties that are known to
be needed in the design of a new collaborative filtering algorithm. Pennock etlal. [11] outline properties or axioms
for collaborative filtering algorithms but without measuring the practical usefulness of each axiom. They present four
collaborative filtering properties : universal domain and minimal functionality, unanimity, independence of irrelevant
alternatives, and scale invariance. Whereas scale invariance is a simple and compelling axiom, few scale invariant
algorithms have been proposed. This paper investigates further scale invariance and aims to show that it is a useful
axiom for collaborative filtering. To achieve this goal, we will consider several state-of-the-art collaborative filtering
algorithms and propose novel variants that are scale invariant. Then, we show that the new algorithms perform better
or as well as the old ones.

1.1. Structure and Main Results. The paper is organized as follows. We first introduce the collaborative filtering
problem, then present some of the most competitive schemes, introduce two types of scale and translation invariant
collaborative filtering systems, and finally, we conclude with some experimental results on two significantly different
data sets.

The main results of the paper are evidence that scale and translation invariance is an important property that can be
used to improve existing schemes and a set of novel highly scalable algorithms with good performance. We show that
by normalizing users with respect to the mean, the amplitude, and, possibly, the number of their ratings, we improve
accuracy. We stress that the normalizatiopés useras opposed tper item. One novel collaborative filtering
systems $TIN2) performs well on both data sets, is simple to implement, and offers constant time performance for
updates and queries.

1.2. Notation and Terminology. Vectors and arrays are written in bold) @s opposed to scalar valués Compo-
nents of a vectov are noteds;. Incomplete vectors, that is vectors where some ratings are unknown, are written using
the lettersu,v, andw without bold face. Given a s& we notecard(S) the cardinality of such as set. The Greek al-
phabet is used throughout for convenience without any special meaning. We note averages using thanStatisn
can be taken over indexes asjifi Xi = Xo+ ...+ Xp Or over setS= {a,b,c} as inY s f(x) = f(a)+ f(b) + f(c).
The variablesn andn have special meaning consistent with other authors [3] and refer respectively to the number of
users under consideration and to the number of items to be rated.

A norm|| - || is typically defined as a non-negative real-valued function satisfiying = |a|||v|| whenever is a
real number||x+y|| < ||x|| + |ly||, and||x|| = 0 < x = 0. In some sense, the norm of an object measureizitss\We
will abuse the terminology by dropping the condition that-y|| < ||x|| + ||y|| whenevex+y is not defined.

Two norms|| - [|normz @Nd|| - [|norme @reequivalentif there exists positive numbers B € R such that||X||norme <
[[X]Inormi < B||X||norme fOr all x. For finite dimensional vector spaces sucliRésall norms are equivalent.

For the purpose of this paper, we define Lebesgue norms$ot, 2, ... as

ixth. = ¢ 5 2l
p & N

where the sum is over all indexes xf We define the norm so thdt1,...,1)[;, = 1 with the drawback thatx||;,
is not given by./(x,x) but with the benefit that some of our notation is simpler. As exampllek.2,0)

1, [(1.2.0)l, = /5 ~ 129, and]|(1,2,0)

H|1 =

i, = 1.98. For largep, Lebesgue norms become close|itd|,, =

nents contribute to the norm value whereas for lageonly the larger components contribute up to the point where
only the very largest component matters. We have

%It
o <Xy < [%[l.-

UN
2. DEFINITIONS

Let1 be an ordered set of itemslabeled from 1 tan which we writet = {1,...,n} for simplicity. Eachuserin
the system is allowed to give one and only one rating to each item, but will generally rate only a small subset of all
possible items. We refer to these ratings asaluationand there is a one-to-one map between users and evaluations.
Given an evaluation, let S(u) be the set of items rated and lgtbe the rating given to iteme S(u) by this user. For
the purpose of this paper, we assume that ratings are real numbers even though ratings are often taken from a finite
set such as {good, average, bad}. In other words, an evaluation is a function S(u) — R where the cardinality
of the domain(u) is typically much smaller thaoard(1). Alternatively,u can be thought of as a incomplete vector



in R", that is, a vector where some components are unknown. In practice, a set of evalyasgigngen for training
and we note the cardinality of the seby m= card(X). On the other hand, the set of all possible evaluations is noted
= D X. Note there may be some constraintssorfor example that some items are rated by all users or that all users
have rated at least a given number of items.

A complete evaluation is an evaluatiarwith ratings over all items§u) =1). Given a new evaluatiow with,
again, arbitrary numerous ratings over upntdéems, we seek to find a complete evaluatiersuch thatw andw
arecloseand such thatv agreesas much as possibleith X. We say thatv is apredictionand we writew = P(w)
whereP is a function (called a predictor) from the space of all evaluations to the space of complete evaluations. Thus,
a prediction is a map from incomplete vectors to complete vectors. Note that this definition is not general since it
excludes top-N algorithms][9].

Definition 2.1. A functionP : = — R" is called apredictor.

Predictors are often built dynamically using a set of evaluatiortsagming setand we refer to this process as a
collaborative filtering system.

Definition 2.2. A collaborative filtering systertCFS) is a function from sets of evaluatiogs$o predictors.

Given two numbers, 3 € R and an evaluation, we define a new evaluation= au+ 3 by the ratingsv, = au; + 3
for all itemsi € S(v) andS(r) = S(v). We noteu; for o C 1 the evaluatioru limited to ratings over the set of items
0: U satisfiesS(ug) = 0N S(u) andug; = u; for all i € N u). Given a constarft € R and a set of ratings C 1,
we define the constant evaluation= B; by w; =  for all i in 0 andS(w) = 0. We noteu the average rating of
evaluationu. Similarly, Uij; for sigmac 1 is the average rating af over items insigman S(u). We define the inner
product ofu € = andx € R" by (u,x) = Fjcgu Xiti and the inner product af,w € = by (U,W) = ¥icsgu)nsw) Will,

and nOIQ‘XHIZZ(o) = Wl(c) Eieoxizy ||UH|22 = Wls(u)) ZieS(u) ui2, <X(1>7X(2)>0 = Zieox(l)ix(2>i-

Ratings are inaccurate if only because there are malicious users. We say that a CFS is stable if a single user in
a large user set doesn't make a difference. This is often the case if we take averages over the entire database for
example. However, it is necessary to make some assumptions about the evalugtitor séability to be possible.
For example, we must assume that, for every item, there is a large set of evaluations with corresponding ratings.
Otherwise, if a given item is rated by only a few users, and these users have given inaccurate ratings, then the
predictions regarding this item may be inaccurate. Among the CFS schemes that atable are thé\ closest
neighbor schemes unleBkis large because these systems assume that thlesest neighbors have given accurate
ratings. All schemes considered in this paper are stable uedsonable assumptions

Because the mapping from user rating®tis arbitrary, a CFS must be independent of such a mappingronal-
ization. For example, we can map ratings such as {good, average, bad} to numerical{vall@®, 10} or {1,2,3}
and clearly, both choices are equally sensible.dor0,3 € R, letm, g(u) = au+ 3, we say that a CFS isormal-
ization invariantif the predictorP, g obtained with the evaluation set, g(x) relates to the predictd? obtained with
the setx by Py (Mg g(u)) = Mg g(P(u)) = aP(u) +Bforalla >0, € R and allu € =. All CFS considered in this
paper are normalization invariant.

Scale and Translation Invariance (STI) states that each user may have its own scale when rating items and is a
stronger condition than normalization invariance. If

P(my g(u)) = Mg g(P(u))

for all a > 0,3 € R that isP commutes withmy g, then the predictor is said to be STI. Similarly, if replacing any
evaluatioru € X by my g(u) for a > 0,3 € R doesn’t change the predictBrand that such & is ST Ifor all X, we say
that the CFS is STI. This property is based on the assumption that each user has its own static frame of reference that
needs to be compensated for: some users might tend to be naturally generous, others might be more critical, whereas
others might rate most items as roughly similar while others tend to use more often extreme Kuategbat we do
not allow a to be negative a user who likes item A and dislikes item B is remjuivalento a user who dislikes item
A and likes item B. A predictor is scale invarianffou) = aP(u) for all 0 < o € R and allu € = and it is translation
invariant if P(u+p) = P(u) + B for all a,B € R and allu € =. Notice that a STI CFS is automatically normalization
invariant because the predictor is invariant under a transformatigyof the evaluation set so that?, g = P andP
commutes withm, g because itis STI.

All schemes considered in this paper are translation invariant except for Per Item Average and Eigentaste 2.0.
In the case of memory-based CFS, it is documeritéd [3] that non translation invariant (cosine-based) are inferior
to translation invariant ones (Pearson-based). On the other hand, there is no comparable studies regarding scale



invariance. Assuming that the scale of the ratings is not useful information, we argue that it is actually better to
normalize the ratings. Indeed, otherwise a user with more extreme ratingsowiit morethan a user with more
modest ratings. For example on range from 1 to 10, if user A gives movie 1 a 10 and movie 2 a 1 whereas user B
gives movie 1 a 4 and movie 2 a 6, we have two users in disagreement and without scale invariance, user B’s opinion
is going to be overwritten by user A.

2.1. Measuring the Accuracy. Many authors use the Mean Absolute Eridi [3, 8] of the prediction error where only
a subset of iteme C S(u) is assumed to be known and the rest is hidden

_ JieSu)-o ’P(Ulc)i — Ui ’
MAE(U,0) = == Card(Sw) — o)

and one important MAE error measure is obtained by subtracting a single eléfrerm S(u) and settingo =

S(u) —{i}, thatisS(u) —o = {i},

ALLBUT].(P7 U,i) = ’P(U|S(u)f{i})i — U | .

Canny [4] pointed out that such an AllButl error measure is the most realistic error measure given a large enough
database. Another argument for using the AllIButl measure is that there are many different error measures for vector
elements, wheis(u) — ¢ is not a singleton, whereas it is unique up to a factor when the error over one element is
concerned (AllButl). In the remainder of this paper, we will use the AlIButl Mean Absolute EHl&ufl MAE

[3] to measure the prediction error of a predidiover a test evaluation sgt c =

1 1
) card(x') 2, card(S(u)

Z AlIBut1(P,u,i).
ieS(u)

With some schemes such as Eigentaste 2.0 or STI Eigentaste the suS{igvebove must exclude items that are
part of thestandardset of items because the predictor assumes that some fixed items have been rated. Note that some
authors prefer the NMAE which is defined as the MAE divided by the range of observed rating values [7].

3. COMPETITIVE COLLABORATIVE FILTERING SYSTEMS

We begin by describing the most commonly used learning-free schemes. The simplest CFS is Biveaddy) =
uwhich says that a user is likely to rate new items as the average of its known ratings and it is STI. While nearly as
accurate as other schemes using AllButl MAE as measure, it proves of little use in practice and is only used as for
benchmarking. Indeed, it doesn’t provide any order on the items since it predicts they are all rated equal.

The next scheme is the Per Item Average or POP [7] giveRpbytem(U)i = W}S«(x)) Swes(x) Wi where§(x) =
{wex:ieSw)} and it can be described as predicting that any given user will like any given item as much as the
average rating for that item. Most applications where users are invited to rate items use Per Item Average implicitly
by averaging the ratings. We argue that it is probably the best one can do, if nothing is known about the current user.
Happily, the literature and our experimental results show that it is possible to leverage the knowledge we have of the
current user to improve predictions.

Finally, there is one more commonly used learning-free scheme [8] called Bias From Mean which tends to outper-
form the previous two in our experiment,

B 1
o Poias(U)i = U+ card(S(x)) weg(x)

It combines both the average and the Per Item Average approaches in a single scheme. It does better than the
Per Item Average because it uses some information about the current user (mean rating).
Assuming that theard(S(x)) are stored for € 1, all of three of these schemes can be updated in constant time
with respect to the number of users whenever a value is changed or a user is added. Queries are in constant time.
The Bias From Mean scheme is normalization invariant as a corollary of the following proposition by setting
w=1.

w; —W.

Proposition 3.1. Weighted sum CFS of the form

it 1 3 wes (x) 9(U, W) (Wi —W)
card(S(X))  Jwesx) lod(u,w)]

P(U)i =



[ [[ item1 [ item2 | item3 | item4 |

[ unrated 5 unrated 3
Up 2 unrated 4 unrated
us unrated 3 unrated 1
Uy 1 unrated 5 unrated
Us 4 5 4 3
Us 1 3 5 unrated

TABLE 2. Example of an evaluation set where ratings are from 1 (very poor) to 5 (very good).

for alli €1, are normalization invariant if and only i is normalization invariant:
(Jk)(rna_’B(U), rnC(,B(W)) = (JL)(U,W).

In the proposition above, whenewefu,w) which might measure the similarity betweerandw, depends o,
CFS is memory-based. A commonly used normalization invariant chotoe=i$opearsonWhere

(U—Tt,w—w)
V/{Uisw) — B Usw) — 0) (Wis) — W Wiy — W)

is thePearson correlation[12] betweeru andw over S(u) N S(w). There exists variants of this scherhé&l[B, 3] using
case amplificationvhere

Wpearsor{ U, W) =

)

(U, W) = Wpearsor{ U, W) |(*)Pearsor(U7W)|p_l

with p > 1. Intuitively, case amplification tends to favor close neighbor as small values raised to a power become
negligible, and it improves accuracy for some valuep stich ap ~ 2.5 [3].

Per Item Average, Bias From Mean and all the memory-based schemes we discussed are not STI. We will propose
STl variants and show that they tend to perform better.

4. SCALE AND TRANSLATION INVARIANT CFS

We say thati andv are equivalent, ~ v, if there existax > 0,3 € R such thatiu; + = v; for all i € S(u)Nv),
Ui = uwheni € S(u) — S(v), andv; = vwheni € S(v) — S(u). In other wordsp andv contain the same information as
they are identical up to a change of scale ds@r) N S(v) and contain no information elsewherg £ uandv; = V).
In Tab.[2, for example, evaluations 1 and 3 are equivalent by translation (off by 2), whereas evaluations 2 and 4 are
equivalent by scale in the sense thai® —u@) = u® —u@).
We can show that the conditiany; + 3 = v; can be replaced by the simpler condition that v=a(u; — 0).

Proposition 4.1. u ~ v if and only if there exist8 < a € R such that y—v=a(u; —u) for alli € Slu)yNS(v), uy =u
when i€ S(u) — §(v), and y = v when i€ S(v) — S(u).

To see why this is true, assume- vthenau; + 3 = vi wheni € S(u)NS(v), and sov = au+ B andv; —v=a(u; — U).
The reciprocal is true, i, = uwheni € S(u) — §v), andv; = vwheni € S(v) — S(u) andv; —v = a(u; — u) for some
a>0eRforalli € Su)ynSv), thenu~ v by choosing3 = —au+v.

Because we can show that the condition thandv differ only in scale ¢u; + B = v;) can be expressed by
vi —v=a(u; —U), the next step is to subtract from ratings their means and divide by their norm. This normalization
is justified because STI schemes should not depend on either the average or the norm of ratings: by normalizing
evaluations we ensure that resulting schemes are STI. Whereas the mean of an evaluation is well defined, the norm
of a set of ratings can be defined in many ways especially because the number of ratings may differ from a user to
another. Given a norr ||, we can define a mapy . (u) from all incomplete vectorsy) to R" by

Ui—u H
(3) my (u)i = { ool €3
0 i ¢ S(u)
where by convention, @ = 0 and||-|| is any norm. Empirically, we found th&§ norms were a good choice and
we write mp = M- Because th&, norm, defined the way we did, is normalized against the number of ratings, it
doesn’t tend to grow as users rate more items which intuitively means that we don't penalize users who rate a large
number of items. We also considgs = mH~H|pxcard(S<~)> where thel, norm is multiplied by the number of known

ratings. The mapg, will penalize users who rated a large number of items and scale down their ratings accordingly.
Many other norms are possible, but we only choose these two as representatives.



[ [[ item1 [item2] item3 ] item4 |

m(u®) 0 1 0 —1
m(u@) —1 0 1 0
mp (u®) 0 1 0 —1
mp (u™) —1 0 1 0
mp (u®) 0 V2 0 —\/2
me(u®) [ —/3/2 0 3/2 0

TABLE 3. Evaluations from Tap] 2 transformed using nnap We see evaluations 1 and 3 as well
as evaluations 2 and 4 are equivalents.

Given two users in disagreement but with different amplitutfe, = (—1, 1, unrated andu® = (10, —10, unrated),
a STl scheme would first normalize them so that

mp(u®) = pp(u¥) = —mp(u®) = —pp(u®).

And therefore, they would cancel each other. On the other hand, for two users with different rating sets, such as
u = (—1,1,—1,1) andu®@" = (—1,1, unrated unrated, we can either say that the evaluations have the same norm
(mp) or else that evaluation has greater norm from the fact that it rated twice the number of itgg)s As we
shall see, it is possible to avoid these difficulties by using a standard set of items rated by all users, but in general, we
must cope with many perfectly valid normalizations and choose based on empirical results.

Observe that for ang > 0,3 € R, m, (au+B) = m(u) so thatm is defined over equivalence classes. The
next lemma makes this precise whereas [Thb. 3 gives an example.

Lemma 4.2. u~ v if and only if m. (u) = my(v).

Classes of equivalence can be made into an Hilbert sg@oe,|), and in this sense, our approach to CFS design
is geometrical. For exampley+ v is defined by the equivalence class of@#l such thatmy(u) = mp(w) + mp(v).
Similarly, the inner product betweamandr is defined by(w, v) , = (mp(w),mp(v)) and the norm ofi is ||my(u)
We will define our novel STI schemes using andy,.

i,

5. LEARNING-FREE SCALE AND TRANSLATION INVARIANT CFS

We consider learning-free predictors of the foRfu) = T o (u)v() wherev® ... v¥ ¢ R" andw; : = — R
fori € {0,...,k} are corresponding functions mapping evaluations to coefficient®.idfSTI then we must have
P(u+B) = P(u) 4B and so, we choosé = 1. We found empirically that it was efficient to ussgressiorand thus,
to set the coefficientsy(u) such as toninimize

Do (P,u) = [|P(u)sw) — |,

In other words, we choose the coefficients in such a way as to P@keas close as possible to This choice also
makesP STI. The simplest such scheme is definedkby 0 and it amounts t®(u) = T.

The next step is to introduce a STI variant of both the Per Item Average and Bias From Mean schemes. Thus, we
define the first-order STI non personalized sche8iEI\L(m,)) with

L _ 1 .

L

wherev,” is theit" component o) andcard(S(x)) is a short-hand for the number of evaluatiansuch that
i € S(u). Intuitively vV is the average of the evaluationss x over the spacen.(X). Minimizing the residual
) A
_ ninayd — (0 _ @

energy”u PSTINl(mH_H)(U) (W) and definings;” =v Viguy We have

e

Pstint(m ) (W) =T+ =g —vi-

(VU5 ) s

See Appendix for a practical example of how to compute efficie®TyNL(my).



We can extend this framework further using several veatdisv(@, ... vK ¢ RN by defining

U,
..... i i € S(u)

m, ()i = m

0 i ¢ S(u)

to minimize
HU — (C(V(;L)V<1> +...4+ C(V(k)V(k))

I
Just like withmy, |, there are equivalence classes correspondirrgﬁﬁy"“‘m. Explicitly, we define a second-order
STl non personalized schen®TIN2(my.)) by usingv(@, v(J as previously defined, using the specified norm, and

@) 1 nt’fo) v (

VS s &, W

Again, v2 can be thought of an average O\mi(o)v"(l) (X). Notice that we always use tthg norm when computing
v(@ | irrespective of the choice that was makei6¥ as it was found to slightly improve results basis. Just like with
STINL(my), we minimize the residual energy— PST,,\Q(mW(u) by choosing

<“’V<“2)> 2)

Pstine(U) = Pstine(U) + —or—%—Vu
W& v ()

wherev? = v — Proj, (). Because/Y andv? are computed once and updated only when there are new

ratings,Pst e is easy to implement.

Higher orderST INxschemes exists, but are likely to be of little practical use because the difference in practice
betweerSTINL andST IN2 is already small (see Tdl. 4T INxschemes can be updated in constant time with respect
to the number of users and they are always STI.

6. MEMORY-BASED SCALE AND TRANSLATION INVARIANT CFS
We define the STI equivalent of the Pearson correlation predictor callééearsofimy) by using the form

(t(u.x).u)
) T X)) Y

PSTIPearso(‘mz)(u)i =u+ <T(

andt(u,X) is the weighted average over the spag€y)

T(U,X) = 2 wey,ieSw) w(u,w)mp(w)
Ewex,ieS(w) |°~)(U»W)|

where by convention,® = 0. In this last equation, we choose

w(U, W) = (ma(u), mp(w)) |{ma(u), mp(w))[°~*
andp > 1is a case amplification power wheye= 2.5 is typically chosen. Note that despite the nar§& I Pearsoh
w(u,w) is not correlation-based, but uses a simple scalar product imgti€) Hilbert space and as a side-effect,
it can be computed faster that the Pearson correlation assuming thas(thefor w € X are precomputed. As for
STIPearsofyy), it is identical toST | Pearsofm,) except that we replace every occurrencenpby L.

7. EIGENTASTE 2.0AND STI EIGENTASTE

The Jester data sétl[7] was acquired on the web by asking users to first rate a common set of jokes and then
providing these users with recommendations. The Eigentaste 2.0 scheme is a collaborative filtering system which
was designed specifically for this data set. It uses a normg} gkfl0 jokes that all users have rated. The basic
idea is that we can greatly simplify the analysis if we have a normal set since the restriction of the evaluations to
this normal set becomes a vector space. Intuitively, one might expect that the existence of a normal set can be used
to outperform schemes that don’t make use of such a normal set. The Eigentaste 2.0 scheme applies a Principal
Component Analysis, also sometimes called a Karhunen-Loéve transform, on this vector space.

The authors Eigentaste 2.0 normalize the ratings by subtracting the per item mean and dividing this bias from mean
by the standard deviation of these ratings. We implement Eigentaste 2.0 both with and without this normalization of



the items in the normal set and find that this per item normalization actually degrade the accuracy in our experi-
ment possibly because our tests involve smaller training sets. Consequently, we only present the simpler version of
Eigentaste 2.0 without normalization.

We first compute the 18 10 matrix

1
U=———Suu
card(x) u%( V-l
whereu,, is treated as a vector of length 10 anp is the transpose of this vector. We then find two dominant

eigenvectors®) anduv@ of U, that is two eigenvectors corresponding to the two highest eigenvalues. This allows us
to map any evaluation € X to the(x,y) coordinates

(<uw, U(1)> , <uw7 U(2)>).

We then use these two eigenvectors to partition the evaluatigrisdn? clusters wherg € N is a positive integer
(see Fig| 11). To do so, first finlkll; = max,cy ‘<uw,u<i>>‘ fori = 1,2 to define the range of values in the eigenplane.
This division of the plane into ever smaller rectangles is easy to visualize, but for implementation purposes, we need
a precise formula such as what we present next. Gimvery, letA; be thelogarithmof <u|y,u(i>> defined as

M) = max{ke N: |y, o) /vy < /21

andA; n(u) =max{1,min{n,A;}} fori = 1,2. Define integer-valued functioh&u), J(u) satisfying—n > 1(u),J(u) >
—n andl (u),J(u) # 0 with

I(u) = M,n(u)sign(<uw7u(l)>)
and
J(u) = Az,n(u)sign(<u|y7 U<z>>>

wheresign(x) = 1 whenx > 0 andsign(x) = —1 otherwise.

These functiong,J allow us to determine in which cluster of the eigenplane any given evaluation is. That is,
u,v € X are in the same cluster if and onlylifu) = I (v) andJ(u) = J(v). Correspondingly, we can look at the set of
all evaluations in a given clustgr ; = {ue x : 1(u) =i,J(u) = j}.

Once we have determined in which cluster of evaluatiobglongs, it is then reasonable to simply predict that
will rate according to the per item average usingiggghborgevaluations in the same cluster). Thus, for eclolster
Xi,j» we compute the averagés; € R" just like we did with the Per Item Average scheme,

1
Aiik= Ug.
(A card(u € Xi j,k € S(u)) u€Xi,j§€S(U) ‘

The Eigentaste predictor is then definedRiy) = A ) su)-

Because the averagésand the eigenvalues') need only the be updated when new data is added, the queries
can be done in constant time with respect to the number of users. Fon hwgdhave more clusters and thus, better
granularity, but each cluster contains less evaluations and thus, averages might be less reliable. We-cAas#
is the value reported in[7] and it is found empirically to be a good choice. Eigentaste 2.0 is not STI. Itis interesting to
note that in the limit case where there is a single cluster of evaluations, this scheme amounts to the Per Item Average
CFs.

To produce a STI variant of the Eigentaste algorithm, we use exactly the same algorithm as Eigentaste 2.0 except
that we replace throughout byﬁ in the computation of the eigenvectors and clusters. Notice that unlike the
mapsm,.;, this map doesn’t depend on the number of itentss rated since it relies exclusively on the items in the
standard sejf.

We note the set of evaluations in each cluste)(f;}/' instead ofy; j and we have integer-valued functiorS ' and

JST! corresponding td andJ. Theper clusteraverages are given by
1 U — Uy
(AST i = S
b card(u:uex? ke u) uexﬂ%(eS(u) [uy —uyll,




FIGURE 1. Eigentaste clusterg & 4).

just like the corresponding; ;. The STI Eigentaste predictor is defined by regressidh(ag= u-+ AA|sTiy) 3STi(u)
wherea is chosen to minimize

H u—u-— QA sTIy) 35TI(u) .
One could view STI Eigentaste as Eigentaste 2.0 with regressiopaangsernormalization. STI Eigentaste is STI.

While much more lightweight than memory-based schemes, Eigentaste schemes are not learning-free. The av-
eragesA; j and Aij' can be updated in constant time with respect to the number of users if we assume that the
eigenvectors are constant, however once we take into account that the eigenvectors will change albeit slowly as we
add more users, the update cost is linear in the number of @¢ers Computing the new eigenvectors themselves is
a constant time operation and it only need to be done when more users are added and not when users add ratings. We
argue that having slow updates is not as much a problem as having slow queries since updates can be implemented
off-line as a background task.

8. EXPERIMENTAL RESULTS

8.1. Data Sets. The EachMovie data set is a the result of a movie rating web site. The DEC Systems Research Center
ran this web site for 18 months and 72,916 users entered a total of 2,811,983 numerical ratings for 1,628 different
movies (films and videos). It has ratings fron®® 1.0 in increments of 2.

The Jester data set is the outcome of a joke rating web[site [7]. Users are rate a fixed number of jokes and they
are then presented with recommendations. According to the documentation, the Jester datos¢inbasigatings
from -10.0 to 10.0 however we found that very few ratings (less than 1%) were beyond this range.

As a basis for comparison, we used Amazon SOAP open API to retrieve the information about Music CDs. On
June 28" 2003, metadata about all Music CDs from the web site Amazon.com were downloaded and only the 5,958
CDs with ratings were kept. The API provides the average rating for each item. We present the plots giving the
frequency of various ratings on three data sets: EachMovie, Jester, and Amazon (§¢e Tab. 2). We notice that users
tend to give positive ratings more often than negative ratings and maybe it can be explained by saying that users tend
to rate what they like.

8.2. Methods. We used case amplification on both Pearson@htlPearsomwith a power ofp=2.5 as this improves

results with both algorithms and is the power value chosen by other authors [3]. We only kept evaluations with at least
20 ratings as in [8]. For each algorithm, we computed the AllButl MAE (see eq{iation 1) using enough evaluations to
have a total of 50,000 ratings as a training g¢ta(hd another set of evaluations with a total of at least 100,000 ratings

as the testing sei(), and we repeated the process 6 times over different gay'sfor each data set keeping only

the average and the standard deviation [8]. Using larger training sets is difficult when benchmarking memory-based
schemes because of the computational burdens. Because all ratings in the testing set are hidden once, each of the 6
pairsx, X’ involves 100,000 predictions. The only exception to this rule is with Eigentaste and STI Eigentaste where

we never hide one of the 10 items in the standard set. The typical relative standard deMatiéhfor AllButl MAE

values in both data sets is 5%.

As an additional step, we attempt to improve predictions by replacing predicted ratings above or below the allowed
range of values|0.0, 1, 0] for EachMovie and—10.5,10.5] for Jester) by the nearest value inside the range: this step
proves futile as it doesn’t improve results in a noticeable way over such large sets. In practice, such a rounding step
might still be implemented for practical reasons.
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FIGURE 2. Frequency Bar Charts for the EachMovie, Jester, and Amazon Album Ratings.

8.3. Results. In EachMovie, we find 36,656 users with at least 20 ratings each for a total of 2,579,985 ratings at an
average of 70.3 ratings per evaluations. Movies are labeled using integers from 1 to 1,649. The density of ratings over
the chosen users is at about 4%. The typical AlIButl MAE for EachMovie is 0.2. Because EachMovie has a rating
range of 1, normalized MAE (NMAE) are the same as the MAE values (AllButl NMAE=AIIButl MAE).

In Jester, a total of 756 users with ratings outside the -10.5 to 10.5 range were removed. One value was a clear
outlier (87.09). There are 17,154 evaluations with at least 20 ratings for a total of 894,584 ratings with an average of
52.2 ratings per evaluation. There are 100 jokes labeled from 1 to 100. The density of ratings is therefore 52.2%. For



[ (Jester) [ AllButl MAE | std. dev.] query cost]

[ (EachMovie) [ AllButl MAE [ std. dev.| query cost|Per [tem Average] 2.06 0.03 o
Average (STINO) 0.232 0.001 0O(1) Eigentaste 2.0 3.96 0.04 0O(1)
Per Item Average| 0.223 0.003 0O(1) Average (STINO) 3.71 0.05 O(1)
Bias From Mean 0.203 0.001 0O(1) Bias From Mean 3.42 0.06 0(1)

STINL(p) 0.203 0.005 0O(1) STIN2(2) 3.37 0.06 O(1)
STIN(1z) 0.198 0.004 o(1) STINL(1z) 3.35 0.06 o(1)
STINL(my,) 0.195 0.002 o(1) STINL(m,) 3.35 0.06 o(1)
STIN(y) 0.194 0.002 o(1) STIN2(my,) 3.32 0.06 0o(1)
ST I Pearsofyy) 0.194 0.01 O(m) STI Eigentaste 3.30 0.07 0O(1)
Pearson 0.187 0.01 O(m) Pearson 3.24 0.10 O(m)
ST Pearsofm,) 0.166 0.03 O(m) ST Pearso(y) 3.07 0.16 O(m)
ST Pearsofny) 3.05 0.18 O(m)

TABLE 4. AllButl Mean Absolute Error (MAE) of different normalization invariant CFS for the
EachMovie and Jester data sets. The complexity of the queries relative to the number ofi users

is given. For EachMovie, ratings ranged from 0 to 1 in increments of 0.2 whereas for Jester, the
range of values is given to be -10.0 to 10.0. Average and standard deviations where computed over
6 trials of at least 100,000 predictions each with training sets including at least 50,000 ratings.

Eigentaste and STI Eigentaste, we used joke numbers 5,7,8,13,15,16,17,18,19,20 as a standard set rated by all users.
In our implementation of the Eigentaste algorithms, we compute the eigenvectors from the training set each time and
do not use the eigenvectors provided with the documentation of the data set. In this sense, we penalize Eigentaste as
the eigenvectors could be computed over an arbitrarily large number of users without running time penalty. However,
we also penalize STI Eigentaste, Bias From Mean, Per Item Averag&Tarixschemes as they all stand to benefit

from a large number of users. Nevertheless, our experiment show that Eigenstate 2.0 outperforms Per Iltem Average
as reported in[7]. For both Eigenstate and STI Eigenstate, we chesé If we divide the typical AllButl MAE of

3.75 by the range of values (20.0), we get a NMAE of 0.19 which implies an accuracy similar to that of EachMovie
data set. It was already reportéd [7] that these two data sets appear to lead to the same NMAE even though they are
very different.

Overall, our results (see TdH. 4 and Fip. 3) indicate 81BIN2(my) outperforms Bias From Mean by at least 3%,
it outperforms Per Item Average by at least 15%, and is within 4% of the memory-based Pearson scheme while being
significantly fasterSTIN2(Lp) also performs well: only about 2% less accurate t8aiN2(my). ST | Pearsofm,)
outperforms Pearson in this study by at least 6%. Because both schemes bpsethdm, perform well, we have
evidence that STl is a desirable property. As additional evidence, note that STI Eigentaste doesn’t use either
and it also outperforms significantly Eigentaste 2.0.

While STINL() performs as well as Bias From Mean for the EachMovie data set, it lags b8findL(my) by
4%. On the other hand, in both data s&$,|N2(m,) performs within 2% ofST IN2(}2). Because schemes based on
m, tend to outperform schemes basedugnit appears that it is better not to penalize frequent raters, that is, not being
too democratic Our tests reveal that if a standard item set rated by all users is available, Eigentaste schemes such as
STI Eigentaste are competitive.

There is only one instance in our experiment where a STI scheme did not systematically outperform or at least
match the performance of the corresponding non-STI sch&iiéPearsofu,) lags behind Pearson on the Each-

Movie data set by about 4%. However notice that it outperforms Pearson by about 6% on the Jester data set so that
overall ST | Pearsofyy) and Pearson have comparable accuracy.

The storage requirements for tB& INxschemes i©(xn+ 1) wheren is the number of items. For example, the
EachMovie data set has at most 1949 items and because we use 32 bits floating point numbers for ratings even though
they only have 6 possible valueST IN2 has a storage requirement of 15 KB. Similarly, the storage requirement
for the Jester data set which has 100 items is under 1 KB. Ther8fbtExschemes can easily run on very small
devices. Comparatively, memory-based schemes such as Pears®h ldPehrsomequire around 256 KB to store a
training set with at least 5000 ratings, additional memory might be needed to buffer computations, and since a full
database of ratings is needed there are privacy issues. Note that 256 KB is not enough to store the whole EachMovie
database but just a sample training set as the whole database in a flat binary file occupies around 22 Megs. As far as
the computational cost of tH&T INxpredictors, we can compute regression coefficients in @foard(S(u))) where
card(S(u)) is the number of items the active user has rated and typicalty(S(u)) <« mso that the total computation
cost is close tq1+ x)n operations which i©(nx). As with the memory-based scheme it is possible to reduce the
computational burden by requesting predictions over only a subse€aimparatively, memory-based schemes have
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FIGURE 3. AllButl Mean Absolute Error (MAE) on the EachMovie (top) and Jester (bottom) data
sets (see Tab] 4).

a computational co€d(mn) and so they are at least two orders of magnitude slower in prantieec@rd(x) > 1+Xx).
Eigentaste schemes have roughly the same storage and computational characte83tidbas

9. APPENDIX: NUMERICAL EXAMPLE

We present an example based on T3b. 2 forSfiéNL(m;) scheme which is one of the most successful in our
experiment and also the easiest to implement efficiently. We use the same notation as in the table. The first step
to make predictions based on this data set is to computengtie) = {mp(u®), mp(u@), ..., mp(u®)} from x =
{u® u® ... u®} asitwas done in Tap] 3. This can be done offline irrespective of the current user.



As an example, we show how to compute(u¥) and my(u®). Givenu® = (unrated5,unrated3), we
have thatu®) = 553 = 4 hence thebias from mearis given byu® — u® = (unrated 1,unrated —1). Finally,

H —ul H /B = 1 and thusmy(u) = (0,1,0, —1). Formp(u®), the average is 3 so that the bias from

mean is(—2, 072,unrateo) and thel, norm is/8/3 = 2,/2/3 hencemp(u®) = ,/3/2(-1,0,1,0).

Computingue(u®) andp(u®) would be similar except that we must also divide by the number of ratings each
evaluation contains: 2 and 3 respectively. Hemeé,M) = (0,1/2,0,—1/2) andpp(u®) = \/1/6(—1,0,1,0). Note
thatpz(u®) is scaled down because it contains more ratings.

Recall thatSTINL(my) predictions are built from two vectorsz® andv(?. We havev(® = 1 and we must
computev(V) using the formula: .

@ _
YT S0 2,

The formula requires us to know the s&sx) for all i € 1. By inspection, we hav&(x) = {u®@,u® u® u®},

SZ(X) = {u(1)7u(3),u(5)’u(6)}, %(X) = {u(2)7u(4),u(5)’u(6)}, 84()() = {u(l)’ u(3),u(5)}' and S([:ard(sl) =4, card(Sz) =
4,card(S3) = 4, andcard(Ss) = 3. Hence, by using Tap)| 3, we have

—2—+/3/2 242 2+/3/2 —2—+/2
v = (=2 /2 *4*[, + y /2 . V2 ) (081085081 114

How do we use this in practice? Let the evaluation of the current user=b€2,1 unrated unrated. In this
caseS(u) = {1,2}. We first compute the average= 2;! = 3 so thatu—1u = (3, 3, unrated unrated, and thus
Pu)~ 5 3 +0(—0.81,0.85,0.81, —1.14) and we must solve fax by regression so as to minimize the residual energy
of u—P(u). A convenient formula is

mp(u);.

(v — ‘( S —u)

1
(V@ —y ‘<S(>u),v<1> Vig)su

We have thatlls( u ~ ~ (—0.81,0.85, unrated unrated and sov‘(s( u ~ 0.04. Doing some arithmetic, we gel‘s(u

I(é()u)’ \(é()u) - \%()m) ~1.38 Whereaiv‘s(u V|(é<)u>>U—U> ~ —0.83. Hencen ~ 103883 —0.60. So thatP(u) ~

3 +0.60(—0.81,0.85,0.81, ~1.14) ~ (2,1,1,2.2).
Therefore the schenf®T IN1(nmp) predicts that this new user is going to give ratings of 1 a2d@items 3 and 4
respectively. Comparatively, the Per Item Average scheme would pr%dimﬂ% respectively.
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