Baianu, Professor I.C. and Prisecaru, M.S. V (2004) Complex Systems Analysis of Arrested Neural Cell Differentiation during Development and Analogous Cell Cycling Models in Carcinogenesis. [Preprint]
Full text available as:
|
PDF
164Kb |
Abstract
A new approach to the modular, complex systems analysis of nonlinear dynamics of arrested neural cell Differentiation--induced cell proliferation during organismic development and the analogous cell cycling network transformations involved in carcinogenesis is proposed. Neural tissue arrested differentiation that induces cell proliferation during perturbed development and Carcinogenesis are complex processes that involve dynamically inter-connected biomolecules in the intercellular, membrane, cytosolic, nuclear and nucleolar compartments. Such 'dynamically inter-connected' biomolecules form numerous inter-related pathways referred to as 'molecular networks'. One such family of signaling pathways contains the cell cyclins. Cyclins are proteins that link several critical pro-apoptotic and other cell cycling/division components, including the tumor suppressor gene TP53 and its product, the Thomsen-Friedenreich antigen (T antigen), Rb, mdm2, c-Myc, p21, p27, Bax, Bad and Bcl-2, which play major roles in various neoplastic transformations of many tissues. The novel theoretical analysis presented here is based on recently published studies of arrested cell differentiation that normally leads to neural system formation during early developmental stages; the perturbed development may involve cyclin signaling and cell cycling responsible for rapidly induced cell proliferation without differentiation into neural cells in such experimental studies; special emphasis in this modular model is placed upon the roles of cyclins D1 and E, and does suggest novel clinical trials as well as rational therapies of cancer through re-establishment of cell cycling inhibition in metastatic cancer cells. Cyclins are proteins that are often over-expressed in cancerous cells (Dobashi et al., 2004). They may also be over-expressed in cells whose differentiation is arrested during the early stages of organismic development, leading to increased cell proliferation instead of differentiation into specialized tissues such as those forming the neural system. Cyclin-dependent kinases (CDK), their respective cyclins, and inhibitors of CDKs (CKIs) were identified as instrumental components of the cell cycle-regulating machinery. In mammalian cells the complexes of cyclins D1, D2, D3, A and E with CDKs are considered motors that drive cells to enter and pass through the “S” phase. Cell cycle regulation is a critical mechanism governing cell division and proliferation, and it is finely regulated by the interaction of cyclins with CDKs and CKIs, among other molecules (Morgan et al., 1995). A categorical and Topos framework for Łukasiewicz Algebraic Logic models of nonlinear dynamics in complex functional genomes and cell interactomes is also proposed. Łukasiewicz Algebraic Logic models of genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous logical models of both genetic activities and neural networks. An algebraic formulation of varying 'next-state' functions is extended in a Łukasiewicz-Topos with an n-valued Łukasiewicz Algebraic Logic subobject classifier description that represents non-random and nonlinear network activities as well as their transformations in developmental processes and carcinogenesis. Important aspects of Cell Cycling, the Control of Cell Division,and the Neoplastic Transformation in Carcinogenesis are being considered and subjected to algebraic-logico- relational, and computer-aided investigations. The essential roles of various levels of c-Myc, p27 quasi-complete inhibition/blocking, TP53 and/or p53 inactivation, as well as the perpetual hTERT activation of Telomerase biosynthesis are pointed out as key conditions for Malignant Cell transformations and partial re-differentiation leading to various types of cancer such as lung, breast,skin, prostate and colon. Rational Clinical trials, Individualized Medicine and the potential for optimized Radio-, Chemo-, Gene-, and Immuno- therapies of Cancers are suggested on the basis of integrated complex systems biology modeling of oncogenesis, coupled with extensive genomic/proteomic and interactomic High-throughput/high-sensitivity measurements of identified, sorted cell lines that are being isolated from malignant tumors of patients undergoing clinical trials with adjuvant signaling drug therapies. The implications of the cyclin model for abnormal neural development during early development are being considered in this model that may lead to explanations of subsequent cognitive changes associated with abnormal neural cell differentiation in environmentally-affected embryos. This new model may also be relevant to detecting the onset of senescing neuron transformations in Alzheimer's and related diseases of the human brain in ageing populations at risk.
Item Type: | Preprint |
---|---|
Additional Information: | Rational Clinical trials, Individualized Medicine and the potential for optimized Radio-, Chemo-, Gene-, and Immuno- therapies of Cancers are suggested on the basis of integrated complex systems biology modeling of oncogenesis, coupled with extensive genomic/proteomic and interactomic High-throughput/high-sensitivity measurements of identified, sorted cell lines that are being isolated from malignant tumors of patients undergoing clinical trials with adjuvant signaling drug therapies. |
Keywords: | Cell cycling, control of cell division and the neoplastic transformation in carcinogenesis; essential roles of high c-Myc, p27 Inhibition, p53 inactivation and hTERT activation of Telomerase biosynthesis in Malignant Cell Transformation; Rational Clinical trials, Individualized Medicine and potential for optimized Radio-Chemo-, Gene-, and Immuno- therapies of Cancers; Łukasiewicz models of Genetic Networks; Genome and cell interactomics models in terms of categories of Łukasiewicz logic Algebras and Lukasiewicz Topos;Łukasiewicz Topos with an n-valued Łukasiewicz Algebraic Logic subobject classifier; genetic network transformations in Carcinogenesis, developmental processes and Evolution/ Evolutionary Biology; Relational Biology of Archea, yeast and higher eukaryotic organisms; nonlinear dynamics in non-random, hierarchic genetic networks; proteomics coupled genomes via signaling pathways;mechanisms of neoplastic transformations of cells and topological grupoid models of genetic networks in cancer cells; natural transformations of organismic structures in Molecular Biology. |
Subjects: | Computer Science > Dynamical Systems Computer Science > Complexity Theory JOURNALS > Medical Education Online > MEO PrePrint Biology > Theoretical Biology |
ID Code: | 3703 |
Deposited By: | Baianu, Professor I. C. |
Deposited On: | 06 Jul 2004 |
Last Modified: | 11 Mar 2011 08:55 |
References in Article
Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page