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COMPUTER TECHNOLOGY

Algorithms for randomness in the
behavioral sciences: A tutorial

MARC BRYSBAERT
University of Leuven, Leuven, Belgium

Simulations and experiments frequently demand the generation of random numberathat have
specific distributions. Thisarticle describes which distributions should be used for themost cam-
mon problems and gives algorithms to generate the numbers~Iti~aiso shown that~acommonly
used permutation algorithm (Nilsson, 1978) is deficient.

Numerous studies in the behavioral sciences make use
of “randomness”: Subjects must be randomized over con-
ditions, stimuli are to be presented in an unpredictable
sequence, simulations involve an unsystematic compo-
nent, or events must take place at random time intervals.
Unfortunately, “randomness” is notan unambiguous con-
cept. There are several “types” of randomness, each of
which is appropriate only under well-specified conditions.
This article consists of an attempt to give an idea of the
most common types of randomness and the situations in
which they are to be applied. It is intended as a practical
guide for researchers, with mathematical proofs and
justifications omitted as much as possible. This may make
the text unsatisfactory for mathematically oriented scien-
tists, but it should make it readable for everyone who
wants a short review and a brief answer to problems that
canoccur in the actual use and generation of random num-
bers. Emphasis has been placed on problems encountered
in experimental psychology. Researchers interested in
simulations will find a groundwork in the text, but they
may additionally wish to consult more specialized texts
such as Kennedy and Gentle (1980), Knuth (1981), or
Ripley (1987).

GENERATING RANDOM NUMBERS

Although in a strict sense a sequence of random num-
bers can onlybe obtained from a truly random phenome-
non, practical limitations have led to the almost exclu-
sive use of pseudorandom number generators in science.
These are mathematical functions that are essentially de-
terministic, but ones that mimic the properties of a se-
quence of independent uniformly distributed random vari-
ables (i.e., variables of which each value has the same
probability of occurring). These sequences can further be

translated into samples from other distributions (e.g., from
the standard normal distribution; see below). First, we
will consider the generation of uniformly distributed ran-
dom numbers.

Uniform Distribution
By far the most successful pseudorandom number gen-

erators known today are special cases of the (linear) con-
gruential method first proposed by Lehmer (Knuth, 1981;
Ripley, 1987). A sequence of random numbers is gener-
ated with the use of the following equation:

X,1+1 = (aX~+ c) mod m

in which

a, c = positive constants,

(1)

a > 0, C 0,

m = the modulus, m > a, m > Xo, m > c,

X0 = the starting value or seed,

X,~ = the nth value of the sequence, and

mod = the modulus operator (returns the remainder
of the division of two integer operands, e.g.,
10 mod 3 = 1, because 3*3+1 = 10; like-
wise, 9 mod 3 = 0, and 11 mod 3 = 2).

In most cases, the numbers generated by Equation 1
are further divided by the modulus m, in order to obtain
a (uniform) distribution of real numbers between 0 and
1. However, not all values of a, c, and m yield a good
random generator. There is a large literature about which
values to use (see Nance & Overstreet, 1972; Sahai, 1979;
Sowey, 1972, 1978, 1986, for bibliographies). Table 1
gives some of the best values that have been suggested
hitherto, and references to where more information may
be found.

As shown in Table 1, the modulus of the generators is
quite large. This is because all congruential random num-
ber generators ultimately get into a loop, producing a se-
quence ofnumbers that is repeatedendlessly. The length of
the repeating sequence is called the period ofthe generator;
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Table 1
Some Good Random Number Generators Given in the Literature

X
0

m a c Source Period
odd 2~’ 13’~ 0 Ripley (1983) 2”
odd 248 44485709377909 0 Ripley (1983) 246

2~’ 5” odd Knuth (1981) 2~’
232 69069 odd Ripley (1983) 232
232 100485 1 Atkinson (1980) 232
232 1589013525 odd Ripley (1983) 232

odd 2~’ 663608941 0 Dudewicz and Ralley (1981) 2~°
<>0 2~’—l 630360016 0 Dudewicz and Ralley (1981) 2~’—2
<>0 2~’—1 764261123 0 Dudewicz and Ralley (1981) 2~’—2
<>0 2~’—1 950706376 0 Fishman and Moore (1986) 2~’—2

generator 1: a = 171
generator 2: a = 172
generator 3: a = 170

3, 8, 0, 2,
2, 6, 5, 3,

0, 2, 6, 5,
8, 0, 2, 6,

m = 30269,
m = 30307,
m = 30323.

if seedl < 0 then set seedl =

if seed2 < 0 then set seed2 =

if seed3 < 0 then set seed3 =

it is always less than or equal to the modulus m. A gener- & Hill, 1984). In addition, Wichmann and Hill (1982)
ator with modulus 8 thus yields a period of 8 different provided an implementation of the algorithmthat requires
numbers at most. For instance, a generator with a = c = arithmetic only up to 30323 and therefore is easy to im-
5 and m = 8 always gives the sequence ..., 1, 2, 7, 0, plement on a 16-bit microprocessor (the maximum value
5, 6, 3, 4, 1, 2, 7 irrespective of the starting value of a 16-bit integer is 32767). Wichmann and Hill’s (1982)
(the only difference that the starting value makes consists implementation is the following:
of where in the period the process is started). The impor-
tance of the values of a and c can be illustrated ifwe take, Algorithm 1
for instance, a = c = 2, m = 9. This leads not only to Wichmann and Hill’s (1982) Random Number Generator
a period shorter than the maximum period (i.e., 9), but
also to a period that depends on the starting value, as can

1. Define 3 starting values (one for each subgenerator)
set seed 1 = 0 < seed 1 < 30269,

be seen below set seed2 = 0 < seed2 < 30307,

X0 = 0 —~ 0, 2, 6, 5, 3, 8, 0, ...
set seed3 = 0 < seed3 < 30323,

X0 = 1 —p 1, 4, 1, 4, ... 2. Calculate random number and redefine 3 starting
X0=2—~2,6,5, values
X0 = 3 —÷ 3, 8, 0, set seedi =

X0 = 4 —* 1, 4, 1, 4, ... 171 * (seedi mod 177) — 2 * (seedi div 177)’
X0=5—÷5,3,8, setseed2=
X0 = 6 —~ 6, 5, 3, 172 * (seed2 mod 176) — 35 * (seed2 div 176)
X0=7—*7,7,7,... setseed3=
X0 = 8 —~ 8, 0, 2, 6, 5, 3, 8, ... 170 * (seed3 mod 178) — 63 * (seed3 div 178)

All the generators in Table 1 produce satisfactory se-
quences of random numbers if the requirements with
respect to the starting value are met (in some cases this
value must be odd or different from zero). One problem,
however, seriously limits their use in everyday scientific
life. Because round-off errors must not occur, the al-
gorithms are difficult to implement on the 16-bit micro-
processors frequently used inpsychological laboratories.
This problem for a long time seemed unsolvable, because
of the need for a sufficiently large modulus, but in 1982
Wichmann and Hill presented a rather simple solution.
They showed that adding several congruential generators
and taking the fractional part led to a new congruential
generator with a much larger modulus and much better
statistical properties. More specifically, they used the fol-
lowing three multiplicative (i.e., c = 0) generators:

seedI + 30269
seed2 + 30307
seed3 + 30323

set random number =

fractional part of (seed1/30269 + seed2/30307
+ seed3/30323)

3. Optional, to check for rounding-offerrors (McLeod,
1985)

if random number 0
then set random number = 1E-30

if random number 1
then set random number = 0.9999999999

4. Return random number

The generator needs three seeds to start (see Part 1 ol
the algorithm). All seeds must be larger than 0 and smallet
than their modulus. They only need to be defined before
the first random number is calculated, because they are

2~ updated every time a new number is produced. Taking
‘ / the same seeds leads to the same sequence of random num-

bers, which may be appropriate in simulations to test the
effect of a small variation in one of the parameters, bui
which usually is not necessary. “Random” seeds can be
obtained by using either the time-of-day clock informa-

The composite generator is equivalent to a simple mul-
tiplicative congruential generator with a = 1655 54252
64690 and m = 2781 71856 04309 (Zeisel, 1986), and
it has an estimated period length of 6.95 * 1012 (Wichmann
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tion or the random number generatorof the machine (i.e.,
the routines RANDOMIZE and RND in Microsoft BASIC).
However, the best way to guarantee that two subsequent
sequences are independent is to take the lastvalues of the
first series as the seeds of the second series. “Random”
seeds involve the (small) risk that the generator starts
somewhere in the sequence of the previous series and thus
produces two related strings of random numbers. In the
worst case, all numbers in the second series match the
sequence of numbers in the first series.

McLeod (1985) pointed to the possibility that round-
off errors in some systems may yield random numbers
equal to 0 or 1. In the remainder of this article, random
numbers are always assumed to be larger than 0 and
smaller than 1, and therefore it may be advisable to in-
clude Part 3 of the algorithm. Otherwise, problems may
arise. For instance, in the randomization procedure (see
below), there will be a range error if the random number
equals 1, and in many of the algorithms for standardnor-
mal distributions, to take the logarithm will be impossi-
ble if the random number equals 0.

Wichmann and Hill’s (1982) random number genera-
tor has been tested several times (Wichmann & Hill, 1982;
MacLaren, 1989; see also below), and it produces a very
satisfactory output. Therefore, its use is strongly recom-
mended. An additional advantage is that it can easily be
reproduced in different laboratories, because the algorithm
yields the same sequences of numbers on different sys-
tems (at least if the starting values are known).

The onlydisadvantage of the algorithm is that it is rather
slow. On our system (an IBM AT 286 clone running at
8.9 MHz according to the Landmark CPU speed test),
with Turbo Pascal 4.0 software (Borland), it takes
1.38 msec to generate one random number. This is 9.2
times slower than the built-in random number generator
(0.15 msec pernumber). However, although things may
have improved for recent versions of languages, one
should be skeptical about the performance of the built-in
generators (see, e.g., Afflerbach, 1985, on Commodore
and Apple; Aldridge, 1987, on the Apple H; Edgeil, 1979,
on the DECsystem-10; Lordahl, 1988, on IBM; Modianos,
Scott, & Cornwell, 1987, on several PCs; Strube, 1983,
on the Commodore VIC-20). Therefore, if “true” ran-
domness is essential, researchers should at least do some
empirical tests on the appropriateness of their system (see
below) if Wichmann and Hill’s (1982) generator is not
to be used. Researchers should also check to see that the
built-in algorithm is reseeded every time a new sequence
of numbers is desired. Microsoft BASIC and Turbo Pascal,
for instance, always return the same sequence if they are
not reseeded with the RANDOMIZE statement.

Of course, the choice of random number generators to
a large extent depends on what is investigated. For some
applications, the most important requirement is that all
values have the same probability of occurring, a require-
ment that most built-in generators meet. For instance, if
one wants to estimate the probability that x2

< y (x and
y being uniformly distributed random variables between
0 and 1), a built-in generator will create approximately

the same results as will Wichmann and Hill’s (1982) gen-
erator. The only difference will be that the latter takes
more time (for those who are interested, the exact value of
P(x2 <y) = 2/3; 100,000 trials with Algorithm 1 gave an
estimate of 0.6647, and 100,000 trials with the IBM built-
in generator yielded 0.6641). If, however, the indepen-
dence of the numbers in a sequence is predominant, most
built-in generators will fail (see, e.g., Lordahl, 1988).

Since many processes do not have a uniform (rectan-
gular) distribution, the random numbers generated by Al-
gorithm 1 are only occasionally useful without transfor-
mation. Additional algorithmsare needed to transform the
numbers into samples from other distributions. Thisarti-
cle only deals with two of these distributions, the stan-
dard normal and the standard exponential. The normal
distribution is considered because of its importance in
many simulations, the exponential distribution because we
need it for randomness in time. Algorithms for other dis-
tributions (Student’s t, F, chi-square) can be found in
Kennedy and Gentle (1980) or Ripley (1987), or in
preprogrammed statistical simulation packages such as
DATASIM (Bradley, 1988; Bradley, Senko, & Stewart,
1990). It should also be noted that it is possible to con-
vert uniformly distributed random numbers into random
numbers from any distribution by using the simple fact
that the cumulative density function (cdf) of any distri-
bution is uniform between 0 and 1. All that is necessary
is to generate a uniformly distributed random variable
(which denotes a point on the cdf) and take the inverse
of the cdf function whose distribution you desire to sam-
ple from. Examples are given below for the standard nor-
mal and the standard exponential distribution, but the rule
can be extended to any distribution.

Normal Distributions
There are numerous ways to convert a uniform distri-

bution of numbers between 0 and 1 to a standard normal
distribution (mean equal to 0 and variance equal to 1).
Five of them will be discussed here. They are chosen be-
cause they are reasonably fast and accurate, and they re-
quire but a small amount of memory.

As indicated above, a first way to convert a random
number generated by Algorithm 1 into a standard nor-
mal deviate is to consider each number as a value of the
cdf of the standard normal. We all know that a z value
of —1.96 corresponds to a cdfvalue of 0.025 and a z value
of 1.96 to a cdf value of 0.975, because we have all used
it to calculate (two-tailed) statistical significance. Thus,
what we need is an algorithm that converts cdf numbers
such as 0.025 or 0.975 into their corresponding z values
of —1.96 and +1.96. Brophy (1985) compares several
of these algorithms, one of which (Hill & Davis’s) will
be used in Algorithm 2. This algorithm has been chosen
because it is quite accurate (maximum absolute error of
0.00035) and relatively fast (see below). Other algorithms
may be preferred if either speed or accuracy is to
predominate (see Brophy, 1985, for these algorithms). In
the following algorithms, Z denotes a random variate from
the standard normal distribution.
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Algorithm 2
Standard Normal via Inverse Function

generate U1 = random number
if U1 > 0.5 then set U2 = 1 — U1 else set U2 = U,
if U2 < 1E — 20 then set Z = 10
else se-
t A = sqrt(_2*ln(U2))

Z = A_((7.45551*A+450.636)*A+ 1271.059)!
(((A+ 1 lO.42l2)*A+750.365)*A+500.756)

if U1 > 0.5 then set Z = —Z
return Z

A second method for the normal distribution owes to
Box and Muller (1958). The underlying rationale is rather
simple (see, e.g., Ripley, 1987, p. 54), but, for the sake
of brevity, it will not be explained here. The algorithm
is the following:

Algorithm 3
Standard Normal According to Box-Muller

generate U1 = random number, set A = 2irU,
generate U2 = random number
set B = —ln(U2), C = sqrt(2B)
return Z1 = C*cos(A), Z2 = C*sin(A)

Algorithm 3 produces two independent standard nor-
mal deviates, Z1 and Z2, at least if the random number
generator is good. If the generator is not good, the (Z1, Z2)
pairs are likely to be situated on a limited number of
circles or radii (see the cautionary tale in Ripley, 1987,
pp. 55-59). We have plotted several hundreds of thou-
sands of these (Z1 , Z2) pairs based on Algorithm Ito check
whether they are indeed dispersed throughout the whole
plane. Algorithm 1 passed the test very well.

A third method to generate standard normal deviates
is Marsaglia’s (1962) polar method, a modification of
the Box-Muller algorithm. It avoids evaluation of sines
and cosines.

Algorithm 4
Standard Normal via the Polar Method

repeat
generate U, = random number, set V1 = 2*U, — I
generate U2 = random number, set V2 = 2*U2 — 1

until W = V~+ V~< 1
set A = sqrt(_2*ln(W)/W)
return Z, = AV1, Z2 = AV2

Marsaglia and Bray (1964) published a modification of
the polar method that is slightly more complicated but
faster. Speed is acquired by introducing simple auxiliary
functions that can be assessed most of the time, and by
restricting the time-consuming polar algorithm to fill
in the gaps between the theoretical distribution and the
approximation.

Algorithm 5
Standard Normal According to Marsaglia-Bray

generate U = random number
if U < 0.8638 then

generate U1 ,U2,U3 = random numbers
setZ =2(U, + U, + U3) —3

else if U < 0.9745 then
generate U1,U2 = random numbers
setZ = l.5(U, + U3 — 1)

else if U < 0.9973002039
repeat

generate U, = random number
set V = 6*U, — 3
generate U2 = random number

until 0.358*U2 ~ g(V) *

set Z = V
else

repeat
repeat

generate U1 ,U2 = random numbers
set V1 = 2*U1 — 1, V2 = 2*U2 — 1

until W = W + V~< 1
set A = sqrt((9_2*ln(W))/W)
set B = AV,, set C = AV2

until jBJ > 3 or id > 3
if IBI > 3 then Z = B else Z = C

endif
return Z
*g(v)ae2/22b(3v2)c(l.5~v~), vi < 1

ae_v2~’2_b(3_ivj)2_c(l.5_ivi), 1 lvi <1.5

ae~Z~’2_b(3_jvi)2, l.5 ivi<3
a = 17.49731196, b = 2.36785163, c = 2.15787544

A final algorithm we will include is the ratio of uni-
forms (Best, 1979; Knuth, 1981, pp. 125—127; Ripley,
1987, p. 82).

Algorithm 6
Standard Normal via Ratio of Uniforms

1. generate U, ,U~= random number
set V = 0.8578*(2*U2 — 1)
set Z = V/U1
set A = 0.25*Z2

2. if A < 1 — U, then go to 3
if A > 0.259/U,+0.35 then go to 1
if A > —ln(U,) then go to 1

3. return Z

An algorithm is good if it is reasonably fast and accurate
in the tails, and if it returns deviates with a cdfvalue close
to the expected value. Table 2 gives these results for the
five algorithms presented above. The first three columns
give the tail probabilities at the low end of the distribu-
tion, the next three at the high end. The seventh column
tabulates the maximal absolute difference between the ob-
tained and the expected cdf, and the eighth column returns
the average time needed for the generation of one devi-
ate.2 All algorithms used random numbers generated with
the use of Algorithm 1. Because the generation of these
random numbers is relatively slow, the average number
of uniform deviates needed for the calculation of a nor-
mal deviate will be a considerable factor in the speed of
an algorithm; this value is therefore given in the next to
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Table 2
Performance of Algorithms 2—6 for the Generation of Normal Deviates; Estimates Based on 100,000 Trials

Mean Mean
Number Number

Algorithm

Tails

Maximum
Jcdfo_cdf,I*

Mean Time!
Deviatet

of Random of Time-
Numbers Consuming
Required Functions

per Deviate per Deviate

Lower Upper

.00050 .00500 .02500 .02500 .00500 .00050
Inverse .00051 .00490 .02532 .02437 .00498 .00055 .00256 9.37 1.00 2.00
Box-Muller .00042 .00500 .02563 .02519 .00521 .00069 .00325 6.22~ 2.00 3.00
Polar .00039 .00504 .02533 .02481 .00485 .00047 .00351 5.65~ 2.54 2.00
Marsaglia-Bray
Ratio of uniforms

.00049
.00053

.00509

.005 16
.02583 .02561
.02535 .02551

.00511

.00540
.00045
.00050

.00229

.00372
6.51
7.25

3.93 0.06
2.73 0.52

*Maximum absolute difference between obtained and expected cdf. Normal cumulative density function calculated using equation 26.2.17 of
Zelen and Severo (1964), which has an error < 7.5*108. tTime in milliseconds. Estimated with an IBM AT 286 clone running at 8.9 MHz
according to the Landmark CPU Speed Test. Turbo Pascal 4.0 (Borland) software. lAlgorithm returns two standard normal deviates.

the last column of Table 2. Another important aspect of
the speed is the average number of time-consuming oper-
ations (logarithms, exponentials, square roots, sines and
cosines) that need to be evaluated. This figure is presented
in the last column of Table 2. All estimates are based on
100,000 trials.
The accuracy in the tails and the maximum absolute

deviation of observed and expected cdf values are good
and comparable for all five algorithms. Only the time
needed to evaluate a standard normal deviate differs and
ranges from 5.65 msec for the polar method to 9.37 msec
for the inverse cdf method (for the system and the lan-
guage used). Because the Marsaglia-Bray method requires
the most random numbers (i.e., 3.9), the results are more
in favor of it if random number generation is fast. One
way of speeding it up might be to evaluate the random
number in the first step with the built-in generator. The
major requirement of this number is that it be uniformly
distributed, as is the case for most built-in generators
(e.g., in our system, estimates based on 1,000,000 trials
yielded an error smaller than 1.4 * l0~between the ob-
served probabilities and the probabilities required for the
Marsaglia-Bray algorithm). The time needed for the
generation of one standard normal deviate then drops from
6.51 to 5.34 msec.

Exponential Distributions
Just like normal deviates, exponential deviates can be

generated by using the inverse cdf function. The cdf of
an exponential distribution is F(x) = 1 —e~”,and the in-
verseisF’(U) = —ln(l—U)!X. If X = 1, wehavethe
standard exponential. U is a uniformly distributed random
number between 0 and 1, so that, for programming pur-
poses, it makes no difference whether we take 1 — U or
U. This gives us the following algorithm(E denotes a ran-
dom variate from the standard exponential distribution):

Algorithm 7
Standard Exponential via Inverse Function

generate U = uniformly distributed random number
set E = —ln(U)
return E

A second way to generate exponential deviates is to split
the range of E up into intervals. More specifically, the
exponential distribution is considered as the compound
of a geometric and a new exponential distribution with
pdf e_x!(l —e~’).The following algorithm owes to von
Neumann (1951). Its advantage is that it avoids the ex-
plicit use of the logarithm function (which is rather time-
consuming).

Algorithm 8
Standard Exponential According to von Neumann

let I = 0
1. generate U, = random number

set A =~U1
2. generate U2 = random number

if U1 U, then return E = I + A
3. generate U3 = random number

if U3 s U2 then go to 2
4. set I = I + 1

gob 1.

The last algorithm that we will discuss for generating
exponential deviates makes use of the ratio-of-uniforms
method. The fourth, the fifth, and the sixth steps are op-
tional pretests to avoid calculation of the logarithm in step
seven. More information on the algorithm is to be found
in Ripley (1987, pp. 69-71; note, however, the mistake
in the algorithm outline on p. 71).

Algorithm 9
Standard Exponential via Ratio of Uniforms

1. generate U1,U2 = random numbers
set V = 2/e * U2
set E = V/U,
if E/2 ~
if E!2 >
if E/2 >
if E/2 >

2. return E
a = 1.6487 b1 = 0.105 b2 = 0.773

Accuracy in the tails, maximum absolute deviation be-
tween observed and expected cdf values, and speed of the

(l+ln(a) — a*Uj then go to 2
b,/U, — (l+ln(b,)) then go to 1
b2/U, — (l+ln(b2)) then go to 1
—ln(U,) then go to 1
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Table 3
Performance of Algorithms 7—9 for the Generation of Exponential Deviates; Estimates Based on 100,000 Trials

Mean Mean
Number Number

Algorithm

Tails

Maximum
Icdfo_cdftl*

Mean Time!
Deviatet

of Random of Time-
Numbers Consuming
Required Functions

per Deviate per Deviate

Lower Upper

.00050 .00500 .02500 .02500 .00500 .00050

Inverse .00046 .00484 .02450 .02418 .00483 .00055 .00353 5.80 1.00 1.00
Neumann .00057 .00470 .02483 .02518 .00461 .00052 .00263 6.59 4.29 0.00
Ratio of uniforms .00049 .00521 .02501 .02404 .00456 .00046 .00272 8.71 2.95 0.23
*Maximum absolute difference between obtained and expected cdf. tTime in milliseconds. Estimated with an IBM AT 286 clone running at
8.9 MHz according to the Landmark CPU Speed Test. Turbo Pascal 4.0 (Borland) software.

three algorithms are listed in Table 3. Again, accuracies
are similar, but this time the inverse cdf function (Al-
gorithm 7) is fastest, at least if uniformly distributed ran-
dom numbers are generated with the use of Algorithm 1.
The average sum of random numbers needed to generate
an exponential deviate shows that von Neumann’s (1951)
method will be superior if random number generation is
faster (e.g., with the built-in generator, von Neumann’s
algorithm only takes 1.32 msec, against 4.35 for the in-
verse, and 5.06 for the ratio of uniforms).

TESTiNG RANDOM NUMBER GENERATORS

Empirical tests of random number generators can be
divided into two broad categories. The first category con-
sists of tests to examinewhether the distribution of gener-
ated numbers corresponds to the theoretical distribution.
This can be done witheither a chi-square goodness-of-fit
test or the Kolmogorov-Smirnov (K-S) test. The latter
test is more powerful when continuous functions are in-
volved, but care should be taken with respect to which
source is consulted. Many textbooks in the behavioral
sciences do not provide a correct description of the K—S
test (Kraner, Mohanty, & Lyons, 1980). The obtained
value of the fit statistic (chi-square as well as K—S) should
be close to the expected value and not to zero, since small
values indicate that the sequence fits the distribution too
well. For instance, if we want to check whether Wich-
mann and Hill’s (1982) random number generator pro-
duces an equal number of digits between 0 and 9 when
multiplied by 10 and truncated, we should find a chi-
square value around 9—that is, the number of degrees of
freedom of the frequencytest (100 chi-square tests based
on 1,000 numbers each yielded an average valueof 8.87,
which is indeed close to the expected value). Similarly,
a frequency test of the numbers 0—99 after multiplication
by 100 and truncation should have an expected value of
99 (100 chi-square tests based on 1,000 numbers gener-
ated by Algorithm 1 yielded an average value of 97.90).
The test can be made more precise, because not only
should the average value of the fit statistic be close to the
expected value, but also the distribution of obtained values
should coincide with the theoretical distribution (see, e.g.,

Dudewicz & Ralley, 1981). Thus, the distribution of 100
chi-square values based on the frequencytest of the digits
0-9 (see above) should correspond to a chi-square distri-
bution with 9 degrees of freedom. This againcan be exam-
ined with the use of a K—S test or a chi-square goodness-
of-fit test.

The second category consists of empirical tests to in-
vestigate whether the numbers in a sequence are well
spread. It is not enough for Algorithm 1 to generate a uni-
form distribution of numbers. The numbers of the se-
quence must also be independent, and this is where most
generators fail (see above). There is virtually an infinite
number of tests that can be conceived to measure this
property quantitatively. dhi-square and correlation tests
can be used to test whether subsequent numbers are un-
related, although attention should be paid to the factthat,
for some tests, the data are not independent and there-
fore a modified version is required (see Knuth, 1981, and
Ripley, 1987, for more information). Independence can
also be examined by making predictions from the (as-
sumed) independence and checking whether the data do
indeed conform to these predictions. For instance, if digits
between 0 and 9 are generated, we can tabulate the fre-
quency of the interval lengths between two identical digits
and compare the obtained frequencies with the expected
ones. This test is known as the gap test. Wecan also look
at the monotone increasing and decreasing subsequences
and see whether their frequencies conform to the expected
probabilities (a test known as the runs test). Or we can
consider the lengths of sequences needed to “collect” all
digits (coupon collectors’ test), look at the number of
matching digits in subsequences of four (the poker test),
or calculate the frequency of the middle digit’s being the
maximum in a chain of three (the maximum test), and
so on.

More information about such empirical tests can be
found inKennedy and Gentle (1980), Knuth (1981), and
Ripley (1987), mentioned in the introduction, or in Gruen-
berger and Jaffray (1965; but see below). The tests are
not discussed at full length here, because all generators
of Table 1 and Algorithm 1 are known to pass them suc-
cessfully. For the same reason, theoretical tests that can
be applied on random number generators (Atkinson, 1980;
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Knuth, 1981; MacLaren, 1989; Ripley, 1987) are omit-

ted in this article.

THE USE OF RANDOM NUMBERS

To know how to generate random numbers is impor-
tant, but it is only a first step. Once we have the source
of randomness, we need to apply it correctly. In the re-
mainder of the article, three selected topics will be dis-
cussed: randomization of stimuli and subjects, random
sampling, and randomness in time. These topics havebeen
chosen because of their importance in experimental psy-
chology, and because they tend to be neglected in more
general texts dealing with simulations.

Randomization of Stimuli and Subjects
Strings of independent random numbers are not very

interesting for randomizing subjects or stimuli, because
they may lead to serious imbalances. Suppose an ex-
perimenter needs a string of 100 binary digits (zero and
one) in order to determine whether a subject is included
in Condition A or Condition B. Generating such a string
with a random number generator involves a risk of at least
0.27 that more than 55 of the 100 subjects are included
in one condition, and fewer than 45 in the other. To avoid
these imbalances in randomization, sampling without re-
placement is a better technique. This is achieved by first
listing all alternatives and then making a random permu-
tation of the list.

Before presenting a good permutation algorithm, how-
ever, we would like to give a cautionary tale. For years
we used an algorithm (Nilsson, 1978) in our laboratory
that at first sight seemed very sound and that we actually
were going to defend in this article. Yet the algorithm
failed on the first and most basic test that was applied to
it in our analysis for the present article. Nilsson’s (1978)
algorithm is the following. First, all alternatives are listed
in an array with N elements (e.g., for the exampleabove,
an array of 50 Os and 50 ls would be created). Then, a

random permutation of the array is made by applying the
following algorithm:

set I = 0
repeat

set I = I + 1
set U = integer random number ranging from 1 to N
set A = X[I] (i.e., the ith element from the array)
set X[I] = X[U]
set X[UJ = A

until I = N

Each element I of the array can be exchanged with all
possible alternatives, which leads to a total sum of imag-
inable rearrangements equal to N” (e.g., an array of
10 digits can be rearranged in lO’°different ways). At
the time, this sounded very convincing to us, and we ap-
plied the algorithm without further testing. However,
when for testing purposes we listed the 5! = 120 possi-
ble orderings of 5 digits and made 12,000 simulations to
check whether the 55 = 3,125 possible rearrangements
were equally divided over the orderings, we always ob-
tained chi-square values around 700, even though values
around 119 were expected (see above). This indicated that
something was wrong. If we looked further at the first
digit of the permuted array, we saw that the probability
was 0.194 that this digit was the first of the original ar-
ray, 0.245 that it was the second, 0.2 14 that it was the
third, 0.183 that it was the fourth, and 0.164 that it was
the fifth (the expected value each time was 0.200). That
is, the probability (based on the 12,000 simulations) of
the first digit’s being 1 was good, but then the probabil-
ity decreased monotonically from the first digit’s being
2 to the first digit’s being 5. The inequality increased as
the number of elements in the string was augmented. For
instance, the probability that the second element of a 100-
item array was the first in the permuted array amounted
to 0.014 (100,000 simulations; expected value, 0.010),
whereas the probability of the 100th element’s being first
was only 0.007 (again 0.010 expected). Remember that

Table 4
Distribution of Data from a 10-Item Array after Permutation

with Nilsson’s Algorithm (100,000 simulations); Entries Are Conditional Probabilities
of Item’s Being in Final (Column) Position, Given Initial (Row) Position

Position
in Original Position of Item after Permutation

Array 1 2 3 4 5 6 7 8 9 10
1 .100 .099 .099 .101 .100 .098 .101 .101 .102 .100
2 .130 .095 .094 .095 .097 .096 .098 .098 .099 .099
3 .120 .124 .090 .091 .090 .095 .094 .098 .099 .099
4 .111 .116 .121 .087 .090 .091 .093 .094 .096 .099
5 .103 .109 .112 .119 .085 .087 .092 .095 .097 .101
6 .099 .102 .107 .111 .118 .087 .089 .091 .096 .101
7 .092 .096 .102 .106 .112 .122 .086 .090 .096 .098
8 .087 .091 .096 .102 .107 .113 .119 .090 .094 .100
9 .081 .086 .091 .096 .103 .107 .116 .124 .096 .100

10 .077 .082 .087 .093 .097 .105 .111 .120 .127 .101
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an array of 100 elements could be rearranged in 100’°°
different ways. Table 4 gives the distribution of a 10-item
array after permutation (the data are based on 100,000
simulations). The differences between observed and ex-
pected probability are largest in the lower left corner.

Nilsson’s (1978) algorithm learns two things. First,
that something looks complicated and/or seems appropri-
ate does notmake it random; and second, not all procedures
published in establishedjournals and/or books have been
well tested (though we admit that mistakes are sometimes
very difficult to trace both by authors and by reviewers).

If we then look for a good permutation algorithm, we
have to return to the basic process we want to simulate.
What is needed is random sampling without replacement.
This can be compared with a bowl that contains N ele-
ments, from which one element after another is picked
out and processed. Each itemhas a probability of 1/N to
be picked out first. If it is not picked out the first time,
it has a chance of 1/(N— 1) to be picked out second, a
chance of 1/(N—2) tobe picked out third, and so on, un-
til all items are removed from the bowl. The following
algorithm does just this. It draws an element!withchance
l/(N—I+ 1) from the array and places it at the end. Note
that the number of possible rearrangements is smaller than
that for Nilsson’s algorithm (N! instead of NN) yet, it
produces much better results.

set I = N + 1

Algorithm 10
Permutation

repeat
set I = I — 1
generate U = integer random number from 1 to I
set A = X[I]
set X[I} = XEUI
set X[U] = A

until I = 2

Twenty simulations in which 12,000 permutations of
a five-item array were generated yielded a mean chi-
square value of 116.16 for the differences between the
observed and expected frequencies over the 120 possible
orderings (see above). This is close to the expected value
of 119. Algorithm 10 was first proposed by Moses and
Oakford (1963) and Green (1963).
There are two more things to be said about randomiza-

tion. First, Algorithm 10 produces truly random sequences
of items. There is no need to “correct” it by adding con-
straints, as is sometimes seen in the literature. For in-
stance, it is not necessarytoalter the sequences with more
than three stimuli belonging to the same condition, in
order to make the sequence more random. Actually, these
“corrections” are usually mistakes due to human failure
to produce randomness without special training. Theirnet
result is more often an increase of information rather than
a decrease (e.g., excluding all sequences with more than
three subsequent stimuli of the same condition informs
the subject about the fact that if three stimuli of the same
type have been presented, the fourth will surely be one

of a different type). Those “corrections” should be
avoided, unless experimental tests ofmodels require such
“nonrandom” constraints. A secondcommon mistake with
respect to permutation is the idea that it suffices to make
just one random permutation of a stimulus series and to
present that permuted series to all subjects. The major
aim of randomization is to preclude sequenceeffects, and
because this is largely done by “averaging out” in-
fluences, every systematization may involve a bias. With
the ubiquitous use of microcomputers, it is not difficult
to generate a new permutation for each subject and/orex-
perimental session.

Random Sampling
Two procedures for drawing a random sample from a

population can be distinguished, depending on the need
to preserve the order of the subjects/stimuli. If the order
is of no importance, Algorithm 10 can be used. For in-
stance, if 10 stimuli must be drawn from a population of
100, the algorithm is applied from I = 100 till I = 91,
and the last 10 items of the array are used as the sample.
If, on the other hand, the order of the stimuli is critical,
either a sorting algorithm(see, e.g., Dreger, 1989; Dwyer
& Critchfield, 1978; Ellis, 1985; Knuth, 1973; Press,
Flannery, Teukolsky, & Vetterling, 1986) must be added
to Algorithm 10, or another algorithm must be used.
Bissell (1986) proposed the following procedure:

Algorithm 11
Random Sampling with Order Preservation

1. set population size = N, sample size = n
setA = N — n, N’ = N, A’ = A

2. generate U = random number
set B = 1

3. set B = B * A’/N’
if B U then select item N—N’+l

set N’ = N’ — 1
if N’ > 0 then go to 2 else stop

else set N’ = N’ — 1
set A’ = A’ — 1
if N’ > 0 then go to 3 else stop

To test Algorithm 11, all possible samples of 5 elements
drawn from a population of 10 elements were listed. This
yielded a total of 10!/5!5! = 252 samples. Twenty repli-
cations of 25,200 sample drawings were completed, which
gave an average chi-square value for the difference be-
tween the observed and the expected frequencies equal
to 248.93, very close to the expected value of 251.

Randomness in Time: The Exponential and
Geometric Distribution

The generation of exponential deviates has been in-
cluded in this paper because the exponential distribution
is the only one that yields true randomness in time. Sup-
pose, for instance, that an experimenter wants to control
eye fixations in a visual word recognition task. The ex-
perimenter does so by flashing a digit instead of a word
at the fixation location from time to time. Subjects have
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to identify the tachistoscopically presented digit, and if
too many errors are made, the session is called invalid.
Luce (1986, pp. 13-15) argues that in such a case it would
be a bad strategy to use a random variable with a uni-
form distribution—say, a time-interval varying from 0 to
9 stimuli, with each value having the same probability—
because such a procedure changes the amount of infor-
mationbetween different values of the variable. Immedi-
ately after presentation of a digit, chances are 1 / 10 that
a new digit will be presented. However, if no digit has
been presented on the 1st trial, chances become 1/9 that
it will be shown on the 2nd trial. Similarly, if no digit
was shown in the first two trials, chances are 1/8 that it
will appear on the 3rd trial, and so on. Finally, after 9
trials without a digit, the probability of a digit on the 10th
trial reaches 1, which is a complete lack of randomness.
Thus, what is needed is a procedure that will keep the
probability of presenting a digit constant at each trial. If
chances are 1 / 10 that a digit is presented immediately af-
ter another digit, the probability that a digit is presented
on Trial 2 if no digit has been presented on Trial 1 must
also be 1/10. Or to put it differently, the probability that
a digit is presented on Trial 2 must equal 9/10 * 1/10 =

0.09 (i.e., the probability that no digit has been presented
on Trial 1 times the probability that a digit is presented
on Trial 2). Similarly, the probability of a digit on Trial 3
is 0.9 * 0.9 * 0.1 = .081, and so on. More formally,
the probability that a digit is presented on Trial i equals
(1 —p)1’ * p, which is the geometric distribution, the dis-
crete equivalent of the exponential function. An algorithm
for sampling from a geometric distribution is the following:

Algorithm 12
Geometric Distribution

generate E = random standard exponential deviate
setA = —ln(l—p)
return G = integer part of E/A G = 0,1,2,...

The exponential and/or geometric distribution should
be utilized whenever randomness in time is required (e.g.,
also for random foreperiods in reaction time studies; see
Luce, 1986, pp. 54-55). Exponential distributions can be
used for simulations as well. For instance, Strube (1983;
see also Gruenberger & Jaffray, 1965) proposed the fol-
lowing test to check the usefulness of a random number
generator. Integers between 0 and 9 are generated and
the average interval between repetitions of the digits in
the series is examined. The distribution of these inter-
vals is geometric with probability density function =

* 0.1, expected value = 9 = (l—p)/p, and vari-
ance = 90 = (1 —p)/p2 (Luce, 1986, p. 41). This test is
known in the literature as the gap test (see above). How-
ever, whereas most authors (see, e.g., Knuth, 1981) verify
the usefulness of a generator by comparing the observed
and the expected frequencies of the different gaps with
the use of a chi-square test, Strube (1983) proposed to
compare the average gap with the expected value and to
compute a t test. Furthermore, he calculated the variance

of the gaps and compared it with the expected value of
90 via a chi-square test. However, both the ttest of means
and the chi-square test of variances assume normality of
data (Hays, 1988, pp. 292-293 and 327-331). To check
whether the geometric distribution of the raw data dis-
torted the test statistics, 10,000 means and variances of
100 geometric deviates were calculated and compared with
the expected t(99) and x2(99) distributions. More specif-
ically, the probabilities at the .005 and .025 tails were
evaluated. For the t test, this gave lower tail values of
.016 and .047, respectively, and upper tail values of .001
and .011. That is, the t test was too conservative at the
upper part and too liberal at the lower part. The chi-square
test, which was evenworse, gave rather enhanced values
of .097 and .173 at the low end, and .085 and .137 at
the high end. Therefore, Strube’s (1983) gap test (see also
Gruenberger & Jaffray, 1965) should not be used to test
the usefulness of a random number generator, unless bet-
ter tests than t and chi-square are available (an alterna-
tive might be to run a number of simulations and esti-
mate the critical values).

CONCLUSION

Algorithms have been described to generate random
numbers with a uniform, a normal, and an exponential
(geometric) distribution. The utility of these numbers was
illustrated with procedures for randomization, random
sampling, and randomness in time. Other uses are simu-
lations, numerical approximations of compound mathe-
matical equations, and the creation of nonrandom se-
quences in which various forms of autocorrelation are
present (for these procedures, see Malmi, 1986, and Box
& Jenkins, 1976, pp. 46—84).

AVAILABILITY

In addition to the algorithmdescriptions in the text, Ap-
pendix B provides Turbo Pascal listings of all procedures
discussed. However, it is our experience that a gap exists
between the availability of algorithms and their actual im-
plementation. Small mistakes are easily made, so that one
is obliged to rerun some elementary tests in order to check
the correctness of the implementation. Therefore, Appen-
dix A displays the first few numbers generatedby the al-
gorithms when all seeds are equal to 1. In this way, every-
one can check the correctness of their implementation.
Turbo Pascal and BASIC implementations canalso be ob-
tained by sending a formatted disk in a returnable box to
the author. For administrative costs, $10 must be included.
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NOTES

1. The div operation stands for integer division (i.e., 14 div 5 = 2).
The div and mod operation are available in most software pack-
ages.

2. Note that for many algorithms the number of generated random
numbers (and the time required) varies as a function of the algorithm,
because random numbers are sampled (and discarded) until somecrite-
rion is met.

(Continued)
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APPENDIX A
Numbers Generated by the Different Algorithms

seedl = 1
seed2 = I
seed3 = 1

first 10 numbers of Wichmann and Hill’s random number generator (Algorithm I):

0.01693090620 0.89525391124 0.11149102121 0.93952679641 0.12822985510
0.17800399298 0.29982708249 0.34971840637 0.05928746025 0.82197931465

first 10 numbers of standard normal, inverse cdf (Algorithm 2):
2.12205889020 —1.25512190220 1.21877656770 —1.55109245260 1.13489054900
0.92295174709 0.52458866900 0.38572616881 1.56106514540 —0.92288764201

first 10 numbers of standard normal, Box-Muller (Algorithm 3):
0.46776157925 0.27003245504 1.28682417770 —0.44644375106 0.5832 1777179
1.40685839470 —0.71746985100 —0.71278233544 1.07699514850 —0.28908727769

first 10 numbers of standard normal, polar method (Algorithm 4):
—0.19407337327 —1.33042159440 2.19755506130 —0.59082236112 0.68175817609
1.13620439410 0.87865940120 —0.50754615265 —0.17307865854 0.53106697446

first 10 numbers of standard normal, Marsaglia—Bray (Algorithm 5):
0.89254345772 — 1.34490103630 0.72689870961 — 1.01316404230 —0.3203037 1023
0.99555832695 0.82905654588 0.51709027840 0.12444994842 —0.22350462413

first 10 numbers of standard normal, ratio of uniforms (Algorithm 6):
—0.85990598276 —0.661652882 10 —0.03200237951 — 1.68554875660 0.03422323645

0.46775744684 0.58781477852 0.97552442825 0.31896217480 —0.46142694379

first 10 numbers of standard exponential, inverse cdf (Algorithm 7):
4.07861455800 0.11064790124 2.19381121860 0.06237893855 2.05393088250
1.72594929650 1.20454936220 1.05062700160 2.82535745820 0.19604004890

first 10 numbers of standard exponential, von Neumann (Algorithm 8):
0.01693090620 0.11149102121 0.12822985510 0.29982708249 0.05928746025
1.48791600110 0.51884426837 6.80740561510 1.09824758910 0.73856139688

first 10 numbers of standard exponential, ratio of uniforms (Algorithm 9):
1.02135355940 0.85818939924 0.13362312147 0.55416121890 0.44833448843
0.08964587217 0.75126375694 0.82019400019 0.66731253059 1.20040721920

randomization array of 10 stimuli (Algorithm 10):

before randomization: 1 2 3 4 5 6 7 8 9 10
after randomization: 3 5 4 2 6 8 7 10 9 1

random sample from population (Algorithm 11):
population: 1 2 3 4 5 6 7 8 9 10
sample: 5 6 8 9 10

(Continued)
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APPENDIX B
Listing

(“I” TURBO PASCAL ROUTINES FOR RANDCtI NLJIBER GENERATION —

VAR
seedl,seed2,seed3 integer;

seedi 1 • seed2l ,seed3l : longint; (optional, only if rndnumbl used)

(1111~1+1 Wiclinann & Hill’s random number generator. ~I

Produces random numbers ~tricly larger than 0 and strictly smaller than 1. Uniform
distribution. Needs three seeds to start. Integer arithmetic up to 5212632 required.
If danger of values 0.0 and 1.0 due to rounding (McLeod, 1985), add carrections. *)

FUNCTION rndnumbl(xpl,xp2,xp3:longint): real; {xp = seed for generator)
(VAR rp : real; optional, rounding errors)
BEGIN
seedll := (17l*xpl) mod 30269;
seed2l := (172*xp2) mod 30307;
seed3l : = (170”xp3) mod 30323;
rndnumbl : = frac(seedl 1/30269 + seed2l/30307 + seed3l/30323); (take fractional part sum)

{ rp := frac(seedll/30269 + seed2l/30307 + seed3l/30323);
IF rp <= 0.0 THEN rp := 0.0000000001;
IF rp >= 1.0 THEN rp := 0.9999999999;
rndnumbl : = rp; optional, rounding errors }

END;

(++++It Wichmann & Hill’s random number generator. ~

Better implementation of Wichmann & Hill’s random number generator. Produces the same
numbers, but requires only arithmetic up to 30323 and usually is faster. See also
rounding error checking i ri rndnumbl.

FUNCTION rndnumb2(xpl,xp2,xç3:integer): real; (xp = seed for generator)
BEGIN
seedl := 171 * (xpl mod 17]) — 2*(xpl div 177);
seed2 := 172 * (xp2 mod 176) — 35*(xp2 div 176);
seed3 := 170 * (xp3 mod 178) — 63*(xp3 div 178);
IF seedl < 0 THEN seedl : = seedl + 30269;
IF seed2 < 0 THEN seed2 = seed2 + 30307;
IF seed3 < 0 THEN seed3 : = seed3 + 30323;
rndnumb2 : = frac(seedl /30269 + seed2/30307 + seed3/30323);

END;

(*~1h1hI Standard norma~’distribution inverse cdf •~1~.1.11t14++1411i,4

Function to produce random numbers with a standard normal distribution using the
inverse cdf. For information about the values used, see Brophy (1985).

FUNCTION random stand normi: real; (inverse F Hill & Davis)
VAR tpl,tp2,tp3’tp4: Feal;
BEGIN
tpl := rndnumb2(seedl ,seed2,seed3);
IF tpl > 0.5 THEN tp2 := 1—tpl else tp2 := tpl;
IF tp2 < 1E—20 THEN tp4 := 10
ELSE

BEGIN
tp3 := sqrt(_2*ln(tp2));
tp4 := tp3_((7.45551*tp

3
145

0
.
636

)*tp
3

+1
2

71 .059)/
(((tp3+l 10.421 2)*t.p3÷750.365)*tp3+500. 756);

END;
IF tpl > 0.5 THEN tp4 := —tp4;
random stand nonnl : = tp4;

END;
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(1~11~ Standard normal distribution Box—l4jller ~

Function to produce random numbers with a standard normal distribution using
the Box-14411er algorithm. For information about the values used, see Ripley (1987). *)

FUNCTION random stand norm2: real; (Box—14i1 len
VAR tp1,tp2,tp3tp4,t~5: r~sl;
BEGIN
tpl := rndnumb2(seedl,seed2,seed3);
tp2 := 2*pi*tpl;
tp3 := rndnumb2(seedl,seed2,seed3);
tp4 := sqrt(2*(~~ln(tp3)));
tp5 := tp4 * cos(tp2);
random stand norm2 : = tps;

END;

(+~~1*1~ Standard normal distribution polar method ++II+++++4ê++*4++I++++I+I+*G+*

Function to produce random numbers with a standard normal distribution using
the polar method. For information about the values used, see Ripley (1987).

FUNCTION random stand norin3: real; (polar)
VAR tpl.tp2,tp3tp4,t~5 : real;
BEGIN

REPEAT
tp2 : = 2*rndnumb2(seedl , seed2,seed3)-l .0;
tp3 : = 2*rndnumb2(seedl , seed2, seed3)-1 .0;
tp4 := sqr(tp2) + sqr(tp3);

L~ffILtp4 < 1.0;
random stand norm3 : = sqrt(_2.O*ln(tp4)/tp4) * tp2;

END;

(+tt+++tt Standard normal distribution Marsaglia—Bray ~

Function to produce random numbers with a standard normal distribution using the
Marsaglia—Bray algorithm. For information about the values used, see Ripley (1987). *)

FUNCTION random stand norm4: real; (Marsagl ia-Bray)
VAR tpl .tp2,tp3tp4,t~5,tp6,tp7,tp8,tp9: real;
BEGIN
tpl : = rndnumb2(seedl , seed2, seed3);
IF tpl < 0.8638 THEN
begin
tp2 := rndnumb2(seedl ,seed2,seed3);
tp3 := rndnumb2(seedl,seed2,seed3);
tp4 := rndnumb2(seedl,seed2,seed3);
tp5 := 2*(tp2.i.tp3+tp4) - 3;

END
ELSE IF tpl < 0.9745 THEN

BEGIN
tp2 := rndnumb2(seedl.seui2,seed3);
tp3 := rndnumb2(seedl,seed2,seed3);
tp5 := 1.5*(tp2+tp3_l);

END
ELSE IF tpl < 0.9973002039 THEN

BEGIN
REPEAT
tp2 := rndnumb2(seedl,seed2,seed3);
tp3 := 6*tp2 — 3;
IF abs(tp3) < 1.0 THEN tp6 := l7.4973ll96*exp(_sqr(tp3)/2) —

4
.l

3
51O326*(3.O~~sqr(tp3))

- 2.15787544*(l .S—abs(tp3))
ELSE IF abs(tp3) < 1.5 THEN tp6 := l7.4973ll96*exp(_sqr(tp3)/2) —

2.36785163*sqr(3.O_abs(tp3)) — 2.15787544*(l .5—abs(tp3))
ELSE IF abs(tp3) < 3,0 THEN tp6 := 17.49731196*exp(_sqr(tp3)/2) —

2.367851 63*sqr(3. 0-abs(tp3))
ELSE wniteln(tp3:lO:4);
tp4 := rndnumb2(seedl,seed2,seed3);
UNTIL O.358*tp4 <= tp6;
tp5 := tp3;
END
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ELSE
BEGIN

REPEAT
REPEAT
tp2 := rndnumb2(seedl,seed2,seed3);
tp3 := rndntunb2(seedl,seed2,seed3);
tp4 : = sqr(2*tp2—l) + sqr(2*tp3_l);

UNTIL tp4 < 1;
tp6 := sqrt((9.~2*ln(tp4))/tp4);
tpl := tp6*(2*tp2_1);
tp8 := tp6*(2*tp3~~1);

UNTIL ((abs(tpl) > 3.0) OR (abs(tp8) > 3.0));
IF abs(tp7) > 3.0 THEN tp5 := tpl
ELSE tp5 := tp8;

END;
random stand nonn4 := tp5;

end;

(~+*4* Standard nonna~distribution ratio—of—uniforms +t+h14*4***hh+hhhh*1hh1

Function to produce random numbers with a standard normal distribution using the
ratio-of-uniforms method. For information about the values used, see Ripley (1987). *)

FUNCTION random stand norm5: real; (ratio-of -unforms}
VAR tpl , tp2, tp3tp4 :real;
LABEL stop;
BEGIN

REPEAT
tpi := rndnumb2(seedl,seed2,seed3);
tp2 := 0.8578*(2*rndnumb2(seedl,seed2,seed3) — 1);
tp3 := tp2/tpl;
tp4 := 0.25*sqr(tp3);
IF tp4 < l-tpl THEN GOTO stop; (optional, to speed up the generation)

UNTIL ((tp4 <= O.259/tpl+0.35) and (tp4 <= —ln(tpl)));
stop:
random stand nonn5 : = tp3;

END;

(**1~~1*4 Exponential distribution inverse cdf ~

Function to generate random numbers with a standard exponential distribution.
Inverse cdf; For norm i rn~onnation, see Ripley (1987)

FUNCTION random expl: real; (inverse cdf)
BEGIN —

random expi := —ln(rndnumb2(seedl ,seed2,seed3));
END;

(****+~tt Exponential dis;tribution von Neumann *~4****G*~tt~t*******~**f*t*t*I*tt*+

Function to generate random numbers with a standard exponential distribution.
von Neumann; For more information, see Ripley (1987)

FUNCTION randcin_exp2: real; (von Neumann)
VAR api,ap2,ap3,ap4,ap5 :real;
LABEL stop,opnieuw, nog;
BEGIN
api := 0.0;
opnieuw:
ap2 := rndnumb2(seedl,seed2,seed3);
ap5 := ap2;
nog:
ap3 := rndnunth2(seedl,seed2,seed3);
IF ap2 < ap3 THEN goto stoç;
ap2 := rndnuith2(seedi , seed2 , seed3);
IF ap2 .c ap3 THEN goto nog;
api := api + 1.0;
goto opnieuw;
stop:
randcxn_exp2 := api + ap5;

END;
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(444*44+4 Exponential di~tnibution ratio—of—uniforms 4+4* I II*+I+IG+********4I+I****

Function to generate random numbers with a standard exponential distribution.
Ratio-of—uniforms; For more information, see Ripley (1987)

FUNCTION random_exp3: real; (ratio-of-uniforms)
VAR api ,ap2,ap3,ap4,ap5,ap6,apl,ap8,ap9,aplO : real;
LABEL stop,opnieuw;
BEGIN
ap4 := 2/2.7182818285;
ap5 := 1.6487; ap8 := 1.49998709858;
ap6 := 0.105; ap9 := —1.25379492880;
api := 0.773; aplO := 0.74252376960;
opnieuw:
apl := rndnumb2(seedl,seed2,seed3);
ap2 := rndnumb2(seedl ,seed2,seed3)*ap4;
ap3 := ap2/apl;
IF ap3/2 <= ap8~~ap5*aplTHEN goto stop;
IF ap3/2 > ap6/apl —ap

9
TH!N goto opnieuw;

IF ap3/2 > ap7/apl-aplO THEN goto opnieuw;
IF ap3/2 > —ln(api) THEN goto opnieuw;
stop:
random exp3 := ap3;

END; —

(1+414+4+ Gec~etnicdistribution ~ *++++t1~++++++++*+•+++***

Function to generate random numbers with a geometric distribution.

FUNCTION random_geom(p: real ‘~: integer;
VAR tpl : real;
BEGIN
tpl := ln(l—p);
random geom := trunc(ln(rndnumb2(seedl,seed2,seed3))/tpl);

END;

TYPE stim_array = array[1. .100] of integer;

(+444+4+4 Permutation routine ~

Procedure to make a random permutation of an array with Np stimuli.

PROCEDURE penmite(var data:stim_array;Np:integer); (Np = number of Si in array)
VAR ip,rndp,datap : integer;
BEGIN

FOR ip := Np downto 2 DO
BEGIN

rndp : = trunc(rndnumb2(seedl , seed2, seed3)*int( ip)) + 1; (important that rndnumb2 < 1)
datap := data[ip];
data[ip] := data{rndp];
data[rndp] := datap;

END;
END;

(+I*41**4 Procedure to take a sample without replacenent 444444+44441~+44*4444~$

Procedure that takes a random sample of Np2 elements from a population of Npl elements.
Rankorder preservation. Sample is placed at the beginning of the data array. S)

PROCEDURE sample_without replacenent(var data:stim array;Npl ,Np2: integer);
VAR ip,Nplb,Np2b,counterT,counter2 : integer; —

pb,rndp : real;
datal,data2 : stimarra~

LABEL stop;
BEGIN
counterl : 0;
counter2 := 0;
Nplb := Npl;
Np2b : = Npl—Np2;
REPEAT



60 BRYSBAERT

pb : = Np2b/Npl b;
rndp := rndnumb2(seedl,seed2,seed3);
~‘11ILEpb > rndp DO

BEGIN
counterl := counterl + ~

data2[counterl] := data~Npl—Npib+i];
Nplb := Npib—l;
Np2b := Np2b—l;
IF Nplb > 0 THEN pb := pb*Np2b/Nplb
ELSE GOTO stop;

end;
counter2 : = counter2 + 1;
datal[counter2] := data[Npl—Nplb+l};
Nplb := Nplb — 1;

UNTIL Nplb = 0;
stop:
FOR ip := 1 TO Np2 DO
data[ip] := datal[ip];

FOR i p : = Np2-t-l TO Npl DO
data[ip] := data2[ip-Np2];

END;

(++II+I*I*l+++++++v++4~+44+1+~4+41+1+t+4+.+4I+++t++It++~ *44* .,,--.~

(Manuscript received December 4, 1989;
revision accepted for publication November 2, 1990.)


