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Abstract

We present a framework for addressing
a challenging trade-off between influencing
the learning of a robot through design and
through social interactions. We identify dif-
ferent kinds of influences that a designer can
introduce at design time, and that an expert
can introduce using social interactions, and
we use these to characterise a two-dimensional
design space. As well as discussing how the
two sources of influence affect each other, we
propose how learning performance typically
varies as a result, and present some empirical
findings.

1. Introduction

One of the challenges in epigenetic robotics is find-
ing a balance between designing innate knowledge
and enabling robots to learn and acquire knowledge
through development and interaction. On the one
hand programming a robot through design is desir-
able because (if done correctly) it makes for a robust
and reliable control architecture. On the other hand
programming a robot through situated interaction
makes for a more general and adaptive control archi-
tecture. Addressing this trade-off is difficult because
robots require sufficient reliable control, but also suf-
ficient flexibility to adapt to noisy and changing en-
vironments.

A robot can acquire knowledge through individ-
ual physical interactions with the environment, but
this would require it to have some internal rewarding
mechanism that favours certain sensorimotor experi-
ences over others. Programming such a mechanism
can be as difficult, inaccurate, and time-consuming
as programming the robot to perform the task in
the first place. Further, it might take the robot
a long time to go through all the possible experi-
ences and discover those relevant to the task. Al-
ternatively (or additionally) the robot can acquire
knowledge through social interactions with another,
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more experienced agent situated in the environment,
who takes the role of exposing the robot to the rel-
evant experiences. Our work involves this latter ap-
proach, which has been widely recognised in the lit-
erature as providing task-relevance to a learner robot
and speeding-up learning (Demiris and Hayes, 1996;
Schaal, 1999; Matari¢, 2000; Gaussier et al., 1998).

Thus our work addresses the trade-off mentioned
above in situations where a robot learns a task from
an experienced agent — an expert, robotic or human.
We address the trade-off explicitly by identifying in-
creasing amounts of influence on the robot’s learning
that can be applied by both the designer and the (so-
cial) expert, and then characterising these sources of
influence as a two-dimensional design space, shown
in Figure 1. Our aim in this paper is to propose the
design space, and how learning performance typically
varies within it.

More specifically, the kind of influence we are re-
ferring to is related to biasing the robot’s notion of
saliency. By ‘saliency’ we mean the level of granular-
ity at which significant differences in the sensorimo-
tor data are assessed, and we argue that this notion
is dependent on the particular task to be learned and
the environment it is learned in. For example, if the
task involves manipulating objects, the robot needs
to detect finer differences between objects than if the
task involves pushing these objects. Of course, the
notion of saliency also depends on other factors such
as the robot’s morphology (e.g. sensor capabilities)
and its learning architecture. It is important to stress
that we consider such other factors as making up the
robot’s existing capabilities, and we are interested in
how the robot’s learning can be influenced given its
existing capabilities.

2. Influencing Robot Learning

Through Design

Finding a desirable amount of influence from the de-
signer corresponds to the well known and difficult
problem in Artificial Intelligence of choosing a level of
abstraction (see, for example, Marr, 1982). A learn-
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Figure 1: Levels of social interactions and designer effort. The designer effort axis corresponds to different levels of
effort from the designer, required for learning at different levels of abstraction; the social interactions axis specifies
interactions of different complexities, corresponding to different levels of effort by a social expert. We argue that the
expert’s effort can be used to balance the effort required in programming the robot at design time.

ing system might be set up where the robot learns
from its low-level ‘raw’ sensorimotor data (again,
the designer could also design what constitutes ‘raw’
data by manipulating the robot’s morphology, but
such design is not considered here), or from some
higher-level abstraction of the data. For example, a
robot could learn a phototaxis task by learning to
react to the continuous data from its light-detecting
sensors, or it could learn to react to pre-defined
ranges of these sensors (e.g. low, mid, high), specifi-
cally chosen by the designer to work well for this task
in a particular environment.

When real robots are involved, learning from low-
level raw data is difficult due to their unstructured
and noisy nature, so either or both of some kind
of saliency detection and abstraction is necessary.
The vertical axis in Figure 1 refers to the amount
of influence from the designer in abstracting the
sensorimotor data with which the robot learns a
task. This could correspond, for example, to setting
saliency parameter values, setting parameters for a
self-organising abstraction mechanism, or manually
pre-structuring the data as in the example above.
The latter is what we mean by ‘ad-hoc’ abstraction in
Figure 1. Ad-hoc saliency detection corresponds to a
detection component (for example, the sensor-value
that signals a change of activation) being embedded
rigidly in the control architecture.

Increasing points on this axis correspond to more
‘effort’ given by the designer to make the learning
work well for the particular purpose in mind — that
is, more biased and less flexible to learn other tasks
in other situations. We are using the word ‘effort’
loosely to refer to the kind of design activities in-
volved in fine-tuning a control architecture to suit
very specific needs. Thus, for example, an increas-
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ing effort can correspond to spending more time on
trial-and-error programming.

3. Influencing Robot Learning
Through Social Interactions

In a recent survey, Fong et al. (2003) demonstrate
a wide range of robotic and software systems that
utilise social interactions of various types, and where
different design issues are addressed. For example,
robots that are capable of expressing emotions must
be able to communicate through speech and facial
expressions; in robots where embodiment is impor-
tant the morphology of the robot must be carefully
designed; and in robots where human-centered per-
ception is important the robot must be able to track
people, and perform speech, gesture, and face recog-
nition. These distinctions are made with reference
to the capabilities of the robot (or software agent).
In contrast, the different types of social interac-
tions identified here refer to different capabilities of
the expert. More precisely, they refer to different
ways in which the expert can interact with the robot
to purposely influence the robot’s learning, and we
claim these different interactions to have increasing
complexities — they require different levels of ‘effort’
by the expert. Four types of interactions are identi-
fied, and will be discussed below: passive demonstra-
tions, active demonstrations, explicit signalling, and
explicit communication. In the first two the teach-
ing is implicit — there is no explicit transfer of in-
formation between the teacher and the learner; the
teacher merely demonstrates a task, and the learner
learns in terms of its own experiences. In the lat-
ter two types of social interactions the demonstra-
tions are enhanced with an explicit one-directional
influence from the teacher on the learning, or with



two-directional exchange of information between the
teacher and learner, respectively.

With regards to design issues, the relevant ones
identified in the survey by Fong et al. (2003) are those
concerning human-centered perception. The differ-
ent types of social interactions mentioned above rely
on the fact that the robot has the appropriate mecha-
nisms for these interactions. That is, it must be able
to track and copy the actions of the teacher who is
demonstrating a task, and it must be able to receive
and send explicit information, as required. Further,
these capabilities should be task-independent, that
is, they should be useful for interacting with the ex-
pert regardless of what task is involved. As long as
this is the case, the learning setup can be applied to
different situations. Then, the effort from the expert
can be used to balance the effort from the designer.

As with designer effort, the word ‘effort’ attributed
to the social expert quantifies different activities used
by the expert to bias the robot’s learning to partic-
ular needs, either directly or indirectly. As this in-
fluence is transferred from the designer to the social
expert who is situated in the environment together
with the learner, the resulting learning setup is more
general and adaptive to different tasks.

3.1 Increasing Complexities of Social Inter-
actions

Passive Demonstrations

The minimal amount of effort required by an expert
wishing to teach some task to a learner robot is to
execute the task as if there is no learner. In other
words, the expert ‘demonstrates’ the task passively
and independently of the states or actions of the
learner. In the early work on learning by imitation
(Hayes and Demiris, 1994), this kind of minimalistic
effort from the expert is actually promoted as one
of the advantages of programming robots through
demonstration, especially when the demonstrator is
another robot, and one wishes to capitalise on its ex-
isting knowledge in training another robot with the
least effort. This is indeed an advantage if learning
from such passive demonstrations is possible. How-
ever, a passive demonstration is not always a sensi-
ble demonstration strategy because, for example, the
ability of the learner robot to learn could be ham-
pered if it loses sight of the teacher or if it struggles
to copy the actions of the teacher. Indeed, when
the expert is a human, he/she inevitably takes more
care in demonstrating the task, whereas examples of
passive demonstrations are generally attributed to
robotic demonstrators.

This problem of the learner having the ability to
match the actions of the teacher is very challeng-
ing, especially when we consider that the learner and
teacher can have different morphologies (see, for ex-
ample, the ‘correspondence problem’, formulated by

Nehaniv and Dautenhahn, 2000). However in the
majority of related work, the researchers design their
learners and teachers in such a way that they can
bypass this problem, and therefore ensure that the
learner is able to copy the actions appropriately for
the particular task. In contrast, Alissandrakis et al.
(2000) address this issue with simulated agents of
different morphologies that imitate each other (this
work is revisited later in the paper).

Active Demonstrations

There are at least three ways in which the ex-
pert might tailor the demonstration according to the
states or actions of the learner, and therefore demon-
strate the task more actively. Firstly, the teacher
could adapt the demonstrations in order to make it
easier for the learner to match the teacher’s actions,
for example, by slowing down the demonstration. In
the mobile robot experiments by Billard and Hayes
(1999), a learner robot follows a teacher around an
environment, but the teacher can also detect the
learner and align itself in front of it, thus reducing
the possibility that the learner loses the teacher.

Secondly, the teacher might perform the demon-
stration in such a way as to ensure that not only
does the learner not get lost, but that it is actu-
ally exposed to ‘clean’, consistent, and distinct ex-
periences. By observing and inferring the action-
copying behaviour of the learner, the teacher can
manipulate the learner’s experiences. For example,
Gaussier et al. (1998) report that in physical exper-
iments involving a human teaching a mobile robot
various ‘dances’, the demonstrations are inevitably
more adaptive than in similar simulated experiments
involving a simulated teacher; the human teacher en-
sures the learner passes exactly through correct edges
in the trajectories of the dance, and that the timings
of the learner’s actions are precise, by adapting his
(the teacher’s) own trajectory and speed.

The third way in which the expert can influence
the demonstrations is by deviating from the ‘natu-
ral’ demonstration in order to ‘exaggerate’, or accen-
tuate, the important differences between the com-
ponents of the task. These kinds of interactions
are not reported in related work, although a human
demonstrator could be performing such demonstra-
tions without realising it. We give an example in
Section 5.

Kaplan et al. (2001) suggest other active demon-
stration methods, which are inspired from techniques
used by humans to train animals, especially dogs.
For example, they suggest more physical interac-
tions (termed ‘modelling’, or ‘moulding’), where the
trainer physically manipulates the animal into the
desired positions. In robotics, this could correspond,
for example, to manipulating the robot with a joy-
stick (Kaiser and Dillmann, 1996; Hugues and Dro-
goul, 2001).
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These various kinds of active demonstrations are
difficult to program for a robotic teacher, whereas for
a human teacher such demonstrations are not only
easier, but also more intuitive and adaptive. The
reason for this is that a human teacher is situated
in the environment together with the learner, while
the learner is learning, and can therefore tailor the
interactions ‘on-line’ in response to what the robot
is doing. In contrast, in order to program an equiva-
lent robotic teacher, the designer would have to guess
what would be a good active strategy before the in-
teractions begin. Also, it can be argued that human
demonstrations are inevitably adaptive to the robot’s
interests.

Explicit Signalling

In the examples of social interactions presented so
far, there has been no explicit transfer of informa-
tion between the expert and the learner. There is,
however, an implicit transfer of information, because
the learner learns to perform a novel task through the
social interactions. That is, because the learner’s ac-
tions are influenced by the demonstrator’s, and the
learner learns from these situated actions, informa-
tion can be thought of as being transmitted indirectly
through the environment. If the expert has the abil-
ity to send direct explicit signals to the learner as
well as demonstrate the task, and the learner has
the ability to detect and interpret these signals, this
more complex type of interaction can have various
uses.

The signals from the expert can form part of the
stimulus that the learner learns from, with the aim
of learning a symbolic representation of the sensori-
motor data, such as a language for communication
(Billard and Hayes, 1999; Kaplan et al., 2001). In
other approaches where symbolic learning is not re-
quired, and thus the signals do not form part of the
learning, the signals can still be used to directly af-
fect the learning. One purpose of such signalling is to
explicitly draw the learner’s attention to salient ex-
periences (Moukas and Hayes, 1996; Nicolescu and
Matari¢, 2003), and another purpose is to provide
the learner with feedback about its actions. This
latter kind of signalling is generally used when it is
the sole source of social interactions, that is, when
demonstrations are not available; instead, the learner
already has basic sensorimotor skills, and the expert
teaches a task utilising these skills by rewarding the
relevant ones (Nehmzow and McGonigle, 1994; Ka-
plan et al., 2001).

Explicit Communication

With explicit signalling (mentioned above), the ex-
pert sends the learner signals that influence the
learning directly and explicitly. When sending these
kinds of signals, it might be useful for the expert to
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know how the learning is being influenced, for exam-
ple how the learning is progressing. If the learner
could send signals back to the expert about its inter-
nal states, for example how familiar experiences are,
then the expert could use such information to de-
termine how to proceed with the demonstration and
signalling. For example, if a particular experience is
not familiar enough then the expert might demon-
strate and signal it more frequently. Explicit signals
from the expert might also be used by the robot to
tune saliency parameters that determine how it per-
ceives and learns from experiences, in which case it
might be beneficial for the expert to have an idea of
the effect that the signals have on such parameters.

Kaplan et al. (2001) utilise a combination of ex-
plicit (verbal) and implicit (non-verbal) communi-
cation between an expert and a robot to refine the
robot’s learned sequence of behaviours. The robot
demonstrates the sequence of behaviours that it
has just learned (non-verbal communication), which
might include some irrelevant behaviours, and the
expert only rewards (verbal communication) the rel-
evant behaviours; the robot then updates its inter-
nal measure of similarity between behaviours which
influences their sequencing. Klingspor et al. (1997)
identify different types of verbal and non-verbal com-
munication strategies, with which a robot gives feed-
back to its user about its perceptions and actions
when it executes a learned task. However, they do
not discuss how this feedback is used by the user
to influence further demonstrations. These two ap-
proaches use communication to refine a behaviour
which is already learned, whereas communication is
proposed here as an on-line approach for influencing
the learning while the robot is learning.

In our work we have implemented all but this type
of social interactions. However, we believe that the
most influence an expert can have on a robot’s learn-
ing is through explicit communication.

3.2 Using Social Interactions to Balance
Designer Effort

We argue that in order for the stronger types of so-
cial interactions to have the kind of influence on the
learning that we are addressing here, that is, an influ-
ence on the robot’s notion of saliency, saliency must
be treated explicitly and in a parameterised fashion.
If the learning setup is made flexible enough at design
time, then it can be the responsibility of the social
expert to bias the robot’s learning to the particular
task. This is particularly important for the latter two
types of social interactions, which influence saliency
more explicitly.

In the following examples from the literature, the
notion of saliency is set flexibly through the use of
different levels of granularity to control the learning.
We have already mentioned the work of Alissandrakis
et al. (2000), involving agents of different morpholo-



gies, who therefore cannot copy each other’s actions
exactly. Using different imitation strategies they at-
tempt to either copy exact movements, selected land-
marks in the movements, or simply the end position,
each involving imitating at different levels of granu-
larity.

Similarly, in the work by Billard et al. (2003), the
robot is equipped with a number of imitation strate-
gies that are applicable for recognising demonstra-
tions at different levels of granularity. For example,
the task might involve only moving a specific type of
object in any direction and using any hand, moving
any box in a specific direction, moving the boxes in a
particular sequence, or moving the boxes always with
the same hand-box relationship (e.g. always the left
hand, or always the hand closest to the object). By
demonstrating the particular task a number of times,
the demonstrator is able to highlight those features
that are salient (or ‘time-invariant’, as the authors
refer to them).

Another example is the work by Gaussier et al.
(1998) mentioned earlier, where the architecture is
set up to detect saliency at different levels of gran-
ularity, as controlled through a number of time con-
stants, or parameters. However, it is unclear if and
how the demonstrations influence these parameters.

4. A Balancing Framework

The identification of different complexities of social
interactions and designer effort is crucial for inves-
tigating the interactions between them. Such an in-
vestigation is missing in current research, but is nec-
essary in order to address the trade-off mentioned
at the start of this paper: balancing between the
influences from the designer on the robot’s learning
at design time, and the influences from a social ex-
pert during situated interactions. The designer must
guess the learning dynamics at design time, while the
social expert is situated in the same environment and
performs the same task while the robot is learning
the task. Thus a desirable balance is one where the
learning set up is sufficiently robust, but also suffi-
ciently general, adaptive, and faithful to the robot’s
experiences.

The two-dimensional design space shown in Fig-
ure 1 is proposed as a framework for characterising
this balance. In (Marom, 2003), we show the useful-
ness of this characterisation, firstly by demonstrating
how it applies to related work, secondly by presenting
an empirical investigation of how performance varies
as a function of the two dimensions, and lastly by
considering the implications of this investigation to
the related work. As mentioned in Section 1, our
aim in this paper is to propose the design space, and
how learning performance varies within it. For more
details, discussion, and examples of related work, the
reader is referred to (Marom, 2003).

Figure 2 shows our proposal for how performance
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Figure 2: This performance surface characterises learn-
ing performance within the design space identified in Fig-
ure 1.

typically varies in the design space. This perfor-
mance surface is a generalisation from our empiri-
cal results, and is intended purely as a qualitative
demonstration — the actual shape chosen in the fig-
ure is arbitrary. The general features that should be
noted from the figure are that the performance as a
function of each dimension increases and levels out,
and that one can maintain a particular level of per-
formance (see projections on the horizontal plane)
by compensating for some decrease in one dimension
by some increase in the other.

We highlight the following issues with regards to
the performance surface:

e Designer effort can be balanced with more effort
from an expert during social interactions.

e Performance can be improved by increasing either
of the two types of effort.

e Increasing the amount of effort of one type re-
duces the potential for improving the perfor-
mance with the other type. For example, if the
designer has spent a lot of effort in abstracting
the sensorimotor data of the robot, there is very
little improvement an expert can provide through
active or explicit demonstrations.

e The points where performance converges depend
on other design issues not considered by the char-
acterisation of designer effort in this paper, such
as the robot’s morphology and the learning ar-
chitecture. For example, a particular choice of
sensors, or a particularly good learning architec-
ture that can learn from ‘raw’ data, can mean
that there is very little abstraction the designer
can introduce, and thus the performance surface
levels out faster in the ‘designer effort’ axis.

This performance surface depicts our view that given
a robot’s existing set of learning capabilities, it is
always possible to improve the robot’s learning per-
formance by increasing the influence or bias on the
robot’s abstraction of its experiences; and further,
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Figure 3: The robot Gillespie learns a wall-following task
from a human demonstrator who actively demonstrates
the task and explicitly influences the learning using hand

signals.

that this influence can be transferred from design
time to situated social interactions, depending on the
interaction capabilities of the robot and the expert.

5. Empirical Findings

As mentioned previously, our aim in this paper is
to propose the balancing framework, and so we only
provide a brief account of a subset of our empirical
findings. The most comprehensive and detailed ac-
count of this work is given in (Marom, 2003), and
individual papers are also referenced below for some
specific experiments.

The examples we present here involve our Real
World Interface (RWI) B21 robot, Gillespie, learn-
ing a wall-following task from a human demonstra-
tor (Figure 3). Gillespie is programmed to detect
and follow the human using its on-board video cam-
era through a simple colour-tracking algorithm —
the demonstrator wears a green shirt which is easily
detectable.

The input that the robot uses to learn the task
with comes from its sonar sensors (not from the cam-
era). Prior to learning, this input goes through an
attention system. This attention system provides
the explicit formalisation of saliency that was argued
for in Section 3.2. It contains a saliency parame-
ter for novelty detection, and it is also responsible
for abstracting the robot’s experiences through self-
organisation. This is a Kohonen network with habit-
uating nodes, based on the Grow When Required al-
gorithm (Marsland et al., 2002) — see (Marom et al.,
2001) for more details.

The demonstrator demonstrates the task by mov-
ing around the arena following walls, and turn-
ing into the middle of the arena occasionally (4-
5 times during a run) and making random turns.
The demonstration strategy taken here is an ‘ac-
tive demonstration’ one: the demonstrator faces
the robot and adapts his movements to ensure the
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robot’s tracking system is able to keep up (first
aspect of active demonstrations discussed in Sec-
tion 3.1); and further, he ‘exaggerates’ the differences
between the components of the task (third aspect
of active demonstrations discussed in Section 3.1),
making large random turns while in the middle of
the arena to distinguish them from making straight
forward moves while parallel to a wall.

The demonstrator can also signal to the robot at
very specific times during the task using a red glove,
which is easily contrasted with the green shirt used
in the teacher-following behaviour. The role of this
signalling is to force novelty detection, thereby trig-
gering the attention system (causing an update of
the self-organising map), and the learning system.
In effect, the signalling takes the role of the saliency
parameter.

5.1 Learning at Different Levels of
Abstraction

We present two learning setups, involving different
amounts of designer effort, and show the implica-
tions for increasing the effort from the demonstra-
tor. In both learning setups, the active demonstra-
tion strategy is utilised, so the increase in effort from
the demonstrator corresponds to the signalling. It is
evaluated by comparing performance when the sig-
nals are used as described above to trigger attention
and learning, with performance when the signals are
ignored.

In the first learning setup, the attention system is
used only to detect novelty in the robot’s sonar data,
and the robot subsequently learns through a separate
learning system whenever novelty is detected. Learn-
ing involves associating the robot’s ‘raw’ sonar input
with its motor values, using a Multi-Layer Percep-
tron (MLP) with back-propagation weight updates.
For more details on these experiments see (Marom
and Hayes, 2001). Here the designer effort corre-
sponds to setting the value of the detection param-
eter (the lowest category on the vertical axis in Fig-
ure 1), and our experiments show the importance
of this task by comparing the learning performance
with different parameter values. The complete range
of parameter values are tested, including a very in-
sensitive value where the attention system never de-
tects novelty, and a very sensitive value where the
attention system always detects novelty.

In the second learning setup the self-organisation
capability of the attention system is used directly in
the learning, as follows. The output of the attention
system is a discrete set of nodes (nodes in a Kohonen
map), each node representing a region in the robot’s
sensory space, discovered through self-organisation
while the robot follows behind the demonstrator.
Thus this set of nodes corresponds to an abstrac-
tion of the robot’s perceptions. The learning consists
of associating these set of nodes with a set of pre-



defined basic motor skills. For more details on these
experiments see (Marom et al., 2001, 2002). This
setup involves learning at a higher level of abstrac-
tion, where there is an information loss from what is,
in essence, a compression of the raw data. Therefore,
relative to the first learning setup, where learning oc-
curs at a lower level of abstraction, here more care
must be taken by the designer in setting the saliency
parameters (middle category on the vertical axis in
Figure 1) in order to achieve a representation that is
useful for the robot to learn the task with.

Both learning setups are evaluated in a separate
recall phase, where Gillespie is placed in the arena
on its own, and its ability to execute the learned
task is measured numerically. The way the robot
executes the learned task differs for the two setups.
In the first, the sonar input is propagated through
the learned MLP, and the output is converted to
motor commands. In the second, the input acti-
vates one of the nodes in the self-organising map,
and the associated motor action for that node is ex-
ecuted. The task evaluation measure is calculated
from the robot’s sonar sensors, favouring particular
sensed configurations (e.g. highest reward for sens-
ing the wall parallel on either side). Upper and lower
baseline scores are also calculated with the robot ex-
ecuting a hand-crafted wall-following behaviour, and
a random wandering behaviour, respectively.

5.2 Comparative Performances

With the first learning setup, the best performance
is achieved when the signals from the demonstrator
are used. Further, the significance of the signalling
increases as the signals start to dominate over the
attention system in triggering the learning system.
This is achieved when the detection parameter is set
very insensitively, and consequently saliency detec-
tion is mainly triggered by the demonstrator. In con-
trast, in the second learning setup the robot learns
equally well with and without the signals from the
demonstrator, regardless of the value of the detection
parameter.

The message to take from the comparison of these
two learning setups is as follows:

e When much effort is given by the designer in
abstracting the perception of the robot (second
learning setup), there is little potential for im-
provement in performance through stronger so-
cial interactions. With a careful setting of the
saliency detection parameter, the designer is able
to achieve a desirable representation in the self-
organising map to influence the learning.

e When the learning occurs at a lower level of ab-
straction (first learning setup), not forced by the
designer, there is potential for stronger influences
from social interactions. The responsibility of
usefully influencing the robot’s learning can be
transferred from the designer to the social expert.

In terms of the performance surface (Figure 2), these
two experiments demonstrate that performance can
be improved by increasing the influence from either
the designer or the social expert, and that if the in-
fluence from the designer is high enough, the effect
of the influence from the expert is diminished.

6. Discussion

This paper proposes a framework for addressing a
balance between influencing the learning of a robot
through design and through social interactions. The
kind of influences it addresses are related to saliency,
or level of granularity at which a robot learns a task.
Other researchers have recognised that the issue of
saliency and granularity should be made flexible at
design, and instead determined during social inter-
actions. However, the balance that we propose here
is not formalised in related work.

We have identified different ways in which either a
designer or a social expert can influence the learning
of a robot, and then characterised a two-dimensional
design space. We have also suggested how learn-
ing performance typically varies within the space, in
other words, how the two sources of influence interact
to affect performance. In particular, our character-
isation shows that a particular level of performance
can be maintained by using less designer effort and
stronger social interactions, and thus a learning setup
results that is less biased to a particular task, and
more general and adaptive to different tasks.

The performance surface we have suggested is
a qualitative generalisaion of our various empirical
findings, some of which we presented in this paper.
Making such a generalisation is difficult, because dif-
ferent experiments involve different robots, tasks,
learning architectures, and performance evaluation
measures. Comparing experiments between different
researchers is even more difficult, and sometimes the
only possible comparison is a qualitative one. Such
a qualitative framework cannot give an absolute in-
dication of performance, but it can help make design
decisions. For example, the ability to move along
the horizontal axis of the design space requires that
the social expert has a reasonably good knowledge
of how the robot learns, which might not always be
the case. Thus the choice of what kind of social in-
teractions to use is a design decision that is based,
among other things, on what kind of social expert is
available. This can lead, in turn, to a decision on the
level of abstraction to enforce through design.

Therefore, we believe the characterisation we have
presented here can provide a useful framework for or-
ganising related work on robotic systems that learn
from social interactions. Also, the characterisation
can itself benefit from future work that will help fine-
tune the different features it proposes, and expose
more testing conditions (e.g. more categories in ei-
ther of the two dimensions of the design space).
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