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Abstract

Real-world agents must react to changing conditions as they
execute planned tasks. Conditions are typically monitored
through time series representing state variables. While some
predicates on these times series only consider one measure
at a time, other predicates, sometimes called episodic predi-
cates, consider sets of measures. We consider a special class
of episodic predicates based on segmentation of the the mea-
sures into quasi-monotonic intervals where each interval is ei-
ther quasi-increasing, quasi-decreasing, or quasi-flat. While
being scale-based, this approach is also computational effi-
cient and results can be computed exactly without need for
approximation algorithms. Our approach is compared to lin-
ear spline and regression analysis.

Reactive control and monitoring
It has been recognized for some time that real-world agents
have to monitor conditions as they execute planned tasks.
It is rarely the case that the only changes that can occur in
the world result from actions taken by the agent. Actions
taken by other agents, uncontrollable events occurring in the
physical world, and the presence of noise and uncertainty
are the norm.

Given this, an agent must be able to react to changes in
the world. Moreover, the agent must be able to notice the
changes in the first place. A typical description of this is a
three-tiered architecture (Bonassoet al. 1997), with sensors
and effectors at the “bottom” tier, and a high-level planner at
the “top” tier. In between, the task execution system moni-
tors for changing conditions and executes actions as appro-
priate based on the goals given it by the planner. Reactive
task execution systems include EXEC (Pellet al. 1997), the
RAP System (Firby 1989), PRS (Myers 1996), and Apex
(Freedet al. 2003).

Of course, the conditions to which an agent might imag-
inably react can be arbitrarily complex, and, for an agent
acting in the real world, a “paralysis of analysis” prevents
effective action. Part of an effective architecture for agent
design is describing the kinds of useful conditions which are
likely to be relevant to the agent making use of the kinds of
sensors typically available to the agent. Furthermore, it must
be feasible–that is, computational efficient–to recognize the
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relevant conditions, especially in concert with a variety of
simultaneously executing tasks and monitors.

Sensors nominally create time-stamped data, with read-
ings sometimes done at constant intervals, sometimes not.
Each reading provides a time-stampedmeasurementof a
state variable, that is, anattribute of someobject (often
the agent, or a component of the agent), which changes
over time. For example, an autonomous aircraft will typi-
cally have sensors for its own altitude, longitude and lati-
tude, among other measurements. Tasks such as “raise-gear”
might have a precondition that the measured altitude be≥ a
certain amount.

Given the time series nature of such sensor data, it is nat-
ural to consider monitors being “live” for someinterval of
time. Within such an intervalI, we have an ordered set of
measurements for a given sensor,{xt}, ordered by timet.
If P is a boolean predicate onx, andn is the cardinality
of {xt}, then testing for a value inI upon whichP is true
is clearly at leastO(n). In a typical case,P is of constant
complexity (such as the example of≥ given above), and so,
testing for value upon whichP is true isO(n).

Predicates on individual measurement values are not the
only possible boolean predicates of interest. For example,
an agent might want to act when the average value of a mea-
surement within an interval reaches a certain point. The
presence of a condition based on multiple measurements (of
the same or different state variable) is sometimes called an
episode(Mannila, Toivonen, & Verkamo 1997). Episodic
predicates can, of course, be arbitrarily complex, and thus be
difficult or impossible for an agent to consider. In this pa-
per, we discuss one particular class of episodic predicates,
namely those based on segmenting an ordered set of mea-
surements according to changes in monotonicity. For ex-
ample, consider Fig. 1, which shows a flight path of an air-
plane (simulated) as it takes off, circles an airport, and then
crashes. A reactive controller may monitor for nominal con-
ditions, such as (in the present case) making the first turn. A
controller may also monitor for off-nominal conditions, such
as failing to make a turn, or (in the present case) “in danger
of crashing.” In the nominal case, “making a turn” can be
sensed by the appropriate increase in longitude and/or lati-
tude. In the off-nominal example, “in danger of crashing”
can be sensed by the an unexpected decrease in altitude.

If sensor data were typically comprised of long monotone
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Figure 1: Flight path of airplane

segments, then such a change in monotonicity would be triv-
ial to detect. Sensors, of course, do not do so, for a variety
of reasons. First, sensors are typically sampled at some rate,
creating discontinuities. Second, exogenous events cause
changes in sensor values which can be non-continuous; in-
deed, if this were not the case, there would be little need for
sensors. Third, sensors inherently produce some amount of
error, which can be minimized but never eliminated.

Consider the two plots in Fig. 2, which show real data
from a life-support application, showing the measured mass
of a distillant in a tank. The top plot exemplifies “noise” due
to exogenous events. It is clear that the mass increases (as
distillant flows into the tank), then decreases (as it is pumped
out of the tank). There are slight “jags” on the increase and
decrease (due to some exogenous event such as a cycling
pump), but these can be ignored. There is another indication
of noise at the beginning of the first increase, probably due
to someone picking up the tank and replacing it.

The second plot exemplifies the other kinds of noise; this
magnification of the first peak shows the discrete nature of
sampling and the inherent error of the scale become evident.

Essentially, we would like to segment the time series of
measurements of a state variable into regions of alternating
sign, ignoring small violations of monotonicity. An algo-
rithm for doing this has three desiderata: (1) it must pro-
vide such a segmentation in a way that is both intuitively
and mathematically sound; (2) it must be computationally
efficient enough to run in real time, and (3) ideally, it is an
on-linealgorithm that can be updated efficiently as an agent
acts and senses in the world.

In this paper, we present an algorithm for segmenta-
tion of state variable measurements based on thequasi-
monotonic segmentationideas of (Brooks 1994), which pro-
vides a mathematically well-motivated notion of monotonic
segmentation at a given scale. The algorithm isO(n), where
n in the number of measurements, and only requires con-
stant space. It is also an on-line algorithm, whose update
runs in constant time and space. We contrast this with al-
gorithms typically used for segmentation, based on linear
splining and regression techniques, which provide less intu-
itive results and are, in fact,O(n2).
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Figure 2: Mass data at different scales

Quasi-monotonic segmentation
For a state variablex, say that an ordered set of measure-
ments ofx, {xk} is monotonic if eitherxk ≥ xk+1 or
xk ≤ xk+1. As we have stated, this does not capture an in-
teresting understanding of “monotonic,” due to the sources
of noise mentioned above. For practical applications, we
want to tolerate some deviation from monotonicity. One
possible way to describe allowing such a toleration is to say,
given an ordered set of measurements{xk} and some toler-
ance valueδ > 0, that the data points arenot going down
or areupward monotone, if consecutive measures do not go
down by more thanδ, that is, are such thatxi − xi+1 > δ.
However, this definition is not very useful because measures
can repeatedly go down and (eventually) the end value can
be substantially lower than the start value. A more useful
definition ofupward monotonicityis to require that we can-
not find two successive measuresxi andxj (j > i) such
thatxj is lower thanxi by δ (xi − xj > δ). This definition
is more useful because in the worse case, the last measure
will be only δ smaller than the first measure. However, we
are still not guaranteed that the data does in fact increase.
Hence, we ask that we can find at least two successive mea-
suresxk andxl (l > k) such thatxl is greater thanxk by at
leastδ (xl − xk ≥ δ).

In order to formalize this concept, we will use the idea of
δ-pair introduced in (Brooks 1994) (see Fig. 3). LetF be a
function, andD be its domain. The tuplex, y (x < y ∈ D)
is aδ-pair (or a pair of scaleδ) for F if |F (y) − F (x)| ≥ δ
and for allz ∈ D, x < z < y implies |F (z) − F (x)| < δ
and|F (y)−F (z)| < δ. A δ-pair’sdirectionis increasingor
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Figure 3: Aδ-pair.

decreasingaccording to whetherF (y) > F (x) or F (y) <
F (x).

Notice that pairs of scaleδ having opposite directions can-
not overlap but they may share an end point. Pairs of scale
δ of the same direction may overlap, but may not be nested.
We use the term “pair” to indicate aδ-pair having an unspec-
ified δ.

We say that a sequence of measuresX = {xk}k is δ-
monotonic if allδ-pairs have the same sign (all increasing or
all decreasing). Given aδ-monotonic data set, we say that it
is δ-flat if it contains noδ-pair and it isδ-increasing (resp.
decreasing) if allδ-pairs are increasing (resp. decreasing).

Given a sequence of measuresX = {xk}k=1,...,N , a seg-
mentationX1 . . . Xn is given by a set ofn + 1 indicesyi

such thatyi+1 > yi, y1 = 1 andyn+1 = N and where
Xi = {xk}k=yi,...,yi+1 . A segmentation is an extremal seg-
mentation at scaleδ if

1. All Xi areδ-monotone;

2. No two adjacent segments have the same monotonicity
(flat, increasing, decreasing);

3. For i = 2, . . . , n, xyi = maxXi ∪ Xi−1 or xyi =
minXi ∪Xi−1;

4. UnlessX1 is δ-flat, x1 = maxX1 or x1 = minX1 ;
unlessXn is δ-flat, xN = maxXn or xN = minXn.

The merger of aδ-increasing (resp. decreasing) seg-
ment with aδ-flat segment isδ-increasing (resp. decreas-
ing). Hence, depending on whether or not we considerδ-flat
segments, we can have various extremal segmentation with
varying number of segments. However, if we excludeδ-flat
segments, then the number of segments will be the same for
all extremal segmentations at the same scale.

Algorithm for segmentation
Algorithm 1 presents an algorithm for quasi-monotone seg-
mentation. A queue is initialized with the index of the first
measurement. After determining the initial direction of the
measurements, it scans through the measurements, keeping
a back-pointer to the last extremum, which is initialized to
the first position. When the difference between an element
and the measurement at the back-pointer exceedsδ, and the
newδ-pair switches signs, a new extremum is added to the
queue, the sign is flipped and the back-pointer updated. Af-
ter completing the scan, the index of the last measurement is
added to the queue if it isn’t already present.

Basic initialization (lines 4–6) take constant time. The
determineSignfunction takes no more thann − 1 steps (in
practice, it will take many fewer). The algorithm is domi-
nated by the loop in lines 8–19, which is runn times. All of
the comparisons and assignments within the loop take con-
stant time; thus the loop runs inO(n). Checking for the
presence of the last index in the queue (line 20), and adding
it to the queue if it isn’t present, takes constant time. Thus,
Algorithm 1 isO(n).

All variables (except for the output queue) in Algorithm 1
take constant space.

Note that Algorithm 1 can easily be converted to an on-
line algorithm by converting thefor loop into a stream con-
sumer. As new measurements arrive, they either result in a
new extremum, in which case the new extremum is output.

Theorem 1 Algorithm 1 generates an extremal segmenta-
tion at scaleδ.

Proof. Any segment having last indexk that was added to
Q while D = 1 cannot have decreasingδ-pairs. Indeed,
suppose that there exist indexesl, j in the segment such that
l < j andxl − xj ≥ δ. Wheni (the variable of the main
for loop) took valuej, the maximum of the segment up to
this point wasxk with xk ≥ xl ⇒ xk − xj ≥ xl − xj and
becausej is included in the segment,xk − xj < δ hence
xl − xjδ.Similarly, we could also show that segments with
D = −1 cannot have increasingδ-pairs.

Next, notice that the end of all segments, except possi-
ble the last two, is set before or at the beginning of aδ-
pair with an opposite direction (decreasing ifD = 1 or vice
versa). This means that all segments except possibly the first
one and the last one are eitherδ-increasing orδ-decreasing
and they alternate. Observe that when either of the first or
last segment is neitherδ-increasing norδ-decreasing, then it
must beδ-flat.

As the next theorem shows, our definitions and Algo-
rithm 1 allow for a multiscale analysis: we can relate anal-
yses done at different scales. In short, as we reduce the tol-
erance, existing segments will be partitioned and new end-
points will be added, but existing end-points will remain.

Theorem 2 Using Algorithm 1, the segmentation points
found withδ′ < δ include those found withδ.

Proof. At scaleδ and as per Algorithm 1, consider an in-
creasing segment ending at indexj′ followed by a decreas-
ing segment. We have thatxj′ is the maximum of both seg-
ments. A pair at scaleδ, must contain a pair at scaleδ′ for all
δ′ < δ. Hence, a segment increasing (decreasing) at scaleδ
must contain a segment increasing (resp. decreasing) a scale
δ′. Hence, there is at least one pair at scaleδ′ before (and
after)j′. Consider the last pair at scaleδ′ beforej′, we see
that it must be an increasing pair becausexj′ is a maximum:
if the last pair is decreasing, then its starting point would
have a value greater thanxj′ which is impossible. Similarly,
the first pair at scaleδ′ after j′ is decreasing. Becausej′

is the index of the first maximum with valuexj′ before the
first pair, it will be selected by the algorithm at scaleδ′. By
symmetry, the same result is shown for a segmentation point
following a decreasing segment.



Consider now the second segmentation point (at indexj)
preceded by a flat segment and followed by a decreasing
segment at scaleδ. We have thatxj is the maximum of
both segments. The first pair at scaleδ′ following j must be
decreasing and the last pair beforej at scaleδ′, if it exists,
must be increasing. Hence,j must be a segmentation point
at scaleδ′. The result is shown similarly whenj is the index
of a minimum or the second last segmentation point at scale
δ.

Algorithm 1 Algorithm for quasi-monotone segmentation.
1: INPUT: sequence of valuesxi with i = 1, . . . , n
2: INPUT: scaleδ
3: OUTPUT: an ordered sequence of indices which define

the segmentation
4: Q← empty queue
5: place1 in Q
6: k ← 1
7: D ← determineSign(x)
8: if D = 0 then
9: addn to Q

10: exit with Q
11: for i ∈ {1, . . . , n− 1} do
12: if (D = 1 andxk−xi ≥ δ) or (D = −1 andxi−xk ≥

δ) then
13: addk to Q
14: flip sign ofD
15: else if (D = 1 andxi > xk) or (D = −1 andxi <

xk) then
16: k ← i
17: if last(Q) isn’t k and size(Q)>1then
18: addk to Q
19: if last(Q) isn’t n then
20: addn to Q
21: exit with Q

1: FUNCTION determineSign
2: INPUT: sequence of valuesxi with i = 1, . . . , n
3: OUTPUT: initial direction as -1,1 or 0
4: for i in {2, n} do
5: if xi 6= x0 then
6: exit with sign ofxi − x0

7: exit with 0

Examples
Figures 4, 5, and 6 show the results of running Algorithm 1
on the aircraft data and mass data described above. The three
state variables of the aircraft data (latitude, longitude, and
altitude) are plotted separately, and normalized to 1.01. The
longitude and latitude data have been split into three seg-
ments, with the middle segment beginning and ending where
the aircraft began its two turns. The altitude data has been
split into two segments: its steep then gradual rise, and its
steep decline (and crash).

1In the simulation, the aircraft did not fly very far–no more than
20 kilometers in either direction–so no conversion from angular
measurements have been made here.
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Figure 4: Segmented latitude and longitude data.

The mass of the tank plus distillant plotted in Fig. 6 ranges
from about 5 to 11 (except for the anomalous drop to 4).
With δ set to 1, the data are placed into six segments: one
ending at the anomalous drop, the other five tracking the
general rise and fall of the sensed mass.

Comparison to other methods
Segmenting data is a standard problem in time series re-
search; a useful survey can be found in (Keoghet al. 1993),
who identify three types of approaches:sliding windows, in
which a segment is grown until an error bound is reached;
top-down, in which a time-series is recursively partitioned,
and bottom-up, in which larger and larger segments are
merged, starting from smallest segments. Keoghet al. also
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Figure 5: Segmented altitude data.
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Figure 6: Segmented mass data.
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Figure 7: Damped sign wave with noise

provide an algorithm,SWAB, which combines a sliding
window and bottom-up approach (SWAB stands for “slid-
ing window and bottom-up”).

Keogh et al.’s complexity analysis reveals that the top-
down algorithms have a complexity ofO(n2K), whereK
is the number of segments created, andn is the number of
points in the time series. The sliding window, bottom-up,
and SWAB algorithms have a complexity ofO(n2/K).

It is interesting to consider what happens as more or fewer
segments are created. The maximum number of segments is
n− 1, resulting when each point is paired with its successor
to create a segment, up ton−1. In this case, the complexity
of top-down inO(n3), and the other algorithms areO(n).
The minimum number of segments is1, resulting from in-
cluding all of the points in the time series in the one segment.
In this case, the complexity of top-down inO(n2); the other
algorithms are alsoO(n2). Keoghet al. seem to assume that
K will be closer ton than it is to1, and so they claim that
SWAB isO(n). Given this assumption; this is correct; how-
ever, it is more reasonable to give the complexity analysis in
its O(n2/K). form.

A strong advantage of Algorithm 1 is that its complexity
is not sensitive to the number of segments created. As we
showed above, Algorithm 1 isO(n), and its complexity is
unrelated toK.

It should be clear that monotonicity analysis is performing
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Figure 8: Execution time: Alg.1 versus Sliding Window.
Note the execution time of Alg. 1 is close to the zero axis.

a related but different task from the algorithms considered
by Keoghet al.. Consider the damped sin wave,sin(x)/x,
as shown (with added noise and with segmentation by Algo-
rithm 1) in Fig. 7. A monotonicity analysis looks just for the
locations where the function moves from decreasing to in-
creasing, or vice versa. The linear analysis algorithms may
also create intermediate segments between change points.
This results in additional work (causing the algorithm to be
O(n2), as described above), and may result in more seg-
ments than are useful for monotonicity analysis.

Consider the data in Table 1, which shows the number of
segments created for a time series created by a damped sin
with noise function, as in Fig. 7, by three algorithms: Al-
gorithm 1, a sliding window algorithm using linear splining
(which is provided in the Appendix), and a sliding window
algorithm using linear regression. All three algorithms pro-
duce a number of segments which is (empirically) linear in
the number of points, but the sliding window algorithm al-
ways at least 1.5 times as many segments as Algorithm 1–
the multiple decreases as the amplitude of the sin wave de-
creases and the frequency decreases–while the linear regres-
sion algorithm consistently creates about 2/3 as many seg-
ments as points.

TheO(n2) nature of the sliding window algorithm is evi-
dent in Fig. 8.

To restate: the quasi-monotonicity analysis of Algo-
rithm 1 and the techniques described in Keoghet al. are re-
ally doing different things. The linear techniques are trying
to minimize the least squares error (theL2 norm), while the
quasi-monotonicity analysis tries to minimize the maximum
error (theL∞ norm). Additionally, the techniques described
in Keoghet al. produce additional segments which are not
of use for analysing monotonicity, and (as a result) execute
more slowly.

Limitations of quasi-monotonic segmentation
Quasi-monotonic segmentation of measurements as pro-
duced by Algorithm 1 will only measure changes of direc-
tion (up/down) and is oblivious to rates of change (higher
derivatives). Further,δ-flat segments are always incorpo-
rated into increasing or decreasing segments. When aδ-flat



Points Alg. 1 Sliding Window Regression
1600 9 20 1065
3200 16 37 2099
4800 21 49 3191
6400 27 59 4250
8000 34 65 5361
9600 40 77 6361
11200 48 82 7487
12800 54 91 8511
14400 59 97 9522
16000 66 107 10693
17600 72 114 11668
19200 79 120 12729
20800 85 126 13844
22400 91 131 14806
24000 97 137 15952
25600 104 143 16995
27200 110 153 18074
28800 116 156 18998
30400 123 163 20265
32000 130 169 21343
33600 136 175 22478
35200 143 179 23427
36800 149 188 24499
38400 156 190 25697
40000 162 201 26611

Table 1: Number of segments produced by three algorithms
as the number of points increase; withδ = 0.1

segment is at the end of an segment meeting a new segment,
it is ambiguous which increasing/decreasing segment it is
part of. Algorithm 1 uses theL∞ (maximum) error mea-
sure which can be both a positive and a negative: it will be
sensitive to even a single measure aboveδ and doesn’t aver-
age out the effect. However, short segments can be readily
identified as noise-related in some applications or could be
interpreted as being significant in other applications.

Conclusion

In reactive control, if segmentation of the state variables
into time intervals is to be used as episodic functions, then
linear time algorithms must used and soft-realtime process-
ing must be possible. Segmentation in monotone intervals
is a natural approach, but using straight-forward algorithms
like linear splining is unnecessarily expensive, requires post-
processing to aggregate segments having the same sign, as-
suming no segment has near zero slope, and most likely re-
quire approximation algorithm since optimal linear splining
is not possible in linear time. On the other hand, the quasi-
monotone approach we described is mathematically elegant
and computationally convenient.
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Sliding window algorithm
Algorithm 2 presents a segmentation algorithm for mono-
tonic segmentation using a sliding window technique of the
sort described in (Keoghet al. 1993).

Algorithm 2 Sliding window linear spline computation al-
gorithm.

INPUT: two arrayst andm, wheret contains time stamps
andm contains measure values
INPUT: some error toleranceδ
OUTPUT: a queueQ containing indexes of nodes where
we segment
Q← empty queue
add 1 toQ
i← 1
while true do

for j in {i + 1, . . . , n} do
Let f be the linear function withf(ti) = mi and
f(tj) = mj

Let ε = max{|f(tk)−mk|} for k ∈ {i + 1, . . . , j−
1}
if ε > δ then

i← j − 1
addi to Q
exit for loop

if i = n then
addi to Q
exit algorithm withQ


