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Abstract: 

We investigated Generalized Gradient 
Vector Flow Active Contours as a suitable 
boundary mapping technique for 
Chromosome spread images which have 
variability in shape and size, expecting to 
yield a robust segmentation scheme that can 
be used for segmentation of similar class of 
images based on optimal set of parameter 
values. It is found experimentally that a 
unique set of parameter values is required  

 

 

for boundary mapping each chromosome 
image. Characterization studies have 
established that each parameter has an 
optimal range of values within which good 
boundary mapping results can be obtained 
in similar class of images. Statistical testing 
validates the experimental results. 
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Introduction 

Boundary Mapping is a segmentation 
approach that can be done easily in noise-
free high contrast images employing low-
level techniques, traditional edge detectors, 
region growing or mathematical 
morphology. These techniques are 
computationally fast. Noise and artifacts can 
possibly cause incorrect segmentation or 
boundary discontinuities in segmented 
objects.(1) 

The classical boundary mapping techniques, 
namely, region growing, relaxation labeling, 
edge detection and linking use local 
information only. This leads to incorrect 
assumptions during the boundary 
integration leading to errors. Imaging 
conditions also introduce further variability 
in image characteristics. 

A high-level segmentation technique, Active 
Contours, holds much promise for 
application to chromosome image 
segmentation. The main advantage of Active 
Contour models is the ability to generate 
closed parametric curves from images and 
the incorporation of a smoothness constraint 
that provides robustness to noise and 
spurious edges. The focus is on parametric 
deformable curves as they provide a 
compact, analytical description of object 
shape. 

This work was conducted with an aim to 
use a parametric deformable curve 
formulation called Generalized Gradient 
Vector Flow (GGVF) field Active Contours 
to obtain accurate boundary mapping 
(segmentation) results from a class of 
chromosome images having variable shape, 
size and other variable image properties. 
The various parameters in the chosen active 
contour formulation were investigated for 
an optimal selection. The expected outcome 
would result in obtaining a universal set of 
parameter values that could be applied for 
successful boundary mapping a similar class 
of images. 

 

Active Contour Models 

Active Contours, also called as Snakes or 
Deformable Curves, first proposed by Kass 
et al.(2) are energy-minimizing contours that 
apply information about the boundaries as 
part of an optimization procedure. They are 
generally initialized around the object of 
interest by automatic or manual process. 
The contour then deforms itself from its 
initial position in conformity with the 
nearest dominant edge feature by 
minimizing the energy composed of the 
Internal and External forces. Internal forces 
which enforce smoothness of the curve are 
computed from within the Active Contour. 
External forces derived from the image help 
to drive the curve toward the desired 
features of interest during the course of the 
iterative process.  

The energy function is minimized, thus 
making the model active. The energy 
minimization process can be viewed as a 
dynamic problem where the active contour 
model is governed by the laws of elasticity 
and lagrangian dynamics(3), and the model 
evolves until equilibrium of all forces is 
reached, which is equivalent to a minimum 
of the energy function. 

Formulation of Active Contour Models 

An Active Contour Model can be 
represented by a curve C as a function of its 

arc length τ, 

 
-- (1) with τ=[0...1]. To define a closed curve 
c(0) is set to equal c(1). A discrete model can 
be expressed as an ordered set of n vertices 

 νi=(x i,, y i)τ  with ν=(ν1,….. νn). 

The large number of vertices required to 
achieve accuracy could lead to high 
computational complexity and numerical 
instability.(3) 
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Mathematically, an active contour model 
can be defined in discrete form as a curve 

x(s)=[x(s),y(s),sε  [0,1] that moves through 

the spatial domain of an image to minimize 
the energy functional  

 
-- (2) where α and β are weighting 
parameters that control the active contour's 
tension and rigidity respectively(4), and 
they govern the effect of the derivatives on 
the deformable curve. The first order 
derivative discourages stretching while the 
second order derivative discourages 
bending. 

The external energy function Eext is derived 
from the image so that it takes on its smaller 
values at the features of interest such as 
boundaries and guides the active contour 
towards the boundaries. The external energy 
is defined by  

Eext= κ|Gσ(x,y)*I(x,y)| -(3) 

where Gσ(x,y) is a two-dimensional 

Gaussian function with standard deviation 

σ, I(x,y) represents the image, and κ is the 

external force weight. This external energy 
is specified for a line drawing (black on 

white) and positive κ is used. A motivation 

for applying some Gaussian filtering to the 
underlying image is to reduce noise. 

An active contour that minimizes E must 
satisfy the Euler Equation  

αx”(s)-βx””(s)-∇Eext =0 -- (4) where 

Fint = αx”(s)-βx””(s) and Fext =-∇Eext 
comprise the components of a force balance 

equation such that Fint +  Fext  = 0 –(5) 

The internal force Fint discourages stretching 
and bending while the external potential 
force Fext drives the active contour towards 
the desired image boundary. Eq. (4) is 
solved by making the active contour 
dynamic by treating x as a function of time t 
as well as s. Then the partial derivative of x 

with respect to t is then set equal to the left 
hand side of Eq. (4) as follows  

xt(s,t)=αx”(s,t)-βx””(s,t)-∇Eext   -- (6) 

A solution to Eq. (6) can be obtained by 
discretizing the equation and solving the 
discrete system iteratively.(2) When the 
solution x(s,t) stabilizes, the term xt(s,t) 
vanishes and a solution of Eq. (4) is 
achieved. 
Traditional active contour models suffer 
from a few drawbacks. Boundary 
concavities leave the contour split across the 
boundary. Capture range is also limited. 
Methods suggested to overcome these 
difficulties, namely multiresolution 
methods(5), pressure forces(6), distance 
potentials(7), control points(8), domain 
adaptivity(9), directional attractions(10) and 
solenoidal fields(11), introduced new 
difficulties.(12) Hence, a new class of 
external fields called Gradient Vector Flow 
fields(12,13) was suggested to overcome the 
difficulties in traditional active contour 
models. 

Gradient Vector Flow (GVF) Active 
Contours 

Gradient Vector Flow fields are obtained by 
solving a vector diffusion equation that 
diffuses the gradient vectors of a gray-level 
edge map computed from the image. These 
fields are used in Gradient Vector Flow 
(GVF) Active Contours. The GVF active 
contour model cannot be written as the 
negative gradient of a potential function. 
Hence it is directly specified from a dynamic 
force equation, instead of the standard 
energy minimization network. 

The external forces arising out of GVF fields 
are non-conservative forces as they cannot 
be written as gradients of scalar potential 
functions. The usage of non-conservative 
forces as external forces enhance 
performance of Gradient Vector Flow field 
Active Contours compared to traditional 
energy-minimizing active contours.(12,13) 

When the GVF field is very near to the 
boundary, it points towards the boundary, 
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but varies smoothly over homogeneous 
image regions extending to the image 
border. Hence the GVF field can capture an 
active contour from long range from either 
side of the object boundary and can force it 
into the object boundary. Information 
regarding whether the initial contour should 
expand or contract need not be given to the 
GVF active contour model.  

The gradient vectors are normal to the 
boundary surface but by combining the 
Laplacian and the Gradient, the GVF field 
yields vectors that point into boundary 
concavities so that the active contour is 
driven through the concavities. Hence, the 
GVF active contour model is insensitive to 
the initialization of the contour, providing 
for flexible initialization and also able to 
move into boundary concavities. Also, the 
GVF is very useful when there are boundary 
gaps, because it preserves the perceptual 
edge property of active contours.(2,13)  

The GVF field is defined as the equilibrium 
solution to the following vector diffusion 
equation(12),  

Ut= g(|∇f|)∇2 u-h(|∇f|)(u-∇f)  -- (7a) 

u(x,0) =∇f (x) --- (7b) 

where, ut denotes the partial derivative of 

u(x,t) with respect to t, ∇2  is the Laplacian 

operator (applied to each spatial component 
of u separately), and f is an edge map that 
has a higher value at the desired object 
boundary.  

In Eq. (7a), g(|∇f|)∇2u  produces a 

smoothly varying vector field, and hence 
called as the "smoothing term", while 

h(|∇f|)( u-∇f) encourages the vector field 

u to be close to ∇f  computed from the 

image data and hence called as the data 
term. The weighting functions g(·) and h(·) 
apply to the smoothing and data terms 
respectively and they are chosen as 

g(|∇f|) = µ and h(|∇f|) = |∇f|2.(13) 

g(·) is constant here, and smoothing occurs 
everywhere, while h(·) grows larger near 
strong edges and dominates at boundaries. 
The functions in "g" and "h" control the 
amount of diffusion in GVF. 

Hence, the Gradient Vector Flow field is 
defined as the vector field 

V(x,y)=[u(x,y)v(x,y)]  that minimizes the 

energy functional 

ε = ∫∫µ(ux2+uy2 + vy2)+ |∇f|2|v-∇f|2 dxdy - (8) 
The effect of this variational formulation is 
that the result is made smooth when there is 
no data. 

When the gradient of the edge map is large, 
it keeps the external field nearly equal to the 
gradient, but maintains the field to be 
gradually varying in homogeneous regions 
where the gradient of the edge map is small, 

i.e., the gradient of an edge map∇f has 
vectors point toward the edges, which are 
normal to the edges at the edges, and have 
magnitudes only in the immediate vicinity 
of the edges, and in homogeneous regions 

∇f is nearly zero. 

µ is a regularization parameter that governs 
the tradeoff between the first and the second 
term in the integrand in Eq. (8). 

The solution of Eq. (8) can be obtained using 
the Calculus of Variations. Further, u and v 
are treated as functions of time, and solved 
as generalized diffusion equations.(13) 

Generalized Gradient Vector Flow (GGVF) 
Active Contours 

In the GVF Active Contour formulation 

given by eq. (7), the term g(∇f) is constant 
and hence smoothing occurs everywhere, 

while h(∇f) grows larger near strong edges, 
dominating at boundaries. However when 
there are two edges in close proximity, it 
manifests as a long, thin indentation along 
the boundary. This makes the GVF tend to 
smooth between opposite edges. Hence the 
GVF loses forces to drive the Active Contour 
into this region. 

Suitable weighting functions have been 
proposed in which g(·) becomes smaller as 
h(·) becomes larger.(14) Therefore there will 
be very little smoothing in the proximity of 
large gradients. Hence the effective vector 
field will be nearly equal to the gradient of 
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the edge map. There are many ways to 
specify these pairs of weighting functions, 
thus making the formulation a Generalized 
Gradient Vector Active Contour 
formulation. 

From (14), the following weighting 
functions were chosen: 

  

--(9) 

h(|∇f|) =1- g(|∇f|) --(10) 

This choice of weighting functions will 
make the computed GGVF field to conform 
to the edge map gradient at strong edges, 
but will vary smoothly away from 
boundaries. The solution remains the same 
as discussed previously under the 
subheading "GVF Active Contours". 

 

 

Results and Discussion 

The chromosome metaphase image (size 480 
x 512 pixels at 72 pixels per inch resolution) 
was taken and preprocessed. Insignificant 
and unnecessary regions in the image were 
removed interactively. The chromosome of 
interest was user selected, by choosing a few 
points on the outer periphery of the 
chromosome of interest. These points 
formed the vertices of a polygon. Seed 
points for the initial contour were chosen by 
automatically selecting every third pixel on 
the perimeter of the polygon. 

The GGVF deformable curve was allowed to 
deform until it converged to the 
chromosome boundary. The image was 
made to undergo minimal preprocessing so 
that the goal of boundary mapping in 
chromosome images with very weak edges 
is maintained. The GGVF Active contour is 
governed by the following parameters, 

namely, σ, µ, α, β and κ.

 

Chromosome Image  
(Courtesy: Prof. Ken Castleman and Prof. Qiang Wu), Advanced Digital Imaging Research, Texas 



 6 

σ determines the Gaussian filtering that is 

applied to the image to generate the external 
field. Larger value of s will cause the 
boundaries to become blurry and distorted, 
and can also cause a shift in the boundary 
location. However, large values of s are 
necessary to increase the capture range of 

the active contour. µ is a regularization 
parameter in Eq. (8), and requires a higher 
value in the presence of noise in the image. 

α determines the tension of the active 

contour and β determines the rigidity of the 
contour. The tension keeps the active 
contour contracted and the rigidity keeps it 

smooth. α and β may also take on value 
zero implying that the influence of the 
respective tension and rigidity terms in the 
diffusion equation is low. 

κ is the external force weight that 
determines the strength of the external field 
that is applied. The iterations were set 
suitably. 

Characterization of each parameter was 
done and optimal parameter values were 
determined. 

Experimental Results 

 

The figures show original chromosome image samples, their corresponding GGVF fields and 
boundary mapped chromosome images. Fig. 1a shows original image sample, Fig. 1b shows its 

GGVF field, and Fig. 1c shows the output image, and hence forth for all five samples. 

 

The graphical outputs show successful boundary mapping of chromosome images using GGVF 
Active Contours. 
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Experimental Validation 

In order to quantify the performance of a 
segmentation method, validation 
experiments are necessary. Validation is 
typically performed using one or two 
different types of truth models. In this work, 
ground truth model is not available and 
hence validation is performed on ordinal or 
ranking scale and then quantified. 

A set of 20 random samples is taken and 
characterization of each parameter is done. 
The outputs were tabulated in ranking order 
with "1" describing the best quality output 
and the rank increases up to rank "97" with 
decreasing quality. Rank "98" is a special 
case, where the output image is either 
rejected based on quality or the output 
image is not available due to numerical 
instability possibly caused due by the 
greater number of contour points.(3) 

With other parameters taking on a constant 
value, each table represents characterization 
studies for each parameter denoting 
variation for only one parameter either 
between the lower and upper limits of the 
parameter or between the lower and upper 
limits that give significantly different 
output. Those parameter values where there 

is no significant difference between adjacent 
parameter values have not been tabulated. 
Also, those parameter values outside the 
tabulated range which gave no proper 
results have not been tabulated. 

The parameter value that gives maximum 
good quality outputs for a majority of 
samples is chosen for characterization of the 
next parameter as follows. The statistical 
median is used to judge the distribution of 
values for each parameter value for all 
samples. When the median leans towards 
the lower values, i.e., towards "1", it 
indicates that almost 50% of the outputs lean 
towards "1" and hence that parameter value 
is chosen as the optimal one. 

The characterization studies reveal that each 
parameter sometimes has an optimal range 
within which it can assume any value 
thereby giving majority good outputs for all 
samples. But for the sake of experimental 
purposes, only that investigated discrete 
value of each parameter that gave best 
output was chosen. 

It is observed that there is very less variation 
among outputs given by closely separated 
parameter values and hence the variable 
increment is made high. 

Sample Table1: Characterization of Sigma: GGVF Sigma  
  0 0.25 0.5 0.75 1 2 3 4 

Sample 1 77 77 77 77 13 13 35 39 

Sample 2 77 13 13 13 13 13 13 33 

Sample 3 77 78 77 77 29 9 35 37 

Sample 4 79 77 77 77 29 15 15 39 

Sample 5 97 97 97 97 97 97 97 97 

Sample 6 97 97 97 97 97 97 97 97 

Sample 7 97 97 97 97 97 97 97 97 

Sample 8 86 86 86 86 86 45 50 42 

Sample 9 78 78 78 78 13 13 15 29 

Sample 10 77 77 77 77 77 13 29 29 

Sample 11 79 78 78 78 29 29 29 46 

Sample 12 97 97 97 97 97 97 97 97 

Sample 13 97 97 97 97 97 97 97 97 

Sample 14 97 77 86 77 77 37 38 45 

Sample 15 97 77 77 77 29 77 75 29 

Sample 16 79 77 77 77 29 29 29 29 

Sample 17 80 78 78 78 13 32 40 48 

Sample 18 77 77 77 13 13 29 77 31 

Sample 19 79 77 77 77 77 29 29 31 

Sample 20 78 86 86 86 46 50 36 46 

Median 79 78 78 78 38 31 37 41 
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In Table 1, the median indicates that the acceptable optimal range of σ extends from 1 to 3. The 
best value compared qualitatively amongst those tested is 2 and hence it is chosen for performing 
further characterization. 

Table 2: Characterization of Mu 

Sample GGVF Mu 

 0.005 0.01 0.05 0.1 1 

Sample 1 13 13 35 97 97 

Sample 2 13 13 11 97 97 

Sample 3 11 9 39 97 97 

Sample 4 15 15 29 97 97 

Sample 5 97 97 97 97 97 

Sample 6 97 97 97 97 97 

Sample 7 97 97 97 97 97 

Sample 8 86 45 45 97 97 

Sample 9 31 31 31 97 97 

Sample 10 29 29 57 97 97 

Sample 11 29 29 45 97 97 

Sample 12 97 97 97 97 97 

Sample 13 97 97 97 97 97 

Sample 14 70 37 44 97 97 

Sample 15 77 77 57 97 97 

Sample 16 13 29 45 97 97 

Sample 17 31 32 48 97 97 

Sample 18 11 29 11 97 97 

Sample 19 29 29 77 62 97 

Sample 20 38 50 50 97 97 

Median 31 32 47 97 97 

In Table 2, the median indicates that the acceptable optimal range of µ extends from 0.005 to 0.01. 
The best value compared qualitatively amongst those tested is 0.005 and hence it is chosen for 
performing further characterization. 

Table 3: Characterization of Alpha 

Sample GGVF Alpha 

 0 0.5 1 

Sample 1 13 45 93 

Sample 2 13 13 13 

Sample 3 11 97 59 

Sample 4 15 31 97 

Sample 5 97 58 97 

Sample 6 97 86 97 

Sample 7 97 97 97 

Sample 8 86 94 97 

Sample 9 31 31 97 

Sample 10 29 29 77 

Sample 11 29 45 97 

Sample 12 97 97 97 

Sample 13 97 97 97 

Sample 14 70 97 97 

Sample 15 77 49 57 

Sample 16 13 45 97 

Sample 17 31 48 97 

Sample 18 11 50 97 

Sample 19 29 45 97 

Sample 20 38 57 61 

Median 31 50 97 
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In Table 3, the median indicates that the acceptable optimal range of α extends from 0 to 0.5. The 
best value compared qualitatively amongst those tested is 0 and hence it is chosen for performing 
further characterization. 

Table 4: Characterization of Beta 

Sample GGVF Beta 

 0 0.5 1 

Sample 1 13 23 47 

Sample 2 13 29 77 

Sample 3 11 34 29 

Sample 4 15 31 79 

Sample 5 97 97 97 

Sample 6 97 87 86 

Sample 7 97 87 97 

Sample 8 86 86 90 

Sample 9 31 32 80 

Sample 10 29 29 31 

Sample 11 29 29 29 

Sample 12 97 97 97 

Sample 13 97 97 97 

Sample 14 70 45 46 

Sample 15 77 78 86 

Sample 16 13 38 46 

Sample 17 31 47 79 

Sample 18 11 70 78 

Sample 19 29 29 29 

Sample 20 38 38 51 

Median 31 42 79 

In Table 4, the median indicates that the acceptable optimal range of ß extends from 0 to 0.5. The 
best value compared qualitatively amongst those tested is 0 and hence it is chosen for performing 
further characterization. 

Table 5: Characterization of Kappa 

Sample GGVF Kappa 

 0.2 0.4 0.45 0.5 0.6 0.7 0.8 

Sample 1 97 13 13 13 29 29 39 

Sample 2 13 13 13 13 13 13 29 

Sample 3 97 11 11 73 29 29 34 

Sample 4 97 15 29 70 29 29 46 

Sample 5 97 97 97 97 54 51 58 

Sample 6 97 97 97 97 54 64 86 

Sample 7 97 97 97 97 38 62 97 

Sample 8 97 86 86 86 94 46 46 

Sample 9 32 31 29 70 29 29 29 

Sample 10 97 29 13 29 29 29 29 

Sample 11 70 29 13 70 29 29 70 

Sample 12 97 97 97 97 97 62 46 

Sample 13 97 97 97 97 58 62 58 

Sample 14 97 70 58 50 46 46 46 

Sample 15 97 77 13 50 75 29 75 

Sample 16 97 13 13 38 13 29 29 

Sample 17 97 31 16 46 32 46 46 

Sample 18 29 11 13 73 29 29 29 

Sample 19 97 29 87 13 29 77 77 

Sample 20 97 38 36 38 38 54 45 

Median 97 31 29 70 31 38 46 
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In Table 5, the median indicates that the 
acceptable optimal range of κ extends from 
0.4 to 0.7. The best value compared 
qualitatively amongst those tested is 0.45. 

Hence the optimal set of parameter values 
that give good boundary mapping for the 

given class of chromosome images is σ = 2, µ 

= 0.005, α= 0, ß = 0 and κ= 0.45 

A safe limit of 5% tolerance can be 
introduced to the optimal range of 
parameter values observed in each 
characterization. 

Table 6: Optimal range of GGVF Active Contour parameter values for tested chromosome 
spread images 

Parameter 
Parameter Value used 
for tested spread image 

Acceptable range of 
Parameter Values 

Acceptable range of 
Values at 5% tolerance 

GGVF Sigma 2 [1,3] [0.9500, 3.1500] 

GGVF Mu 0.005 [0.005, 0.01] [0.0047, 0.0105] 

GGVF Alpha 0 [0, 0.5] [0, 0.5250] 

GGVF Beta 0 [0, 0.5] [0, 0.5250] 

GGVF Kappa 0.45 [0.4, 0.7] [0.3800, 0.7350] 

This optimal range can be used for 
boundary mapping similar class of images. 

Statistical Validation 

The other parameters assume a constant 
value and their effect will also be felt on 
each characterization. In the course of the 
characterization study from Table 1 to Table 
5, optimum values for the respective 
parameters are chosen and applied as 
constant in the successive table. In the last 
characterization study shown in Table 5, the 
values of σ, and  are assuming 
chosen optimal values and only κ is 
investigated, thereby yielding a one way 
variation. Hence, one way analysis of 
variance on Table 5 is sufficient to test the 
significance of the entire boundary mapping 
process, as a significant outcome from Table 
5 justifies that the experimental results of 
Table 5 are valid, implying that the selected 
parameter values from Table 1 to Table 4 
used as constants in Table 5 are also valid. 

At the customary .05 significance level, one 
way Anova test yields a p value of 2.47728E-
005 on Table 5, which rejects the null 
hypothesis. The very small p-value of 
2.47728E-005 indicates that differences 
between the column means are highly 
significant. The test therefore strongly 
supports the alternate hypothesis that one or 
more of the samples are drawn from 
populations with different means. This 

implies that the results in Table 5 do not 
arise out of mere fluctuations, but the results 
are actually significant and that the 
experiment is valid. This justifies that a 
suitable value of parameter can be chosen 
from Table 5, and that the constant values of 
parameters and used in Table 5 are also 
valid. Therefore, the experimental results 
are significant and valid. 

Validation Of Robustness Of The Scheme 

The following difficulties were observed 
during the implementation of the boundary 
mapping scheme. 

The banding pattern present in the 
chromosomes gives rise to higher contrast 
compared to the outer edges. This 
characteristic causes the GGVF external field 
to have a higher strength at the bands. 
Therefore, the GGVF Active Contour feels 
more attraction towards the bands than the 
outer boundary. Hence, the contour tends to 
cross the boundary into the inner regions 
seeking the bands. 

The chromosome images in the chromosome 
spread image have variability in shape and 
size due to the nature of the spread image. 
Also, the spatial distribution of the 
chromosomes is random accompanied by 
uneven spacing between adjacent 
chromosomes. Hence, each chromosome in 
a chromosome spread image becomes a 
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unique sample demanding unique values of 
the parameters governing the GGVF Active 
Contour. There is also a need for unique 
number of iterations to converge. 

The small object size of the chromosomes 
makes the computed GGVF field also to be 
small. Hence suitable choice of parameters is 
necessary; else the Active Contour crosses 
the boundary and results in a straight line at 
the axis of the chromosome sample. 

The chromosomes in the spread image have 
a minor axis length varying between 14 and 
17 pixels approximately and major axis 
length varying between 30 and 80 pixels 
approximately at 72 pixels per inch 
resolution. This causes the GGVF external 
field to have a high density at corners. 
Accompanied with the banding 
characteristic, the axis lengths force the 
GGVF Active Contour to map contours at 
the inner region of the chromosome instead 
of the actual boundary at the periphery of 
the chromosome. 

The weak edges in chromosomes also 
contribute to the Active Contour to 
overwhelm weak edges and move into inner 
regions. 

In addition to these inherent difficulties, 
more difficulty was introduced to validate 
the robustness of the boundary mapping 
scheme. The image was further degraded by 
transforming pixels having gray levels 
greater than 90% intensity in the range [0, 
255]. This resulted in degradation of weak 
edges, giving rise to distorted edges and 
uneven boundary in the original image, 
offering more challenges to the task of 
segmentation using GGVF Active Contours. 

These difficulties make the task of boundary 
mapping of chromosomes in chromosome 
spread images very difficult. Validations 
prove that the boundary mapping scheme 
has been very successful in spite of such 
difficulties. Hence the robustness of the 
scheme also stands validated. 

 

Conclusion 

The GGVF Active Contour establishes itself 
as a very good boundary mapping 
technique for chromosome spread images 
having chromosomes with variable shape, 
variable properties, and other variations 
introduced in imaging conditions. 
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