REINHARD MUSKENS

A RELATIONAL FORMULATION OF THE
THEORY OF TYPES”

INTRODUCTION

Relational Type Theory

In Montague semantics it is common procedure to specify a translation function
taking the expressions of some fragment of natural language to logical expressions. If
all is done well, the translated phrases and their translations show the same logical
behaviour. Their truth conditions should match, for example, and the relation of
logical consequence on the translations should mirror the relation of entailment that
is imposed on the natural language fragment by natural logic.

The logic that is usually taken as the range of values of this translation function
is Montague’s IL (Intensional Logic), defined in Montague [1973] and extensively
described in Gallin [1975]. Being an intensional extension of Church’s [1940]
beautiful formulation of the simple theory of types, it can be embedded in a two-
sorted version, T¥, of this theory, as was shown by Gallin.

Historically, Church’s formulation of type theory was much influenced by his
formulations of the lambda calculus, which is a theory of functions. The 1940 article
defining the logic is mainly of a syntactical character, but in the first section a brief
suggestion is made concerning the intended interpretation of the system. This
interpretation is to béunctional While in earlier and less precise formulations of
type theory (see Russell [1908], Carnap [1929]) classes and relations played an
important and more independent role, these now seem to have to be equated with
their characteristic functions. Multi-argument relations are identified in this way with
multi-argument functions, which in their turn, following Schonfinkel [1924], are
equated with functions in one argument whose values are functions again.

Now these moves seem innocent enough. Technically it is clearly equivalent to
consider relations directly or to explain them recursively with the help of
Schonfinkel’s Trick. But, although equivalent, the identification is—I claim—not
very felicitous. Relations are ‘moved up’ recursively in the set-theoretical hierarchy
and this complication makes it extremely difficult to formulate the usual model-
theoretical notions for the logic. In fact, in almost all cases where an interesting
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notion is defined, this is done by the use of a recursion that reverses the effect of
Schonfinkel's Trickt

This kind of problem motivated S. Orey to define his higher-order predicate
calculus in 1959 (see also Gallin [1975], Van Benthem & Doets [1983]). Avoiding
the Trick, he formulated type theory in such a way that model-theoretic concepts as,
for example,substructureor end extensioifof a general model) have simple and
natural formulations. Types, in his system, are oélational character, not of a
functional one as they are in Church’s; and the objects in his domains are either
individuals or relations. Here are the relevant definitions:

Derinimion 1. The set otypesis to be the smallest set such that:

i. eandsare types,

i. ifaq,...,a, aretypes (z0),then ay...app is atype.

We shall equate « withl or, equivalently, with 0. The typesands we callbasig
all other typeselational.

Derinimion 2. Astandard Orey framés a family of setsB, | a is a type}such that
De#0,Dg# 0 andD g, . g, =P(Dg,* - - - X Dg).

(The cartesian product of the empty sequence of sets is to be equated with {©}. So
D,=P ({O}) = {0,1}, the set oftruth values)

Orey'’s relationaimodelscan now be defined in the usual way by adding an inter-
pretation function to the frames just given.The use of these relational models instead
of the standard functional ones is not only advantageous from a model-theoretic
point of view, but has also much to recommend it from the perspective of
applications of type theory in Montague semantics. | shall give four arguments in
support of this.

I. Although the standard logic has, in a sense to be explained below, ‘more’ types
than relational type theory has, these extra types are in fact seldom used. Almost all
proposed translations of natural language expressions have (functional) types that
correspond closely to the relational types defined above. In order to put this more
accurately, | shall first give the familiar definition of Church’s types and then define
the subclass of them that is in fact—I claim—most popular.

Derinimion 3. The set o€hurch typesis to be the smallest set such that:
i. e sandtare Church types,
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i. if aandfare Church types, thenf) is a Church type.

DeriniTion 4. Define the functiol (2 is for Schonfinkel) taking types to Church
types by the following double recursion:
I 2(e)=¢e 2(5) =5
i Z(o) =t
i Xcaq...ap) = (E(ap2(<as...ap)) if n=21.

So, for exampleZ(<e>) = (ef), Z(«e»>) = ((eNt), Z(<ee) = (g(ef)) and Z(«se<se») =
((s(e)((s(e)t)). If a is the type of some relation thei(a) is the Church type of

the unary function that codes this relation in functional type theory. Note that
arguments of tend to have less length than the corresponding values. Let’s call any
Church type that is a value afquasi-relational It is not difficult to characterize

the quasi-relational Church types: A Church type is a valuEibaind only if no
occurrence of or simmediately precedes a right bracket in it.

Ever since Bennett [1974] removed individual concepts from the standard for-
mulation of Montague Grammar, the vast majority of types that have been proposed
as denotation sets for linguistic categories have been quasi-relational. If the
semantics of a natural language is described with the help of a functional type
theory, then linguistic expressions tend to get semantic values having valias of
their types. This seems to be an important fact about semantics, but it is a fact that is
not reflected in the overall organization of current Montague Grammar. It would be
so reflected if we would trade the usual type theory for a relational one and assign
relational typesx to linguistic categories instead of the more complex quasi-rela-
tional types3(a)2.

Il. The complexity of the objects that are used in functional semantics exceeds the
complexity of their relational counterparts. In the functional theory, elements from
Orey frames are coded as elements from Church frames:

Derinimion 5. A Church frameis a family of sets D, | a is a Church typekuch
thatDg # L, Dg# U, Dy = {0,1} and D43, is the set of functions froid, to D .

The Schonfinkel identification that codes multi-argument relations as unary functions
may look simple if only relations of individuals are considered. In the higher-order
case however, where relations can take relations as arguments, which in their turn can
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again take relations as arguments, etc., the identification is somewhat less than
transparent. Let’s fully write out the definition of the encoding function:

DeriniTioN 6. Let {D, | a is a type} be a standard Orey frame am { | a is a
Church type} the Church frame such tiiyt = D'g andDg = D'q. For each typer,
define a bijectior,: Dy - D' 5(q) by the following double recursion:
I Sy(d)=d,ifd0Dg;

Sy(d) =d, if d 0 Dg;
I i. S,(d)=d,ifddD;

ii. 1fn>0,a=«aq.apandROD,, thenS,(R) is the functionF of type
(Z(aq)Z(<ay...ap)) such that, for eacH O D'Z(orl)’ F(f) =
Scaty...arp{ M2, - - - Ay BBy, (), g, - . . 0y 00 RY).

It is routine to prove that this is well-defined. Def8i® be >

Obviously, the functiors tends to rather dramatically increase complexity. For
example, an object of typese«se> (arguably the kind of object that can be taken to
be the extension of a natural language determiner), which is a two-place relation
taking relations between indices and entities in both its argument places, is coded as
a function taking functions from indices to functions from entities to truth values to
functions taking functions from indices to functions from entities to truth values to
truth values.

Now, if there would be any need to do so, we could gladly accept these intricacies,
since the function§, areisomorphismsfor all relationsR (of any type)d,, . . .,
d,00 Riff S(R)(S(dq)) . . . §(d)) = 1, as can easily be verified. But | think that
this doubly recursive encoding is just a needless complication. If we want Montague
Grammar to look a little less like a Rube Goldberg machine (the comparison is taken
from Barwise & Cooper [1981]), we may as well skip it.

Ill. In view of the fact that natural languaged, or andnot can be used with ex-
pressions of almost all linguistic categories, type domains should have a Boolean
structure. This has been argued for by a variety of authors, beginning with Von
Stechow [1974] (see also Keenan & Faltz [1978]). Obviously, Orey’s relational
models have a Boolean structure on all their (non-basic) domains, since these are
power sets. So we can give a very simple rule for the interpretation of natural
language conjunction, disjunction and negation: they are to be treatedlaand—
(complementation within a typed domain) respectively. Entailment between ex-
pressions of the same category is to be treated as inclusion.
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This does not differ much, of course, from the usual treatment of both entailment
and the expressions just mentioned. The point is rather that the relevant Boolean
operations are not as easily available in a functional type theory as they are here.
They can only be obtained by Gazdar’s [1980] pointwise recursive definitions. Let's
have a look at one of them. Before we can give it, we must characterize a certain
subclass of the Church types, the so-callagjoinableones:

DEFINITION 7.
i. tis conjoinable;
ii. If Bis conjoinable, thenaf) is conjoinable.

Note that, while not all conjoinable Church types are quasi-relational, there is a close
kinship between the two classes of types: A Church type is quasi-relational if and
only if all its subtypes are either basic or conjoinable.

Having defined the conjoinable types we can define generalized conjunction in
functional type theory thus:

DeriNniTION 8.

i. ab:=anb, ifabO {0, 1};

i. If F1andF> are functions of some conjoinable typg3), then the functioifrq
Fois defined by B1 F2)(2) = F1(2) F2(2), for all z of Church typea.

Similar definitions can be given for generalized disjunction, complementation and
inclusion (see Groenendijk & Stokhof [1984] for the last operation).

These definitions are an artefact of the functional formulation of type theory. They
enable us to treat generalized co-ordination by reversing the effect of Schonfinkels
Trick: It is not difficult to prove that, for anig1, Ry of relational typeS(R1 n Ro)
= 3R1) SRy). But as soon as we get rid of the Trick, the need for its reversals,
these pointwise definitions, vanishes too. So let's omit them and, since having no
definitions is simpler than having some, get a less complicated theory.

IV. Simplification should lead to generalization; that is the reason why we strive for
it. Thus far, my arguments for adopting a relational version of type theory were
mainly concerned with the simplification and—I hope—esthetic improvement of

existing semantic theories. But my fourth and last reason for going relational is that
it allows a generalization of Montague Semantics which | think is urgently needed
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and which seems hard to get in the standard approach: Doing things the relational
way makes it possible fmartialize the existing theory.

The view that partial structures (structures that may leave the truth values of some
sentences undefined) are crucial for an adequate description of many semantic facts is
now widely accepted. Attractive analyses of various linguistic phenomena have been
carried out within frameworks that stress the partial, incomplete, character of semantic
objects. Examples are the treatments of propositional attitudes and neutral perception
verbs in Barwise & Perry’s Situation Semantics, forcing accounts of conditionals
and modals (see Kratzer [1977], Veltman [1985] and Landman [1986]), and the
treatment of anaphora in Kamps' Discourse Representation Theory (Kamp [1981]).
The reader will have no difficulty in supplying more examples of appealing seman-
tical theories in which non-complete objects play an essential r6le. In the last ten
years or so there has been a widespread tendency towards going partial.

But while Montague Semantics aspires to be a very general vehicle for the
description of linguistic meaning it doesn’'t seem possible to carry out similar
analyses within this framework; it simply lacks the partiality that is needed. The
existing type hierarchies seem to be inherently total in character and thus far the
logic has resisted all attempts at generalization in the desired direction.

One problem one has to deal with when trying to partialize standard type theory is
that the one-to-one correspondence between multi-argument functions and unary
functions of certain type breaks down: If, for examjlles some domain then the
partial functions fronD x D into D cannot in general be isomorphic to the partial
functions fromD into the partial functions fror® into D. If D has two elements
then the first of these sets ha®‘3 = 81 elements, while the cardinality of the
second one is &1)2 = 100. So the Schoénfinkel identification is no longer

possible.
No such problems arise in the relational theory. Let's defipartial relationR
on domaindy, . . . ,D, as a tupldR*, R-Clof ordinary relations on these domains.

The relation R* is calledR’s denotation its companionR~ we call R's
antidenotation The n-tuples that are neither iR* nor in R—, the set
Dy x - -xDy\R* O R, form R's gap; those that are in both form iggut.

We may now consider hierarchies of partial relations:

DsriniTion 9. Astandard partial framés a family of setsB, | a is a type}such
that Dg# U, Dg# 0 andD. g, g, =P(Dg,x " "xDg )X
P(Dg, x - xDg).

1 n
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The above definition is of course a straightforward generalization of Definition 2.

| shall not describe the logic of these partial frames here. | have done so elsewhere
(see Muskens [forthcoming]), where it turns out—as could be expected—that this
logic can be obtained by simply ‘doubling’ some of the crucial concepts that are
discussed in this paper. It also turns out that the partial logic enables us to give
Montague analyses of propositional attitude and naked perception verbs very much
along the lines of Barwise & Perry [1983] and Barwise [1981].

But for the moment let's return to the total relational frames. It is from these,
conceptually, that the partial ones are derived and they should be studied in their
own right.

Although there are, as | have just argued, good reasons to prefer Orey’s relational
modelsover Church’s functional ones, there are equally good reasons to prefer
Church’ssyntaxover Orey’s when it comes to choosing a logic for our purposes. In
fact the latter logic, as it was defined in Orey [1959], lacks the operations of
application and abstraction which are absolutely crucial for the Montague
semanticist. So at this point it may seem that we can either have an applicable logic
with a complex model theory or a logic with a simpler model theory which is in-
applicable.

But the dilemma is only apparent. We can have our cake and eat it by taking the
syntax of standard type theory and evaluating it on relational models. Let's consider
application. Suppose thatandB are terms of typegBa;...a,p and respectively.

Then the value of the teriB (of type a;...a,) in some modeM (under an
assignmena) is given by the following rule:

(1) aMa={m,, ..., ¢o0BMa, d, ..., ¢00 |AME

Let, for example, the domain bf be some set of people andl®te be a constant of
type €e that is to be interpreted as the love relation among them
({fd4,d>0d, lovesd}). Let j andm be constants of type, interpreted orM by
John and Mary respectively. Theloye jM will be equal to {l> | d, loves John},
the set of persons loving John, whilejg¢ j njM equals {<| Mary loves John},
which is equal to the value 1 just in case Mary indeed loves John.

Suppose now thah is a term of some typexry...a,> and thatx is a variable of
type B. Then we can define the value of the téxaA (of type<Ba;...a,p) in M under
a as follows:
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(2) InxAM-2= {[d,dy,...,d,0 d O D and(dy,...,d, 10 [JA|M.ald/xy

For example the termx Ay [zo(x < zOy < Z) will receive the relation ‘having a
common successor’ on tig, domain as its interpretation in any model, as the reader
can easily verify.

Definite and indefinite description operators

In the preceding pages | have sketched how type theory can be interpreted in a re-
lational way. It would be easy now to fill in the details of this sketch and obtain a
completely defined relational semantics. The crucial clauses in the Tarski truth
definition would be (1) and (2) of course, and the resulting system would look a lot
like Gallin’s TY,, although its model theory would be much simpler.

Note, however, the following little asymmetry: while in the standard type theory it
is possible to obtain terms of a basioof s) type by application, this is not so in
relational type theory; the results of clauses (1) and (2) are always relations. In the
functional theory the result of applying a (sagpftype function to are-type
argument gives a value of typebut in the relational formulation the same function,
seen as aree-type relation now, applied to the same argument, givesatype
singleton as a result. To get the original value we nebxbeription operator.

Since a description operator is generally useful, we may add it to thé wic
defineix,(¢) to be a term of type if ¢ is a formula (a term of type «) ang is a
variable of typea and demand that at least:

(33 [Iixg(¢)|M-2 = the uniqued O D, such that §jM.ald/X = 1, if there is
such an objead O D,

What to do if there is no such uniqd® This is a classical problem of course and it
has been discussed extensively in the literature from Frege onwards (see Scott
[1967], Renardel [1984] for short expositions of the main points of vieva).idfa
relational type, a type of the fornw¢...a,» that is, then there is an obvious
candidate for the value 0f1>1|,,(¢)||Mvain case there is no uniqukesuch thatd
satisfiesp: we can let it be the empty 2elf, on the other handy is basic, that is if
a=eora=s, we must proceed in some other way.

To this end we shall follow Scott [1967] in distinguishing between the proper
objects of some basic type andiamproperone, designed to be the ‘non-referent’ of
non-referring expressions. The proper objects are just the elemdédygsooDg To
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these we now add an improper one. Since we can—up to isomorphism—take any set
to play the part of this object, we might as well cho@sagain for uniformity’s

sake. We shall stipulate that 0 Dg and0 O Dg (since we want to restrict
quantification and abstraction to the proper objects) and demand that:

(3b) ||IXa(¢)||M’a: O, if there is no uniqued OD , such that
llg|M-2Ld = 1

Scott’s treatment of the iota-operator makes it possible toegfiype translations to
natural language descripti¢hand have them behave in a Russellian way. Consider
the famous sentence:

(4) The present king of France is bald,
which may be formalized by:

(5) bald ix(king ¥  (where bottbald andking are type @ constants).

In a modelM where there is no unique king of France, such tkiaig|M is not a
singleton, the interpretation @he present king of France, |Ix(king Y|M, will
be equal td]. Since RPaldM O Dg, but O O Dy, rule (1) will ensure thatdhld
ix(king X|M = 0, so the sentence is falseMn Of course this implies that its direct
negation

(6) It is not the case that the present king of France is bald
is true inM. On the other hand the sentence

(7 The present king of France is not bald,
containing a verb phrase negation, will come out fals&éinAgain, since the
interpretation of the verb phrasenot bald is a subset oD, (the complement of
[bald|M in D) and Jix(king YM=00 De, rule (1) ensures (7)’s falsity .
Now that we have seen that abstraction and the definite description operator can be
given a precise semantics on our models, we turn our attention indibfenite

description operator. In this paper, we take an indefinite description operator as a
primitive logical symbol, defining all other variable binding operators from it.
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To have indefinite descriptions in the theory of types is no innovation. In Church
[1940] the author takes ‘selection operators’ (somewhat misleadingly denoted by io-
tas) as some of his logical primitives. These operators are constants of ggtpes ((

(in our notation), so intuitively they take sets of objects of tyfie objects of type

a. Church then proposes two alternative axiom schemes that should govern the
behaviour of these iotas. The first gives a seixddms of descriptionghe iotas
should assign to singletons their unique elements. This is of course still in line with
the usual interpretation of the iota symbol. But the latter remark doesn’t hold true for
the second, stronger, axiom scheme that Church proposes. This schemagigives

of choice the iotas should pick out some element frewerynon-empty set, which
makes the symbol into an indefinite description operator. Henkin, in his famous
article in which the generalized completeness of Church’s system is proved (Henkin
[1950]), gives a (very sketchy) semantics for the selection operator that seems to be
close in spirit to the semantics that we shall give to our indefinite description op-
erator in section 2 below.

Probably the first treatment of an indefinite description operator was given by
Hilbert & Bernays in their classicabrundlagen der Mathematik(Hilbert &
Bernays [1939]), to which Church acknowledges a debt. It often happens in
mathematical texts that when a statement of the form

(10) There arex such thatp . . .
is derived, the author continues with a statement like
(12) Now leta be an arbitrarx such thatp . . .

It is easy to reason away such talk about arbitrary objects by translating the whole
mathematical argument in question into standard predicate logic. But Hilbert &
Bernays do not take such a course. Instead, they take the arbitarpusly, give it

a namegx(¢), treat this as a term, and give axioms ruling its proof theory (first-order
equivalent to Church’s axiom of choice for= €). The ordinary quantifiers can then

be defined using-terms and ordinary quantification theory can be derived from their
&-calculus.

What is the appropriate semantics for Hilbeg'symbol? Hilbert & Bernays
themselves give none, since they are only interested in proof-theoretical inves-
tigations, but a semantics is given in Asser [1957] (see also Leisenring [1969]).
Asser useshoice functionschoosing an element from every non-empty subset of the
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domain. The value of the terex(¢) in some modeM is then a choice from the set
of objects that satisfg in M. This seems a good way to interpret the indefinite
description operator.

Again the classical problem arises: what if the setp'sf is empty? Asser
considers two possibilities to solve this problem. Either one can let choice functions
assign some arbitrary element of the domain to the empty set or one can leave them
undefined for that set. As Leisenring correctly remarks, the first option gives a nice
semantics for Hilbert's-symbol, but the second one is better suited to the
interpretation of the)-symbol, another indefinite description operator that Hilbert &
Bernays consider briefly, the one that is discussed in Reichenbach’[1947]

In this paper we shall interpret tipesymbol in a manner that resembles Asser’s
second way. Thus, the value of a teqg(¢) in a model M will be an arbitrary
such thatp (given by the choice function dv) if there areg’s in M and it will be
O if there are none. The usual variable-binding operators (to wit the lambda-operator,
the iota-operator and the quantifiers) as well as the epsilon-operator can then be de-
fined usingn and the propositional connectives.

THE SYSTEMTTN:2

In this section | shall present a formal development of the logical systé&nd, &r
two-sorted relational type theory with an indefinite description operator.

Syntax and semantics

Symbolsome in four kinds. First, for each type we shall assume the existence of
a set ofconstantf type a. There are two special constants, denoted laynd — ,

of types o and «»«> respectively, calléapical constants. They will get a fixed
interpretation. All other constants are callemh-logical Second, for each type,
there is a denumerably infinite setfofe variablesof typea and, third, there is a
countable infinity obound variable®f type a.8 | shall sometimes, but not always,
indicate the type of a constant or a free or bound variable by a subscript. Fourth,
there are four improper symbols, denoted by}, dnd =. It is clear that the four sets
of symbols should be disjoint. & andg’ are strings of symbols arsds a symbol,
then [o'/s]o denotes the string of symbols obtained franby replacing every
occurrence o6 in o by ¢’.9 Sometimes, if no confusion is likely to result, | shall
streamline notation a bit by writing(c’) for [o'/s] 0.
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Derinimion 10. We define, for eadn, the set ofermsof that type by the following

inductive definition:

i Every constant or free variable of some typis a term of that type.

ii. If Ais a term of typefa,...a andB is a term of typgS, then @AB) is a
term of type @4...app.

iii. If A andB are terms of the same type, therr B is a term of type < (a
formula).

iv. If ¢ is a formulau, a free variable of type andx, a bound variable of
that type andu does not occur in any substring @fof the formnx(o),
where an equal number of left and right brackets occuo,irnthen
nx([x/u]¢) is a term of typen.

A termA of type a may be denoted b¥,. | shall suppress parentheses wherever this
does not lead to confusion (under the understanding that association is to the left).
Terms of the forrmx([x/u] ¢) will be calledn-terms Using the convention given
above, we shall often writgx(¢(x)), or evennx¢(x), for nx([x/u]@). A term is
closedif it contains no free variables. A closed formula is callegrtencea set of
sentences istheory

Now, let us turn to the semantics of the logic. We shall give a standard inter-
pretation as well as a generalized one (see Henkin [1950]).
DeriniTion 11. Aframe is a family of sets D 4| a is a type} such thatD , O
P(Dg, x -+ +xDg ) for each typex = «a;...ay», U U Dy for each relationadr, but
0 ODgif ais basic. A frame istandardif Dy =P(Dg, x + - *x Dg ) for eacha
=<dq...0p.

Note that basic domains may be empty. Our logic makes no existence assumptions
and consequently the sentenCi&gx = x andlxg X = x will not be logically valid.

Derinimion 12, LetF = {D,} 4 be a frame. Annterpretationfor F is a functionl
having the set of constants as its domain, suchittiefl D, O {} for each non-
logical constant of type a, and such thatd) = 0 andl(-) = {0,001,100,10}.
(Note thatl(-) is not necessarily an element bf,,.,,, but see below.) An
assignmenfor F is a functiona, taking free variables as its arguments, such that
a(u) D, O {O}if uis a free variable of type. If a is an assignment, thefid/u]

is to be the assignmeat such thag'(v) = a(v) if v# u anda'(u) =d.

In order to be able to interprgtterms we need choice functions:
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DeriniTion 13. Achoice functiorfor a setD is a functionG: P(D) - D O {O}
such that:

i. G(X)OX,if XOD andX# [,

i. G(O)=0.

LetF = {Dg} 4 be a frame. Aset of choice functionfer F is a set H,} 4 such that
eachH, is a choice function fdD,.

DeriniTion 14. Aweakgeneral modeis a triple[FF,|,HOsuch thafF is a frame] is an
interpretation for, andH is a set of choice functions fér A weak general model
is a gtandard modelif its frame is standard.

A note on notation: | shall follow the convention that a weak general nhbdies
frameF, its interpretatior, its set of choice functiond, and all the elements of
both F andH will be denoted by metalinguistic variables that carry the same
superscripts.

Even though the domains of weak general models may be very sparsely inhabited
(note for example that all relational domains may be equall{), wve are able to
give a Tarski truth definition (or, more adequately expressed, a Tarski value
definition) at this point:

DeriniTION 15, The\/alue||A||'V'va of a termA on a weak general model under an
assignment is defined by induction on the complexity of terms in the following
way:
i. |cMa=1(c) if cis a constant
[lulM-@ =a(u) if uis a free variable
i. [ABM@ = (@, ..., 0 OBIM3 dy, ..., 00 |AM3
ii. |)A=B|Ma=1iff |oiM-a= M2
iv.  [Inxg([x/u@)IM-3=Hg({d 0Dy [p|M-adM = 13)

It would have been misleading to speak of ‘the value of a termnweak general
model’ since, in general, there is of course no guarantee that the value offg,term

on M will be an element oD, or even ofD, O {O}. This does not effect the
correctness of the definition, however. In standard models, as well as in the general
models to be defined below, the value of a t&ggwill be in D if a is relational

and it will be an element @, O {0} if a is basic.
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We say that a formula is true on a weak general model M under an assignment
a, or, alternatively, that Matisfiesp undera, or, to use still another phrase, tivat
is a weak general modef ¢ undera, if ||| = 1. As is usual, A|M-2 depends
only on the values that assigns to the free variables actually occurring.i®o if
A'is a closed term, we may writd||M instead of jj|[M-2.

Unsurprisingly, the ordinary kind of substitution theorem holds for this logic.

ProposiTion 1. (Substitution Theorem). L& be a weak general modal,an as-
signment forM, A a term and a term of the same type as the free variabthen:
lIB/JAIM.a = |A|M-ald/d, whered = |B|M-2.

PROOF This is proved by an induction on the complexity of the t&rm

The usual logical operators may be obtained by means of definition now. The
following definition needs no comment:

DerinimioN 16. Let¢ andy be formulae.

- ¢ abbreviates ¢ - O
o0y abbreviates -¢ - ¢
o0y abbreviates - (¢ - - )

¢ - ¢  abbreviates (¢ - ) O(Y - ¢)

We can define the quantifiers with the help of fheperator. Quantification over
relational domains is defined in essentially the same way as Hilbert & Bernays
defined quantification in theig-calculus with the help of the-symbol.
Quantification over basic domains is defined in a different way since we do not wish
to quantify over the improper object:

DerinimioN 17. Letd be a formula

Xq([x/ul¢) abbreviates[nx,([x/u]§)/u] @, if ais relational.
X4([x/u]¢) abbreviates— (Nx,([x/u]¢) = nx(0)), if ais basic.
Oxg([x/u]¢) abbreviates— Ik, ([x/u]~ ¢)

At first sight these stipulations may perhaps look somewhat unintuitive, but the
quantifiers get the interpretations we want them to have:

ProprosiTion2. For any weak general modiéi
[ o([x/u] ¢)|[M-2 = 1 iff there is &l O D, such that §M-ald/ul = 1
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[[Ox([x/u] )|M-@ = 1 iff for alld O D, |lg|M-ald/ul = 1

Proor. We prove the first statement, from which the second one readily follows. Let
d'= |pxg(x/u¢)|Ma=H,({d 0D, | [pIM-ald/Ul = 1}). If a is relational then

d' 0 D, and hence by the definition of choice functiong\}-ald/ul = 1 for anyd

0D iff ||¢|M-ald7ul = 1. By the Substitution Theorem above this last statement is
equivalent to |lix,([x/u¢)/u]¢|M-2 = 1 and hence to},¢(x)|M-2 = 1. If a is
basic, we see that d' 0 D, thend' # O since 0 O D,. From this and the
definition of choice functions it follows that|[M.ald/Ul = 1 for somed 0 D, iff d'

# O iff ||=(nxg@() = nx(D)IM-3 = L iff [xa@(9|M-2 = 1.

Turning to the definite description operator now, we define:

DeriniTion 18. 1x,([x/U]¢) abbreviateg)x,Ly,(x =y « [y/ul@), wherey is the first
bound variable of type different fromx in some fixed ordering.

Again, it is easy to see that the abbreviation thus defined has its intended inter-
pretation:

ProprosiTion3. For any weak general modiéi

||1xa([x/u]¢)||'\/'va =d, if d is the unique element dd, such that
ligIM-ald/dl = 1,
=0, if there is no such unique object.

Abstraction is defined in the following manner:

Derinimion 19. LetA be a term of typeoq...a,p, X @ bound variable of typg andu
a free variable of that type, thém([x/u]A) abbreviateg)ROX(Rx = [x/U]A), whereR
is the first variable of typeBa;...a\ that does not occur i,

This time there is no guarantee that an expres®a¥{x) will get its intended
interpretation on a weak general model. The reason for this is that the required re-
lation may simply not be present in the relevant domain (in thatloa#gg) will get

the value). We may want to restrict our attention to those weak general models
wherein all lambda-terndo get their intended interpretations:
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Derinimion 20. Any sentence of the forimy,...y,[ROX(Rx = [x/U]A), whereA, x, u
andR are as in definition 19, is calleccamprehension axiom general modeis a
weak general model that satisfies all comprehension axioms.

All standard models are of course general models.

Note that by definition any general model satisfies all sentences of the form
Oyq...ya0zZ(AX([x/u]A)z = [z/UA). So, in a senséambda-conversions just another
form of the comprehension axioms under our abbreviatory definitions. But note also
that on basic domains abstraction, like quantification, is restricted to the proper
objects: the more usual (and useable) form of lambda-converigiiix/uA)B, =
[B/U]A for all B, holds only for relationabr; for basica we have the restricted
schema 8, = nx,0) - Ax([x/U]A)B = [B/U]A. While, for examplenxgl = nxel]
is true on all models)xg(x = x)nxgld is true on none.

It is not difficult to see that general models conform to requirement (2) of the
introduction:

ProposiTion4. LetM be a general moded, an assignment thl, A a term of type
<aq...0 andx a variable of types, then:
INX(DX/UA) M- = {[d,dy.,...,c400] d O D g anddy,...,dy 00 [JA|M.ald/d},

The last operator that we consider is Hilbegtsymbol. The following definition is
suggested in Hilbert & Bernays [1939]:

DeriniTion 21. ex4([x/u] @) abbreviatesyx,(Cy,[y/ul¢ — [x/U]d), wherey is the
first bound variable of type different fromx in some fixed ordering.

This gives a semantics for tlsesymbol that is closely analogous to the one given in
Hermes [1965]:

ProrosiTion5. For any weak general modiéi
llexg([x/u@)|M-a = Hy({d O D, |p|M-ald/ul = 1)), if there is ad 0 D,
such that g|M.ald/u = 1.
=  Hg(Dy), otherwise.

Relational type theory enables us to generalize the notion of entailment somewhat.
Not only formulae can entail another formula, but any set of terms of a relational
type can entail some term of that type:
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Derinmion 22. Let 7 O {A} be a set of terms of some type= «a4...0p. I” entails
A (I g-entails Al wg-entails A, ' [=A (I |:g AT |:Wg A),if Ngor IB|M-2 0
[IA|M-@for all models (general models, weak general modélshd assignments
to M.

In natural language too, expressions of many categories may entail one another (see
Keenan & Faltz [1978], Groenendijk & Stokhof [1984]). It is obvious that
definition 22 is indeed a generalization of the usual notion of entailment:

ProprosiTion6. Letl” O {¢} be a set of formulael |= ¢ (I |:g o, r |:Wg @) iff for
each model (general model, weak general mddedhd assignmergto M it holds
that if M satisfies ally O I undera, thenM satisfiesp undera.

DeriniTion 23. We say that two terndsandB are -, wg- )equivalent if both A
(9-, wg-) entails8 andB (g-, wg-) entailsA.

Proof theory and completeness

I shall finish by giving a standard Henkin proof to the effect that the nqt';anmd

|=Wg, defined in the preceding section, are recursively axiomatizable. Of course, by
Godel's Theorem and the fact that the natural number system is categorically
definable in TN:2 with the standard semanti¢s,cannot be axiomatized.

Derinimion 24. All formulae of one of the following forms aagioms

Propositional axioms:

AS1 ¢ - (¥ - ¢)

AS2 (¢ - (W -X) - ((¢-U)-(d-X)

AS3 ((¢-0) -0 - ¢

Eta and quantification axioms:

AS4 -AgB1...B,, wherea = «aq...ay>, eachB; is of typea; and either
Ais nx4(0) or for somd, aj is basic and; is nxai(D).

AS52 =(Ag = nxu(0) - (9(Ag) - X$(X)), if ais basic.

ASSP 9(A,) — DX$(X), if a'is relational.

ASE  Txp(X) — B(11XqP(),

AST  DXg($() = W) ~ MyadW) = NZqW(?)

Extensionality:
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AS8 DURyUR'G(OXqg,...-Xq (RXg ... Xg, « R'%Xg,..%q ) - R =R, where
a=<ag...ap

Identity axioms:

AS9 A=A

AS10 A=B - (¢(A) - ¢(B)) (Leibniz's Law).

Derinimion 25. Aproof for a formulag is a sequencgy, . . . ,@, of formulae such
that ¢ = ¢, and eachp, (k< n) is either an axiom or follows from two formulae
earlier in the sequence by the rulenoddus ponen@p, ¢ — ¢/ ). A formula ¢ is
provable |- ¢, if there is a proof for it. The formulfis said to belerivablefrom a
set of formulad™, I" |- ¢, if there arep, . . . ,¢, O I such that- (¢ O0... O ¢y) —

¢. A set of formulae isonsistenif [J is not derivable from it.

Since AS1 — AS3 are axiom schemes and modus ponens is a rule we immediately see
that all substitution-instances of tautologies in propositional logic are provable.

ProposiTion7. If |- ¢ — (u) and the free variable does not occur ig, then|- ¢

- Oxg(x).

Proor. Suppose thaxg, . . . ,Xp is a proof forg — ((u); it is not difficult to verify
that [nx=((X)/ulxg, - - ., IX~@PX)/u] Xy, is a proof forg — Y(nx-ys(x)). To obtain

a proof for ¢ - Oxy(x), use propositional logic and the dual of AS6,
Ynx=y(x)) - Oxy(x).

From the above proposition it follows that we can reason classically with the
quantifiersx, andX,, provideda is relational. Ifa is basic, therlx, andlx,,
behave like restricted quantifiers in standard logic.

THeEOREM 1 (Soundness Theorem). Lebe a theory ang a formula, then:
To O Tlryg¢.
Proor. By a straightforward induction on the length of proofs.

THeEOREM 2. LetT be a theory ang a formula, then:

T|:Wg¢ O Tl-¢.
Proor. This is proved in the usual way, with the help of the Consistency Theorem
below.
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CoroLLARY (Generalized Completeness Theorem). Lebe a theory ang a
formula, thenT |:g ¢ < TUOcomp|- ¢, wherecowmp is the set of all com-
prehension axioms.

THeorem 3 (Consistency Theorem). If a theory is consistent, then it has a weak
general model.
Proor. LetT be a consistent theory. We construct a maximal consistent set of
sentence$ [ T having the so-called Henkin property. To this endgt. . . A, .
. . be some enumeration of all terms (of all types). For eddhw define a set of
formulae 'y by: g=T andlMy4+q = My O {A, = u}, where u is the first free
variable in our enumeration which has the same typ&,asas and which does
neither occur i, nor in any of the formulae ifi,. Clearly, all/", are consistent
and hencé |, is consistent.

Next, we expand] [}, to a maximal consistent set by the Lindenbaum con-
struction. Letdg, . . . ¢y, - - . be an enumeration of all formulae. Cgt =[],
and letl "=y 0 {¢}if Iy O{¢,} is consistent, otherwise 1.1 = "
The union/” of all I, is consistent; moreover, it isaximal(for each¢ either¢ O
rorr O {¢} |- O0) and—by the construction in the previous paragraph, the
properties of maximal consistent sets of formulae, Leibniz’'s Law and (the dual of)
AS6—it has theHenkin propertyIf ¢(u) O I for all free variables of some type
a, then, sincepx—=([x/u]¢) =u' O I for someu’, ¢(nx~([x/u]¢)) O I and hence
Ox¢(x) O T

Now define an equivalence relation ~ between tednsB iff A=B 0 . For
each termA, let [A] be the equivalence clasB {A ~ B}. For each typex we define
a function®, having the set #i] | A is a term of typex} as its domain. Ifo = e or
a=s, let®,([nx,0]) =0 and let®,([Ay]) = [A] if [A] # [nx 00 If a =
<ay...ap, let @y([Ay]) be the relation @y ([Bgy 1), . . ., Py ([Bg DUIABg, - -
. Bo,n O r}. This is well-defined by Leibniz's Law and the maximal consistency of
r.

The functions®, are injections. This is obvious in cage= e or a = s, so leta
= «@y...0p. Suppose tha®,([A]) = @,4([A]). Letuq, . .., y be free variables
of typesay, . . . ,ap respectively, thelu,...u, O I iff A'uq...uy, O I'. From this it
follows thatAu;...uy « A'up...u, O . By the Henkin propertyxy...x,(AXq...%,
- A'Xq..%)) O T, so, using Extensionality and the maximal consistencl, afe
see thaA =A'0 [ and A] = [A'.

Define: D, = {@4([A]) | A is a term of typex} if a is relational and 4 =
{®@,([A]) | Ais a term of typer} \ {0} if o is basic. From the definition of the
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functions @, and the fact that AS4 is an axiom scheme it follows Fhat{D .} o
is a frame. Definé(c,) = ®@4([c,]) and define for each and eacld such thatD [
Dy

Hq(D) O[N], if D = {@y([u]) | $(u) O 7}

® ,([u]), where u is the first free variable such that
®,([u]) O D, otherwise.

The functionsH, are well-defined. First, note that= {®,([u]) | O O I}, so the
second clause is all right. Next, suppose that for all free variagleg(u) O I iff
W(u) O . ThenOx(¢(xX) « @(x)) O and by AS7:nx¢(x) = nyw(y) O I, from
which it follows that hx@¢(x)] = [nyy(y)].

The functionsH, are choice functions for the sells,. ClearlyH,(0) =
®,([nxgH]) = 0. Suppose thdd O D, is not empty. If the second clauseHbf’s
definition obtains, then obviousi (D) O D. So suppose thaD = {®,([u]) |
¢(u) O I} for some@. SinceD # O andD O D, (and hencél O D, if a is basic)
there is a variable such thatp(u) O I and such that moreoveru-€ nx) O T if
a is basic. By AS5 we see thak¢(x) O I and therefore by AS@(nx¢(x)) O I.
By the construction of there is a free variabl® such that' = nx¢(x) O I" and so
for this variable bothp(u’) O /" and '] = [nx¢(x)] hold, whence®,([nx¢(x)]) O
D.

Now, letM be the weak general mod#&l,I,HCand let the assignmeatbe defined
by a(uy) = @4([u]). We prove by induction on term complexity tha||yl-a =
@, ([A]) for all termsA of typea, hence thatg)M-@= 1 iff ¢ O I, for all formulae
¢ and hence thal is a weak general model ©f

i. [lc|M-2 = 1(c) = &([c]) if cis a constant;
[ulM-a = a(u) = @([u)) if uis a frtl\a/le variable;

i JABIM2A = (@, ..., GOIOBIN Y dy, ..., GO0 M3 = (g, .
.., hO Bp([B]), dq, . . ., 00 @([A])} = @([AB]);

ii. IA=BMa=1 |aMa=BM2a -~ o(A]) = @(B]) - [A]=[B]
= A=B0OTl =« ®(A=8B] =1;

V. XX/ $)IM:3 =Ho({d 0 Dy | [pIM-ald/U = 13) = Hy({ @4([u)) |
llplM-2 = 1}) = Ha({ @g([u]) | ¢ O 1) = @u([(nX[x/d 9))).
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1see e.g. the definition glersistencén Gallin [1975, 8§4] (and compare it with the one in his §9).

The choice of a particular logic should of course not preclude certain analyses of natural language. It
should, for example, not be mauhepossibleby our logic to use individual concepts (type (se) objects,
functions from worlds to entities). However, since all functions are relations, there is no problem. Those
who think that individual concepts are useful (see Janssen [1984]) may keep them as <se>-type relations
(relations between worlds and entities). Expressionsthkegope can then be treated as individual
concepts. Note thahe pope can't be a function since there have been times that there was no pope
and once, during the Avignon period, there were three.

Another example of a semantical theory that forms an exception to the rule that in current Montague
Grammar only quasi-relational types are used and that should not be ruled out on a priori grounds is the
analysis of questions with the help of Skolem functions (see Engdahl [1980], Groenendijk & Stokhof
[1985]). On this account, one reading of the question ‘Whom does every man love’ should be rendered
asx\f(ee)Dx(manx - love xfx) (I suppress index variables here). It is easily seen, however, that the
theory can be reformulated in relational terms. For example, in this case, the relational term
AReeXx(Mmanx — lovex ty(Rxy)) (for notation see below) would do the same work and could be
gbtained compositionally along Groenendijk & Stokhof’s lines.

Some may want to demand that all partial relations have empty glut. It is possible to add this condition
without any technical difficulties. See Muskens [forthcoming] for a discussion.

It should be emphasized however, that the addition of description operators is not essential. Relational
type theories can be formulated without them. See also Muskens [forthcoming]

As opposed to functional frames, our frames have the empty set in all their relational domains. This
provides a particularly natural denotation faf] if x is of relational type. There are ways to repair the
omission in functional type theory, but none of them is as straightforward as the present solution. This
Eoint is of course related to argument Il above.

Of course, the ordinary generalized quantifier approach to noun phrases, including definites, is
available as well in our logicthe king can be treated adPX(Oy(kingy ~ x =y) OPXx), which by
the way is equivalent tdP(Pix(king x)).

The n-symbol has entered the linguistic literature on a modest scale through this book. However,
despite its name, | do not think that it would be wise to apply the indefinite description operator in any
straightforward way to the treatment of indefinite descriptions in natural language. While it is
defensible (but not necessary) to trés man asix(manx), treatinga man asnx(manx) leads to
wrong results (under normal assumptions), as the reader can easily verify once he has seen the
semantics of thg-symbol given below. Clearly nothing in the present proposals is in conflict with
treatinga man asAPx(manx O Px), like Montague did (compare note 6 above). | am indebted to two
anonymous referees for pointing out to me that my presentation in an earlier version of this paper was
misleading in this respect.

This distinction between free and bound variables makes it easy to avoid variable clashes in cases of
substitution, but it is not an essential feature of the theory.

To avoid any confusion: thesfs]o notation is a way toefer to strings. The square brackets are not
part of any string.
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