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Relational Type Theory

In Montague semantics it is common procedure to specify a translation function
taking the expressions of some fragment of natural language to logical expressions. If
all is done well, the translated phrases and their translations show the same logical
behaviour. Their truth conditions should match, for example, and the relation of
logical consequence on the translations should mirror the relation of entailment that
is imposed on the natural language fragment by natural logic.

The logic that is usually taken as the range of values of this translation function
is Montague’s IL (Intensional Logic), defined in Montague [1973] and extensively
described in Gallin [1975]. Being an intensional extension of Church’s [1940]
beautiful formulation of the simple theory of types, it can be embedded in a two-
sorted version, TY2, of this theory, as was shown by Gallin.

Historically, Church’s formulation of type theory was much influenced by his
formulations of the lambda calculus, which is a theory of functions. The 1940 article
defining the logic is mainly of a syntactical character, but in the first section a brief
suggestion is made concerning the intended interpretation of the system. This
interpretation is to be functional.  While in earlier and less precise formulations of
type theory (see Russell [1908], Carnap [1929]) classes and relations played an
important and more independent rôle, these now seem to have to be equated with
their characteristic functions. Multi-argument relations are identified in this way with
multi-argument functions, which in their turn, following Schönfinkel [1924], are
equated with functions in one argument whose values are functions again.

Now these moves seem innocent enough. Technically it is clearly equivalent to
consider relations directly or to explain them recursively with the help of
Schönfinkel’s Trick. But, although equivalent, the identification is—I claim—not
very felicitous. Relations are ‘moved up’ recursively in the set-theoretical hierarchy
and this complication makes it extremely difficult to formulate the usual model-
theoretical notions for the logic. In fact, in almost all cases where an interesting
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notion is defined, this is done by the use of a recursion that reverses the effect of
Schönfinkel’s Trick.1

This kind of problem motivated S. Orey to define his higher-order predicate
calculus in 1959 (see also Gallin [1975], Van Benthem & Doets [1983]). Avoiding
the Trick, he formulated type theory in such a way that model-theoretic concepts as,
for example, substructure or end extension (of a general model) have simple and
natural formulations. Types, in his system, are of a relational character, not of a
functional one as they are in Church’s; and the objects in his domains are either
individuals or relations. Here are the relevant definitions:

DEFINITION 1.  The set of types  is to be the smallest set such that:
i.  e and s are types,
ii. if  α1, . . . , αn   are types (n ≥ 0), then ‹α1...αn›   is a type.
We shall equate ‹› with ∅ or, equivalently, with 0. The types e and s we call basic,
all other types relational.

DEFINITION 2.  A standard Orey frame is a family of sets {Dα | α is a type} such that
De ≠ ∅, Ds ≠ ∅ and D‹α1...αn› = P(Dα1

× . . . × Dαn
).

(The cartesian product of the empty sequence of sets is to be equated with {‹›}. So
D‹›= P ({∅}) = {0,1}, the set of truth values.)

Orey’s relational models can now be defined in the usual way by adding an inter-
pretation function to the frames just given.The use of these relational models instead
of the standard functional ones is not only advantageous from a model-theoretic
point of view, but has also much to recommend it from the perspective of
applications of type theory in Montague semantics. I shall give four arguments in
support of this.

I.  Although the standard logic has, in a sense to be explained below, ‘more’ types
than relational type theory has, these extra types are in fact seldom used. Almost all
proposed translations of natural language expressions have (functional) types that
correspond closely to the relational types defined above. In order to put this more
accurately, I shall first give the familiar definition of Church’s types and then define
the subclass of them that is in fact—I claim—most popular.

DEFINITION 3.  The set of Church types  is to be the smallest set such that:
i.   e, s and t are Church types,
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ii. if  α and β are Church types, then (αβ) is a Church type.

DEFINITION 4.  Define the function Σ (Σ is for Schönfinkel) taking types to Church
types by the following double recursion:
I  Σ(e) = e, Σ(s) = s
II i. Σ(‹›) = t
   ii. Σ(‹α1...αn›) = (Σ(α1)Σ(‹α2...αn›))  if n≥1.

So, for example, Σ(‹e›) = (et), Σ(‹‹e››) = ((et)t), Σ(‹ee›) = (e(et)) and Σ(‹‹se›‹se››) =
((s(et))((s(et))t)). If α is the type of some relation then Σ(α) is the Church type of
the unary function that codes this relation in functional type theory. Note that
arguments of Σ tend to have less length than the corresponding values. Let’s call any
Church type that is a value of Σ quasi-relational. It is not difficult to characterize
the quasi-relational Church types: A Church type is a value of Σ if and only if no
occurrence of e or s immediately precedes a right bracket in it.

Ever since Bennett [1974] removed individual concepts from the standard for-
mulation of Montague Grammar, the vast majority of types that have been proposed
as denotation sets for linguistic categories have been quasi-relational. If the
semantics of a natural language is described with the help of a functional type
theory, then linguistic expressions tend to get semantic values having values of Σ as
their types. This seems to be an important fact about semantics, but it is a fact that is
not reflected in the overall organization of current Montague Grammar. It would be
so reflected if we would trade the usual type theory for a relational one and assign
relational types α to linguistic categories instead of the more complex quasi-rela-
tional types Σ(α)2.

II.  The complexity of the objects that are used in functional semantics exceeds the
complexity of their relational counterparts. In the functional theory, elements from
Orey frames are coded as elements from Church frames:

DEFINITION 5.  A Church frame is a family of sets {Dα | α is a Church type} such
that De ≠ ∅, Ds ≠ ∅, Dt = {0,1} and D(αβ) is the set of functions from Dα to Dβ.

The Schönfinkel identification that codes multi-argument relations as unary functions
may look simple if only relations of individuals are considered. In the higher-order
case however, where relations can take relations as arguments, which in their turn can
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again take relations as arguments, etc., the identification is somewhat less than
transparent. Let’s fully write out the definition of the encoding function:

DEFINITION 6. Let {Dα | α is a type} be a standard Orey frame and {D'α | α is a
Church type} the Church frame such that De = D'e and Ds = D's. For each type α,
define a bijection Sα: Dα → D'Σ(α) by the following double recursion:
I Se(d) = d, if d ∈ De;

Ss(d) = d, if d ∈ Ds;
II i. S‹›(d) = d, if d ∈ D‹›;

ii. If n > 0, α = ‹α1...αn› and R ∈ Dα, then Sα(R) is the function F of type
(Σ (α 1)Σ ( ‹α 2 ...α n›)) such that, for each f  ∈  D ' Σ (α 1) , F ( f) =
S‹α2...αn›({ 〈d2, . . . , dn〉 | 〈Sα1

-1(f), d2, . . . , dn〉 ∈ R}).

It is routine to prove that this is well-defined. Define S to be ∪αSα.

Obviously, the function S tends to rather dramatically increase complexity. For
example, an object of type ‹‹se›‹se›› (arguably the kind of object that can be taken to
be the extension of a natural language determiner), which is a two-place relation
taking relations between indices and entities in both its argument places, is coded as
a function taking functions from indices to functions from entities to truth values to
functions taking functions from indices to functions from entities to truth values to
truth values.

Now, if there would be any need to do so, we could gladly accept these intricacies,
since the functions Sα are isomorphisms: for all relations R (of any type) 〈d1, . . . ,
dn〉 ∈ R iff S(R)(S(d1)) . . . (S(dn)) = 1, as can easily be verified. But I think that
this doubly recursive encoding is just a needless complication. If we want Montague
Grammar to look a little less like a Rube Goldberg machine (the comparison is taken
from Barwise & Cooper [1981]), we may as well skip it.

III.  In view of the fact that natural language and, or and not can be used with ex-
pressions of almost all linguistic categories, type domains should have a Boolean
structure. This has been argued for by a variety of authors, beginning with Von
Stechow [1974] (see also Keenan & Faltz [1978]). Obviously, Orey’s relational
models have a Boolean structure on all their (non-basic) domains, since these are
power sets. So we can give a very simple rule for the interpretation of natural
language conjunction, disjunction and negation: they are to be treated as ∩, ∪ and −
(complementation within a typed domain) respectively. Entailment between ex-
pressions of the same category is to be treated as inclusion.
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This does not differ much, of course, from the usual treatment of both entailment
and the expressions just mentioned. The point is rather that the relevant Boolean
operations are not as easily available in a functional type theory as they are here.
They can only be obtained by Gazdar’s [1980] pointwise recursive definitions. Let’s
have a look at one of them. Before we can give it, we must characterize a certain
subclass of the Church types, the so-called conjoinable ones:

DEFINITION 7.
i. t is conjoinable;
ii. If β is conjoinable, then (αβ) is conjoinable.

Note that, while not all conjoinable Church types are quasi-relational, there is a close
kinship between the two classes of types: A Church type is quasi-relational if and
only if all its subtypes are either basic or conjoinable.

Having defined the conjoinable types we can define generalized conjunction in
functional type theory thus:

DEFINITION 8.
i. a  b := a ∩ b,  if a,b ∈ {0, 1};
ii. If F1 and F2 are functions of some conjoinable type (αβ), then the function F1

 F2 is defined by (F1  F2)(z) = F1(z)  F2(z), for all z of Church type α.

Similar definitions can be given for generalized disjunction, complementation and
inclusion (see Groenendijk & Stokhof [1984] for the last operation).

These definitions are an artefact of the functional formulation of type theory. They
enable us to treat generalized co-ordination by reversing the effect of Schönfinkels
Trick: It is not difficult to prove that, for any R1, R2 of relational type, S(R1 ∩ R2)
= S(R1)  S(R2). But as soon as we get rid of the Trick, the need for its reversals,
these pointwise definitions, vanishes too. So let’s omit them and, since having no
definitions is simpler than having some, get a less complicated theory.

IV.  Simplification should lead to generalization; that is the reason why we strive for
it. Thus far, my arguments for adopting a relational version of type theory were
mainly concerned with the simplification and—I hope—esthetic improvement of
existing semantic theories. But my fourth and last reason for going relational is that
it allows a generalization of Montague Semantics which I think is urgently needed
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and which seems hard to get in the standard approach: Doing things the relational
way makes it possible to partialize the existing theory.

The view that partial structures (structures that may leave the truth values of some
sentences undefined) are crucial for an adequate description of many semantic facts is
now widely accepted. Attractive analyses of various linguistic phenomena have been
carried out within frameworks that stress the partial, incomplete, character of semantic
objects. Examples are the treatments of propositional attitudes and neutral perception
verbs in Barwise & Perry’s Situation Semantics, forcing accounts of conditionals
and modals (see Kratzer [1977], Veltman [1985] and Landman [1986]), and the
treatment of anaphora in Kamps’ Discourse Representation Theory (Kamp [1981]).
The reader will have no difficulty in supplying more examples of appealing seman-
tical theories in which non-complete objects play an essential rôle. In the last ten
years or so there has been a widespread tendency towards going partial.

But while Montague Semantics aspires to be a very general vehicle for the
description of linguistic meaning it doesn’t seem possible to carry out similar
analyses within this framework; it simply lacks the partiality that is needed. The
existing type hierarchies seem to be inherently total in character and thus far the
logic has resisted all attempts at generalization in the desired direction.

One problem one has to deal with when trying to partialize standard type theory is
that the one-to-one correspondence between multi-argument functions and unary
functions of certain type breaks down: If, for example, D is some domain then the
partial functions from D × D into D cannot in general be isomorphic to the partial
functions from D into the partial functions from D into D. If D has two elements
then the first of these sets has 32×2 = 81 elements, while the cardinality of the
second one is (32+1)2 = 100. So the Schönfinkel identification is no longer
possible.

No such problems arise in the relational theory. Let’s define a partial relation R
on domains D1, . . . , Dn as a tuple 〈R+, R–〉 of ordinary relations on these domains.
The relation R+  is called R’s denotat ion, its companion R– we call R’ s
ant idenotat ion. The n-tuples that are neither in R+  nor in R– , the set
D1 × . . . × Dn \ R

+ ∪ R–, form  R’s gap; those that are in both form its glut.3

We may now consider hierarchies of partial relations:

DSFINITION 9.  A standard partial frame is a family of sets {Dα | α is a type} such
that D e ≠ ∅ , D s ≠ ∅  and D ‹ α 1 . . . α n ›  = P ( D α 1  

×  . . . ×  D α n
) ×

P(Dα1 
×  . . . ×  Dαn

) .
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The above definition is of course a straightforward generalization of Definition 2.
I shall not describe the logic of these partial frames here. I have done so elsewhere

(see Muskens [forthcoming]), where it turns out—as could be expected—that this
logic can be obtained by simply ‘doubling’ some of the crucial concepts that are
discussed in this paper. It also turns out that the partial logic enables us to give
Montague analyses of propositional attitude and naked perception verbs very much
along the lines of Barwise & Perry [1983] and Barwise [1981].

But for the moment let’s return to the total relational frames. It is from these,
conceptually, that the partial ones are derived and they should be studied in their
own right.

Although there are, as I have just argued, good reasons to prefer Orey’s relational
models over Church’s functional ones, there are equally good reasons to prefer
Church’s syntax over Orey’s when it comes to choosing a logic for our purposes. In
fact the latter logic, as it was defined in Orey [1959], lacks the operations of
application and abstraction, which are absolutely crucial for the Montague
semanticist. So at this point it may seem that we can either have an applicable logic
with a complex model theory or a logic with a simpler model theory which is in-
applicable.

But the dilemma is only apparent. We can have our cake and eat it by taking the
syntax of standard type theory and evaluating it on relational models. Let’s consider
application. Suppose that A and B are terms of types ‹βα1...αn› and β respectively.
Then the value of the term AB (of type ‹α1...αn›) in some model M  (under an
assignment a) is given by the following rule:

(1) ||AB||M,a = {〈d1, . . . , dn〉 | 〈||B||M,a 
, d1, . . . , dn〉 ∈ ||A||M,a}

Let, for example, the domain of M be some set of people and let love be a constant of
type ‹ee› that is to be interpreted as the love relation among them
({ 〈d1,d2〉| d2 loves d1}). Let j and m be constants of type e, interpreted on M by
John and Mary respectively. Then ||love j||M will be equal to {d2 | d2 loves John},
the set of persons loving John, while ||love j m||M   equals {‹›| Mary loves John},
which is equal to the value 1 just in case Mary indeed loves John.

Suppose now that A is a term of some type ‹α1...αn› and that x is a variable of
type β. Then we can define the value of the term λxA (of type ‹βα1...αn›) in M under
a as follows:
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(2) ||λxA||M,a = { 〈d,d1,...,dn〉 | d ∈ Dβ and 〈d1,...,dn〉 ∈ ||A||M,a[d/x]}

For example the term λxeλye∃ze(x < z ∧ y < z) will receive the relation ‘having a
common successor’ on the De domain as its interpretation in any model, as the reader
can easily verify.

Definite and indefinite description operators

In the preceding pages I have sketched how type theory can be interpreted in a re-
lational way. It would be easy now to fill in the details of this sketch and obtain a
completely defined relational semantics. The crucial clauses in the Tarski truth
definition would be (1) and (2) of course, and the resulting system would look a lot
like Gallin’s TY2, although its model theory would be much simpler.

Note, however, the following little asymmetry: while in the standard type theory it
is possible to obtain terms of a basic (e or s) type by application, this is not so in
relational type theory; the results of clauses (1) and (2) are always relations. In the
functional theory the result of applying a (say) (ee)-type function to an e-type
argument gives a value of type e, but in the relational formulation the same function,
seen as an ‹ee›-type relation now, applied to the same argument, gives an ‹e›-type
singleton as a result. To get the original value we need a description operator.

Since a description operator is generally useful, we may add it to the logic4 and
define ιxα(ϕ) to be a term of type α if ϕ is a formula (a term of type ‹›) and xα is a
variable of type α and demand that at least:

(3a) ||ιxα(ϕ)||M,a = the unique d ∈ Dα such that ||ϕ||M,a[d/x] = 1, if there is
such an object d ∈ Dα

What to do if there is no such unique d? This is a classical problem of course and it
has been discussed extensively in the literature from Frege onwards (see Scott
[1967], Renardel [1984] for short expositions of the main points of view). If α is a
relational type, a type of the form ‹α1...αn› that is, then there is an obvious
candidate for the value of ||ιxα(ϕ)||M,a in case there is no unique d such that d
satisfies ϕ: we can let it be the empty set5. If, on the other hand, α is basic,  that is if
α = e or α = s, we must proceed in some other way.

To this end we shall follow Scott [1967] in distinguishing between the proper
objects of some basic type and an improper one, designed to be the ‘non-referent’ of
non-referring expressions. The proper objects are just the elements of De or Ds. To
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these we now add an improper one. Since we can—up to isomorphism—take any set
to play the part of this object, we might as well choose ∅ again for uniformity’s
sake. We shall stipulate that ∅ ∉ De and ∅ ∉ Ds (since we want to restrict
quantification and abstraction to the proper objects) and demand that:

(3b) ||ιxα (ϕ )||M , a = ∅ , if there is no unique d  ∈ D α  such that
||ϕ||M,a[d/x] = 1

Scott’s treatment of the iota-operator makes it possible to give e-type translations to
natural language descriptions6 and have them behave in a Russellian way. Consider
the famous sentence:

(4) The present king of France is bald,
which may be formalized by:

(5) bald ιx(king x) (where both bald and king are type ‹e› constants).

In a model M where there is no unique king of France, such that ||king||M is not a
singleton, the interpretation of the present king of France, ||ιx(king x)||M, will
be equal to ∅. Since  ||bald||M ⊆ De, but  ∅ ∉ De, rule (1) will ensure that ||bald
ιx(king x)||M = 0, so the sentence is false in M. Of course this implies that its direct
negation

(6) It is not the case that the present king of France is bald

is true in M. On the other hand the sentence

(7) The present king of France is not bald,

containing a verb phrase negation, will come out false in M . Again, since the
interpretation of the verb phrase is not bald is a subset of De (the complement of
||bald||M in De) and ||ιx(king x)||M = ∅ ∉ �De, rule (1) ensures (7)’s falsity in M.

Now that we have seen that abstraction and the definite description operator can be
given a precise semantics on our models, we turn our attention to the indefinite
description operator. In this paper, we take an indefinite description operator as a
primitive logical symbol, defining all other variable binding operators from it.
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To have indefinite descriptions in the theory of types is no innovation. In Church
[1940] the author takes ‘selection operators’ (somewhat misleadingly denoted by io-
tas) as some of his logical primitives. These operators are constants of types ((αt)α)
(in our notation), so intuitively they take sets of objects of type α to objects of type
α. Church then proposes two alternative axiom schemes that should govern the
behaviour of these iotas. The first gives a set of axioms of descriptions: the iotas
should assign to singletons their unique elements. This is of course still in line with
the usual interpretation of the iota symbol. But the latter remark doesn’t hold true for
the second, stronger, axiom scheme that Church proposes. This scheme gives axioms
of choice: the iotas should pick out some element from every non-empty set, which
makes the symbol into an indefinite description operator. Henkin, in his famous
article in which the generalized completeness of Church’s system is proved (Henkin
[1950]), gives a (very sketchy) semantics for the selection operator that seems to be
close in spirit to the semantics that we shall give to our indefinite description op-
erator in section 2 below.

Probably the first treatment of an indefinite description operator was given by
Hilbert & Bernays in their classical Grundlagen der Mathematik  (Hilbert &
Bernays [1939]), to which Church acknowledges a debt. It often happens in
mathematical texts that when a statement of the form

(10) There are x such that ϕ . . .

is derived, the author continues with a statement like

(11) Now let a be an arbitrary x such that ϕ . . .

It is easy to reason away such talk about arbitrary objects by translating the whole
mathematical argument in question into standard predicate logic. But Hilbert &
Bernays do not take such a course. Instead, they take the arbitrary ϕ seriously, give it
a name, εx(ϕ), treat this as a term, and give axioms ruling its proof theory (first-order
equivalent to Church’s axiom of choice for α = e). The ordinary quantifiers can then
be defined using ε-terms and ordinary quantification theory can be derived from their
ε-calculus.

What is the appropriate semantics for Hilbert’s ε-symbol? Hilbert & Bernays
themselves give none, since they are only interested in proof-theoretical inves-
tigations, but a semantics is given in Asser [1957] (see also Leisenring [1969]).
Asser uses choice functions, choosing an element from every non-empty subset of the
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domain. The value of the term εx(ϕ) in some model M is then a choice from the set
of objects that satisfy ϕ in M. This seems a good way to interpret the indefinite
description operator.

 Again the classical problem arises: what if the set of ϕ ’s is empty? Asser
considers two possibilities to solve this problem. Either one can let choice functions
assign some arbitrary element of the domain to the empty set or one can leave them
undefined for that set. As Leisenring correctly remarks, the first option gives a nice
semantics for Hilbert’s ε-symbol, but the second one is better suited to the
interpretation of the η-symbol, another indefinite description operator that Hilbert &
Bernays consider briefly, the one that is discussed in Reichenbach [1947]7.

In this paper we shall interpret the η-symbol in a manner that resembles Asser’s
second way. Thus, the value of a term ηx(ϕ) in a model M will be an arbitrary x
such that ϕ (given by the choice function on M) if there are ϕ’s in M and it will be
∅ if there are none. The usual variable-binding operators (to wit the lambda-operator,
the iota-operator and the quantifiers) as well as the epsilon-operator can then be de-
fined using η and the propositional connectives.

THE SYSTEM TTη,2

In this section I shall present a formal development of the logical system TTη,2, a
two-sorted relational type theory with an indefinite description operator.

Syntax and semantics

Symbols come in four kinds. First, for each type α, we shall assume the existence of
a set of constants of type α. There are two special constants, denoted by ⊥ and →,
of types ‹› and ‹‹›‹›› respectively, called logical constants. They will get a fixed
interpretation. All other constants are called non-logical. Second, for each type α,
there is a denumerably infinite set of free variables of type α and, third, there is a
countable infinity of bound variables

 
of type α.8 I shall sometimes, but not always,

indicate the type of a constant or a free or bound variable by a subscript. Fourth,
there are four improper symbols, denoted by ), (, η and =. It is clear that the four sets
of symbols should be disjoint. If σ and σ' are strings of symbols and s is a symbol,
then [σ'/s]σ denotes the string of symbols obtained from σ by replacing every
occurrence of s in σ by σ'.9 Sometimes, if no confusion is likely to result, I shall
streamline notation a bit by writing σ(σ') for [σ'/s]σ.
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DEFINITION 10.  We define, for each α, the set of terms of that type by the following
inductive definition:
i.  Every constant or free variable of some type α is a term of that type.
ii.  If A is a term of type ‹βα1...αn› and B is a term of type β, then (AB) is a

term of type ‹α1...αn›.
iii. If A and B are terms of the same type, then A = B is a term of type ‹› (a

formula).
iv.  If  ϕ is a formula, uα a free variable of type α and xα a bound variable of

that type and u does not occur in any substring of ϕ of the form ηx(σ),
where an equal number of left and right brackets occur in σ , then
ηx([x/u]ϕ) is a term of type α.

A term A of type α may be denoted by Aα. I shall suppress parentheses wherever this
does not lead to confusion (under the understanding that association is to the left).
Terms of the form ηx([x/u]ϕ) will be called η-terms. Using the convention given
above, we shall often write ηx(ϕ(x)), or even ηxϕ(x), for ηx([x/u]ϕ). A term is
closed if it contains no free variables. A closed formula is called a sentence; a set of
sentences is a theory.

Now, let us turn to the semantics of the logic. We shall give a standard inter-
pretation as well as a generalized one (see Henkin [1950]).
DEFINITION 11.  A frame  is a family of sets {Dα| α is a type} such that  Dα ⊆
P(Dα1

 × . . .
 × Dαn

) for each type α = ‹α1...αn›, ∅ ∈ Dα for each relational α, but
∅ ∉ Dα if α is basic. A frame is standard if Dα = P(Dα1

 × . . .
 × Dαn

) for each α
= ‹α1...αn›.

Note that basic domains may be empty. Our logic makes no existence assumptions
and consequently the sentences ∃xe x = x  and ∃xs x = x will not be logically valid.

DEFINITION 12.  Let F = {Dα} α be a frame. An interpretation for F is a function I
having the set of constants as its domain, such that I(c) ∈ Dα ∪ {∅} for each non-
logical constant c of type α, and such that I(⊥) = 0 and I(→) = {〈0,0〉,〈1,1〉,〈0,1〉}.
(Note that I (→ ) is not necessarily an element of D ‹‹›‹››, but see below.) An
assignment for F is a function a, taking free variables as its arguments, such that
a(u) ∈ Dα ∪ {∅} if u is a free variable of type α. If a is an assignment, then a[d/u]
is to be the assignment a' such that a'(v) = a(v) if v ≠ u and a'(u) = d.

In order to be able to interpret η-terms we need choice functions:
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DEFINITION 13.  A choice function for a set D is a function G: P(D) → D ∪ { ∅}
such that:
i.  G(X) ∈ X, if  X ⊆ D and X ≠ ∅,
ii. G(∅) = ∅.
Let F = {Dα} α be a frame. A set of choice functions for F is a set {Hα} α such that
each Hα is a choice function for Dα.

DEFINITION 14. A weak general model is a triple 〈F,I,H〉 such that F is a frame, I is an
interpretation for F, and H is a set of choice functions for F. A weak general model
is a (standard) model if its frame is standard.

A note on notation: I shall follow the convention that a weak general model M, its
frame F, its interpretation I, its set of choice functions H, and all the elements of
both F and H will be denoted by metalinguistic variables that carry the same
superscripts.

Even though the domains of weak general models may be very sparsely inhabited
(note for example that all relational domains may be equal to {∅}), we are able to
give a Tarski truth definition (or, more adequately expressed, a Tarski value
definition) at this point:

DEFINITION 15.  The value ||A||M,a of a term A on a weak general model M under an
assignment a is defined by induction on the complexity of terms in the following
way:
i.   ||c||M,a = I(c)  if c is a constant
    ||u||M,a  = a(u) if u is a free variable
ii.  ||AB||M,a  =  {〈d1, . . . , dn〉 | 〈||B||M,a, d1, . . . , dn〉 ∈ ||A||M,a}
iii. ||A = B||M,a = 1 iff ||A||M,a = ||B||M,a

iv. ||ηxα([x/u]ϕ)||M,a = Hα({ d ∈ Dα| ||ϕ||M,a[d/u] = 1})

It would have been misleading to speak of ‘the value of a term in a weak general
model’ since, in general, there is of course no guarantee that the value of a term Aα
on M will be an element of Dα or even of Dα ∪ { ∅}. This does not effect the
correctness of the definition, however. In standard models, as well as in the general
models to be defined below, the value of a term Aα will be in Dα if α is relational
and it will be an element of Dα ∪ {∅} if α is basic.
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We say that a formula ϕ is true on a weak general model M under an assignment
a, or, alternatively, that M satisfies ϕ under a, or, to use still another phrase, that M
is a weak general model of ϕ under a, if ||ϕ||M,a = 1. As is usual, ||A||M,a depends
only on the values that a assigns to the free variables actually occurring in A. So if
A is a closed term, we may write ||A||M instead of ||A||M,a.

Unsurprisingly, the ordinary kind of substitution theorem holds for this logic.

PROPOSITION 1. (Substitution Theorem). Let M be a weak general model, a an as-
signment for M, A a term and B a term of the same type as the free variable u, then:
||[B/u]A||M,a = ||A||M,a[d/u], where d = ||B||M,a.
PROOF. This is proved by an induction on the complexity of the term A.

The usual logical operators may be obtained by means of definition now. The
following definition needs no comment:

DEFINITION 16.  Let ϕ and ψ be formulae.
¬ ϕ abbreviates       ϕ → ⊥
ϕ ∨ ψ abbreviates       ¬ ϕ → ψ
ϕ ∧ ψ abbreviates       ¬ (ϕ → ¬ ψ)
ϕ ↔ ψ abbreviates       (ϕ → ψ) ∧ (ψ → ϕ)

We can define the  quantifiers with the help of the η-operator. Quantification over
relational domains is defined in essentially the same way as Hilbert & Bernays
defined quantification in their ε-calculus with the help of the ε-symbol.
Quantification over basic domains is defined in a different way since we do not wish
to quantify over the improper object:

DEFINITION 17.  Let ϕ be a formula
∃xα([x/u]ϕ) abbreviates[ηxα([x/u]ϕ)/u]ϕ, if  α is relational.
∃xα([x/u]ϕ) abbreviates¬ (ηxα([x/u]ϕ) = ηx(⊥)), if  α is basic.
∀xα([x/u]ϕ) abbreviates¬ ∃xα([x/u]¬ ϕ)

At first sight these stipulations may perhaps look somewhat unintuitive, but the
quantifiers get the interpretations we want them to have:

PROPOSITION 2.  For any weak general model M:
||∃xα([x/u]ϕ)||M,a = 1 iff there is a d ∈ Dα such that ||ϕ||M,a[d/u] = 1
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||∀xα([x/u]ϕ)||M,a = 1 iff for all d ∈ Dα ||ϕ||M,a[d/u] = 1
PROOF. We prove the first statement, from which the second one readily follows. Let
d' =  ||ηxα([x/u]ϕ)||M,a = Hα({ d ∈ Dα | ||ϕ||M,a[d/u] = 1}). If α is relational then
d' ∈ Dα and hence by the definition of choice functions: ||ϕ||M,a[d/u] = 1 for any d
∈ Dα iff ||ϕ||M,a[d'/u] = 1. By the Substitution Theorem above this last statement is
equivalent to ||[ηxα([x/u]ϕ)/u]ϕ||M,a = 1 and hence to ||∃xαϕ(x)||M,a = 1. If α is
basic, we see that if d' ∈ Dα  then d' ≠ ∅ since ∅ ∉ Dα . From this and the
definition of choice functions it follows that ||ϕ||M,a[d/u] = 1 for some d ∈ Dα iff d'
≠ ∅ iff ||¬(ηxαϕ(x) = ηx(⊥))||M,a = 1 iff ||∃xαϕ(x)||M,a = 1.

Turning to the definite description operator now, we define:

DEFINITION 18.  ιxα([x/u]ϕ) abbreviates ηxα∀yα(x = y ↔ [y/u]ϕ), where y is the first
bound variable of type α different from x in some fixed ordering.

Again, it is easy to see that the abbreviation thus defined has its intended inter-
pretation:

PROPOSITION 3.  For any weak general model M:
||ιxα([x/u]ϕ)||M,a = d, if d is the unique element of Dα such that

||ϕ||M,a[d/u] = 1,
= ∅, if there is no such unique object.

Abstraction is defined in the following manner:

DEFINITION 19.  Let A be a term of type ‹α1...αn›, x a bound variable of type β and u
a free variable of that type, then λx([x/u]A) abbreviates ηR∀x(Rx = [x/u]A), where R
is the first variable of type ‹βα1...αn› that does not occur in A.

This time there is no guarantee that an expression λxA(x) will get its intended
interpretation on a weak general model. The reason for this is that the required re-
lation may simply not be present in the relevant domain (in that case λxA(x) will get
the value ∅). We may want to restrict our attention to those weak general models
wherein all lambda-terms do get their intended interpretations:
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DEFINITION 20.  Any sentence of the form ∀y1...yn∃R∀x(Rx = [x/u]A), where A, x, u
and R are as in definition 19, is called a comprehension axiom. A general model is a
weak general model that satisfies all comprehension axioms.

All standard models are of course general models.
Note that by definition any general model satisfies all sentences of the form

∀y1...yn∀z(λx([x/u]A)z = [z/u]A). So, in a sense, lambda-conversion is just another
form of the comprehension axioms under our abbreviatory definitions. But note also
that on basic domains abstraction, like quantification, is restricted to the proper
objects: the more usual (and useable) form of lambda-conversion,  λxα([x/u]A)Bα =
[B/u]A for all B, holds only for relational α; for basic α we have the restricted
schema ¬(Bα = ηxα⊥) → λx([x/u]A)B = [B/u]A. While, for example, ηxe⊥ = ηxe⊥
is true on all models, λxe(x = x)ηxe⊥ is true on none.

It is not difficult to see that general models conform to requirement (2) of the
introduction:

PROPOSITION 4.  Let M be a general model, a an assignment to M, A a term of type
‹α1...αn› and x a variable of type β, then:
||λx([x/u]A)||M,a = {〈d,d1,...,dn〉 | d ∈ Dβ and 〈d1,...,dn〉 ∈ ||A||M,a[d/u]}.

The last operator that we consider is Hilbert’s ε-symbol. The following definition is
suggested in Hilbert & Bernays [1939]:

DEFINITION 21.  εxα([x/u]ϕ) abbreviates ηxα(∃yα[y/u]ϕ → [x/u]ϕ), where y is the
first bound variable of type α different from x in some fixed ordering.

This gives a semantics for the ε-symbol that is closely analogous to the one given in
Hermes [1965]:

PROPOSITION 5.  For any weak general model M:
||εxα([x/u]ϕ)||M,a = Hα({ d ∈ Dα | ||ϕ ||M,a[d/u]  = 1}), if there is a d ∈ Dα

such that ||ϕ||M,a[d/u] = 1.
= Hα(Dα), otherwise.

Relational type theory enables us to generalize the notion of entailment somewhat.
Not only formulae can entail another formula, but any set of terms of a relational
type can entail some term of that type:
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DEFINITION 22.  Let  Γ ∪ {A} be a set of terms of some type α = ‹α1...αn›. Γ entails
A (Γ g-entails A, Γ wg-entails A), Γ |= A  (Γ |=g 

A, Γ |=wg 
A), if ∩B∈Γ ||B||M,a ⊆

||A||M,a for all models (general models, weak general models) M and assignments a
to M.

In natural language too, expressions of many categories may entail one another (see
Keenan & Faltz [1978], Groenendijk & Stokhof [1984]). It is obvious that
definition 22 is indeed a generalization of the usual notion of entailment:

PROPOSITION 6.  Let Γ ∪ {ϕ} be a set of formulae. Γ |= ϕ (Γ |=g 
ϕ, Γ |=wg 

ϕ) iff for
each model (general model, weak general model) M and assignment a to M it holds
that if M satisfies all ψ ∈ Γ under a, then M satisfies ϕ under a.

DEFINITION 23.  We say that two terms A and B are (g- , wg- )equivalent  if both A
(g-, wg-) entails B and B (g-, wg-) entails A.

Proof theory and completeness

I shall finish by giving a standard Henkin proof to the effect that the notions |=g and
|=wg, defined in the preceding section, are recursively axiomatizable. Of course, by
Gödel’s Theorem and the fact that the natural number system is categorically
definable in TTη,2

 with the standard semantics, |= cannot be axiomatized.

DEFINITION 24.  All formulae of one of the following forms are axioms:
Propositional axioms:
AS1 ϕ → (ψ → ϕ)
AS2 (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))
AS3 ((ϕ → ⊥) → ⊥) → ϕ
Eta and quantification axioms:
AS4 ¬AαB1...Bn, where α  = ‹α 1...α n›, each B i  is of type α i  and either

A is ηxα(⊥) or for some i, αi is basic and Bi is ηxαi
(⊥).

AS5a ¬(Aα = ηxα(⊥)) → (ϕ(Aα) → ∃xϕ(x)), if α is basic.
AS5b ϕ(Aα) → ∃xϕ(x), if α is relational.
AS6 ∃xϕ(x) → ϕ(ηxαϕ(x)),
AS7 ∀xα(ϕ(x) ↔ ψ(x)) → ηyαϕ(y) = ηzαψ(z)
Extensionality:
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AS8 ∀Rα∀R'α (∀xα1
...xαn

(Rxα1
...xαn 

↔ R'xα1
...xαn

) → R = R'), where
α = ‹α1...αn›

Identity axioms:
AS9 A = A
AS10 A = B → (ϕ(A) → ϕ(B))   (Leibniz’s Law).

DEFINITION 25.  A proof for a formula ϕ is a sequence ϕ0, . . . , ϕn of formulae such
that ϕ = ϕn and each ϕk (k ≤ n) is either an axiom or follows from two formulae
earlier in the sequence by the rule of modus ponens (ϕ, ϕ → ψ / ψ). A formula ϕ is
provable, |– ϕ, if there is a proof for it. The formula ϕ is said to be derivable from a
set of formulae Γ, Γ |– ϕ, if there are ϕ0, . . . , ϕn ∈ Γ such that |– (ϕ0 ∧ ... ∧ ϕn) →
ϕ. A set of formulae is consistent if ⊥ is not derivable from it.

Since AS1 – AS3 are axiom schemes and modus ponens is a rule we immediately see
that all substitution-instances of tautologies in propositional logic are provable.

PROPOSITION 7.  If |– ϕ → ψ(u) and the free variable u does not occur in ϕ, then |– ϕ
→ ∀xψ(x).
PROOF. Suppose that χ0, . . . , χn is a proof for ϕ → ψ(u); it is not difficult to verify
that [ηx¬ψ(x)/u]χ0, . . . , [ηx¬ψ(x)/u]χn is a proof for ϕ → ψ(ηx¬ψ(x)). To obtain
a proof for ϕ  →  ∀ xψ (x), use propositional logic and the dual of AS6,
ψ(ηx¬ψ(x)) → ∀xψ(x).

From the above proposition it follows that we can reason classically with the
quantifiers ∀xα and ∃xα, provided α is relational. If α is basic, then ∀xα and ∃xα
behave like restricted quantifiers in standard logic.

THEOREM 1 (Soundness Theorem).  Let T be a theory and ϕ a formula, then:
T |– ϕ   ⇒  T |=wg ϕ.

PROOF. By a straightforward induction on the length of proofs.

THEOREM 2. Let T be a theory and ϕ a formula, then:
T |=wg ϕ  ⇒   T |– ϕ.

PROOF.  This is proved in the usual way, with the help of the Consistency Theorem
below.
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COROLLARY  (Generalized Completeness Theorem). Let T be a theory and ϕ a
formula, then T |=g ϕ   ⇔   T ∪  COMP |– ϕ, where COMP is the set of all com-
prehension axioms.

THEOREM 3  (Consistency Theorem). If a theory is consistent, then it has a weak
general model.
PROOF.  Let T be a consistent theory. We construct a maximal consistent set of
sentences Γ ⊇ T having the so-called Henkin property. To this end let A0, . . . , An, .
. . be some enumeration of all terms (of all types). For each n ∈ ω define a set of
formulae Γn by: Γ0 = T and Γn+1 = Γn ∪  { An = u}, where u is the first free
variable in our enumeration which has the same type as An has and which does
neither occur in An nor in any of the formulae in Γn. Clearly, all Γn are consistent
and hence ∪nΓn is consistent.

Next, we expand ∪nΓn to a maximal consistent set by the Lindenbaum con-
struction. Let ϕ0, . . . , ϕn, . . . be an enumeration of all formulae. Let Γ0' = ∪nΓn
and let Γn+1' = Γn' ∪ {ϕn} if Γn' ∪ { ϕn} is consistent, otherwise let Γn+1' = Γn'.
The union Γ of all Γn' is consistent; moreover, it is maximal (for each ϕ either ϕ ∈
Γ or Γ ∪  {ϕ} |– ⊥) and—by the construction in the previous paragraph, the
properties of maximal consistent sets of formulae, Leibniz’s Law and (the dual of)
AS6—it has the Henkin property: If ϕ(u) ∈ Γ for all free variables u of some type
α, then, since ηx¬([x/u]ϕ) = u' ∈ Γ for some u',  ϕ(ηx¬([x/u]ϕ)) ∈ Γ and hence
∀xϕ(x) ∈ Γ.

Now define an equivalence relation ~ between terms: A ~ B iff A = B ∈ Γ. For
each term A, let [A] be the equivalence class {B | A ~ B}. For each type α we define
a function Φα having the set {[A] | A is a term of type α} as its domain. If α = e or
α = s, let Φ α([ηxα⊥ ]) = ∅  and let Φ α([Aα ]) = [A] if [ A] ≠ [ηxα⊥ ]. If α =
‹α1...αn›, let Φα([Aα]) be the relation {〈Φα1

([Bα1
]), . . . , Φαn

([Bαn
])〉 | ABα1 

. .
. Bαn 

∈ Γ}. This is well-defined by Leibniz’s Law and the maximal consistency of
Γ.

The functions Φα are injections. This is obvious in case α = e or α = s, so let α
= ‹α1...αn›. Suppose that Φα([A]) = Φα([A']). Let u1, . . . , un be free variables
of types α1, . . . , αn respectively, then Au1...un ∈ Γ iff A'u1...un ∈ Γ. From this it
follows that Au1...un ↔ A'u1...un ∈ Γ. By the Henkin property: ∀x1...xn(Ax1...xn
↔ A'x1...xn) ∈ Γ, so, using Extensionality and the maximal consistency of Γ, we
see that A = A' ∈ Γ  and [A] = [A'].

Define: Dα = {Φα([A]) | A is a term of type α} if α is relational and Dα =
{ Φα([A]) | A is a term of type α} \ { ∅} if α is basic. From the definition of the
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functions Φα and the fact that AS4 is an axiom scheme it follows that F = {Dα} α
is a frame. Define I(cα) = Φα([cα]) and define for each α and each D such that  D ⊆
Dα:

Hα(D) = Φα([ηxαϕ(x)]), if D = {Φα([u]) | ϕ(u) ∈ Γ};
= Φ α ( [ u ]), where u  is the first free variable such that

Φα([u]) ∈ D, otherwise.

The functions Hα are well-defined. First, note that ∅ = {Φα([u]) | ⊥ ∈ Γ}, so the
second clause is all right. Next, suppose that for all free variables uα: ϕ(u) ∈ Γ iff
ψ(u) ∈ Γ. Then ∀x(ϕ(x) ↔ ψ(x)) ∈ Γ and by AS7: ηxϕ(x) = ηyψ(y) ∈ Γ, from
which it follows that [ηxϕ(x)] = [ηyψ(y)].

The functions Hα are choice functions for the sets Dα. Clearly Hα(∅ ) =
Φα([ηxα⊥]) = ∅. Suppose that D ⊆ Dα is not empty. If the second clause of Hα’s
definition obtains, then obviously Hα(D) ∈ D. So suppose that  D = {Φα([u]) |
ϕ(u) ∈ Γ} for some ϕ. Since D ≠ ∅ and D ⊆ Dα (and hence ∅ ∉ Dα if α is basic)
there is a variable u such that ϕ(u) ∈ Γ and such that moreover ¬(u = ηx⊥) ∈ Γ if
α is basic. By AS5 we see that ∃xϕ(x) ∈ Γ and therefore by AS6 ϕ(ηxϕ(x)) ∈ Γ.
By the construction of Γ there is a free variable u' such that u' = ηxϕ(x) ∈ Γ and so
for this variable both ϕ(u') ∈ Γ and [u'] = [ηxϕ(x)] hold, whence Φα([ηxϕ(x)]) ∈
D.

Now, let M be the weak general model 〈F,I,H〉 and let the assignment a be defined
by a(uα) = Φα([u]). We prove by induction on term complexity that ||A||M,a =
Φα([A]) for all terms A of type α, hence that ||ϕ||M,a = 1 iff ϕ ∈ Γ, for all formulae
ϕ and hence that M is a weak general model of T:

i.   ||c||M,a = I(c) = Φ([c])  if c is a constant;
    ||u||M,a = a(u) = Φ([u]) if u is a free variable;
ii.  ||AB||M,a  =  {〈d1, . . . , dn〉 | 〈||B||

M,a
, d1, . . . , dn〉 ∈ ||A||M,a} = { 〈d1, .

. . , dn〉 | 〈Φ([B]), d1, . . . , dn〉 ∈ Φ([A])} = Φ([AB]);
iii. ||A = B||M,a = 1 ⇔  ||A||M,a = ||B||M,a ⇔  Φ([A]) = Φ([B]) ⇔  [A] = [B]

⇔ A = B ∈ Γ ⇔ Φ([A = B]) = 1;
iv. ||ηxα([x/u]ϕ)||M,a = Hα({ d ∈ Dα | ||ϕ||M,a[d/u] = 1}) = Hα({ Φα([u]) |

||ϕ||M,a = 1}) = Hα({ Φα([u]) | ϕ ∈ Γ}) = Φα([(ηx[x/u]ϕ)]).
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NOTES

*  I would like to thank Johan van Benthem and Dick de Jongh for their moral support and their critical
comments on earlier versions of this paper. Martin Stokhof, Elias Thijsse and the anonymous referees
made very valuable remarks.
The research for this paper was supported by the Netherlands Organization for the Advancement of
Pure Research (ZWO).
1See e.g. the definition of persistence in Gallin [1975, §4] (and compare it with the one in his §9).
2The choice of a particular logic should of course not preclude certain analyses of natural language. It
should, for example, not be made impossible by our logic to use individual concepts (type (se) objects,
functions from worlds to entities). However, since all functions are relations, there is no problem. Those
who think that individual concepts are useful (see Janssen [1984]) may keep them as ‹se›-type relations
(relations between worlds and entities). Expressions like the pope can then be treated as individual
concepts. Note that the pope can't be a function since there have been times that there was no pope
and once, during the Avignon period, there were three.
Another example of a semantical theory that forms an exception to the rule that in current Montague
Grammar only quasi-relational types are used and that should not be ruled out on a priori grounds is the
analysis of questions with the help of Skolem functions (see Engdahl [1980], Groenendijk & Stokhof
[1985]).  On this account, one reading of the question ‘Whom does every man love’ should be rendered
as λf(ee)∀x(man x → love x fx) (I suppress index variables here). It is easily seen, however, that the
theory can be reformulated in relational terms. For example, in this case, the relational term
λR‹ee›∀x(man x → love x ιy(Rxy)) (for notation see below) would do the same work and could be
obtained compositionally along Groenendijk & Stokhof’s lines.
3Some may want to demand that all partial relations have empty glut. It is possible to add this condition
without any technical difficulties. See Muskens [forthcoming] for a discussion.
4It should be emphasized however, that the addition of description operators is not essential. Relational
type theories can be formulated without them. See also Muskens [forthcoming]
5As opposed to functional frames, our frames have the empty set in all their relational domains. This
provides a particularly natural denotation for ιx⊥ if x is of relational type. There are ways to repair the
omission in functional type theory, but none of them is as straightforward as the present solution. This
point is of course related to argument III above.
6Of course, the ordinary generalized quantifier approach to noun phrases, including definites, is
available as well in our logic. The king can be treated as λP∃x(∀y(king y ↔ x = y) ∧ Px), which by
the way is equivalent to λP(Pιx(king x)).
7The η-symbol has entered the linguistic literature on a modest scale through this book. However,
despite its name, I do not think that it would be wise to apply the indefinite description operator in any
straightforward way to the treatment of indefinite descriptions in natural language. While it is
defensible (but not necessary) to treat t
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 as ηx(man x) leads to
wrong results (under normal assumptions), as the reader can easily verify once he has seen the
semantics of the η-symbol given below. Clearly nothing in the present proposals is in conflict with
treating a man as λP∃x(man x ∧ Px), like Montague did (compare note 6 above). I am indebted to two
anonymous referees for pointing out to me that my presentation in an earlier version of this paper was
misleading in this respect.
8This distinction between free and bound variables makes it easy to avoid variable clashes in cases of
substitution, but it is not an essential feature of the theory.
9To avoid any confusion: the [σ'/s]σ notation is a way to refer  to strings. The square brackets are not
part of any string.
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