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Abstract
We present the Bayesian Information-Theoretical (BIT) model of lexical processing: A

mathematical model illustrating a novel approach to the modelling of language processes.
The model shows how a neurophysiological theory of lexical processing relying on Hebbian
association and neural assemblies can directly account for a variety of e�ects previously
observed in behavioral experiments. We develop two information-theoretical measures of
the distribution of usages of a word or morpheme. These measures are calculated through
unsupervised means from corpora. We show that our measures succesfully predict responses
in three visual lexical decision datasets investigating the processing of in
ectional morphology
in Serbian and English languages, and the e�ects of polysemy and homonymy in English.
We discuss how our model provides a neurophysiological grounding for the facilitatory and
inhibitory e�ects of di�erent types of lexical neighborhoods. In addition, our results show
how, under a model based on neural assemblies, distributed patterns of activation naturally
result in the arisal of discrete symbol-like structures. Therefore, the BIT model o�ers a
point of reconciliation in the debate between distributed connectionist and discrete localist
models. Finally, we argue that the modelling framework exempli�ed by the BIT model, is
a powerful tool for integrating the di�erent levels of the description of the human language
processing system.
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Introduction
Research in psycholinguistics during the last �fty years has provided us with a wealth of
data on the detailed properties of lexical processing in the human mind. More recently,
neuroimaging techniques have begun complementing this picture with detailed speci�cations
of the spatio-temporal patterns of cortical activation that accompany language processing.
Simultaneously, some theories detailing how language processing can take place in detailed
neurobiological terms are currently becoming available, and receiving support from neu-
roimaging studies. However, there still seems to be a dissociation between the results ob-
tained in behavioral studies, and the detailed neurobiological theories of language processing.
In this study we argue that we are currently in the position to link both levels of explanation:
behavioral and neurobiological. We demonstrate this by showing how a neurophysiological
theory of lexical processing (Pulverm�uller, 1999) can provide a direct explanation of sev-
eral previously reported behavioral e�ects. For this purpose we develop a set of statistical
information-theoretical tools that enable us to make quantitative predictions on behavioral
responses based on an underlying neurophysiological theory, without the need for direct
computational simulation.

Measures of lexical competition and facilitation
A large amount of psycholinguistic research has shown that the size of the phonological,
orthographic, semantic and morphological `neighborhoods' of words in
uence the time it
takes for them to be recognized in lexical recognition tasks. Words with many phonolog-
ical neighbors are reported to be recognized slower than words with few neighbors (Luce
& Pisoni, 1998; Vitevitch & Luce ,1999). In contrast, in the orthographic domain, words
with many orthographic neighbors are recognized faster than words with few neighbors in
visual lexical decision (Andrews, 1989; 1992; 1997), while they appear to be responded
to more slowly in visual identi�cation tasks (Grainger & Segu��, 1990;). However, recent
large-scale studies have shown that the e�ects of of orthographic neighborhood in lexi-
cal decision are more complex than previously thought (Baayen, 2005; Baayen, Feldman
& Schreuder, 2005). These studies describe a non-linear u-shaped e�ect of neighborhood
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size on lexical decision latencies (i.e., small neighborhoods produce facilitation, while large
neighborhoods produce inhibition). The e�ect of orthographic neighborhood has also been
found to correlate with the magnitude of the N400 component of the ERP signal (Holcomb,
Grainger, & O'Rourke, 2002).

Similar e�ects have been observed in the domain of word meaning. Jastrzembski (1981)
reported that, in visual lexical decision, semantically ambiguous words are responded to
faster than semantically unambiguous words. Many other authors have replicated this result
(e.g., Azuma & Van Orden, 1997; Borowsky & Masson, 1996; Kellas, Ferraro, & Simp-
son, 1988). An additional re�nement to this ambiguity advantage was introduced by Rodd,
Gaskell, and Marslen-Wilson (2002) who pointed out the need to distinguish between words
having many unrelated meanings (homonymic) and words having many related senses (poly-
semous). They showed that, while polysemous words exhibit the previously described ambi-
guity advantage, homonymic words are in fact recognized slower. Parallel to what was found
in the domain of word form (orthographic and phonological), the semantic neighborhood of a
word can also have e�ects in opposite directions. This distinction has been con�rmed in two
recent neuromagnetic studies, that have also shown that both e�ects are re
ected in di�erent
cortical sources of the M350 e�ect (Beretta, Fiorentino, & Poeppel, 2005; Pylkk�anen, Llin�as,
& Murphy, in press).

Finally, in the domain of morphology, it is known that the summed frequency of all the
words that share a morpheme is negatively related to the response latencies to those words
in visual lexical decision (Col�e, Beauvillain & Segu��, 1989; Taft, 1979). Similarly, the number
of words that share a derivational morpheme { its morphological family size { also correlates
negatively with visual lexical decision latencies (Schreuder & Baayen, 1997). Interestingly,
as was the case for the e�ects observed in phonology, orthography, and semantics, it appears
that the e�ects of morphological neighborhoods can also be modulated and even reversed in
direction when one manipulates the degree of semantic relatedness between the morphologi-
cally related words (Moscoso del Prado Mart��n, Bertram, H�aiki�o, Schreuder & Baayen, 2005;
Moscoso del Prado Mart��n, Deutsch, Frost, De Jong, Schreuder, & Baayen, 2005), or con-
siders words that can have morphological relatives in both languages spoken by a bilingual
(Dijkstra, Moscoso del Prado Mart��n, Schulpen, Schreuder, & Baayen, 2005). As with the
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e�ects of semantic ambiguity, the morphological family size e�ect is also re
ected in the
M350 component of MEG experiments (Pylkk�anen, Feintuch, Hopkins, & Marantz, 2004).

In summary, the neighborhood of a word, whether orthographic, phonological, morpho-
logical or semantic, in
uences the time it takes for that word to be recognized. However, in
all domains mentioned above, it appears that, by itself, the size of a word's neighborhood
can either facilitate the recognition of a word or, on the opposite, make it more di�cult.
All these e�ects appear to be re
ected in the M350 and N400 components in magneto- and
electro-encephalographic studies.

Information-theoretical measures and lexical recognition
Di�erent lines of research on phonological and morphological neighborhoods are currently
converging on the use of information-theoretical measures to describe the amount of support
or competition that a word receives from its neighborhood. Kosti�c proposed an information-
theoretical account of in
ectional processing that was successful in explaining large propor-
tions of the variance in lexical decision experiments to Serbian in
ected words (Kosti�c, 1991;
1995; 2005; Kosti�c, Markovi�c & Baucal, 2003). He considered the joint in
uence on response
latencies of the distribution of frequencies of Serbian in
ectional a�xes, and their degree
of syntactic and semantic heterogeneity. In the same direction, Moscoso del Prado Mart��n,
Kosti�c, and Baayen (2004) showed that this account can be extended to provide a detailed
description of the e�ects of Dutch morphological paradigms: The amount of support that
a word receives from the morphological paradigms to which it belongs is best described by
the entropy of the frequency distribution of the words that belong to that paradigm (i.e.,
the words that share an in
ectional or derivational morpheme with it). Moscoso del Prado
Mart��n and colleagues also pointed at the e�ects of semantic heterogeneity of morphological
paradigms being directly accommodated in these information theoretical measures. More
recently, Baayen and Moscoso del Prado Mart��n (2005) have shown that these measures also
bear on issues like noun and verb regularity, and have implications for neuroimaging studies.

Interestingly, the success of information-theoretical measures in describing the e�ect of
morphological paradigms on lexical processing is paralleled by information-theoretical mea-
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sures characterizing the in
uence of phonological neighborhoods in spoken word recognition.
Vitevitch and Luce (1999) showed that the amount of competition between words in the
same phonological neighborhood is well described by the summed log frequency of the words
in a particular neighborhood. This magnitude is in fact the same measure that Kosti�c (2005)
calculated to describe the facilitation produced by morphological paradigms and, as shown
by Moscoso del Prado Mart��n et al. (2004), it constitutes an upper bound estimate for the
entropy measures. Indeed, Luce and Large (2001) showed that a similar entropy measure
also plays a role in describing the e�ects of phonological neighborhoods.

Neural assemblies and lexical processing
Pulverm�uller (1996; 1999; 2001) introduced a theory of lexical processing in the brain. It
relies on the existence of neural assemblies (Hebb, 1949) distributed over broad cortical
areas. These assemblies are tightly-coupled ensembles of neurons that automatically �re on
presentation of a word. The assemblies would recruit neurons from left perisylvian areas
(inferior frontal and superior temporal { including the traditional Broca's and Wernicke's
language areas) relating to the phonological and orthographical forms of words, and from
non-lateralized, widely distributed cortical areas relating to the meanings and grammatical
properties of the words. A large amount of neurophysiological evidence has been provided in
support of this theory (cf., Pulverm�uller, 2003). These neural assemblies, although commonly
termed `lexical' or `word' assemblies, can also correspond to sub-lexical morphemic units such
as in
ectional a�xes (Shtyrov & Pulverm�uller, 2002).

The lexical/morphemic assemblies are formed by Hebbian correlational learning: If the
activation of neurons responding to the orthographic or phonological form of a word or
morpheme consistently co-occurs in time with the �ring of neurons responding to the meaning
of that word, both sets of neurons will develop strong connections to each other via long-term
potentiation of the corresponding synapses. Similarly, when either the neurons representing
a particular meaning or word form �re independently of each other, long-term depression
processes weaken the connections existing between them. This ensures that the connections
will remain strong only among those pairs of word forms and word meanings that co-occur
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together above chance level. When the connections have become su�ciently strong, the
stimulation of one part of the network (e.g., the neurons responding to the orthographic
properties) will result in the automatic �ring and reverberation of the full network (including
all properties of the word) within a short period of time.

A crucial aspect of the theory is the presence of inhibitory mechanisms that avoid the
simultaneous activation of several word assemblies. Consider for instance the case of a pol-
ysemous or homonymic word: In Pulverm�uller's theory, such words would be represented
by multiple assemblies, each corresponding to one of the distinct meanings of the words.
These assemblies would have di�erent cortical topographies in relation to their meanings,
but would overlap in their perisylvian areas representing their ortho-phonological properties,
which are common for all their meanings. Therefore, in order to select one of the possible
meanings of a word, some form of competition must take between the candidate assemblies
for that particular form. Di�erent mechanisms have been proposed to implement this mech-
anism. Pulverm�uller (1999) suggested that direct inhibitory connections between di�erent
assemblies might be implemented by means of inhibitory striatal connections between the
neurons in the assemblies (Miller & Wickens, 1991). In addition to this lateral inhibition,
Pulverm�uller (2003) argues for the presence of a more general regulatory mechanism that
would deliver inhibition to all active assemblies when the overall level of cortical activa-
tion reaches a certain threshold. Such central regulation could be implemented through the
thalamo-cortical loop. Indeed, neurophysiological evidence for thalamic modulation of cor-
tical activity during semantic processing has been reported by Slotnik, Moo, Kraut, Lesser,
and Hart (2002).

The missing link
As we have discussed above, a large amount of behavioral research has described in detail
the e�ects of lexical neighborhoods on lexical recognition. At the same time, Pulverm�uller's
model o�ers { for the �rst time { a detailed, neurobiologically plausible theory of lexical
processing supported by a large amount of neurophysiological and neuroimaging evidence.
However, both lines of research seem to be somehow disconnected: On the one hand, the
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behavioral results are currently presented without a low level anchor describing the neural
processes and representations that give rise to these e�ects. Although MEG and EEG
experiments have succeeded in showing that these e�ects have neurophysiological correlates
(mainly in the M350 and N400 e�ects), no research has documented why and how do these
particular di�erences arise in terms of the underlying neural structures. On the other hand,
up to the moment, Pulverm�uller's detailed neurophysiological theory has not attempted to
make clear predictions at the behavioral level.

The e�ects of orthographic neighborhood size have been explained using a variety of
computational models including the MROM model (Grainger & Jacobs, 1996), the DRC
model (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001) and the Bayesian Reader (Nor-
ris, in press). Vitevitch and Luce (1999) interpret their own results on phonological neighbor-
hood within the framework of the adaptative resonance theory of speech perception (Gross-
berg, Boardman & Cohen, 1997), while Gaskell and Marslen-Wilson (1997) used a distributed
connectionist network to show that the e�ect of phonological neighborhood can also arise due
to competition between distributed representations of meaning. The e�ects of facilitation
and competition caused by the semantic neighborhood have also been interpreted assuming
both localist representations (Beretta et al., 2005; Pylkk�anen et al., in press) or in terms of a
distributed connectionist model (Rodd, Gaskell, & Marslen-Wilson, 2004). A similar contrast
has been observed for the e�ects of morphological paradigms, which have been modeled using
both localist, interactive-activation models (Baayen, Dijkstra, & Schreuder, 1997; De Jong,
Schreuder, & Baayen, 2003; Taft, 1994) and distributed connectionist models (Moscoso del
Prado Mart��n & Baayen, 2005).

All of these approaches are successful in replicating their targeted e�ects, and they provide
plausible conceptual accounts of how the corresponding interactions take place. However
neither of the models provides an account of how the words on which the measures are
calculated, and the relationships existing between them, are actually represented in the
brain. In addition, although the information-theoretical measures are providing a quite
accurate description of the e�ects, both in the participants and in the computational models,
no explanation is available of why these particular probabilistic measures best re
ect the
consequences of the underlying neural mechanisms. A traditional escape to these questions
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comes from Marr's famous division of the levels of description of a computational system
(Marr, 1982). It is argued that all the models above provide descriptions within Marr's
computational level, which deals primarily with mental representations (see Norris, 2005 for
an in-depth discussion of this issue). On the other hand, Pulverm�uller's neurophysiological
theory of language processing would lie between Marr's implementational and algorithmic
levels, which are respectively concerned with neural representations and brain processes.
Although Marr's division of labor is indeed useful for the study of the cognitive system,
it must be kept in mind that Marr's explicit goal in positing this division was to obtain a
uni�ed theory (in his case of visual processing in the human brain). In order to achieve
such a theory, the isolated investigation of each of the levels needs to be complemented with
research aiming to link the results from the three levels. Some authors are pessimistic on
the possibility of achieving an understanding of this link for higher cognitive processes in
the near future (e.g., Norris, 2005). However, in other areas of cognitive processing, it has
already been possible to approach this linkage. Speci�cally, the �eld of vision { Marr's own
area of investigation { has recently come close such an integration (Rolls & Deco, 2001).
The large set of results on human language processing at the behavioral, computational,
and neurophysiological levels, suggests that we are beginning to be in a position to address
such problems also for human language. In this direction, Edelman (in press) suggests three
\general-purpose computational building blocks of biological information processing" that
can be used to address the linkage of the di�erent levels in the case of language: function
approximation, density estimation, and dimensionality reduction. Edelman argues that these
building blocks are implemented across multiple cognitive domains. In addition, Edelman
describes how a combination of distributed representations with those building blocks is most
likely to be successful in approaching the integrations of the di�erent levels for the case of
language.

In the present study, we show how a theory such as Pulverm�uller's, can indeed be used
to achieve detailed predictions on the behavioral level. We will show that, using the tools
proposed by Edelman (in press), one can make predictions on behavioral measures of lexical
processing following from the underlying neurophysiological theory. This provides us with a
direct link between Pulverm�uller's theory and the reported e�ects of lexical neighborhoods.
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Crucially, our predictions also explain why the information-theoretical measures are proving
the most suitable to describe these e�ects. In addition, the model that we present o�ers an
insight on the debate between distributed and localist models to account for these e�ects.
We will show that, in order to account for the e�ects, one needs to make use of distributed
representations of the same type used in distributed connectionist models. However, a crucial
component of our model is that it requires the explicit assumption that the distributed
representations will give rise to a discrete number of localistic representations by e�ect of
plain statistics. In such way, our model o�ers a meeting point for localist and distributed
models of lexical processing.

In what follows we will begin by describing how Pulverm�uller's neural assembly model can
be used to make predictions on the behavioral level that would match the observed e�ects of
lexical neighborhoods. We will continue by describing the forms of representations that we
have used in the model, and how information theory enables us to extract measures of such
representations that should link directly with the behavioral results. Next, we will use three
lexical decision datasets to illustrate how the predictions made by the model with respect
to morphological and semantic neighborhoods are indeed veri�ed on the lexical decision
latencies. Finally, we will discuss the implications of these results for current theories of
lexical processing, and how our method o�ers a way to integrate the results from the di�erent
descriptive levels.

From Neural Assemblies to Behavioral Responses
We can represent the �ring patterns of neurons in di�erent cortical areas by means of multidi-
mensional vectors. These vectors would de�ne a space in which each point would correspond
to a particular state of �ring of the neurons in the system. The overlap between di�erent
patterns of �ring can then be represented by a distance measure between their correspond-
ing vectors, i.e., two patterns that involve the �ring of many common neurons would be
represented by two vectors whose distance in space is smaller than that between two vectors
corresponding to patterns of �ring with a lesser degree of overlap between them. In this
multidimensional representational scheme, the �ring probability of a particular combination
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of neurons could be described by a multidimensional probability density function (PDF) over
the vector space. From the Hebbian approach we can then predict that neural assemblies
would become sensitive to the areas of the representational space in which the PDF has a
higher value, indicating that points in that region space are relatively probable with respect
to other parts of space. Moreover, given that neurons are known to have Gaussian-shaped
receptive �elds, one would assume that the probability of �ring of a neural assembly would be
determined by a multidimensional Gaussian distribution over the activation of the neurons
that form it. This would imply that the PDF that the neurons are able to capture should
correspond to a mixture of Gaussians (Dempster, Laird & Rubin, 1977), which each of the
Gaussian components corresponding to one assembly. Therefore, in our vectorial represen-
tation, the corresponding PDF would also be a mixture of multidimensional Gaussians.

As reviewed above, Pulverm�uller (1999) argues that lexical and morphemic assemblies
recruit neurons in left perisylvian areas, related the the orthographic and phonological forms
of words and their grammatical properties, and neurons in more broadly distributed cortical
areas, which respond to the meanings of such words. Provided that we have adequate
vectorial representations of the neural patterns responding to the forms and the meaning
of words, and reasonable estimates of the frequency with which these are encountered, we
could in principle predict the formation of neural assemblies as areas in the space which the
value of the PDF is su�ciently high to develop an independent component in the Gaussian
mixture. For illustration purposes, consider a hypothetical representation that enabled us
to encode the patterns of activation related to word forms as a single real number, and the
patterns of activation related to word meaning as another one. The scatterplot in Figure 1
represents a hypothetical sample of the distribution of �ring patterns in such a space. The
horizontal axis represents the neural activation pattern in the form-related areas, and the
vertical axis represents the corresponding pattern in meaning-related areas. Each point in
the graph would correspond to a particular occurrence of a combination of form and meaning
neurons being active.

[INSERT FIGURE 1 AROUND HERE]
According to the Hebbian hypothesis, neural assemblies corresponding to words or mor-
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phemes would be developed associating the formal and meaning neurons corresponding to
the more densely crowded areas in the space, that is, the clusters of points in Figure 1. If
the form and meaning of a particular instance of a word are represented by vectors f and
m respectively, the scatter in Figure 1 would correspond to a PDF p(f ;m) de�ned over the
space of word forms and word meanings. Our assumption of a PDF composed of a discrete
mixture of Gaussian would imply that each cluster would develop into a Gaussian distribu-
tion. The PDF resulting from �tting a mixture of Gaussians to Figure 1 is illustrated by
Figure 2. The seven `bumps' in Figure 2 describe how the receptive �elds of the neurons
in seven neural assemblies would map onto the areas of the space that could make those
assemblies �re.

[INSERT FIGURE 2 AROUND HERE]
Following Pulverm�uller's theory, during language comprehension, neural assemblies would

automatically �re on presentation of a particular word form that falls within their in
uence.
In many situations this could lead to the activation of multiple assemblies on the same
stimulus. Consider the case in which a particular word form f has been encountered. The
assemblies that are associated with it would all simultaneously receive activation. In our
graphical scheme the probability of activation the the meaning-related neurons given a par-
ticular word form p(mjf) would be represented by a `slice' of the PDF shown in Figure 2.
Figure 3 illustrates how such a slice would look like: The selection of the particular word
form f , would correspond to constraining the overall joint probability distribution on the
word-form margin with a a very sharp normal distribution centered on the particular word
form. Such a spike would represent the activation in cortical areas responding to word-form
resulting from the presentation of a particular visual or auditory stimulus.

[INSERT FIGURE 3 AROUND HERE]
Note that in Figure 3 the activation in the word-form neurons could correspond to at least

three `bumps' in the distribution. Accordingly, this would entail the simultaneous activation
of the three corresponding assemblies. As these assemblies could in principle correspond to
contradicting meanings of a word or morpheme, some mechanism must be at work to select
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a single one being active and inhibit the �ring of the other ones. In summary { as argued
by Pulverm�uller { some form of competition must take place to select a single assembly.1 In
this view, the competition would result in all active assemblies receiving inhibition. After
a certain period, the assembly that receives the strongest activation { the one covering the
greatest volume in Figure 3 { would become fully activated, while the activation of all other
competing assemblies would die out as a result of the continued inhibition. The time it would
take an assembly to become fully activated should therefore be related to two factors: (a)
the initial degree of activation received by the assemblies and, (b) the degree of competition
between the assemblies. Factor (a) would depend on the strength of activation delivered by
the neurons representing the formal aspects of the word. This would depend on many factors:
The frequency with which that particular combination of word form and word meaning is
encountered, and di�erent orthographic and phonological neighborhood e�ects. In addition,
if one takes into account that there is deemed to be a certain amount of random activity
in the system at any given moment, one could expect that when this random activity falls
within the area of in
uence of a particular set of assemblies, it should add to their overall
likelihood of being activated. This would entail that those groups of assemblies that cover
a larger area of the representational space should have a certain advantage, as they would
receive a larger amount of random activation.

Note that we have oversimpli�ed the process of form identi�cation as being an instanta-
neous process that renders a single form being active. Neither of this assumptions is true,
the process is not instantaneous, and in principle can lead to multiple spikes for a particular
stimulus (see Norris, in press for a detailed discussion and mathematical characterization of
these issues). In this paper however, we will limit ourselves to the study of the interactions
that happen once the form information has been reduced to a single spike. By this we are
taking the simplifying assumption that we can sequentially separate the form identi�cation
processes from the activations at the level of meaning. In reality, these two processes are
most likely to be cascaded. However, we believe the concussions we will draw from the inter-

1Whether this mechanism is implemented through lateral striatal connections (Pulverm�uller, 1999) or a
thalamo-cortical regulatory mechanism (Pulverm�uller, 2003) would not make substantially di�erent predic-
tions for the purposes of this study.
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actions at the level of meaning would also be true in a cascaded system, only with additional
interactions with the word-form e�ects. These we leave for further research.

In turn, the amount of competition between neural assemblies that could correspond to
a particular word form { factor (b) from the previous paragraph { should be in
uenced by:

i Number of components of the Gaussian mixture: As we described above, each com-
ponent in the Gaussian mixture would correspond to an assembly that could �re in
response to a particular word form. The amount of inhibition that all assemblies receive
(either from the regulatory mechanism or through lateral connections) should then be
related to the number of assemblies that are active, with more candidate assemblies
resulting in more competition.

ii Relative probabilities of each of the components: The amount of competition between
the assemblies should also be related to how unequal the activation of the candidate
assemblies is. If one assembly receives much more activation than the remaining can-
didates, it is likely to resolve the competition faster than in a case where the level of
activity of many of the candidates is roughly similar.

iii Degree of overlap between competing components: Neurons that could belong to more
than one competing assembly will receive support from the activation of all of them,
thus making their e�ective level of activation higher than would be expected according
to a single assembly. Therefore, assemblies whose neurons receive additional support
from other assemblies will be faster in reaching their ignition threshold. This entails
that, for the overlapping parts of competing assemblies, the competition is reduced.

Measuring assembly coverage and competition between assemblies
A measure that would successfully index these three aspects would be the di�erential entropy
of the probability distribution (Shannon, 1948; see Appendix A). This measure would grow
with the number of components in the Gaussian mixture, i.e., a mixture with more compo-
nents would have a higher level of uncertainty than a mixture with a single component. In a
similar way, the degree of uniformness in the probabilities of the components of the measures
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would also increase the di�erential entropy. Finally a mixture that contains two components
that are very separated would imply a higher degree of uncertainty than a measure whose
components that partially overlap.

Unfortunately, the di�erential entropy of the distribution would also be very in
uenced
by the general width of the Gaussian mixture: PDFs with a large variance would increase
the di�erential entropy in proportion to the log of the determiner of their covariance matrix.
However, the width of the receptive �elds of the di�erent assemblies that are candidates
for ignition should not in
uence the degree of competition between them. On the opposite,
having a wide receptive �eld would be an advantage for the activation of a neural assembly,
since it would increase the probability of random or noisy activation igniting one of the
assemblies corresponding to a word or morpheme, thus reducing the average time it would
take for the assemblies to be activated, and reducing the probability of the assemblies not
being activated at all.

A more appropriate measure for our purposes is the negentropy of the PDF (Brillouin,
1956; see Appendix A). Negentropy is commonly used in techniques such as Independent
Component Analysis (Comon, 1994) to assess the amount of useful information present in
a combination of variables, that is, the degree of non-normality in their joint distribution.
As in the case of di�erential entropy, negentropy is also sensitive to factors i, ii, and iii.
Importantly, in contrast with di�erential entropy, this measure is mostly independent of the
actual width of the distribution.

[INSERT FIGURE 4 AROUND HERE]
Figure 4 summarizes the variables of interest that we have highlighted here (for simplicity

in a unidimensional space). The black curve is the PDF of the sample of points generated
from a mixture of �ve Gaussian with di�erent probabilities. The di�erential entropy of this
PDF will comprise information about the number of Gaussians, their relative probabilities,
the degree of separation between them, and the general spread of the distribution. Of
these, the three �rst factors would have e�ects on the degree of competition between the
corresponding assemblies, while the fourth one { the overall spread of the distribution {
would not a�ect the competition at all, but would increase the probability of the assemblies
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being activated. To separate this factor from the other three, we can subtract the entropy
of the Gaussian mixture from the entropy of a single Gaussian distribution with equal mean
and covariance (grey curve). The entropy of this single Gaussian is not sensitive to any
factor related to the peaks (it has a single peak in any case), but is sensitive to the overall
spread. Therefore, by this subtraction, we can separate the two variables of interest: the
degree of inter-assembly competition is re
ected by the negentropy, and the likelihood of the
assemblies being activated which is indexed by the Equivalent Gaussian Entropy (EGE).

These two measures enable us to make predictions on behavioral responses based on
Pulverm�uller's neural assembly model: On the one hand, the negentropy of the distribution
of meanings should correlate positively with response latencies to comprehension tasks that
require the activation of an assembly, as it re
ects the amount of competition that the
winning assembly will have to overcome. On the other hand, the EGE measure should
correlate negatively with both response latencies and error counts, since it re
ects the general
ease of activating a set of assemblies.

Probability Distributions on a High-dimensional Space
In the previous section we have outlined how information-theory enables us to make predic-
tions at the behavioral level starting from Pulverm�uller's neurophysiological theory. In order
to test this idea we require a suitable vectorial representation of the meaning and grammatical
function of each occurrence of a word or morpheme, and a technique to estimate the corre-
sponding mixture of multidimensional Gaussians and the associated information-theoretical
measures.

First and second order co-occurrence vectors
Sch�utze (1992, 1994) introduced a technique for building high-dimensional vectors represent-
ing the meaning of words, using the information derived from their usages in a large corpus.
This technique consists in passing a small window through the corpus counting the number
of times that words co-occur within that window. The result is a large square matrix with
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as many rows and columns as di�erent word types appeared in the corpus. The cells in
the matrix correspond to the number of times with which the word corresponding to a col-
umn appeared within a small window centered on the word corresponding to the row. The
rows (or the columns) in such a matrix provide a representation of the contexts in which
that word is normally used. In turn, the contexts in which a word is used provide crucial
information about the meaning and morpho-syntactic properties of the word itself (Wittgen-
stein's \meaning is use"). Indeed, Sch�utze observed that the distances between the vectors
corresponding to the words provide useful information about their similarity in meaning.

A large amount of research has developed this idea of word co-occurrence vectors, and
with di�erent variations on the technique employed for collecting the vectors, transforming
the frequencies, and reducing the dimensionality of the resulting matrix, has given rise to a
family of related techniques such as Hyperspace Analog to Language (Lund & Burgess, 1996),
Latent Semantic Aanalysis (Landauer & Dumais, 1997) or Random Indexing (Kanerva,
Kristofersson & Holst, 2000). In addition, a large body of research has indicated that the
distances between co-occurrence vectors correlate with human responses in di�erent behav-
ioral tasks (e.g., Landauer & Dumais, 1997; Landauer, Laham, Rehder, Schreiner, 1997;
Lowe & McDonald, 2000; Lund, Burgess & Atchley, 1995; McDonald & Shillcock, 2001).
In addition to capturing semantic properties of words, co-occurrence vectors have also been
shown to capture the morpho-syntactic properties of words (Sch�utze, 1995) and in
ectional
a�xes (Schone & Jurafsky, 2001).

As described in the previous paragraphs, co-occurrence vectors provide suitable represen-
tations of the average meaning and morpho-syntactic properties of words and morphemes.
However, in order to employ such vectors for estimating the distributions of meanings, we
require di�erent vectors representing each individual usage of the words and morphemes.
Sch�utze and Pedersen (1997) introduced a variation of the above techniques to deal with
word sense disambiguation. Their second order co-occurrence vectors provide di�erent rep-
resentations for each occurrence of a word. The second order vectors are built in a two-stage
process. First, using the techniques described above, a matrix of �rst-order vectors is con-
structed to represent the average meaning of each word type (the types can be further broken
down in order to consider di�erent meanings of a homonym as di�erent vectors). Once the
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�rst order vectors are constructed, each occurrence of the word of interest is represented by
the sum of the �rst order vectors of the words occurring around it (also within a small win-
dow). In this way one obtains a set of di�erent vectors for each word of interest, each vector
corresponding to one instance of the word. Sch�utze and Pedersen obtained promising results
on word sense disambiguation by using the distances between the second order vectors of
an ambiguous noun in context, and the �rst order vectors of the di�erent meanings of that
noun.

We propose using these second order co-occurrence to represent the di�erent instances of
a word or morpheme in multidimensional space. This will enable us to obtain an estimate
of its distribution of usages. A crucial point is that this technique enables us to build the
vectors on the minimum possible assumption, that is, a corpus of language without any
linguistic labeling.

It is clear that the co-occurrence vectors will not contain all the information that is rel-
evant for the semantic and morpho-syntactic properties of words or morphemes, and that
they are bound to be noisy. However, we believe that they will contain su�cient information
as to provide a reasonable estimate of a word's or morpheme's variation in meaning and
morpho-syntactic properties. Furthermore, a great deal of morpho-syntactic and semantic
information has to be acquired through linguistic experience, rather than through direct
exposure to the concept or referential meaning of the words. Therefore the information con-
tained in these vectors could be closely related to some of the semantic and morpho-syntactic
information about them that is actually captured by the cognitive system. Indeed, this hy-
pothesis is supported by behavioral research (Boroditsky & Ramscar, 2003; McDonald &
Ramscar, 2001). Furthermore, Pulverm�uller (2002) argues that word co-occurrence infor-
mation would also be exploited by a neural assembly model of language processing. In his
view, the initial form-meaning associations would be built by direct co-occurrence between
words and sensory-motor experience of their referents. Once some of these associations have
developed, the sequential activation of di�erent word assemblies in a short time window
would lead to associations developing between the co-occurring word assemblies. This would
result in a process of bootstrapping, by which sensory-motor information associated with
one word could { through exclusively linguistic experience { end up being also associated to
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other words that are used in similar contexts.

Estimation of the underlying distribution and informational measures
Second order co-occurrence techniques provide us with a method for estimating a sample of
high-dimensional vectors describing the contexts in which a word or morpheme is used. In
order to estimate the negentropy and EGE of the underlying multidimensional distribution,
we could make use of direct estimation methods (Kraskov, St�ogbauer, & Grassberger, 2004;
Van Hulle, 2005a; 2005b). However, these methods are mathematically quite complex and
make strong assumptions on the underlying distributions that are not justi�ed in our case.
The methods proposed by Kraskov et al. (2004) and Van Hulle (2005a) do not make use
of any information on the underlying distribution. In our case, by the assumption of the
neural assemblies, we have hypothesized that that distribution must be a multidimensional
Gaussian mixture with an unknown number of components, thus our EGE and negentropy
approximations should take this information into account. Van Hulle (2005b) introduces a
method to estimate the di�erential entropy of a multidimensional mixture of Gaussians, but
it is valid only when it can be assumed that the mixture components are \far enough apart".
However, in our case, many of the mixture components are deemed to overlap. Instead,
we can estimate our information-theoretical measures in two stages: First we estimate the
underlying PDF as a Gaussian mixture, and then we estimate its negentropy and EGE.

The Expectation-Maximization (EM) algorithm (Dempster et al., 1997) has traditionally
been used to estimate the PDF of multidimensional Gaussian mixtures where the number of
components is known a priori. In our problem we need to estimate the PDF from a sample
of points taken from the distribution. However, in contrast with the EM algorithm, we do
not have any knowledge of the number of Gaussian components in the mixture. Instead we
can use a in�nite mixture model (Neal, 1991; 1998). In�nite mixture models assume that the
underlying distribution is a mixture of an unknown, possibly very large (but �nite), number
of Gaussian components. Using Markov chain MonteCarlo methods one can sample from
the space of possible distributions of this kind, and use Bayesian inference to �nd which
one has a higher posterior probability of being the underlying distribution given the sample
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of points. Note that in practice, after estimation, an in�nite mixture model reduces to a
normal Gaussian mixture with a �nite number of components. Neal (2004) provides a set of
software tools to estimate distributions of this type. This family of models corresponds well
to our prior knowledge: We are assuming that the points in our sample have been generated
by a Gaussian mixture with an unknown number of components.

The problem of estimating the negentropy is now simpli�ed by having estimation of un-
derlying PDF. According to the de�nition (see Appendix A), the negentropy of a distribution
p(x) is de�ned as the di�erence between the di�erential entropy of a Gaussian distribution
pN (x) of equal covariance matrix to p(x) (EGE) and the di�erential entropy of p(x) itself:

J(p) = h(pN )� h(p) (1)
Provided we know the covariance matrixK, which can be directly estimated from the sample
of points, the entropy of the normal distribution pN (x) can be calculated analytically as:

h(pN ) = n2 log2(2�e) + 12 log2 jKj (2)
There is no simple analytical way of calculating the di�erential entropy of a mixture of

Gaussians. Instead, we can estimate it numerically using MonteCarlo integration: If p(x)
is a probability density function over a n-dimensional space S, and fx1; : : : ;xNg � S is a
su�ciently large sample of points sampled according to p(x), then the entropy of p(x) can
be approximated by:

h(p) ' � 1
N

NX
i=1 log2 p(xi) (3)

Therefore we can calculate the EGE of our sample of points using (2), then calculate
the di�erential entropy of our �tted Gaussian mixture using (3), and �nally estimate the
negentropy using (1).

Analysis 1: Negentropy and inter-assembly competition
In this section we will test the hypothesized relationship between the distribution of usages
of an a�x, and the competition that would take place between the di�erent assemblies
that could correspond to that a�x. For this purpose we will reanalyze the results of the
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experiments reported by Kosti�c et al. (2003) on the processing of Serbian nominal in
ectional
a�xes.

Kosti�c et al. (2003) found that most of the variance in the average lexical decision RTs
to Serbian in
ected nouns is explained by the logarithmic ratio between the frequency of a
particular su�x, and the number of syntactic functions and meanings that that a�x might
take (calculated through a detailed linguistic study described in Kosti�c, 1965). In a brief
summary, Kosti�c's results show that the time it takes to recognize a Serbian su�x is directly
related to the number of syntactic functions and meanings that it could have in a particular
context (i.e., masculine nouns or feminine nouns).

If our hypothesis is correct, Kosti�c's number of syntactic functions and meanings should
be related to the amount of competition between assemblies, and thus should also be cor-
related with the negentropy measure we have proposed. More importantly, the negentropy
measure should play a similar role to that of Kosti�c's count in predicting lexical decision
latencies.

Method
We obtained the frequency counts and counts of number of syntactic functions and meanings
(de�ned according to Kosti�c, 1965) from Kosti�c et al. (2003)'s experiments on Serbian mas-
culine and feminine nouns. From the same dataset, we obtained the average visual lexical
decision RTs to Serbian masculine and feminine nouns in each of their nominal in
ectional
variants (unin
ected, or su�xed with -a, -e, -i, -u, -om and -ima, for masculine nouns, and
su�xed with -a, -e, -i, -u, -om and -ama for feminine nouns; see Kosti�c et al. (2003) for
details on the Serbian nominal declension system).

From the Corpus of Serbian Language (CSL; Kosti�c, 2001), we sampled 500 random
occurrences of masculine and feminine nouns in each of their in
ectional variants. To ensure
that the sample would be representative of the variation in usages of a particular su�x,
and not biased to the usages of particularly frequent nouns, we constrained the sampling
procedure to avoid selecting more than one instance of any particular noun. Each occurrence
included the words located within a centered context window of seven words from the target
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(three words to each side). To keep the level of linguistic information to a minimum, the
words in the corpus were chosen to be masculine whenever their lemma in the CSL ended
in a consonant, and feminine when it ended in vowel `a'. This is the most basic rule to
attribute gender to Serbian nouns but many Serbian nouns deviate from that rule (e.g.,
gazda { \boss" { is a neuter despite ending in `a')`. However, using this simple rule enables
us to ensure that most of the selected examples were of the targeted gender (this is reinforced
by the constraint of selecting at most a single instance of any noun so that any exceptions
would be selected at most once), while at the same time ensuring that the properties of
the nouns would be detectable with a minimum requirement of linguistic annotation { i.e.,
just the lemmatization. In fact, these properties are shared with the nouns used in Kosti�c
et al.'s experiments, and thus they provide a good re
ection of the conditioning that the
experimental situation induced on the participants. By the above method, we obtained a
sample of 6,500 contexts, 500 for each of the possible in
ectional variants in each gender (7
masculine and 6 feminine).

We constructed �rst-order co-occurrence vectors for all words that occurred in the CSL
with a frequency equal or higher than one per two millions. We selected the 1,000 most fre-
quent word types in the corpus as context words, without removing function words or very
high frequency words. This was done for two reasons: First, Lowe and McDonald (2001)
showed that function and high-frequency words tend to be most informative when construct-
ing semantic co-occurrence vectors. Second, in this study we are especially interested in the
variation in morpho-syntactic properties of in
ectional a�xes, and this information is most
clearly re
ected in the function words around them. The vectors we constructed were `un-
transformed' in the sense that they plainly consisted of the raw counts of the number of
times that a word would co-occur with each of the 1,000 context words within the seven
word window. Although normalizing the vectors for di�erent frequency counts or applying
transformations such as the log-odds ratio appears to improve the quality of the semantic
representations, keeping these transformations to a minimum enhances the biological plau-
sibility of the model: Whichever transformations are adequate, should be detectable in an
un-supervised manner from the distributional properties of the data.

We used these �rst order vectors to compute second-order co-occurrence vectors for each
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of the 6,500 contexts. The second-order vectors for the contexts were computed as the av-
erage of the �rst-order vectors of the words in the window (excluding the word itself). The
resulting second-order context vectors were subjected to a principal components analysis
(PCA) (after centreing to zero, and scaling their components to unit variance). The �rst six
principal components accounted for 92% of the variance. We selected the �rst six principal
components of each of the vectors. This dimensionality reduction simpli�es the estimation
of the underlying distribution without a�ecting the underlying PDF or uncertainty of data
points except for a factor of scale in the EGE measure. At the same time the neurophys-
iological plausibility of this transformation in a Hebbian system is ensured. Indeed, it is
long known that neurons do perform operations which are equivalent to PCA (Oja, 1982).
Finally, to ensure that the similarity space between the resulting vectors is de�ned by the
Euclidean distance (in the untransformed vectors the distance would be de�ned by the angle
formed between the vectors.), we normalized the vectors to having unit length. By this
procedure we obtained a six-dimensional vector describing each of the 6,500 contexts.

For each su�x, using the software for 
exible Bayesian modeling (FBM; Neal, 2004) we
�tted an in�nite mixture of Gaussians to the set of 500 six-dimensional vectors obtained
above.2 After estimating the most probable mixture of Gaussians for the distribution of
context vectors, we used the samples of 500 points on which the density estimation was
performed as a suitable sample of the distribution. Using the FBM tools we computed
the probability p(xi) of each of the points in our sample, according to the corresponding
mixture, and then estimated the di�erential entropy h(p) to be the negated average of the
log probabilities using (3). We used these same samples to estimate the covariance matrix
K for each su�x, and calculate the entropy h(pN ) of the corresponding normal distribution
(EGE) according to (2). Once both these entropies had been estimated, the value of the
negentropy was computed using the de�nition in (1).

2The parameters used for the estimation of the Gaussian mixture were identical to those provided in
Example 2 of the FBM documentation on mixture models (`A bivariate density estimation problem'), the
only changes being that we set the number of dimensions to six, and 9 for the Dirichlet prior concentration
parameter to account for the possibly large number of meanings that an a�x might have.
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Results and discussion
Figure 5 illustrates the correlation between Kosti�c's number of syntactic functions and mean-
ings (vertical axis) and the negentropy of the contexts in which each Serbian su�x is used
(horizontal axis). The correlation seems to be high (r = :92; p < :0001) but note that most
of this correlation could be driven by the two points at bottom left of the �gure. A non-
parametric Spearman rank correlation con�rmed that the correlation is not fully driven by
those two outliers (rs = :64; p < :0215).

[INSERT FIGURE 5 AROUND HERE]
The correlation between the number of syntactic functions and meanings of a Serbian

su�x and the estimated negentropy of its distribution of usages (having assumed a Gaussian
mixture) provides support for our hypothesis that the e�ect of number of meanings reported
by Kosti�c is a consequence of the competition between neural assemblies, especially so if we
consider that it becomes apparent on such a small set of points, and that our negentropy
measure was derived using several levels of approximation (i.e., of the representation of the
contexts, of the distribution, and of the actual measure). However, the crucial point is to
ensure that negentropy has an e�ect on lexical decision RTs similar to that of number of
functions and meanings.

As mentioned above, the RTs in Kosti�c et al. (2003) are explained by the logarithmic
ratio between the frequency of the su�xes to their number of function and meanings. In
order to directly compare the contribution to RTs of negentropy with that of number of
functions and meanings, we need to consider separately their contributions to the RTs.
For this purpose, we �tted a multilevel regression model with log average RT to a su�x
as dependent variable, log su�x frequency and log number of meanings as �xed e�ects and
experiment (masculine vs. feminine) as a random e�ect (to account for the fact that the RTs
to both genders were collected in di�erent experiments, each including nouns from a single
gender). The analysis revealed signi�cant e�ects of frequency (F (1; 9) = 23:46; p = :0009)
and number of functions and meanings (F (1; 9) = 16:15; p = :0030; after partialing out the
contribution of frequency). A similar analysis including negentropy instead of number of
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functions and meanings revealed signi�cant e�ects of frequency (F (1; 9) = 15:76; p = :0033)
and negentropy (F (1; 9) = 7:84; p = :0188; after partialing out the contribution of su�x
frequency). These analyses indicate that both number of functions and meanings have
similar e�ects on the reaction times. Unfortunately, given the high correlation between
both counts it is not advisable to include both of them as predictors in a single regression,
as doing so would introduce a strong collinearity that would make it impossible to assess
the independent contribution of the e�ects (Belsley, 1991). Instead, we considered their
contributions to explaining the variance on the RTs.

[INSERT FIGURE 6 AROUND HERE]
Figure 6 shows how well the reaction times are predicted only on the basis of su�x

frequency (and gender included as a random e�ect). As it can be observed, most of the
variance (76%, uncorrected) in the data is already accounted for by frequency alone. Figure 7
illustrates the relationship between the residuals of the regression using only frequency as a
�xed e�ect, and the number of syntactic functions and meanings (right panel) or negentropy
(left panel).

[INSERT FIGURE 7 AROUND HERE]
Both of the panels in Figure 7 show very similar patterns of predictivity. Both counts are

directly related to the residuals, and even the pattern of outliers is similar across both plots.
The improvement of adding the number of syntactic functions and meanings into the model
is shown by Figure 8. Note that, although the margin for improvement over the 76% of
variance that is accounted for just by frequency is rather small, there is still a clear increase
in the predictivity of the model (approximately 15% additional explained variance).

[INSERT FIGURE 8 AROUND HERE]
Figure 9 shows the e�ect of substituting the number of functions and meanings with the

negentropy as a predictor in the model. The additional explained variance (approximately
10%) is less than in the regression using functions and meanings, but it is still a signi�cant
improvement over frequency, accounting for a large part of the improvement that the original
count gives.
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[INSERT FIGURE 9 AROUND HERE]
In the previous section, we had also predicted that the di�erential entropy of an equivalent

Gaussian distribution (EGE) should have an e�ect on response latencies, of opposite direction
to the e�ect of the negentropy of the distribution. However, including EGE as an additional
predictor in the previous regressions did not show any additional signi�cant e�ect, either in
the regression including number of syntactic function and meanings (F < 1), or in the one
using negentropy (F < 1).

In sum, we have seen that in this dataset, our negentropy measure shows similar e�ects
to those of number of functions and meanings. Some of the explanatory power of the original
count is lost when we use the negentropy instead of Kosti�c's original count. However, we
consider that this is not a reason for concern, since the negentropy was calculated over a
series of approximations using a small sample (500 occurrences) with little linguistic labeling.
In contrast, the counts of number of functions and meaning were calculated by an exhaustive
linguistic analysis across the whole CSL (Kosti�c, 1965). This predictivity is important in
two directions: On the one hand, it provides a validation of the count provided by Kosti�c
through un-supervised means. On the other hand, it provides an anchor at the neurophys-
iological level for the e�ects of counts calculated through linguistic analysis, and it veri�es
the predictions of the underlying neurophysiological level on the behavioral measures.

The lack of predictivity in these experiments of the overall width of of the receptive �elds
of the assemblies, measured through the EGE, could question our underlying neural model.
A possible reason for this lack of predictivity could lie on the nature of the data: After all,
the width of the assemblies for particular in
ectional su�xes should not show a great degree
of variation, since all of them can attach to exactly the same nouns. The e�ect of EGE
should become more evident when looking at the variation present for morphemes that vary
also in terms of their semantic content. The following section investigates this issue further,
by analyzing the responses to a larger set of English stems, for which e�ects that we assumed
are related to the width of the assemblies are present.
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Analysis 2: Equivalent normal entropy and assembly width
In the previous section we have shown that the amount of competition between di�erent
assemblies that are candidates for activation given a particular form, measured as the the
negentropy of the PDF of second order vectors, correlates negatively with average lexical
decision latencies to Serbian in
ectional a�xes. Based on our neurophysiological model, we
also predicted that time it takes one of the neural assemblies corresponding to a word to
�re should also be related to their combined likelihood of receiving activation. Following our
prediction, this should be related to the area of the representational space that is covered
by the components of the Gaussian mixture, measured by the di�erential entropy of the
equivalent normal distribution. If our assumptions are correct, this measure should relate to
measures of the support of a word's morphological paradigm, such as the in
ectional entropy
measure (Baayen, in press; Baayen & Moscoso del Prado Mart��n, 2005; Moscoso del Prado
Mart��n et al., 2004), and should correlate negatively with both lexical decision latencies and
errors.

Method
We constructed a experimental list of 85 monomorphemic words that appeared, across all
in
ectional variants, at least 500 times (approximately 5 per million) in the British National
Corpus (BNC3). For each word we extracted its surface frequency from the CELEX database
(Baayen, Piepenbrock, & Gulikers, 1995), and we computed in
ectional entropy using the
CELEX frequencies, following the method described by Moscoso del Prado Mart��n et al.
(2004). We extracted from the English Lexicon Project's database (Balota et al., 2002)
visual lexical decision error scores and (average and by-participant) reaction times for each
of the words.

From the BNC, we selected a sample of 500 random occurrences of each word (in any
in
ectional variant). Each occurrence included the words located within a centered context
window of seven words from the target (three words to each side). Using the same technique
that we employed for Serbian, we constructed untransformed �rst-order co-occurrence vectors

3http://www.natcorp.ox.ac.uk
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for all words that occurred in the corpus with a frequency equal or higher than one per two
millions, using the 1000 most frequent type as context words. We used these �rst order
vectors to compute second-order co-occurrence vectors for each of the 42,500 occurrences (85
items � 500 occurrences/item). The second-order vectors for the contexts were computed as
the average of the �rst-order vectors of the words in the window (excluding the word itself).

The context vectors were subjected to a PCA (after centreing to zero, and scaling their
components to unit variance). In order to speed the calculation the PCA rotation matrix, we
randomly selected a subset of 30 occurrences for each of the target words, and the rotation
matrix was computed on this smaller sample of 2,550 vectors. In this reduced set, the �rst
six principal components accounted for 92% of the variance. The resulting rotation matrix
was applied to the full set of 42,500 context vectors, and for each vector, the �rst six principal
components were selected. Finally, to ensure that the similarity space between the resulting
vectors is de�ned by the Euclidean distance, we normalized the vectors to having unit length.
By this process we obtained a six-dimensional vector describing each of the 42,500 contexts.

We estimated the covariance matrix of the 500 contexts for each of the words. With the
estimated covariance matrix, we calculated the di�erential entropy of the equivalent normal
distribution for each of the words using (2). In addition, for comparison purposes, we �tted
a mixture of Gaussians to each of the sets of 500 contexts using the methods described in
the previous section, and we estimated its di�erential entropy and negentropy using (3) and
(1).

Results and Discussion
Figure 10 illustrates the relationship between the in
ectional entropy measure and the dif-
ferential entropy of the Gaussian of equivalent covariance to its distribution of context vec-
tors. Note that, although there is a signi�cant positive correlation, both by parametric
(r = :34; p = :0014) and non-parametric methods (�s = :28; p = :0085), this accounts for at
most 11% of the variance, which does not appear to support our hypothesis that both are
measuring the same thing. However, the crucial question concerns not so much the direct
relationship between both counts, but their relation with the lexical decision responses.
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[INSERT FIGURE 10 AROUND HERE]
A multilevel regression �tted to the log reaction times, with participant as a random e�ect

and log frequency and in
ectional entropy as �xed e�ects, revealed signi�cant main e�ects
for both frequency (F (1; 1304) = 14:1; p = :0002) and in
ectional entropy (F (1; 1304) =
5:2; p = :0230, after partialing out the e�ect of frequency). This regression did not provide
any evidence for mixed-e�ects of participant by frequency or participant by in
ectional
entropy. A by-item regression on the log reaction times with log frequency and in
ectional
entropy independent variables con�rmed the main e�ect of frequency (F (1; 82) = 16:66; p =
:0001) and that of in
ectional entropy (F (1; 82) = 6:73; p = :0112). A logistic regression
to the number of correct and incorrect responses also revealed the same main e�ects of
log frequency (�21 = 8:19; p = :0042) and in
ectional entropy (�21 = 5:40; p = :0202). Both
e�ects { frequency and in
ectional entropy { had negative coe�cients in the three regressions.
According to parallel regressions using additional non-linear restricted cubic spline terms for
the independent variables, no signi�cant non-linear components were detected for any of the
e�ects in any of the three regressions. These analysis ensure that, as reported by Moscoso
del Prado Mart��n et al. (2004), the in
ectional entropy measure has a facilitatory e�ect both
on the response latencies and on the error scores.

In order to assess whether the EGE measure has a similar e�ect on the response latencies
and errors, we added negentropy to the above regressions, after having partialed out the
e�ect of in
ectional entropy (given the weak correlation between both counts, we found it
safe to include them simulateneously in the same regression).

In the multilevel by-participant regression, EGE did not have any signi�cant e�ect
(F (1; 1303) = 2:0; p = :1559) on the RTs on top of those of frequency and in
ectional
entropy. However, when the e�ect of EGE is considered before that of in
ectional entropy,
it is EGE that showed a signi�cant e�ect (F (1; 1303) = 4:4; p = :0352) while that of in
ec-
tional entropy disappeared (F (1; 1303) = 2:8; p = :0969), indicating that both variables are
capturing roughly the same part of the variance.

Adding EGE as an independent variable to the by-item regression on the RTs, after
considering the contributions of frequency and in
ectional entropy, revealed that while EGE
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still had a signi�cant e�ect (F (1; 81) = 4:18; p = :0442), the e�ect of in
ectional entropy
became only marginally signi�cant (F (1; 81) = 2:98; p = :0882). Indeed, a fast backwards
elimination of factors using Akaike's information criterion (Lawless & Singhal, 1978) on this
regression recommended keeping EGE as an independent variable, and removing in
ectional
entropy as a predictor from the regression. After excluding in
ectional entropy from the
regression, the e�ect of EGE became even more clear (F (1; 82) = 6:73; p = :0112). We
observed a similar pattern when we added EGE to the logistic regression on the error counts.
After adding EGE into the model, the e�ect of in
ectional entropy became un-signi�cant
(�21 = 1:82; p = :1769) while that of EGE approached signi�cance (�21 = 3:79; p = :0515).
Once again, the fast backward elimination of factors suggested deleting in
ectional entropy
from the model. After doing this, the e�ect of EGE reached full signi�cance (�21 = 7:65; p =
:0057). As it was the case with the e�ects frequency and in
ectional entropy, no additional
non-linear component was present in the e�ects of EGE on response latencies and errors.

Finally, we assessed the contribution of negentropy by adding the term in the regressions
after partialing out the e�ects of frequency and EGE. Negentropy did not add any signi�cant
contribution to the analyses on the RTs (F (1; 1303) = 2:1; p = :1492 by-participant, and
F < 1 by-item), or error counts (�21 = :11; p = :7432).

[INSERT FIGURE 11 AROUND HERE]
The conclusion of these analyses is that, although the correlation between in
ectional

entropy and EGE is relatively weak, they both appear to be capturing the same part of
the variance of RTs and errors. The explanatory power of EGE seems to be, if anything,
superior to that of in
ectional entropy. Figure 11 summarizes the e�ects (as estimated in
the regressions) of frequency (left column), EGE (middle column), and in
ectional entropy
(right column), on the RTs (top row) and error scores (bottom row). Note that while the
magnitude of the e�ect of EGE on the RTs is only slightly larger than that of in
ectional
entropy, this di�erence becomes more marked in the error analyses, where the e�ect of EGE
is clearly more pronounced.4

4The non-linearities in the graphs are due to the back transformation from the logarithm in the case of
the reaction times, and the logit function in the case of the error scores. If those transformations are applied,
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These results show that, as we predicted, the e�ect of in
ectional entropy can be seen
as a higher level parallel of the e�ect of the overall spread the distribution of meanings that
would be predicted by a model based on neural assemblies. In contrast to the RTs to Serbian
in
ectional a�xes, we did not observe any e�ects of negentropy on this dataset. This is due
to the words in this experiment not o�ering any particular contrast in number of functions
and meanings. They were all selected to be monomorphemic nouns, some of which could
also have verbal conversions but, in general, there was no particularly great variation in the
number of meanings. In principle, we would expect the e�ect of negentropy to show an
additional contribution to the responses to sets of words that have been designed to contrast
levels of ambiguity. For this purposes, we now turn to investigate the e�ects of homonymy
and polysemy reported by Rodd et al. (2002).

Analysis 3: Polysemy and homonymy
Rodd et al. (2002) showed that a distinction should be made between polysemous words,
having more than one related senses, and homonymic words, having more than one unre-
lated meanings. They found that in both visual and auditory lexical decision tasks, words
that have many senses are recognized faster than words than have few senses and, at the
same time, words that have many meanings are recognized slower than words that have few
meanings. Beretta et al. (2005) and Pylkk�anen et al. (in press) con�rmed these results, and
showed that the di�erences are related to di�erences in the M350 component in Magneto
Encephalography. As we argued above, this distinction is analogous to the opposite e�ects of
negentropy and EGE: The inhibitory e�ect of having many unrelated meanings is equivalent
to the amount of competition between di�erent assemblies, that we measured by means of
the negentropy of its distribution of usages, while the amount of facilitation provided by
related senses is indexed by the with of the equivalent Gaussian distribution (EGE). In this
section we investigate in detail this relationship.
as was done to perform the analyses, the e�ects become linear.
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Method
We selected from the 128 words used in Rodd et al. (2002)'s visual lexical decision experiment
(Experiment 1) all 97 items for which we could �nd at least �ve hundred occurrences in the
BNC and response latencies in the Balota et al. (2002) database. As this selection decreased
the power of the original design (to the extent that both of the e�ects reported by Rodd
and colleagues disappeared) we added 93 additional homonymic words for which we could
also �nd lexical decision RTs from the Balota et al. database and 500 occurrences in the
BNC. Of these additional 93 words, 47 were classi�ed as homonyms (having more than one
entry in the Oxford English Dictionary), while the remaining 46 were left uncontrolled, but
matched for frequency with the homonymic ones. In this way, we have extended Rodd et
al.'s original dataset to have a more continuous degree of variation between homonymy and
polysemy, instead of the original purely orthogonal design. In total we have now 190 words,
92 of which are classi�ed as homonyms and 98 are mostly non-homonymic.

From the BNC, we selected a sample of 500 random occurrences of each word (in any
in
ectional variant). Each occurrence included the words located within a centered context
window of seven words from the target (three words to each side). As was done in the
previous section, we constructed untransformed �rst-order co-occurrence vectors for all words
that occurred in the corpus with a frequency equal or higher than one per two millions, using
the 1000 most frequent type as context words. We used these �rst order vectors to compute
second-order co-occurrence vectors for each of the 95,000 occurrences (190 items � 500
occurrences/item). The second-order vectors for the contexts were computed as the average
of the �rst-order vectors of the words in the window (excluding the word itself).

The context vectors were subjected to a PCA (after centreing to zero, and scaling their
components to unit variance). In order to speed the calculation the PCA rotation matrix, we
randomly selected a subset of 20 occurrences for each of the target words, and the rotation
matrix was computed on this smaller sample of 3,800 vectors. In this reduced set, the �rst
six principal components accounted for 88% of the variance (with no additional component
accounting for more than 5% of variance). The resulting rotation matrix was applied to the
full set of 95,000 context vectors, and for each vector, the �rst six principal components were
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selected. Finally, as was done in the previous analyses, we normalized the vectors to having
unit length to ensure that the similarity space between the resulting vectors is de�ned by the
Euclidean distance. By this process we obtained a six-dimensional vector describing each of
the 95,000 contexts.

We estimated the covariance matrix of the 500 contexts for each of the words. With this
covariance matrix, we calculated the di�erential entropy of the equivalent normal distribution
for each of the words using (2). Using the same methods as in the two previous sections,
we �tted a mixture of Gaussians to each of the sets of 500 contexts, and we estimated its
di�erential entropy and negentropy using (3) and (1).

Results and Discussion
A multilevel regression �tted to the log reaction times, with participant as a random e�ect
and log frequency, EGE and negentropy as �xed e�ects, revealed signi�cant linear e�ects
for frequency (F (1; 3512) = 17:0; p < :0001) and EGE (F (1; 3512) = 37:3; p < :0001, after
partialling out the e�ect of frequency), and an e�ect of negentropy (F (1; 3512) = 3:2; p <
:0001, after partialling out the contributions of frequency and EGE) that was signi�cantly
non-linear (L(6; 7) = 3:86; p = :0494). This regression did not provide any evidence for
mixed-e�ects of participant by frequency or participant by in
ectional entropy. A by-item
regression on the log reaction times with log frequency, EGE and negentropy as independent
variables con�rmed the linear e�ects of frequency (F (1; 186) = 10:22; p = :0001) and the
e�ect of EGE (F (2; 186) = 11:16; p < :0001), which had a signi�cant non-linear component
(F (1; 186) = 4:03; p = :0461). No e�ect of negentropy (F (1; 185) = 1:61; p = :2063, after
partialling out the e�ects of frequency and EGE) was detected in this regression.

A logistic regression to the number of correct and incorrect responses also revealed the a
main e�ect of log frequency (�22 = 18:56; p < :0001), with a signi�cant non-linear component
(�21 = 4:67; p = :0307) and a linear e�ect of EGE (�21 = 30:72; p < :0001), without any
signi�cant contribution of negentropy (�21 = 0:00; p = :9945).

[INSERT FIGURE 12 AROUND HERE]
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Figure 12 illustrates the non-linearities observed in the e�ects of EGE and negentropy
on the response latencies. Note that both e�ects seem to have opposite directions, and a
clear attenuation of the e�ect in the higher part of their range. In addition, the e�ect of
negentropy was much smaller and { after partialing the out contribution of EGE { only
reached signi�cance in the more sensitive multilevel regression on the RTs, but appeared to
be too weak to show up in the by-item regression or in the error analyses.

A possible reason for the non-linear attenuation of the e�ects of EGE and negentropy,
and for the relative unstability of the second one, comes from the fact that, in this dataset,
both measures are mildly correlated with each other (r = �:29; p < :0001), combined with
the smaller magnitude of the e�ect of negentropy in relation with that of EGE. The left
panel in Figure 13 shows the correlation between the negentropy and EGE measures. This
negative correlation might indeed account for the attenuation of the e�ect of negentropy on
the multilevel regression and the attenuation of EGE and disappearance of negentropy in
the by-item regression. We can test this hypothesis by decorrelating both variables. As their
inter-correlation is moderately weak, and the e�ect of EGE is relatively strong compared
to that of negentropy, we can discount from the EGE count that part of its variance that
can be predicted by the negentropy through a linear regression. In this way we obtain a
residualised count that is orthogonal to negentropy but still captures most of the variation
of EGE, as it is shown in the right panel of Figure 13. If our hypothesis is correct, using this
residualised count on the above regressions, would make both e�ects linear, and would make
the inhibitory role of negentropy more stable, even in the less sensitive by-item regression.

[INSERT FIGURE 13 AROUND HERE]
We repeated the above regressions using the EGE residual measure instead of EGE. The

multilevel regression revealed signi�cant linear e�ects for frequency (F (1; 3512) = 17:0; p <
:0001) and the residualized EGE (F (1; 3512) = 28:8; p < :0001, after partialling out the e�ect
of frequency), and an e�ect of negentropy (F (1; 3512) = 7:4; p = :0006, after partialling
out the contributions of frequency and residualized EGE). A signi�cant non-linearity was
still present in the e�ect of negentropy (L(6; 7) = 3:89; p = :0486). The by-item regresion
revealed signi�cant linear e�ects of frequency (F (1; 186) = 9:89; p = :0019), residualized EGE
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(F (1; 186) = 14:00; p = :0002) and negentropy (F (1; 186) = 5:18; p = :0240), without any
signi�cant non-linearity in the e�ects. Introducing the residualized measure in the logistic
regression on the error counts, revealed a non-linear e�ect of frequency (�22 = 18:53; p <
:0001; non-linear component �21 = 4:63; p = :0314) and a linear e�ect of residualized EGE
(�21 = 28:27; p < :0001), with no signi�cant contribution of negentropy (�21 = 2:05; p =
:1524). However, fast backwards elimination of factors using Akaike's information criterion
recommended that, although not signi�cant according to the �2 test, keeping the negentropy
as a predictor in the regression model still produced a signi�cant improvent in the quality
of the �t.

As we had predicted, these analyses show that the unstability in the e�ect of negentropy is
indeed a by-e�ect of its relatively small magnitude and its correlation with the EGE measure.
However, although less marked, the attenuation of the e�ect of negentropy for the upper
tertile remained signi�cant in the multi-level regression (see Figure 14). This nonlinearity
may re
ect that our count is overestimated in its upper range, as a result of the multiple
approximations that were performed to estimate it. This can also be a consequence of having
used equal size samples to estimate the underlying distribution on all words, independently
of their di�erent frequencies of occurrence. This might have led to an overestimation of the
negentropy for low frequency as compared to high frequency ones. However had we used
unequally sized samples, it would have become very di�cult to disentangle the e�ect of
frequency from that of negentropy.

[INSERT FIGURE 14 AROUND HERE]
Finally, in order to compare the inhibitory e�ect of word homonymy described by Rodd

et al. (2002) and Beretta et al. (2005), we added the factor homonymy (homonymic vs.
non-homonymic) to the above regressions, after partialing out the contribution of the other
e�ects.

In the multilevel regression, homonymy still had a signi�cant e�ect (F (1; 3511) = 4:9; p =
:0269) on the RTs after partialing out the e�ects of frequency, EGE and negentropy.5 In

5Both the e�ect of negentropy and that of homonymy remain signi�cant independently of the order in
which they are entered in the regression.
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the by-item regression the e�ect of homonymy was marginally signi�cant when included
in a regression that also includes negentropy (F (1; 185) = 2:96; p = :0872), while negen-
tropy retained its full signi�cance. The backwards elimination of factors recommended that
both negentropy and homonymy should be kept in the regression model. Finally, including
homonymy as a factor in the logistic regression on the error counts did not show any addi-
tional e�ect (�21 = :59; p = :4433), and fast backwards elimination of factors also suggested
to remove it from the regression. Figure 15 compares the contributions of EGE, negentropy,
and homonymy on the RTs. For simplicity, we have estimated the three e�ects using the
by-item regression (thus the linearity of the e�ect of negentropy). It can be observed that
the contribution of the homonymy factor is smaller than that of negentropy (approximately
15 vs. 25 ms.). This re
ects the advantage of having a continuous (although innaccurate)
estimate. Both e�ects are small compared to the e�ect of EGE (approximately 45 ms.).

[INSERT FIGURE 15 AROUND HERE]
These analyses show that the e�ects of negentropy and homonymy are indeed related

and negentropy seems to be a more solid predictor (i.e., the inclusion of negentropy into
the model substantially weakens the contribution of the homonymy factor). However there
is still some additional variance explained by homonymy on the RTs. Again, this possibly
re
ects the limitations of our estimation process.

General Discussion
This study addressed the link between neurophysiological theories of language processing,
and the e�ects that have been observed in behavioral experiments. We have shown that
information-theoretical measures in combination with Bayesian distribution �tting provide
us with a powerful tool to investigate this link. We have used multidimensional probability
distributions to characterize four basic properties of Pulverm�uller (1999)'s neurophysiological
theory of lexical/morphemic processing:

i Words and morphemes are processed by neural assemblies.
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ii The assemblies are formed by Hebbian association.
iii A discrete number of assemblies develops as a result of linguistic experience.
iv Di�erent candidate assemblies will compete.

We have demonstrated the power of this technique by predicting the e�ects of the morpholog-
ical and semantic negihborhoods of words on the response latencies and error scores of three
visual lexical decision datasets. This is a promising method that enables us to achieve the
integration between the di�erent levels of explanation that were anticipated by Marr (1982).

Information theory and lexical neighborhoods
Information theory has a long tradition of use in psychological research. As early as 1949,
Miller and Frick showed that response sequences in behavioral experiments could be mea-
sured in information-theoretical terms (Miller & Frick, 1949). In the �eld of motor behavior,
the classical Fitts' Law (Fitts, 1954; Fitts & Peterson, 1965) constitutes a prime example of
the application of information-theory to psychological theories.6 Information measures have
been shown to correlate with accuracy in discrimination tasks in auditory, gustatory, and
visual modalities (see Attneave, 1959 and Miller, 1956 for reviews on early applications of
information theory to psychology, and Baddeley, Hancock, and F�oldi�ak, 2000, for a more
recent survey). More recently, entropy has been found to correlate with response latencies
in cognitive control tasks (Koechlin, Orly, & Kouneiher, 2003). Koechlin et al. found that
the amount of information (i.e., entropy) conveyed by the instruction cues, context, and
stimuli of several functional magnetic resonance imaging experiments, predicts the amount
of activation observed in several areas of the lateral pre-frontal cortex. Most interestingly
this includes Broca's area (Brodman's areas 44 and 45), which is long assumed to be also
involved in language processing.

Coming to the domain of language, the model that we have presented is related to
previous information-theoretical models. Most evidently, our de�nition of negentropy builds

6In fact, in MacKenzie's reformulation (MacKenzie, 1992), Fitts' Law actually corresponds to the
Shannon-Hartley theorem (Shannon, 1949) stating the limit of the capacity of a continuous-time analog
communication channel.
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on Kosti�c's �nding of the inhibitory e�ect on response latencies of the count of syntactic
functions and meanings of a Serbian in
ectional a�x (Kosti�c, 1991; 1995; 2005; Kosti�c et
al., 2003). Our study extends this approach in several aspects: On the theoretical side, the
BIT model provides a anchor for the models developed by Kosti�c and his colleagues, by
showing how these e�ects might arise from the properties of the neurophysiological system.
Furthermore, in the behavioural level, our model integrates the e�ects reported by Kosti�c et
al. for Serbian in
ectional morphology, with those reported by Moscoso del Prado Mart��n
et al. (2004) for Dutch in
ectional and derivational morphology, and the e�ects reported
by Rodd et al. (2002) on the semantic level. Finally, more on the technical side, the
techniques that we have developed here also provide a method for automatically estimating
Kosti�c (1965)'s counts in languages where resources as detailed as the Corpus of Serbian
Language are not available.

Of particular similarity to ours, is the approach presented by McDonald and Shill-
cock (2001): They developed an information-theoretical measure of the predictability of
the contexts in which a word appears: the Contextual Distinctiveness (CD) of a word. Their
experiments showed that this magnitude is positively correlated with visual lexical decision
RTs. Notice the similarity between CD and the EGE measure that we have developed here.
Indeed, we believe that both of them consitute di�erent approximations of the same mea-
sure. However, there are issues that di�erentiate our approach from that of McDonald and
Shillcock. First, the CD measure does not take into consideration the presence of discrete
assemblies that might compete with each other, as measured by the negentropy of the dis-
tribution. As a consequence, CD alone would not be capable of predicting the inhibitory
e�ects of multiple unrelated meanings or morpho-syntactic functions. Second, CD is cal-
culated on the basis of �rst order co-occurrence vectors, which are representations of the
`average' meaning of a word, instead of our explicit consideration of each particular occur-
rence of a word (using the second order vectors). In addition, McDonald and Shillcock's
approach is not concerned with the explicit neurobiological properties of the underlying sys-
tem, which constitute the major motivation for our measures. As in the case above, our
model can be considered as a way of grounding the results of McDonald and Shillcock on
the properties of neural assemblies. There is however, one point of disagreement between
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the results presented here and those of McDonald and Shillcock. They observe that word
frequency and CD are interchangeable as predictors of the lexical decision RTs, and they
conclude that both magnitudes are re
ecting the same e�ect (i.e., frequent words are recog-
nised faster than infrequent ones because the former tend to appear in a wider variety of
contexts then the later). However, as shown by Analyses 2 and 3, both the variability of the
contexts in which a word occurs (measured by the EGE) and its frequency, have independent
contributions to explaining the RTs and error scores. Our results are consistent with the
independent e�ects that of word frequency and semantic variability (Jastrzembski, 1981).
Therefore, our analyses support the separate consideration of the e�ects the word frequency
e�ect and variability in usage of words.

We have addressed the questions of the origin of these neighborhood e�ects, and of the
reasons why information-theoretical measures appear to be most succesful in characterizing
them. We have seen how the processes of inter-assembly competition can be characterized
by the negentropy of a probability distribution, that follows directly from the assumption
of competition between assemblies. This is directly linked with the inhibitory e�ects of the
number of syntactic functions and meanings of a Serbian in
ectional morpheme (Kosti�c et
al., 2003), and with the inhibitory e�ect of the degree of homonymy of an English word
(Rodd et al., 2002). Simultaneusly, we have described the how the general width of the
probability distribution { measured by the EGE { is related to the ease of activation of a
particular set of assemblies. This measure is negatively correlated with response latencies
and error scores, thus predicting the e�ects of semantically related morphological relatives
described by Moscoso del Prado Mart��n et al. (2004), and of the number of related meanings
(Jastrzembski, 1981; Rodd et al., 2002). It remains to be seen whether the e�ects of phono-
logical and orthographic neighborhoods can also be replicated using this techniques, but
the large amount of parallelism to morphological and semantic neighborhoods suggest that
this might also be the case. In this respect, Luce and Large (2001) described the e�ects of
phonological neighborhoods using a measure which is very related to the in
ectional entropy
measure reported in morphology.

Interestingly, in the relatively distant domain of spoken speech processing, Aylett (2000)
presents a model that bears a surprising degree of similarity to ours. He developed a measure
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of the Clarity of a particular speaker calculated on the probability distribution of the fre-
quency formants F1 and F2 of a sample of vowels produced by that speaker. He showed that
a speaker's Clarity correlates with the error scores produced by participants whose task was
to auditorily recognize utterances by the same speaker. Aylett used the EM algorithm to �t
the probability distribution as a �nite mixture of Gaussians (with the number of components
�xed to the number of English vowels). Although Aylett explicitly denies any relationship
between his Clarity measure and entropy (p. 218), his measure is in fact identical (save for
a change in sign) to the MonteCarlo estimator that we used for estimating the entropy the
multidimensional distributions. He reports that the Clarity measure correlates positively
with the ability of subjects to recognize words, however, this e�ect seems to be weak. Note
that the Clarity measure is equivalent to a negentropy measure without normalizing for the
EGE. Another iterpretation of the results would thus be that subjects are better at recogniz-
ing vowels whenever there is more information about them present in the signal. Of course,
to measure this information (as the degree of clustering in the vowel space) one would also
need to normalize for the general width of the distributions (through EGE). We believe that
this parallelism is not merely coincidental: The mixture of Gaussians employed to model
the probability distribution of the formants could well correspond to the underlying neural
structures representing the phonemes.

But, is the BIT model Bayesian?
Bayesian inference techniques are currently gaining a prominent position in many sciences.
These techniques formalize of the inferences that can be drawn from a given set of data,
making explicit the set of assumptions that are made in the inference process. The general
principle is to use Bayes' theorem to estimate the probabilities (\posterior probabilities" in
Bayesian jargon) of each possible conclussion given a set of assumptions (\priors"), observed
data (\evidence" or \likelihood"). Detailed introductions to the techniques of Bayesian
statistics can be found in MacKay (2003) and Sivia (1996). In psychology, Bayesian statistics
have been employed to describe a large amount of phenomena (cf., Oaksford & Chater, 1998).
In addition, K�ording andWolpert (2004) have shown that Bayesian inference is also employed
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by the human central nervous system in tasks involving sensory-motor integration, with
evidence for explicit representation of prior and likelihood probability distributions.

In our approach we have used Bayesian inference tools to estimate the probability den-
sity functions of the distribution of usages or meanings of a word or in
ectional a�x. If
we ignore the hyper-parameters of the inference model (i.e., the parameters that govern the
prior assumptions on the distributions of the actual parameters of the model), our main
prior assumption in estimating the distributions is that they will be mixtures of multidimen-
sional Gaussians with a �nite { but a-priori unknown { number of components with di�erent
amplitudes, centroids, and covariances. As we explained above, this assumption comes as a
consequence of Pulverm�uller's neurophysiological model: If the di�erent meanings of words
and morphemes are represented by partially-overlapping neural assemblies developed by
Hebbian association, these should develop from the di�erent `bumps' of a multi-modal dis-
tribution in a multi-dimensional representation of the meanings encountered by experience.
Once we have assumed that the underlying distribution is multi-modal, the assumption that
each of the components will correspond to a Gaussian distribution follows from the Gaussian
shapes of the receptive �elds of the neurons that make up an assembly. Note however, that
this last point is not crucial for justifying the normality of the components. One of the
fundamental principles of Bayesian theory, the Maximum Entropy Principle (MaxEnt; cf.,
Sivia, 1996), estates that on the lack of any a-priory information on the shape of a probability
distribution, one should assume the least informative probability distribution, which will be
the one with the largest possible entropy. In this respect, the MaxEnt principle can be seen
as an operationalization of the traditional Occam's razor. As it happens, the continuous
probability distribution with the largest possible entropy is the Gaussian distribution (cf.,
Cover & Thomas, 1991), thus assuming that each component is a Gaussian constitutes the
minimum assumption on the lack of additional knowledge.

Although we have used Bayesian inference for estimating the distributions, it could be
argued that the BIT model is not in itself Bayesian. The model would then be seen as
independent of the method of inference that is employed. However, as we have argued
above, the assumption of an in�nite mixture of Gaussians as a prior is itself a consequence
of the underlying theory. The model is therefore Bayesian not only in the techniques used
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for �tting the distributions but also in the more fundamental sense that it depends on the
representation of an explicit prior distribution (the mixture of Gaussians) and the use of a
likelihood function of the observations given that prior. It is important to highlight here
that it is the actual neurophysiological properties of the system that consititute the initial
prior. Although in our approach we have included all observations at the same time, in
principle this process would be a gradual one by which the prior distribution would be
updated with each new observation (which would be achieved by the Hebbian Long Term
Potentiation and Long Term Depression processes acting on the neural synapses). Note here
that this mechanism o�ers a natural way to study the evolution of the distribution during
the development of the language abilities: in principle one could �t models with di�erent
degrees of language experience and make predictions on the conditions this should impose
on behaviour. This is left for further research.

Relationship to distributed and localistic models
Our model coincides in its basic properties with the assumptions of distributed connectionist
models (DCMs; Rumelhart & McClelland, 1986): It is based on the usage of distributed rep-
resentations fully acquired through experience, and it relies on `domain-general' properties of
the cognitive system rather than on language-speci�c mechanisms. However, the di�erences
between our approach and distributed connectionist models should not be overlooked.

The �rst di�erence is a question of scope and goals. On the one hand, DCMs investigate
the types of information and forms of representation that are necesary for language process-
ing. The use of these models has made { and still does { important contributions to our
understanding of the lexical processing system at Marr's computational level of explanation.
Indeed, our model is heavily indebted to DCM research on the assumptions it makes. On
the other hand, our approach investigates the link between the cognitive processes that are
targeted by DCMs, and an underlying neurophysiological theory. Consequently, the BIT
approach is subject to a more stringent constraint on biological plausibility than DCMs are.
For instance, issues like the biological plausibility of the learning algorithm are irrelevant
when one's goal is to demonstrate the in
uence of statistical factors in language processing
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or the importance of the similarity structure in the data. However, for the purposes of the
BIT model, this is an issue of central importance since the goal is precisely to specify how
do the underlying neural mechanisms account for the observed e�ects. The BIT approach
should therefore be viewed as complementary to DCMs, rather than as an alternative.

Second, the BIT model does not attempt to simulate the processing of words or mor-
phemes. Instead, in our approach we make predictions on the behavioural results following
directly from the mathematical formalization of the underlying neurophysiological theory.
As a result, in the BIT model there is no analog of measurements such as RTs. Instead we
explicitly quantify the variables that should in
uence the RTs, which in the examples that
we have presented are the negentropy and EGE of the distribution of meanings (or usages)
of a morpheme. On the one hand, connectionist models can be described as high-level sim-
ulations of the psychological processes in question. The BIT model is, on the other hand, a
direct mathematical model of an underlying neurophysiological theory. This might seem a
minor terminological issue, however it is of signi�cance when it comes to the interpretation
of the sources of the underlying e�ects: the BIT model provides a direct rationale for the
observed e�ects in terms of neural structures.

A third, and may be most salient aspect that distinguishes the BIT approach from DCMs
is the usage of explicit and discrete symbolic structures { the neural assemblies represented
as the components of the Gaussian mixture { in combination with the distributed represen-
tations that de�ne the receptive �elds for each assembly. This contrasts with the traditional
view held by supporters of DCMs, where each unit participates in the representation of all
entitites present in the system. DCMs have been criticized for the problems entailed by this
committment to fully distributed representation: di�culty for interpreting the behavior of
the system, and lack of ability to represent discrete complex structures (Fodor & Pylyshyn,
1988). However, proposers of the DCM framework have long been aware of these problems.
As stated by Hinton (1991):

\Most connectionist researchers are aware of the gulf in representational power
between a typical connectionist network and a set of statements in a language
such as predicate calculus. They continue to develop the connectionist framework
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not because they are blind to its current limitations, but because they aim to
eventually bridge the gulf by building outwards from a foundation that includes
automatic learning procedures and/or massively parallel computation as essential
ingredients." (p. 2)

Indeed, some recent connectionist models have made use of `locally-tuned' processing units
with Gaussian receptive �elds that are trained by Hebbian association (e.g., Moody &
Darken, 1989; Westermann & Mareschal, 2004). This family of models is in fact very related
to the statistical model that we have proposed here, with the exception that the number of
Gaussians that are used to model the distribution is set a priory in the number of units in
the `hidden' layer.

Note here that, although the representational scheme is localistic in the sense that there
is a discrete number of `symbols' which correspond to directly interpretable entities (e.g.,
morphemes, word senses, etc.), di�erent symbols can share many of the neurons of which
they are made. This is in contrast with the classical notion of purely localist models, since in
these models each symbol would univocally correspond to one entity, without the possibility
of overlap among symbols. However, current research in localist connectionism suggests the
possibility of two levels of representation. For instance, Page (2000) proposes two layers of
representation, in which one represents the stimuli in a completely distributed manner (L1 in
Page's notation), and the other is fully localistic in the traditional sense (L2). The localistic
(L2) units would correspond to the Gaussian components in our model, while the distributed
representations in the L1 layer would directly correspond to the underlying multidimensional
patterns of activation in our model. A recent example of such type of models is the Bayesian
Reader (Norris, in press). In this model, distributed representations of a word's orthography,
are used as inputs to an additional localistic layer of units, each of which corresponds to a
word. This type of localistic model, using underlyingly distributed representations is fully
in line with the approach that we are proposing.

The BIT model introduces a physiologically motivated way of accomodating the combina-
tion of distributed and localist mechanisms that have been described in previous distributed
and localist connectionist models. It also underlines the fact that, in their more recent
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forms, localist and distributed connectionists models are becoming more and more similar in
terms of their properties. On the one hand, interpretability and need for usage of complex
structures calls for the presence of discrete localist representations. On the other hand, the
role palyed by gradient-like properties and patterns of interference suggests the need for
distributed patterns (cf., Page, 2000; Rumelhart & McClelland, 1986). In our approach, we
rely on a neurophysiological theory that implies the co-existence of both mechanisms with
one being the natural consequence from the other.

Is our approach tied to Pulverm�uller's theory?
We have followed the predictions of Pulverm�uller (1996, 1999, 2001) into behavioural mea-
sures. In this way, Pulverm�uller's theory is an intrinsic part of the model that we have
presented here. The core of our results relies on the truth of the underlying assumptions
(such as the Gaussian mixture). In this sense our model consititutes a direct implementa-
tion of the theory's prediction. However, it should also be noted that we have also presented
a methodology for predicting behavioral results from an underlying theory. Our method
could thus be applied with di�erent underlying assumptions (for instance assuming that the
shape of the distributions should be di�erent than the Gaussian mixtures employed here).
The techniques that have been demonstrated in this study could be used to compare the
posterior probabilities of di�erent candidate theories in the light of the experimental data.
For these purposes, the Bayesian framework o�ers simple and elegant ways of comparing
di�erent candidate theories.

Conclusion
In this study, we have illustrated how a combination of techniques from Bayesian Statistics
and Information Theory, can be employed to link the results obtained by behavioral and neu-
robiological research on the human language processing system. Although further research is
required to be able to explain a wider variety of psychological phenomena related to lexical
processing, the current study contributes a promising new approach for understanding how
words are represented and processed in the human brain, also providing a meeting point for
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distributed connectionist and localist theories. We have shown how the presence of neural
assemblies developed through Hebbian association, as proposed by Pulverm�uller (1999), is
su�cient to explain the e�ects of competition and facilitation between members of mor-
phological and semantic neighborhoods that have been observed in behavioral experiments.
Furthermore, our studies provide a grounding for the information-theoretical approaches to
the study of lexical processing. Information-theory provides us with a very powerful tool to
investigate language. In fact, language was one of the problems for which information-theory
was explicitly developed, as evidenced the seminal study of Shannon (1948).
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Appendix A: Entropy and Negentropy
In this Appendix we provide an overview of the concepts from Information Theory that are
used in this paper. For a detailed discussion of the concepts related to di�erential entropy
the reader should consult Chapter 9 of Cover and Thomas (1991). An in-depth discussion of
the probabilistic concept of negentropy can be found in Brillouin (1956), and a more recent
discussion of its use in ICA is provided by Hyv�arinen (1998; 1999).

Entropy
The entropy (Shannon, 1948) of a random variable X over a discrete range of possible values
fxig is de�ned as the expectation of the logarithm of its inverse probability, that is:

H(X) =Xi P (X = xi) � log2 1
P (X = xi) = �Xi P (X = xi) � log2 P (X = xi): (A-1)

This measure represents the uncertainty on the value of X contained on its probability dis-
tribution P (X). In terms of information transmission, this quantity represents the minimum
number of bits per draw that would be necessary to transmit over a binary channel a sequence
of events drawn according to P (X).

The di�erential entropy (Shannon, 1948) is an extension of the concept of entropy for
random variables de�ned over a continuous space. Given a continuous variable x de�ned
over a space S with a probability density function p(x), its di�erential entropy is de�ned
by:7

h(p) = � ZS p(x) log2 p(x)dx; (A-2)
Note here that, unlike the entropy in the discrete case, the di�erential entropy is not bound
to have positive values (since the value of the probability density function can be greater
than one, unlike the probability in the discrete case), and the magnitude is only de�ned for

7The base of the logarithm is only a factor of scale. In the domain of discrete variables binary logarithms
have traditionally been aployed, as this results in the entropy being measured in bits, which are easily
understandable units by the analogy to pulses in a digital system. However, in the continuous domain it is
more common to use the natural logarithm (base e), which results in the quantities being measured in nats.
Converting from nats to bits only involves scaling by a factor of log2(e).
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probability density functions for which the integral in (A-2) converges. As in the discrete
case, the di�erential entropy is a measure of the uncertainty in the probability distribution
p(x). High values of h(p) correspond to high uncertainty on the expected value of x. The
de�nition of di�erential entropy introduced in (A-2) is also valid on multidimensional spaces,
simply by substituting x for the corresponding vector x and integrating on a multidimensional
space.

Negentropy
Negentropy (sometimes called normalized negative entropy, or negative Shannon-Jaynes en-
tropy) is a probabilistic concept introduced by Brillouin (1956)8 to describe the amount of
organization present in a system. Note here that, while entropy is a measure of the un-
certainty or disorder present in a system, the negentropy measures the amount of order or
information in that same system. More recently, an operationalization of this probabilistic
measure has become widely used for selection of components in Independent Component
Analysis (Comon, 1994). Formally the measure provides an index of how much does a
random variable deviate from normality.

The negentropy of a continuous probability distribution p(x) is operationalized as the
di�erence between a probability distribution and a Gaussian distribution with equal mean
and covariance. In this way negentropy is measuring the amount of order that is present in
the system, in relation to a situation of maximum disorder, which would be characterized
by a Gaussian distribution (Comon, 1994). In Information-Theory, the di�erence between
probability distribution is measured by the Kullback-Leibler divergence (also known as cross-
entropy) between their probability density functions:

J(p) = KL(pjjpN ) = ZS p(x) log2 p(x)
pN (x)dx; (A-3)

which for our purposes can be reduced to:
J(p) = h(pN )� h(p) (A-4)

8Although the term was �rst coined by Brillouin, the original concept in statistical physics can be traced
back to Schr�odinger (1944).

48



where S is the space over which the distributions are de�ned, p is a PDF, h(p) is its di�erential
entropy, pN is a normal distribution with equal variance to that of p, and h(pN ) is the
di�erential entropy of that normal distribution. The de�nition of J(p) in (A-4) can be
intuitively interpreted as the reduction in disorder from pN to p .

Note that all probability distributions for which the entropy is de�ned verify h(p) �
h(pN ), since h(pN ) is the maximum possible entropy. Therefore, according to (A-4), unlike
the di�erential entropy, the negentropy of a probability distribution is always greater than
zero (being zero if and only if the original variable is itself a normal distribution).
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List of Figure Captions
Figure 1: Representation of a possible distribution of occurrences of words in a hypothetical

two-dimensional space in which word forms and word meanings could be coded each
with a single real number. Each point in the scatter correspond to the occurrence of a
particular word form with a particular meaning.

Figure 2: Probability density function corresponding to the distribution of the points in
Figure 1. Each of the `bumps' in the distribution corresponds to a Gaussian component
of the mixture model. Neural assemblies would be formed around these areas.

Figure 3: E�ect of conditioning the probability distribution from Figure 2 to a particular
word form.

Figure 4: Illustration of the distributions employed to estimate negentropy and EGE. The
black line plots the density function of a (unidimensional) Gaussian mixture with �ve
components, and the grey line corresponds to the density of a Gaussian distribution
with equal mean and variance.

Figure 5: Relationship between negentropy (horizontal axis) and number of syntactic func-
tions and meanings following Kosti�c (1965) (vertical axis) for the Serbian masculine
and feminine nominal su�xes used in Analysis 1. Note that the correlation is signi�cant
both by parametric (Pearson) and non-parametric methods (Spearman).

Figure 6: Explanatory power of the frequency of the in
ectional su�x on average lexical
decision RTs to Serbian in
ected nouns. The e�ect as been estimated by a linear model
including log frequency as a �xed e�ect and word gender (masculine vs. feminine) as
a random e�ect, to account for the fact that the RTs to nouns of di�erent genders
collected in two experiments (Kosti�c et al., 2003). Note that by themselves, gender
and frequency account for up to three quarters of the RT variance.

Figure 7: Comparison of the e�ects of the (log) number of syntactic functions and meanings
(left panel) and negentropy (right panel) on explaining the RT residuals from the
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regression (Figure 6) using (log) frequency as a �xed e�ect and gender as a random
e�ect. Notice the similar predictive power of both measures.

Figure 8: Combined explanatory power of in
ectional su�x frequency and number of syn-
tactic functions and meanings on average lexical decision RTs to Serbian in
ected
masculine and feminine nouns. The e�ect as estimated by a linear model including log
frequency and log number of syntactic functions and meanings as a �xed e�ects and
word gender (masculine vs. feminine) as a random e�ect. Note that adding number of
syntactic functions and meanigns to the regression increases its explanatory power in
up to 15% over the variance explained by frequency (see Figure 6).

Figure 9: Combined explanatory power of in
ectional su�x frequency and negentropy on
average lexical decision RTs to Serbian in
ected masculine and feminine nouns. The
e�ect as estimated by a linear model including log frequency and log number of syntac-
tic functions and meanings as a �xed e�ects and word gender (masculine vs. feminine)
as a random e�ect. Note that substituting number of syntactic functions and meanigns
by negentropy in the regression decreases its explanatory power by up to 5% (see Fig-
ure 8), but still constitutes up a 10% over frequency (see Figure 6).

Figure 10: Correlation between EGE (horizontal axix) and in
ectional entropy (vertical axis)
in the dataset of Analysis 2. The in
ectional entropy measure has been calculated using
the method described in Moscoso del Prado Mart��n et al. (2004).

Figure 11: Summary of the e�ects found in Analysis 2 on RTs (top row), and error scores
(bottom row). The left column illustrates the e�ects of word frequency, and the middle
and right columns respectively show the e�ects of EGE and in
ectional entropy after
partialling our the contribution of word frequency.

Figure 12: Summary of the non-linear e�ects found on RTs in Analysis 3. The left panel
illustrates the e�ect of EGE (after partialling out the e�ect of word frequency), and
the right panel shows the e�ects of negentropy entropy after partialling our the con-
tributions of word frequency and EGE. Notice that, in both cases, the e�ects seem to
be attenuated in the higher ranges of the counts.
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Figure 13: Illustration of the process of marginalization applied on the EGE measure on
Analysis 3. The left panel shows the weak correlation between EGE and negentropy be-
fore marginalization. The right panel shows how, once any contribution of negentropy
to the EGE count has been removed, the correlation dissappears, but the modi�cation
to the joint distribution of the variables is minimal.

Figure 14: E�ect of negentropy on the RTs of Analysis 3 after partialling out the contribu-
tions of word frequency and residualized EGE. Note that, although the atteanuation
of the e�ect in the higher range of the negentropy measure is now weaker (compare to
the right panel in Figure 12), there is still a signi�cant nonlinearity in the e�ect.

Figure 15: Summary of the e�ects found on RTs in Analysis 3. The left panel illustrates
the e�ect of EGE (after partialling out the e�ect of word frequency), the middle and
right panels show the e�ects of negentropy entropy, and homonymy (after partialling
our the contributions of word frequency and EGE).
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Figure 5:
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Figure 7:
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Figure 10:

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+
+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

++

+
+

+

+

+
+

+

+

+

+

0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

r=.34, p=0.0014; rs=.28, p=0.0085

EGE (in nats)

In
fle

ct
io

na
l e

nt
ro

py
 (

in
 b

its
)

71



Figure 11:

(log) Frequency

R
T

 (
in

 m
s.

)

4 5 6 7 8 9

54
0

58
0

62
0

EGE (in nats)

R
T

 (
in

 m
s.

)

0.6 0.8 1.0 1.2 1.4 1.6 1.8

54
0

58
0

62
0

Inflectional entropy (in bits)

R
T

 (
in

 m
s.

)

0.0 0.5 1.0 1.5 2.0

54
0

58
0

62
0

(log) Frequency

E
rr

or
 p

ro
ba

bi
lit

y

4 5 6 7 8 9 10

0.
00

0.
05

0.
10

0.
15

EGE (in nats)

E
rr

or
 p

ro
ba

bi
lit

y

0.0 0.5 1.0 1.5 2.0

0.
00

0.
05

0.
10

0.
15

Inflectional entropy (in bits)

E
rr

or
 p

ro
ba

bi
lit

y

0.0 0.5 1.0 1.5 2.0

0.
00

0.
05

0.
10

0.
15

72



Figure 12:
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Figure 13:
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Figure 14:
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Figure 15:
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