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Abstract

Purpose – To elaborate a theory for modeling concepts that enables to incorporate how a context
influences the typicality of a single exemplar and the applicability of a single property of a concept. To
investigate the structure of the sets of contexts and properties.

Design/methodology/approach – The effect of context on the typicality of an exemplar and the
applicability of a property is accounted for by introducing the notion of “state of a concept”, and
making use of the state-context-property formalism (SCOP), a generalization of the quantum
formalism, whose basic notions are states, contexts and properties.

Findings – The paper proves that the set of context and the set of properties of a concept is a
complete orthocomplemented lattice, i.e. a set with a partial order relation, such that for each subset
exists a greatest lower bound and a least upper bound, and such that for each element exists an
orthocomplement. This structure describes the “and”, “or”, and “not”, respectively for contexts and
properties. It shows that the context lattice as well as the property lattice are non-classical, i.e.
quantum-like, lattices.

Originality/value – Although the effect of context on concepts is acknowledged in many places,
formal mathematical structures of theories that incorporate this effect have not been proposed. The
study of this formal structure is a preparation for the elaboration of a theory of concepts that allows
the description of the combination of concepts.
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1. Introduction
Heinz von Foerster often spoke of how he was introduced to the scientific community
in the United States in 1949 (Franchi et al., 1999). A prominent role was played by a
book he had published in Vienna, which put forward a theory of memory that uses
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quantum mechanics as an explanatory system (von Foerster, 1950). Specifically, he
proposed that the forgetting process follows a decay which is the same as radioactive
decay, and that remembering happens when one is prompted to retrieve something
that has not yet decayed. Excitingly, his “forgetting parameter” turned out to fit
perfectly Ebbinghaus’ empirical forgetting curve (Ebbinghaus, 1885). Von Foerster
also remarked that the decay constants for typical macromolecules – biological
molecules – are exactly the same. Thus he suggested that there is a link between the
quantum mechanical interpretation of large biological molecules, and our way of
keeping things in mind or forgetting them.

When von Foerster arrived in the United States, Warren McCulloch, head of the
Department of Neuropsychiatry at the University of Illinois in Chicago, was intrigued
by his ideas about memory. In von Foerster’s own words (Franchi et al., 1999):

It turned out that about two or three months before I came there had been a large meeting of
some big scientists in America about memory. And they all had lots of data, but no theory.
The fascinating thing is that this little booklet of mine had numbers that were matching
exactly the data they had . . . I remember that Warren told me that it was too good to be true,
and asked me to give a lecture on the spot. I replied I couldn’t give a lecture because of
my linguistic inability, but there were so many immigrants – German and Austrian
immigrants – at the University of Illinois at that time, that I just had to say it more or less in
German and they translated it all very nicely. Then Warren invited me to give another talk.
He said “In two weeks we have a conference in New York; since you’re living in New York we
invite you,” and this was one of the now very famous and legendary Macy meetings.

The Macy meetings started the research field of cybernetics, and Heinz von Foerster
became one of its leading figures.

When we were invited to contribute to this special issue in honor of von Foerster, it
was natural that our contribution would elaborate on his intuition concerning quantum
mechanics and the mind. Without knowing of von Foerster’s work on it, this had
already been one of the research themes in the Center Leo Apostel (CLEA) for some
time. In Aerts and Aerts (1994) the structure of decision processes in an opinion pole
was investigated, and it is shown that the presence of contextual influence gives rise to
a nonclassical probability model, specifically one that does not satisfy Kolmogorov’s
axioms for classical probability theory. Further investigations in this direction yielded
a quantum mechanical description of the Liar Paradox. It is shown that the
contradictory sentences of a multi-sentence Liar Paradox can be represented as an
entangled state in a Hilbert space that is the tensor product of Hilbert spaces describing
the separate sentences, and the dynamics of the oscillations between truth and
falsehood is described by a Schrödinger equation (Aerts et al. 1999a b n.d.). We also
distinguished different types of contextuality, investigating the mathematical
structure they give rise to, and showed that the kind of contextual interaction that
arises in quantum mechanics, and thus the mathematical structure necessary to
describe this contextual interaction, also appears in cognition (Aerts, et al., 2002, n.d.).
This led to the development of a contextualized theory of concepts, the mental sieves
through which memories are categorized, organized, and creatively blended to make
sense of experiences (Gabora, 2001; Gabora and Aerts, 2002a, b).

Concepts are what we use to navigate through and make sense of the world around us,
enabling us to classify and interpret new situations in terms of previous similar ones.
They can be concrete, like “chair”, or abstract, like “beauty”. A concept is
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generally associated with a set of properties. For example, the concept “chair”
is associated with the property “has four legs”. Something that is a property of
a particular concept can also be a concept itself. Thus “scaly” is not just a property of
“fish”, but a concept in its own right.

According to the classical or rule-based view of concepts, which goes back to
Aristotle, all instances of a concept share a common set of necessary and sufficient
defining properties. Wittgenstein pointed out that it is not possible to give a set of
characteristics or rules that define a concept. For example, how would one define
“game” such that frisbee, baseball, and roulette are classified as games, while wars,
debates, and leisure walking are not (Wittgenstein, 1953)? Furthermore, it is often
unclear whether an object is a member of a particular category; e.g. whether a camel
can be considered as a vehicle (Goldstone and Kersten, 2003). One might hypothesize
that this ambiguity stems from individual differences in categorization rules.
But McCloskey and Glucksberg (1978) showed that subjects will categorize an object as
a member of one category at one time and a member of another category at a different
time. Other problems with the classical view of concepts are reviewed by Smith and
Medin (1981) and Komatsu (1992).

The critical blow to the classical view came from work on color; it was shown that
colors do not have any particular criterial attributes or definite boundaries, and
instances differ with respect to how typical or exemplary they are of a category (Rosch,
1973a). This led to formulation of the prototype theory (Rosch and Mervis, 1975; Rosch,
1978, 1983), according to which concepts are organized around family resemblances,
and consist of not defining, but characteristic features, which are weighted in the
definition of the prototype. Rosch showed that subjects rate concept membership as
graded, with degree of membership of an instance corresponding to conceptual
distance from the prototype. Moreover, the prototype appears to be particularly
resistant to forgetting (Homa et al., 1981). The prototype theory also has the strength
that it can be mathematically formulated and empirically tested. By calculating the
similarity between the prototype for a concept, and a possible instance of it, across all
salient features, one arrives at a measure of conceptual distance between the instance
and the prototype. Another means of calculating conceptual distance comes out of the
exemplar theory (Nosofsky, 1988, 1992; Medin et al., 1984; Heit and Barsalou, 1986)
according to which a concept is represented by, not a set of defining or characteristic
features, but a set of salient instances of it stored in memory. The exemplar model has
met with considerable success at predicting results (Nosofsky, 1992; Tenpenny, 1995).
Moreover, there is indeed evidence of preservation of specific training exemplars in
memory (Thomas, 1998). Although prototype and exemplar theories have been
extensively pitted against one another, neither cannot fully reproduce individual
differences in the distributions of responses across test stimuli (Nosofsky et al., 1992),
or account for certain base-rate effects in categorization (Nosofsky, et al., 1994).
Classical, prototype, and exemplar theories are sometimes referred to as “similarity
based” approaches, because they assume that categorization relies on data-driven
statistical evidence. They have been contrasted with “explanation based” approaches,
according to which categorization relies on a rich body of knowledge about the world
(Goldstone and Kersten, 2003). For example, according to the theory theory concepts
take the form of “mini-theories” (Murphy and Medin, 1985) or schemata (Rumelhart
and Norman, 1988), in which the causal relationships amongst properties are identified.
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None of the existing theories on concepts describes “how concepts combine”,
i.e. derive the model that represents the combination of two or more concepts from the
models that represent the individual concepts. The combination problem is considered
so serious that it has been said that not much progress is possible in the field if no light
is shed on this problem (Fodor, 1994; Kamp and Partee, 1995; Rips, 1995; Hampton,
1997). Directly related to the combination problem, already in the 1980s, the so-called
“guppy effect” was identified, where guppy is not rated as a good example of “pet”, nor
of “fish”, but it is rated as a good example of the combination “pet-fish” (Osherson and
Smith, 1981). General fuzzy set theory (Zadeh, 1965) has been tried in vain to deliver a
description of the guppy effect (Zadeh, 1982; Osherson and Smith, 1982), and also
intuitively it is possible to understand the peculiarity: if

(1) activation of “pet” causes a small activation of guppy, and

(2) activation of “fish” causes a small activation of guppy, how is it that

(3) activation of “pet-fish” causes a large activation of guppy?

Also the explanation based theories, since they have not lent themselves to
mathematical formulation, have not been able to model what happens when concepts
combine (Komatsu, 1992, Fodor, 1994, Rips, 1995).

In Aerts and Gabora (2005) we show explicitly that our theory of concepts in Hilbert
space can model an arbitrary combination of concepts by making use of the standard
quantum mechanical procedure to describe the combinations of quantum entities.
We show that also the guppy effect is modeled in a natural way by our theory.
In this paper we prepare the Hilbert space description that is elaborated in Aerts and
Gabora (2005).

2. The state context property formalism
The basic ingredients of our theory are “states”, “contexts” and “properties”, and thus
the models built are referred to as state context property systems (SCOPs). In this
section we introduce the basics of our formalism.

2.1 Contexts, states and properties
Although traditionally the main function of concepts was to represent a class of entities
in the world, increasingly they are thought to have no fixed representational structure,
their structure being spontaneously evoked by the situations in which they arise
(Riegler et al., 1999, Rosch, 1999).

Rosch’s insight, and the basis for the “similarity based theories”, was that the
typicality of different exemplars and the applicability of different properties of one and
the same concept vary. As such, subjects rate different typicalities for exemplars of the
concept “fruit”, e.g. delivering the following classification with decreasing typicality:
apple, strawberry, plum, pineapple, fig, olive. For the concept “sports” the exemplars
football, hockey, gymnastics, wrestling, archery, weightlifting are classified for
decreasing typicality, and for the concept “vegetable” this happens with carrot,
celery, asparagus, onion, pickle, parsley (Rosch, 1973b, 1975; Armstrong et al., 1983).
The insight of our theory is that “for each exemplar alone” the typicality varies with
respect to the context that influences it. In an analogous way “for each property alone”,
the applicability varies with respect to the context. We performed an experiment
(Section 2.2) where this “contextual typicality and applicability effect” is shown and

K 71378—21/12/2004—RAVICHANDRAN—127842

K
34,1/2

154



measured. Subjects classify exemplars of the concept “pet” under different contexts,
e.g. the context, “The pet is chewing a bone”, which results in a classification with
decreasing typicality as follows: dog, cat, rabbit, hamster, guinea pig, mouse, hedgehog,
bird, parrot, snake, canary, goldfish, spider, guppy (Table II). The same exemplars are
classified differently in decreasing typicality for the context, “The pet is being taught”:
dog, parrot, cat, bird, hamster, canary, guinea pig, rabbit, mouse, hedgehog, snake,
goldfish, guppy, spider, and again differently for the context, “Did you see the type of
pet he has? This explains that he is a weird person”: spider, snake, hedgehog, mouse,
rabbit, guinea pig, hamster, parrot, bird, cat, dog, canary, goldfish, guppy (Table II).
The effect is also measured for the applicability of a property (Table IV).

This “contextual typicality and applicability effect” can be described by introducing
the notion of state of a concept, and hence consider a concept an entity that can be in
different states, and such that a context provokes a change of state of the concept.
Concretely, the concept “pet” is in another state under the context, “The pet is chewing
a bone” than under the context, “Did you see the type of pet he has? This explains that
he is a weird person”. It is the set of these states and the dynamics of change of state
under the influence of context that is modeled by SCOP and by our quantum
mechanical formalism in Hilbert space. The problem of the combination of concepts
gets resolved in our theory because in different combinations, the concepts are in
different states; for example in the combination “pet-fish”, the concept “pet” is in a state
under the context “the pet is a fish”, while in the combination “angry pet”, the concept
“pet” is in a state under the context “the pet is angry”. The state of “pet” under the
context “the pet is a fish” has different typicalities, which explains the guppy effect.
Hence, a context is a “relevant context” for a concept if it changes the state of the
concept which manifests experimentally as a change in the typicality of exemplars
and the applicability of properties. A context can itself be a concept, or aggregation of
concepts, or it can be a goal or drive state, a previous lingering thought, feeling,
or experience, or ones’ physical surrounding. Since in this article we focus on the
description of the combination of concepts the contexts that we consider are
aggregations of concepts, because it is this type of contexts that play a role in the way
concepts combine.

The set of relevant properties of a concept is in SCOP such that also less
characteristic properties are included. Let us explain why this is the case. If the focus of
a theory of concepts is on its nature as an identifier the tendency is to concentrate on
the most characteristic aspects of the concept (be they typical properties, salient
exemplars, or characteristic instances), which means that less characteristic or
contextually-determined properties will be excluded. The danger of this becomes
evident when we look again at the “pet fish” example. The presence of the guppy effect
shows that something happens to the concept “pet” when it combines with the concept
“fish”, and vice versa; they interact. Moreover, it shows they interact in a way that
would be hard to predict; one might expect that if an instance is typical of one concept
and typical of another, it would be particularly typical of their combination, but the
opposite is true here. The most characteristic properties – those generally included in a
model of categorization – are barely influenced in interactions with other concepts.
Whenever the concept appears, the property is present, and to more or less the same
degree. For example, it is not via the property “lives in a house”, typical of pets, that we
can detect that the concept “pet” is “interacting” with the concept “fish”. It is via a less
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characteristic property of pets such as “likes to sit on its owner’s lap”, which is lost
completely when “pet” interacts with “fish” in the combination “pet fish”. A model that
contains enough fine structure to model interactions must incorporate those properties
that are sensitive to interactions and subject to change. Hence, apart from states, that
describe the “contextual typicality and applicability effect” that we mentioned, our
theory does not focus alone on the most characteristic properties but also introduces
context sensitive and less characteristic properties.

Before we elaborate the SCOP theory we fix some notations. If we make claims
about an arbitrary concept, it will be denoted by S and its set of states S (or SS and ST

if more than one concept – for example two concepts S and T – are considered).
Individual states of concept S will be denoted by p; q; r; . . . [ S: We introduce one
special state of a concept S called the ground state, denoted by p̂: One can think of the
ground state as the state the concept is in when it is not triggered by any particular
context. We explain in Section 4.6 of Aerts and Gabora (2005) that it is the state a
concept is in when it constitutes a sub-concept of the compound of all concepts held in
the mind. The set of contexts relevant to a concept S will be denoted by (M (or MS and
MT if more than one concept, for example two concepts S and T, are considered),
and individual contexts by e; f ; g; . . . [ M; and the set of properties of the concept S
will be denoted by L (or LS and LT if more than one concept, for example two
concepts S and T, are considered), and individual properties by a; b; c. . . [ L:
Consider the concept “pet” in its ground state p̂ and consider the context

e1 : “The pet is chewing a bone” ð1Þ

This context consists of the situation, where “a pet is chewing a bone”. If an
example involves several states, contexts and properties, we use subscripts.
Thus p1; p2; p3; . . . ; pn; . . . [ S denote states, e1; e2; e3; . . . ; em; . . . [ M denote
contexts, and a1; a2; a3; . . . ; ak; . . . [ L denote properties. The context e1 for the
concept “pet” will cause the ground state p̂ of “pet” to change to another state, p1.
The different states p̂ and p1 are manifested by the fact that the frequency measures of
different exemplars of the concept are different (Table II), and the properties have
different applicability values (Table IV). In relation with Table II we remark that rather
than typicality values of an exemplar under different contexts we need frequency values
of this exemplar under different contexts for our theory. Typicality and frequency are
linked, in the sense that an increasing frequency will generate an increasing typicality,
and vice versa. But typicality contains more aspects than just frequency. It is well
possible that for two exemplars with equal frequency, the typicality of one of them is
higher than for the other, due to the fact that although both exemplars are equally
abundant in the considered context, one of them is still more typical than the other one.
The aspects contained in typicality that are extra to frequency will be described in our
theory in a different way than the aspects related to frequency.

2.2 The experiment
The “contextual frequency and applicability effect” that we mentioned in the foregoing
section was tested in the following experiment. The 81 participating subjects – e-mail
correspondents, i.e. friends and colleagues of the authors – were presented a
questionnaire by e-mail as attached file, which could then be filled out and sent back.
The questionnaire was accompanied by the following text:
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This study has to do with what we have in mind when we use words that refer to
categories. Think of the category “fruit” and the contextual situation expressed by
the sentence: “The fruit gets squeezed for a fresh drink of juice”. The examples “orange” and
“lemon” appear more frequently in this contextual situation than do the examples
“strawberry” or “apple” and certainly than “fig” or “olive”.

It is the frequency with which examples of a category appear in a specific contextual
situation that we want you to estimate in this experiment. You are to rate this frequency for
each example on a 7-point scale. When you fill out 7, this means that you feel that the
example appears very frequently in the given contextual situation. A 1 means you feel
the example appears very rarely and a 0 means not at all. A 4 means that you feel the
example appears moderately frequently. Use the intermediate numbers 2, 3, 5, and 6
to express intermediate judgments.

You will see that each test consists of an A part, where we test the frequency that an
example of a category appears in a specific situation, and a B part. In this B part we test the
rate of applicability of specific properties to the category in the given situation. Consider
again the category “fruit” and the contextual situation “The fruit gets squeezed for a fresh
drink of juice”. The properties “mellow” and “tasty” are more applicable to “fruit” in this
contextual situation than the properties “unripe” and “moldy”. Also the applicability is rated
on a 7-point scale, 7 meaning very applicable, 1 meaning almost not applicable, with 0, not
applicable at all, and 4 meaning moderately applicable. Use again the intermediate numbers
2, 3, 5, and 6 to express intermediate judgments.

When you estimate the frequency of a specific example in a situation this can refer to the
amount of times that you personally have experienced this example in this context. But your
estimation of this frequency may also relate to confrontations with this example on TV,
in movies, in dreams, in your imagination, etc . . . Don’t worry about why you estimate that
way for a specific example or property. And don’t worry about whether it’s just you or people
in general who estimate that way. Just mark it the way you feel it.

Let us examine the results obtained when subjects were asked to rate the frequency with
which a particular exemplar might be encountered in a specific context for the concept
“pet”. The contexts are given in Table I, and are of the type “congregation of concepts”.
Subjects were presented with seven different contexts, here called e1; e2; . . . ; e6; 1, and
asked to rate on a scale between 1 and 7, the frequency with which a specific exemplar of
the concept “pet” appears in this context. The 14 exemplars proposed were: rabbit, cat,
mouse, bird, parrot, goldfish, hamster, canary, guppy, snake, spider, dog, hedgehog, and
guinea pig. The results of the ratings are given in Table II, for each exemplar and context
under “rate”, while the relative frequency, calculated from this rating, is given for each
exemplar and context under “freq.”. As an example of how to interpret these data,
consider the context e1, “The pet is chewing a bone”. Of 100 situations of this kind, the
subjects estimated that this pet would be a rabbit in4, a cat in 25, amouse in 3, a bird in 2,

e1 The pet is chewing a bone
e2 The pet is being taught
e3 The pet runs through the garden

e4

Did you see the type of pet he has? This explains that
he is a weird person

e5 The pet is being taught to talk
e6 The pet is a fish
1 The pet is just a pet (the unit context for “pet”)

Table I.
The contexts considered

in the experiment
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a parrot in 2, a goldfish in 1, a hamster in 4, a canary in 1, a guppy in 1, a snake in 2, a spider
in 1, a dog in 50, a hedgehog in 2, and a guinea pig in 3 situations (Table II). The context 1
is the unit context. Here the subject had to estimate the frequency of the different
exemplars of the concept “pet” in the presence of any arbitrary context; hence in the
absence of a specific context. This means that the frequencies retrieved with context 1
correspond to the frequencies represented by the ground state p̂ of the concept “pet”. By
means of this experiment we are now able to explain some of the more subtle aspects of
the proposed formalism. The ground state has to describe the frequencies retrieved by
means of the unit context 1, hence in 100 situations of pets in any context, subjects
estimated that there are 7 situations where the pet is a rabbit, 12 where it is a cat, 5 where
it is amouse, 8 where it is a bird, 7 where it is a parrot, 10 where it is goldfish, 7 where it is a
hamster, 8 where it is a canary, 9 where it is a guppy, 3 where it is a snake, 2 where it is a
spider, 12 where it is a dog, 3 where it is a hedgehog, and 7 where it is a guinea pig
(Table II). Each of the considered contexts gives rise to another state of the concept “pet”.
Let us call p1; p2; p3; . . . ; p6 the states obtained after a change provoked by contexts
e1; e2; e3; . . . ; e6 on the ground state p̂:

We have also tested the applicability values of different properties of pet in different
contexts, using the 14 properties in Table III. Subjects were asked to rate the
applicability of each of the properties in Table III for the same seven contexts. The
results are presented in Table IV. Under “rate” are the ratings on a seven-point scale,
and under “wt” is the renormalization to a number between 0 and 1, called the weight of
the property. Consider “pet” under the context e1, “The pet is chewing a bone”. We see
that property a2, furry has a weight of 0.66, while under the context e4, “Did you see the
type of pet he has? This explains that he is a weird person” it has a much lower weight
of 0.23. On the other hand, property a3, feathered has a weight of 0.08 under the context
e1, “The pet is chewing a bone”, which is extremely low, while it has weight 0.84 under
the context e5, “The pet is being taught to talk”.

We performed a statistical analysis of the data, using the “t-test for paired two
samples for means” to estimate the probability that the shifts of means under the
different contexts is due to chance. The full analysis including histograms can be

Exemplar e1 e2 e3 e4 e5 e6 1
Rate Freq Rate Freq Rate Freq Rate Freq Rate Freq Rate Freq Rate Freq

Rabbit 0.07 0.04 2.52 0.07 4.58 0.15 1.77 0.05 0.15 0.01 0.10 0.00 4.23 0.07
Cat 3.96 0.25 4.80 0.13 6.27 0.22 0.94 0.03 0.46 0.03 0.15 0.01 6.51 0.12
Mouse 0.74 0.03 2.27 0.06 2.67 0.08 3.31 0.11 0.12 0.01 0.10 0.00 2.59 0.05
Bird 0.42 0.02 3.06 0.08 0.63 0.02 1.41 0.04 2.21 0.17 0.15 0.01 4.21 0.08
Parrot 0.53 0.02 5.80 0.16 0.44 0.01 1.57 0.04 6.72 0.63 0.16 0.01 4.20 0.07
Goldfish 0.12 0.01 0.69 0.02 0.09 0.00 0.83 0.02 0.10 0.00 6.84 0.48 5.41 0.10
Hamster 0.85 0.04 2.72 0.07 2.06 0.06 1.25 0.04 0.14 0.01 0.09 0.00 4.25 0.07
Canary 0.26 0.01 2.73 0.07 0.23 0.01 0.86 0.02 1.08 0.07 0.14 0.01 4.79 0.08
Guppy 0.14 0.01 0.68 0.02 0.09 0.00 0.83 0.02 0.10 0.00 6.64 0.46 5.16 0.09
Snake 0.57 0.02 0.98 0.02 0.36 0.01 5.64 0.22 0.09 0.00 0.15 0.01 1.60 0.03
Spider 0.26 0.01 0.40 0.01 1.05 0.03 5.96 0.23 0.09 0.00 0.09 0.00 1.22 0.02
Dog 6.81 0.50 6.78 0.19 6.85 0.24 0.91 0.03 1.02 0.06 0.11 0.00 6.65 0.12
Hedgehog 0.53 0.02 0.85 0.02 2.59 0.08 3.48 0.12 0.11 0.00 0.09 0.00 1.56 0.03
Guinea pig 0.58 0.03 2.63 0.07 2.79 0.09 1.31 0.04 0.15 0.01 0.09 0.00 3.90 0.07

Table II.
Frequency ratings of
different exemplars for
the contexts defined in
Table I
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obtained by contacting the authors. In all but a few cases, the effect of context was
highly significant. Let us give some concrete examples, and also comment on the few
exceptions.

As shown in Table II, the mean frequency of rabbit under context e1 “The pet is
chewing a bone”, is 0.04, while under context e2 “The pet is being taught”, it is 0.07. The
p-value for rabbit for the two contexts e1 and e2 is 6.79£ 1025; thus we can strongly
reject the null hypothesis that the two means are identical and that the measured
difference in mean is due to chance. Hence the measured difference in mean reflects a
genuine context effect. In Table V, p-values for the other exemplars are presented. The
means under contexts e1 and e2 for mouse, bird, parrot, goldfish, hamster, canary,
guppy and dog are sufficiently different that the p-values are small enough to reject the
null hypothesis of no difference (Table II). This is not the case for snake, spider and
hedgehog, which were estimated with very low frequency for both e1 and e2. The
resulting high p-value indicates that the difference in mean could be due to statistical
fluctuations, hence a genuine effect of context. Table V shows that the exemplars most

a1 lives in and around the house
a2 furry
a3 feathered
a4 likes to sit on owners lap
a5 likes to be caressed
a6 can fly
a7 can swim
a8 likes to swim
a9 noisy
a10 silent
a11 scary
a12 hairy
a13 docile
a14 friendly

Table III.
The properties of “pet”

considered in the
experiment

e1 e2 e3 e4 e5 e6 1
Rate Wt Rate Wt Rate Wt Rate Wt Rate Wt Rate Wt Rate Wt

a1 5.99 0.86 6.11 0.87 6.51 0.92 2.95 0.42 4.5 0.64 4.09 0.58 6.60 0.94
a2 4.65 0.66 4.09 0.58 4.99 0.71 1.64 0.23 1.65 0.23 0.30 0.04 4.83 0.69
a3 0.58 0.08 2.95 0.42 1.15 0.16 1.73 0.25 5.86 0.84 0.09 0.01 4.11 0.59
a4 4.79 0.68 5.41 0.77 5.09 0.73 1.27 0.18 1.80 0.26 0.09 0.01 5.32 0.76
a5 5.06 0.72 5.53 0.79 5.19 0.74 1.40 0.20 2.51 0.36 0.43 0.06 5.37 0.77
a6 0.44 0.06 2.65 0.38 0.81 0.12 1.72 0.25 5.72 0.82 0.20 0.03 3.65 0.52
a7 3.44 0.49 2.91 0.42 2.83 0.40 1.79 0.26 0.84 0.12 6.99 1.00 4.23 0.60
a8 3.36 0.48 3 0.43 2.99 0.43 1.48 0.21 0.70 0.10 6.43 0.92 3.86 0.55
a9 4.33 0.62 3.42 0.49 4.05 0.58 2.80 0.40 4.81 0.69 0.20 0.03 3.68 0.53
a10 2.70 0.39 2.83 0.40 2.73 0.39 3.14 0.45 1.52 0.22 5.99 0.86 3.46 0.49
a11 2.74 0.39 1.33 0.19 1.99 0.28 5.93 0.85 0.79 0.11 1.20 0.17 1.30 0.18
a12 4.63 0.66 3.75 0.54 4.62 0.66 3.07 0.44 0.96 0.14 0.12 0.02 4.28 0.61
a13 4.49 0.64 5.17 0.74 4.74 0.68 1.25 0.18 3.43 0.49 3.48 0.50 5.20 0.74
a14 4.40 0.63 5.19 0.74 4.88 0.70 1.15 0.16 3.40 0.49 2.11 0.30 5.01 0.72

Table IV.
Applicability of the

properties defined in
Table III for the contexts

defined in Table I
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relevant to the distinction between contexts e1, “The pet is chewing a bone”, and e2,
“The pet is being taught”, have the lowest p-value. Parrot has the lowest p-value of all,
namely 6.30£ 10228. Indeed, parrots never chew bones, while they can certainly be
taught. Then come bird with 9.16 £ 10220, canary with 3.17 £ 10221 and dog with
2.34 £ 10221. For bird and canary a similar observation can be made as for parrot;

Exemplar p-value p-value p-value p-value p-value p-value p-value
e1/e2 e1/e3 e1/e4 e1/e5 e1/e6 e1/1 e2/e3

Rabbit 6.79£ 102 5 1.85 £ 10221 0.053 2.27 £ 1025 4.87 £ 1026 3.44 £ 1027 5.14 £ 102 19

Cat 6.00 £ 1029 0.15 3.03 £ 10220 3.65 £ 10220 1.83 £ 10222 2.48 £ 10210 3.24 £ 102 25

Mouse 1.17 £ 1025 1.33 £ 1028 7.98 £ 10218 1.99 £ 1026 9.55 £ 1027 0.009 0.017
Bird 9.16 £ 10220 0.94 0.13 £ 1023 3.20 £ 10215 0.77 £ 1023 2.69 £ 10222 7.12 £ 102 18

Parrot 6.30 £ 10228 0.07 0.012 1.23 £ 10234 0.013 5.73 £ 10210 4.78 £ 102 45

Goldfish 4.27 £ 1025 0.0015 6.84 £ 1028 0.47 3.34 £ 10259 3.56 £ 10245 1.72 £ 102 7

Hamster 4.42 £ 1025 1.33 £ 1026 0.71 7.89 £ 1026 2.02 £ 1026 9.20 £ 1026 0.16
Canary 3.17 £ 10221 1.97 £ 10215 0.12 £ 1023 2.75 £ 1027 0.47 7.80 £ 10238 8.11 £ 102 22

Guppy 1.36 £ 1023 0.73 3.35 £ 1025 0.44 1.56 £ 10254 9.02 £ 10235 1.53 £ 102 8

Snake 0.96 0.52 £ 1023 2.38 £ 10223 0.92 £ 1023 0.46 £ 1022 0.72 7.23 £ 102 5

Spider 0.80 0.94 1.02 £ 10229 0.71 £ 1021 0.59 £ 1021 0.12 £ 1021 5.96
Dog 2.34 £ 10221 7.21 £ 10231 7.18 £ 10231 3.34 £ 10225 1.18 £ 10232 3.03 £ 10226 3.43 £ 102 7

Hedgehog 0.90 2.13 £ 10232 6.59 £ 10217 0.16 £ 1023 7.20 £ 1025 0.14 3.48
Guinea pig 1.53 £ 1029 1.28 £ 1029 0.13 7.57 £ 1025 1.15 £ 1025 1.60 £ 10210 1.31

Exemplar p-value p-value p-value p-value p-value p-value p-value
e2/e4 e2/e5 e2/e6 e2/1 e3/e4 e3/e5 e3/e6

Rabbit 0.69 £ 1021 5.25 £ 10220 2.50 £ 10222 2.27 £ 1025 4.87 £ 1026 3.44 £ 1027 5.14 £ 102 19

Cat 3.59 £ 10229 5.91 £ 10227 1.19 £ 10240 3.65 £ 10220 1.83 £ 10222 2.48 £ 10210 3.24 £ 102 25

Mouse 4.23 £ 1027 2.38 £ 10219 1.65 £ 10220 1.99 £ 1026 9.55 £ 1027 0.90 £ 1022 0.17 £ 102 1

Bird 9.15 £ 1028 1.03 £ 1026 4.99 £ 10225 3.20 £ 10215 0.77 £ 1023 2.69 £ 10222 7.12 £ 102 18

Parrot 4.64 £ 10228 7.14 £ 10229 8.03 £ 10246 1.23 £ 10234 0.13 £ 1021 5.73 £ 10210 4.78 £ 102 45

Goldfish 0.14 8.31 £ 1026 4.67 £ 10260 0.47 3.34 £ 10259 3.56 £ 10245 1.72 £ 102 7

Hamster 5.01 £ 1029 7.65 £ 10225 7.94 £ 10227 7.89 £ 1026 2.02 £ 1026 9.20 £ 1026 0.16
Canary 4.64 £ 10214 0.52 4.61 £ 10219 2.75 £ 1027 0.47 7.80 £ 10238 8.11 £ 102 22

Guppy 0.09 1.81 £ 1026 1.89 £ 10254 0.44 1.56 £ 10254 9.02 £ 10235 1.53 £ 102 8

Snake 4.31 £ 10227 1.29 £ 1028 1.25 £ 1025 0.92 £ 1023 0.46 £ 1022 0.72 7.23 £ 102 5

Spider 2.54 £ 10232 0.11 £ 1022 0.45 £ 1023 0.71 £ 1021 0.59 £ 1021 0.12 £ 1021 5.96
Dog 1.14 £ 10236 5.56 £ 10216 1.44 £ 10246 3.34 £ 10225 1.18 £ 10232 3.03 £ 10226 3.43 £ 102 7

Hedgehog 5.66 £ 10217 8.07 £ 1026 2.05 £ 1027 0.16 £ 1023 7.20 £ 1025 0.14 3.48
Guinea pig 2.47 £ 1027 5.67 £ 10223 2.80 £ 10224 7.57 £ 1025 1.15 £ 1025 1.60 £ 10210 1.31

Exemplar p-value p-value p-value p-value p-value p-value p-value
e3/1 e4/e5 e4/e6 e4/1 e5/e6 e5/1 e6/1

Rabbit 2.05 £ 10219 3.14 £ 10210 4.98 £ 10211 0.12 £ 1022 0.72 £ 1021 6.40 £ 10236 2.01 £ 102 39

Cat 5.20 £ 10222 0.92 4.49 £ 1025 3.49 £ 10231 0.12 £ 1023 8.79 £ 10227 4.90 £ 102 48

Mouse 9/81 £ 1027 2.00 £ 10226 6.96 £ 10227 3.28 £ 10213 0.27 4.12 £ 10222 7.22 £ 102 24

Bird 8.08 £ 10222 1.62 £ 10212 9.37 £ 1028 1.19 £ 1026 2.02 £ 10216 1.32 £ 1027 1.36 £ 102 35

Parrot 5.14 £ 10233 2.29 £ 10234 1.89 £ 1029 3.90 £ 1027 4.03 £ 10236 2.41 £ 10233 1.63 £ 102 33

Goldfish 3.87 £ 10249 8.69 £ 1028 2.29 £ 10258 2.35 £ 10230 1.56 £ 10258 1.85 £ 10247 4.42 £ 102 54

Hamster 0.05 5.41 £ 10210 6.17 £ 10212 2.40 £ 10212 0.26 £ 1021 2.08 £ 10237 5.90 £ 102 42

Canary 1.15 £ 10241 0.16 £ 1023 0.21 £ 1023 2.15 £ 10224 7.69 £ 1027 0.56 £ 1021 5.61 £ 102 32

Guppy 2.65 £ 10242 4.24 £ 1027 2.26 £ 10253 2.64 £ 10224 2.38 £ 10254 8.60 £ 10241 4.61 £ 102 51

Snake 6.19 £ 1029 4.47 £ 10232 6.46 £ 10232 1.16 £ 10228 0.39 1.53 £ 10219 1.16 £ 102 9

Spider 0.15 1.56 £ 10233 1.27 £ 10233 3.23 £ 10231 0.71 £ 1021 3.07 £ 10210 8.69 £ 102 11

Dog 4.50 £ 10223 0.25 £ 1022 1.71 £ 1026 3.83 £ 10230 7.17 £ 1027 1.65 £ 1026 1.09 £ 102 50

Hedgehog 4.22 £ 10213 1.63 £ 10222 3.80 £ 10223 1.93 £ 10216 0.84 £ 1021 2.24 £ 10213 5.04 £ 102 14

Guinea pig 0.72 £ 1023 4.49 £ 10210 9.28 £ 10212 2.69 £ 1029 0.52 £ 1021 1.62 £ 10229 1.16 £ 102 38

Table V.
p-values for the different
exemplars and pairs of
contexts
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they have little affinity with “chewing a bone”, while quite some with “being taught”
(but less than parrot). For dog, the subjects rated the affinity with “chewing a bone”
much higher than for “being taught”, thus the small p-value. Next come cat and guinea
pig with very small p-values of 6.00 £ 29 and 1.53 £ 29. Subjects rated cat with more
affinity for “chewing a bone” and less for “being taught”, and vice versa for guinea pig.
Then come rabbit, mouse, goldfish, hamster, and guppy, with very small p-values.
Although they are definitely less significant with respect to contexts e1 and e2, the
subjects rated them with significantly less affinity for “chewing a bone” than for “being
taught”. Thus they have much smaller p-values than snake, spider, and hedgehog,
which subjects rated equally irrelevant for distinctions involving “chewing a bone” and
“being taught”.

3. The basic structure of SCOP
A SCOP consists not just of the three sets S, M, and L: the set of states, the set of
contexts and the set of properties, but contains two additional functions m and n.
The function m is a probability function that describes how state p under the
influence of context e changes to state q. Mathematically, this means that m is a
function from the set S£M £ S to the interval [0, 1], where m(q, e, p) is the
probability that state p under the influence of context e changes to state q. We write
m : S £M £ S! ½0; 1�; ðq; e; pÞ 7! mðq; e; pÞ: The function n describes the weight,
which is the renormalization of the applicability, of a certain property given a specific
state. This means that n is a function from the set S £ L to the interval [0, 1], where
n( p, a) is the weight of property a for the concept in state p. We write n :
S £L! ½0; 1�; ðp; aÞ 7! nðp; aÞ: Thus the SCOP is defined by the five elements (S,
M, L, m, n). Up until this point, the SCOP we have built for the concept “pet” has
been rather small. To build a more elaborate SCOP, we proceed as follows. We collect
all the contexts thought to be relevant to the model we want to build (more contexts
lead to a more refined model). M is the set of these contexts. Starting from the
ground state p̂ for the concept, we collect all the new states of the concept formed by
having each context e [ M work on p̂ and consecutively on all the other states. This
gives the set S. Note that M and S are connected in the sense that to complete the
model it is necessary to consider the effect of each context on each state. We collect
the set of relevant properties of the concept and this gives L. The functions m and n
that define the metric structure of the SCOP have to be determined by means of well
chosen experiments. First, however, we derive the natural structures that exist on the
sets S, M and L.

3.1 The lattice of contexts
By deriving a lattice structure for the set of contexts M we will be able to show that the
set of contexts has a nonclassical (quantum-like) structure. First we identify a partial
order relation on M. Consider for the concept “pet” the contexts

e3 : “The pet runs through the garden” ð2Þ

e7 : “The pet runs through the garden trying to catch a cat” ð3Þ

e8 : “The pet runs through the garden trying to catch a cat while barking loudly”

ð4Þ
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These three contexts are related. We say that e7 “is stronger than or equal to” e3 and e8

“is stronger than or equal to” e7. Let us denote the relation “is stronger than or equal to”
with the symbol # . This means we have e8#e7#e3. It is easy to verify that the relation
“is stronger than or equal to” is a partial order relation. This means that it satisfies the
following mathematical rules. For arbitrary contexts e, f, g [M we have

reflexivity : e# e ð5Þ

transitivity : e# f ; f # g ) e# g ð6Þ

symmetry : e# f ; f # e) e¼ f ð7Þ

Equation (5) means that each context “is stronger than or equal to” itself. Equation (6)
means that if a first context “is stronger than or equal to” a second, and this second “is
stronger than or equal to” a third, then the first “is stronger than or equal to” the third.
Equation (7) means that if a first context “is stronger than or equal to” a second, and
this second “is stronger than or equal to” the first, then they are equal.

If a set is equipped with a partial order relation, it is always possible to verify
whether for a subset of elements of the set, there exists an infimum or greatest lower
bound and a supremum or least upper bound of this subset with respect to this partial
order relation. Hence, consider M, now equipped with the partial order relation # , and
a subset {ei}i[ I of elements ei[M, ;i [ I. An element ^i[I ei [ M is an infimum of
the subset {ei}i[ I if it is a lower bound, which means that ^i[I ei # ej ;j [ I and
additionally it is the greatest lower bound, i.e. a maximum of the set of all lower bounds
of {ei}i[ I. This means that for each possible context f [ M that is a lower bound –
hence f is such that f # ej ;j [ I – we have that f # ^i[I ei . This expresses that
^i[I ei is the greatest lower bound (if a greatest lower bound exists it is always unique,
which means that we can talk of “the” greatest lower bound).

Let us see what this somewhat subtle notion of infimum means with respect to the
set of contexts for the concept “pet”. Consider the context

e9 : “The pet tries to catch a cat” ð8Þ

We clearly have e7#e9. We already remarked that e7#e3, which means that e7 is a
lower bound for e3 and e9. If we try to conceive of a context that is stronger than or
equal to e3, “The pet runs through the garden”, and also stronger than or equal to e9,
“The pet tries to catch a cat”, it will also be stronger than or equal to e7, “The pet runs
through the garden trying to catch a cat”. An example of such a context is e8, “The pet
runs though the garden trying to catch a cat while barking loudly”. This shows that e7

is the infimum of e9 and e3, hence e7 ¼ e9 ^ e3:
This all shows that it is plausible to require that for an arbitrary subset of contexts

{ei}i[I , ei [ M, ;i [ I there exists an infimum context ^i[I ei [ M: Mathematically
we formulate this requirement as follows: For {ei}i[I ; ei [ M; ;i [ I there exists
^i[I ei [ M such that for f [ M we have

lower bound : ^i[I ei # ej ;j [ I ð9Þ

greatest lower bound : f # ej;j [ I ) f # ^i[I ei ð10Þ

Note that the infimum context corresponds to what could be called an “and” context,
which is why we denote it using the logical symbol ^ for “and”.
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Now that the infimum or “and” context has been introduced, one can ask whether a
supremum context exists. Consider the following additional context for the concept “pet”

e10 : “The pet runs through the garden barking loudly to be fed” ð11Þ

One can consider the sentence “The pet runs through the garden trying to catch a cat or
barking loudly to be fed”. At first glance this sentence does not seem to describe a
possible context. However, we should not fall into the trap of identifying the context that
describes this sentence with one of its instances. It is difficult to conceive of an instance of
what is expressed by a sentence like “The pet runs through the garden trying to catch a
cat or barking loudly to be fed”. Indeed, the only thing one can think of is that it is an
instance of “The pet runs through the garden trying to catch a cat” or an instance of “The
pet runs through the garden barking loudly to be fed”. This is because it is not possible to
conceive of an instance that is typical for “The pet runs through the garden trying to
catch a cat or barking loudly to be fed” is that if we consider two instances – let us call
them “instance 1” and “instance 2” – then something like “instance 1 or instance 2” is not
and instance. The reason for this is deep and rooted in the nature of the structure of the
world. It is similar to the fact that “physical entity 1 or physical entity 2” is not a physical
entity, and “situation 1 or situation 2” is not a situation. Concretely, “an orange or a
chair” is not a material object, hence not a physical entity. It was noted in Kamp and
Partee (1995) that the prototype theory has difficulty representing the “or” concept, e.g.
what is the prototype of “a butterfly or a vegetable”. Much as there do not exist typical
instances of the concept “a butterfly or a vegetable, there does not exist a prototype of
this concept.

One can now ask whether “The pet runs through the garden trying to catch a cat or
barking loudly to be fed” is a context? In our approach it is, but to make this clear we
must explain what this context is. We will call it the superposition context of the
context “The pet runs through the garden trying to catch a cat” and the context
“The pet runs through the garden barking loudly to be fed”. Let us define formally
what a superposition context is. Suppose we have a subset of contexts {ei}i[I , ei [ M,
;i [ I . The superposition context, denoted by _i[I ei , consists of one of the contexts ei
but we do not know which one. This means that if we introduce explicitly

e11 : “The pet runs through the garden trying to catch a cat or barking loudly to be fed”

ð12Þ

then we have e11 ¼ e7 _ e10: This superposition context _i[I ei is the supremum
context for a subset of contexts {ei}i[I , ei [ M, ;i[ I. It is obviously an upper bound,
and it is easy to verify that it is the least upper bound.

The infimum context ^i[I ei [ M of a subset of contexts {ei}i[I , ei [ M, ;i [ I is
a context that is more concrete than the two original contexts, and it can be expressed
by the “and” of language if we express the contexts using sentences. The supremum
context _i[I ei [ M of a subset of contexts {ei}i[I , ei [ M, ;i [ I is a context that is
more abstract than the two original contexts, and it can be expressed by the “or” of
language if we express the context using sentences.

A partially ordered set that has an infimum and a supremum for any subset of its
elements is called a complete lattice. The “complete” refers to the fact that the supremum
and infimum exists for any subset. If they exist only for finite subsets and not necessarily
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for infinite subsets the structure is called a lattice. We call M,# equipped with the
partial order relation “is stronger than or equal to” the lattice of contexts.

3.2 The identification of quantum structure
This section, like the previous one, concerns the complete lattice structure ofM, but here
it is approached somewhat differently. Suppose we have a concept S, described by a
SCOP (S, M, L, m, n). We say that p [ S is an eigenstate of the context e [ M if the
state p of a concept does not change when context e is applied to it. Thus p is an
eigenstate of the concept for the context e iff mðp; e; pÞ ¼ 1: For example, the state p3 of
the concept “pet” in the situation “The pet runs through the garden” is an eigenstate
of the context e3, “The pet runs through the garden”. The state p10 of the concept “pet” in
the situation “The pet runs through the garden barking loudly to be fed” is an eigenstate
of the context e10, “The pet runs through the garden barking loudly to be fed”, but is also
an eigenstate of the context e3, “The pet runs through the garden”, and of the context

e12 : “The pet barks loudly to be fed” ð13Þ

We hypothesize that if an arbitrary context e [ M changes an arbitrary state p [ S to a
state q [ S, then q is an eigenstate of e. This amounts to requesting that if a context
affects the concept again right after it has affected the concept a first time, this does not
introduce an additional change. Such measurement contexts are called in quantum
mechanics “measurements of the first kind”. Another way of stating our hypothesis is to
say that we confine ourselves to contexts of the first kind, namely those that do not
re-affect the state of the concept if re-applied immediately after their first application.
In quantum mechanics there do exist measurement that are not of the first kind, and
certainly in cognition there also exist contexts that are not of the first kind. Exactly as in
quantum mechanics, the mathematical model is built for SCOP by considering the
contexts of the first kind and afterward treating contexts that are not of the first kind as
derived notions. A state that is not an eigenstate of a context is called a potentiality state
with respect to this context. The effect of a context is to change a potentiality state of this
context to an eigenstate of this context, and this change will be referred to as collapse.
The complete lattice structure introduced in Section 3.1 can now be re-introduced in a
formal way. Let us define the map

l : M!PðSÞ ð14Þ

e 7! lðeÞ ð15Þ

lðeÞ ¼ {pjp eigenstate of e} ¼ {pjmðp; e; pÞ ¼ 1} ð16Þ

where P(S) is the set of all subsets of S. We then define for e, f[M

e # f , lðeÞ , lðf Þ ð17Þ

which is the partial order relation “is stronger than or equal to” considered in Section 3.1.
We suppose that for any subset of contexts {ei}i[I , ei [ M, ;i [ I there exists an
infimum context^i[I ei and a supremum context_i[I ei , which makesM into a complete
lattice. We denote the zero context ^e[Me by 0. It is the context that has no eigenstates.
We denote the unit context _e[Me by 1. It is the context for which each state is an
eigenstate.
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For the infimum context ^i[I ei we have

>i[IlðeiÞ ¼ lð^i[I eiÞ ð18Þ

This means that p [ S is an eigenstate of ^i[I ei iff p is an eigenstate of each of the ei,
which is why we can call it the “and” context. However, for the supremum context, we
do not have the equivalent equality. We only have

<i[IlðeiÞ , lð_i[I eiÞ ð19Þ

and in general not the equality of these two expressions. The fact that we do not have
an equality here is what makes our structure quantum-like.

Let us illustrate this with an example. Consider context e11 ¼ e7 _ e10: l(e7) is the
set of eigenstates of “pet” for the context e7, “The pet runs through the garden trying to
catch a cat”, and l(e10) is the set of eigenstates of “pet” for the context e10, “The pet runs
through the garden barking loudly to be fed”. The set lðe7Þ< lðe10Þ is the union of the
two sets l(e7) and l(e10). This means that if p [ lðe7Þ< lðe10Þ we must have p [ lðe7Þ
or p [ lðe10Þ. Hence p is an eigenstate of the context e7 or p is an eigenstate of the
context e10. Now consider the state of “pet” corresponding to the situation “The pet
runs through the garden trying to catch a cat or barking loudly to be fed”. We do not
know which of the two alternatives, “trying to catch a cat” or “barking loudly to be fed”
it is, but we know it is one of them. Let us describe a concrete situation where “pet” is in
this state. Suppose one has a pet that only runs through the garden barking loudly in
two situations: when it is trying to catch a cat, and when it was hungry and wants to be
fed. We call home and learn that the pet is running through the garden barking loudly.
So we do not hear the barking ourselves, because this would provide enough
information for us to know which one of the two it is (perhaps the pet barks differently
in the two situations). So that is the state of the concept “pet” for us at that moment. Let
us call this state p11. Then p11 is an eigenstate of the context e11 ¼ e7 _ e10: Hence this
means that p11 [ lðp7 _ p10Þ: But p11 is not an eigenstate of e7 and it is not an
eigenstate of e10. Indeed, if p11 were an eigenstate of e7, this would mean that in state
p11 the pet would be running through the garden trying to catch a cat, and if it were an
eigenstate of e10 this would mean that the pet was running through the garden barking
loudly to be fed. Neither is true, which shows that p11 � lðe7Þ< lðe10Þ: Thus lðe7Þ<
lðe10Þ – lðe7 _ e10Þ; which proves that equation (19) is a strict inclusion and not an
equality. It turns out that p11 is a superposition state when we represent the SCOP in
the Hilbert space of quantum mechanics Aerts and Gabora (2005).

Applying analogous techniques to those in Aerts et al. (1999 2002), it can be proven
that l(M) is a closure space. Further structural results about SCOP can be obtained
along the lines of Aerts et al. (2001 2005), Aerts and Deses (2002 2005). Having
introduced this closure space the supremum can be given a topological meaning,
namely for e, f[M we have lðe _ f Þ ¼ lðeÞ< lðf Þ where lðeÞ< lðf Þ is the closure of
l(e) < l( f), which is obtained exactly, in the case of the linear Hilbert space introduced
in Aerts and Gabora (2005), by adding the superposition states to the set lðeÞ< lðf Þ.
This is why e _ f was called the superposition context of e and f.

3.3 Orthocomplementation and atomicity
There is another structure on M that is as important as the complete lattice structure.
Consider the context e’3 ; “The pet does not run through the garden”. This context has a
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special relation to the context e3, “The pet runs through the garden”. We call e’3 the
orthocomplement of context e3. Obviously we have ðe’3 Þ

’ ¼ e3: Consider the context e3,
“The pet runs through the garden”, and the context e7, “The pet runs through the
garden trying to catch a cat”. Then we have e7 # e3. The context e’7 is the following:
“The pet does not run through the garden trying to catch a cat”. Hence we have
e’3 # e’7 : We know that e7 ¼ e3 ^ e9: The context e’7 can also be expressed as follows:
“The pet does not run through the garden or does not try to catch a cat”. This means
that e’7 ¼ e’3 _ e’9 : The orthocomplement is characterized mathematically as follows:
’ is a map from M to M such that for e, f [ M we have

ðe’Þ’ ¼ e ð20Þ

e # f ) f ’ # e’ ð21Þ

e ^ e’ ¼ 0; e _ e’ ¼ 1 ð22Þ

The set M,# , ’ is a complete orthocomplemented lattice. It can easily be seen that
the orthocomplement is not a complement, due to the existence of superposition states.
For example, the ground state p̂ of the concept “pet” is neither an eigenstate of the
context e3, “The pet runs through the garden”, nor of the context e’3 ; “The pet does not
run through the garden”. This means that although lðe3Þ< lðe’3 Þ , lðe3 _ e’3 Þ; this is
a strict inclusion, hence lðe3Þ< lðe’3 Þ – lðe3 _ e’3 Þ; which would not be the case if the
orthocomplement were a complement. Considering the closure space introduced by l
we do have lðe3 _ e’3 Þ ¼ lðe3Þ< lðe’3 Þ: It also means that the underlying logic is not
classical but paracomplete (Aerts et al., 1998). In Aerts and Gabora (2005) it turns out
that the states that are in lðe3Þ< lðe’3 Þ and not contained in lðe3Þ< lðe’3 Þ; are the
superpositions of states in lðe3Þ< lðe’3 Þ:

Another important notion is that of the atom of a lattice. Consider a concept and a
context c [ M such that c – 0; and for a [ M we have that a#c implies that a ¼ 0 or
a ¼ c; then c is called an atomic context of the concept. An atomic context is a strongest
context different from the zero context.

To make this clearer, consider for a moment a small SCOP (S, M, L, m, n) of the
concept “pet” containing the contexts e1, e2, e6 as they appear in Table I. The zero
context and the 1 context are also elements of M. For each context, the
orthocomplement of this context is also an element of M. This gives already
{0; 1; e1; e

’
1 ; e2; e

’
2 ; e6; e

’
6 } , M: Furthermore, we need to add all the infima different

from the zero context and all the suprema different from the unit context. For example
e1^e2 is the context “The pet is chewing a bone and being taught”, and this is not
the zero context. The context e1 ^ e6 would probably normally be classified as equal
to the zero context. Indeed, a pet that is a fish does not chew a bone. However, we can
invent situations where even this infimum would not be equal to the zero context.
Consider for example a movie in which a child dreams of getting a dog as a pet, but
receives a fish. In the movie, the fish is a conscious and intelligent being, and knows the
desire of the child, and just to make her happy decides to behave as much as possible
like a dog. Hence chewing a bone is something that is tried out by the fish. The example
shows that the situation would be possible where another child leaving the movie
theatre with her mother, says: “Mom, that was too funny how the fish was chewing a
bone”. Since we do not want to exclude from our theory of concepts these more exotic
situations, we do not have to put e1 ^ e6 ¼ 0 a priori. However, what is really

K 71378—21/12/2004—RAVICHANDRAN—127842

K
34,1/2

166



happening here is that different SCOPs can be constructed starting with the same set of
contexts, because one needs to decide whether some infima will be equal to the zero
context or not. But this is all right. Each different SCOP is another model. If we want to
construct a model of the concept “pet” where the possibility that the pet is a fish that is
chewing a bone is important, we need to allow e1 ^ e6 to be different from zero. If we
are not interested in this, and want a simpler model, we can put e1 ^ e6 ¼ 0:

Because it is our aim to show what an atomic context is, we will choose a simple
model. So we put e1 ^ e6 ¼ 0: Having tried out all the possible infima and suprema for
a simple case we get the following: M ¼ {0; 1; e1; e

’
1 ; e2; e

’
2 e6; e

’
6 ; e1 ^ e2; e1 ^ e’2 ; e1 ^

e’6 ; e
’
1 ^ e2; e

’
1 ^ e’2 ; e

’
1 ^ e6; e

’
1 ^ e’6 ; e2 ^ e’6 ; e

’
2 ^ e6; e

’
2 ^ e’6 ; e

’
1 _ e’2 ; e

’
1 _

e2; e
’
1 _ e6; e1 _ e’2 ; e1 _ e2; e1 _ e’6 ; e1 _ e6; e

’
2 _ e6; e2 _ e’6 ; e2 _ e6}: The set of

atomic context, denoted by A(M), is given by: AðMÞ ¼ {e1 ^ e2; e1 ^ e’2 ; e1 ^
e’6 ; e

’
1 ^ e2; e

’
1 ^ e’2 ; e

’
1 ^ e6; e

’
1 ^ e’6 ; e2 ^ e’6 ; e

’
2 ^ e6; e

’
2 ^ e’6 }; counting ten

elements.
Given a context e [ M of a concept S, sometimes we have called p the state

corresponding to this context. When we write this, we mean the state p that the context
is under the effect of the context e if it was in the ground state p̂ before the context e
started to influence it. If the concept is in another state than the ground state, the same
context e will influence the concept such that it is in general transferred to another state
than p. This means that there is no unique state that corresponds to a specific context.
How to connect a set of states (and hence not a unique state) to a context is expressed
by the function l as defined in equation (14). For a context e [ M the set l(e) is the set
of eigenstates of e. The state that we have denoted p, and that is the state that the
context e changes the ground state p̂ to, is one of these eigenstates.

3.4 The orthocomplemented lattice of properties
A property of a concept is described using the notions of actuality, potentiality, and
weight of the property as it relates to the state of the concept. That is how gradedness
is accounted for. Referring back to Tables III and IV, consider the concept “pet” in its
ground state p̂: The property a1, lives in and around the house received a very high
rating for the ground state. Subjects estimated that this is a property that is almost
always actual for the ground state of the concept “pet”. Only under context e4, “Did you
see the type of pet he has? This explains that he is a weird person”, did the weight of
property a4 substantially decrease. A “weird pet” is considered by the subjects to live
less in and around the house. But property a1 can be considered as a very characteristic
property for the concept “pet”, which means that moving across the different states of
“pet” there is not much change of actuality to potentiality and vice versa. This is not
the case for property a6, can fly. Subjects rated this property with weight 0.57 in the
ground state, which means that the property is considered to be actual around half of
the time and potential the other half for “pet” in the ground state. However for “pet” in
state p1 – hence under context e1 – “The pet is chewing a bone”, the rating decreases to
0.14, while for pet in state p5, hence under context e5, “The pet is being taught to talk” it
increases to 0.86. Table IV shows how a property changes weight when the concept
“pet” changes from state to state under different contexts.

We say that a property a [ L of a concept S is actual in state p [ S iff nðp; aÞ ¼ 1:
This makes it possible to introduce a partial order relation on L as follows.
For a; b [ L we have
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a # b , a is actual in state p then b is actual in state p ð23Þ

We say that a “is stronger or equal to” b. This makes L into a partially ordered set.
Hence we can ask about the existence of an infimum and a supremum for this partial
order. Consider a subset {ai}i[I of properties ai [ L, ;i [ I of the concept S.
We denote the infimum property by ^i[I ai and the supremum property by _i[I ai . It
can be shown that the infimum property is a “and” property and the supremum
property is a “or” property. We have, for ai [ L, i [ I

ai actual for all i [ I , ^i[I ai actual ð24Þ

one of the aj actual for j [ I ) _i[I ai actual ð25Þ

It is important to remark that for equation (25) the implication ( is in general not true.
Indeed, consider the concept “pet” and the properties a14, friendly, and a15, not friendly.
Then for an arbitrary state of “pet” we have that a14_a15 is actual, i.e. “the pet is
friendly or is not friendly”. But this does not mean that for this same state a14 is actual
or a15 is actual. Indeed, it is common to encounter a state p of “pet” where nðp; a14Þ – 1
and nðp; a15Þ – 1: For example, the ground state p̂ is like this, as are the states
p1; p2; . . . ; p6:

The structure of the set of properties of a physical entity has been the subject of
intense research in quantum axiomatics (Aerts, 1981, 1982, 1983a, b, 1999a, b, 2002;
Foulis, et al., 1983; Foulis and Randall, 1981; Jauch, 1968, Piron, 1976, 1989, 1990;
Pitowsky, 1989; Randall and Foulis, 1975, 1978, 1981, 1983). Most of the results
obtained in quantum axiomatics can be applied readily to concepts being considered
as entities with properties. Borrowing from the study of State Property Systems
(Aerts, 1999a, b, Aerts et al., 1999, 2002, 2001; Aerts and Deses, 2002, 2005) we
introduce the function

k : L!PðSÞ ð26Þ

a 7! kðaÞ ð27Þ

kðaÞ ¼ {pjp makes the property a actual} ð28Þ

that has been called the “Cartan Map” in the study of State Property Systems. Clearly
we have for a [ L

kðaÞ ¼ {qjvðq; aÞ ¼ 1; q [ SÞ ð29Þ

and for a, b[L

a # b , kðaÞ , kðbÞ ð30Þ

The Cartan Map introduces a closure space, namely k(L). By means of the closure
space the supremum can be given a topological meaning, namely for a, b [ L we have

kða _ bÞ ¼ kðaÞ< kðbÞ ð31Þ

where kðaÞ< kðbÞ is the closure of kðaÞ< kðbÞ, which is obtained exactly, in the case of
the linear Hilbert space introduced in (Aerts & Gabora, 2005) by adding the
superposition states to the set kðaÞ< kðbÞ.
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The complete lattice of properties L also contains the natural structure of an
orthocomplementation. Consider the property a’3 ; not feathered. This property has a
special relation to the property a3, feathered. We say that a’3 is the orthocomplement of
property a3. Obviously we have ða’3 Þ

’ ¼ a3: Now consider the property a15; feathered
and can swim. Then we have a15#a3. The property a’15 is the following: not feathered
and able to swim. Hence we have a’3 # a’15: Now recall the property, able to swim,
denoted a7. We know that a15 ¼ a3 ^ a7: And the property a’15 can also be expressed as
follows: not feathered or unable to swim. This means that a’15 ¼ a’3 _ a’7 : Once again,
the orthocomplementation can be characterized mathematically as follows: ’ is a map
from L to L such that for a, b [ L we have

ða’Þ’ ¼ a ð32Þ

a # b ) b’ # a’ ð33Þ

a ^ a’ ¼ 0; a _ a’ ¼ 1 ð34Þ

The set L,# ,’ is a complete orthocomplemented lattice. It can easily be seen that the
orthocomplement is not a complement, due to the existence of superposition states.
For example, the ground state p̂ of the concept “pet” is neither an eigenstate of the
property a3, feathered, nor of the property a’3 ; not feathered. This means that although
kða3Þ< kða’3 Þ , kða3 _ a’3 Þ; this is a strict inclusion. Hence kða3Þ< kða’3 Þ –
kða3 _ a’3 Þ; which would be the case if the orthocomplement were a complement.
Considering the closure space introduced by k we do have kða3 _ a’3 Þ ¼
kða3Þ< kða’3 Þ: The states in kða3Þ< kða’3 Þ not contained in kða3Þ< kða’3 Þ are the
superpositions of states in kða3Þ< kða’3 Þ:

3.5 Concepts, properties and contexts
In SCOP a concept is described by making use of the sets of contexts and properties
relevant for this concept. However a property often is in itself a concept or an
aggregation of concepts. One can wonder whether this does not lead to circularity. We
can get an insight into this question by considering the situation in quantum
mechanics. One of the relevant physical quantities of a quantum entity is its position.
The context corresponding to a position measurement is a detector screen. The detector
screen in itself is a congregation of quantum entities, namely the atoms and molecules
that are the building blocks of the screen. In quantum mechanics the detector screen is
described by another mathematical notion than a quantum entity or a congregation of
quantum entities. The states of a quantum entity are described by vectors in a Hilbert
space while the detector screen is described by an orthogonal projection operator of the
same Hilbert space. In Aerts and Gabora (2005) the states of a concept are described by
vectors of a Hilbert space and a context by an orthogonal projection operator of the
same Hilbert space. This means that also concerning this question of circularity we are
in an analogous situation. The reason that this does not lead to circularity is the
following: if a specific physical entity (a specific concept) is the focus of description by
quantum mechanics (by SCOP), then the symmetry is broken, because the detector
screen (context) is not the focus of description. There could only eventually be a
problem of consistency. If the detection screen (context) is described by means of the
procedure for the description of the compound of different quantum entities (concepts;
this is the procedure that we develop explicitly in Aerts and Gabora (2005)), then this
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more refined description should give the same results as the standard one by means of
an orthogonal projection operator. In quantum mechanics this problem is known as the
measurement problem. We plan to study the equivalent of the measurement problem of
quantum mechanics for concepts in future research.

As for properties being also aggregations of concepts, the analogy with quantum
systems is not there any longer. Properties of a quantum entity are not aggregations of
quantum entities, but they are too aggregations of concepts. However, the same more
general argument applies. Since the focus is on one and only one concept (or on one and
only one combination of concepts), a property may, without leading to a problem of
circularity be described in another way than the concept is being done. Hence we can
describe a property by means of an orthogonal projection operator, as is done in Aerts
and Gabora (2005). Of course a similar problem of consistency appears in the following
case: suppose a property is explicitly used in a sentence, and we want to describe this
sentence as a combination of concepts. In this case, also the property will be described
as a concept on its own, with the focus on this one and only concept that in the sentence
fulfills the role of a property.

4. Summary and conclusions
In Notes on an Epistemology for Living Things, von Foerster writes “Objects and events
are not primitive experiences. Objects and events are representations of relations
(von Foerster, 1984).” This insightful comment shows clearly that at some level he
foresaw the step we have taken in this paper. If we see something and classify it as an
instance of “bird”, we are forging a relationship between a context – this particular
experience of a particular bird chirping in a particular tree – and our concept “bird”.
How one experiences the concept “bird” depends on the circumstances that evoked it.

Consider the concept “pet” in the two following contexts – “The pet is chewing a
bone” and “The pet is being taught to talk”. If subjects are asked to rate the typicality
of a specific exemplar of “pet” and the applicability of a particular property of “pet”,
their ratings will depend on whether “pet” is considered under the first context or the
second. The exemplar dog, for example, will rate high under the first context and low
under the second context, whereas the exemplar parrot will show the inverse. Similarly
with properties, furry will rate high under the first context and low under the second,
whereas feathered will show the inverse pattern. A basic aim of our formalism is to
model this type of contextual influence on a concept. Our method of incorporating
contextual influence enables us to model the combination of concepts, and hence
proposes a solution to a problem that is considered to be very important and wholly
unsolved within existent theories of concepts, i.e. the combination problem.

To incorporate the effect of contextual influence, our theory introduces the notion of
“state of a concept”. For the above example we introduce two states of the concept
“pet”, i.e. one that accounts for the ratings under the first context, and another that
accounts for the ratings under the second. Thus our theory considers a concept to be an
entity comprising different states, with each of the states accounting for the different
exemplar typicalities and property applicabilities. Note that we are not just proposing
that the applicabilities of properties differ amongst different exemplars of a concept, an
effect well accounted for in other theories, e.g. prototype and exemplar theories.
The applicability of a single property varies for each state, as does the typicality of a
single exemplar.
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Our theory proposes the structure of a SCOP to model a concept. SCOP consists of a
set of relevant states S, a set of relevant contexts M, and a set of relevant properties
L. An archetypical “change” modeled by the SCOP is the following. The concept,
when in a specific state p contained in S, accounting for the typicality values of
exemplars and applicabilities of properties (in that state p), changes to another state q
contained in S under a specific context e contained in M, in its turn accounting for the
changed typicality values of exemplars and changed applicabilities of properties
(in that state q). It is this possibility of “dynamic change” under the influence of a
context within SCOP that allows us to model the combination of concepts. When
concepts combine, they mutually affect how they function as a context for each other,
and hence provoke the type of dynamical change of state that is a basic aspect of our
theory. Existing theories of concepts are unable to describe combinations of concepts
because they have no means to describe the dynamical change of state under the
influence of a context, which means that they can neither describe the change of state
that one concept causes to other concepts in a combination of concepts, where this one
concept functions as a context for these other concepts.

Section 2 develops the mathematical structure of the SCOP in its most general form
by identifying structures in the set of contexts M and the set of properties L. If we
consider, for the concept “pet”, contexts e “The pet runs through the garden trying to
catch a cat” and f “The pet runs through the garden”, we can say that e “is stronger
than or equal to” f, thereby introducing a partial order relation in the set of contexts M.
By introducing the “and” context and the “or” context of two contexts, set M can be
shown to obtain the structure of a complete lattice (Section 3.1). By introducing the
“not” context for any other context, the structure of an orthocomplementation can be
derived for M (Section 3.3). We then introduced the notions of “eigenstate” and
“potentiality state” for a context. A state of a concept is said to be an eigenstate for a
context of this concept if the state is not affected by the context. If the state is not an
eigenstate of a context, it is said to be a potentiality state for this context (Section 3.2).

The quantum-like structure of the SCOP is revealed if we consider that for two
contexts e and f contained in M, a state will generally not be an eigenstate of the
context e “or” f, if and only if it is an eigenstate of e “or” an eigenstate of f (Section 3.2).
Similarly, this quantum-like structure of the SCOP is revealed if we consider that
although any state is an eigenstate of the context e “or” not e, we cannot say that any
state is an eigenstate of e “or” an eigenstate of not e. The latter argument can easily be
illustrated by means of the contrast between context e “The pet runs through the
garden”, and context not e “The pet does not run through the garden”. Any state that
does not tell us what the pet is doing is neither an eigenstate of e (indeed, in e the state
of pet changes to one in which the pet “runs through the garden”) nor is it an eigenstate
of not e (in context not e, the state of pet is also affected, for it changes to a state in
which the pet “does not run through the garden”) (Section 3.3).

A similar structure, namely that of a complete orthocomplemented lattice, can be
derived for the set of properties L of the SCOP. This structure too can be shown to
be quantum-like (Section 3.4). The existence of a complete lattice structure for the sets
of contexts and properties makes it possible to construct a topological representation of
a SCOP in a closure space. In this closure space, the potentiality states whose presence
makes the SCOP quantum-like are recuperated by the closure operation (Sections 3.2
and 3.4)

K 71378—21/12/2004—RAVICHANDRAN—127842

Theory of
concepts

171



The identification of the complete orthocomplemented lattice structure for the sets
of contexts and properties of the SCOP is an operational derivation, i.e. we do not make
any non-operational technical hypothesis, but merely derive the structure by taking
into account the natural relations (such as the partial order relation of “is stronger than
or equal to”) that exist in the sets of contexts and properties.
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