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Abstract

Purpose – To elaborate a theory for modeling concepts that solves the combination problem, i.e. to
deliver a description of the combination of concepts. We also investigate the so-called “pet fish
problem” in concept research.

Design/methodology/approach – The set of contexts and properties of a concept are embedded in
the complex Hilbert space of quantum mechanics. States are unit vectors or density operators and
context and properties are orthogonal projections.

Findings – The way calculations are done in Hilbert space makes it possible to model how context
influences the state of a concept. Moreover, a solution to the combination problem is proposed. Using
the tensor product, a natural product in Hilbert space mathematics, a procedure for describing
combined concepts is elaborated. This procedure also provides a solution to the pet-fish problem, and
it allows the modeling of a arbitrary number of combined concepts. By way of example, a model for a
simple sentence containing a subject, a predicate and an object, is presented.

Originality/value – The combination problem is considered to be one of the crucial unsolved
problems in concept research. Also the pet-fish problem has not been solved by earlier attempts of
modeling.
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1. Introduction
The SCOP theory models a concept as an entity that can be in different states such that
a state changes under the influence of a context The notion of “state of a concept”
makes it possible to describe a specific contextual effect, namely that an exemplar of
the concept has different typicalities and a property of the concept different
applicabilities under different contexts. The experiment put forward by Aerts and
Gabora (2005) illustrates this contextual effect. In this paper, we present a numerical
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mathematical model for the representation of a concept, built with a mathematical
formalism originally used in quantum mechanics, and we show that the data of the
above-mentioned experiment can be reproduced by the model. Specifically, the model is
built using the Hilbert space of quantum mechanics, states are represented by unit
vectors of this Hilbert space and contexts and properties by projection operators, and
the change of state under the influence of a context is described by von Neumann’s
(1932) “quantum collapse state transformation” in Hilbert space.

This paper deals primarily with the question of what happens when concepts
combine. As explained in Aerts and Gabora (2005), known theories of concepts
(prototype, exemplar and theory) cannot deliver a model for the description of the
combination of concepts. We show that the standard quantum mechanical procedure
for the description of the compound of quantum entities, i.e. the tensor product
procedure, delivers a description of how concepts combine. Specifically, given the
Hilbert spaces of individual concepts, the combination of these concepts is described by
the tensor product Hilbert space of these individual Hilbert spaces, and the quantum
formalism applied in this tensor product Hilbert space. In this way we work out an
explicit description of the combination of “pet” and “fish” in “pet fish”, and show that
our model describes the guppy effect, and as a consequence solves in a natural way
what has come to be known as the “pet fish problem” (Osherson and Smith, 1981, 1982).

We were amazed to find that not only combinations of concepts like “pet fish”, but
also sentences like “the cat eats the food” can be described in our formalism by
nonproduct vectors of the tensor product (representing the so-called entangled states of
quantum mechanics) of the individual Hilbert spaces corresponding to the concepts in
the combination. It is quantum entanglement that accounts for the most meaningful
combinations of concepts. In the last section of the paper we explain the relation between
our Hilbert space model of concepts and von Foerster’s quantum memory approach.

2. The mathematics for a quantum model
This section introduces the mathematical structure necessary to construct a Hilbert
space representation of a concept.

2.1 Hilbert space and linear operators
A Hilbert space H is a vector space over the set of complex numbers C; in which case
we call it a complex Hilbert space, or the set of real numbers R; in which case we call it
a real Hilbert space. Thus, the elements of a Hilbert space are vectors. We are interested
in finite dimensional complex or real Hilbert spaces and hence do not give a definition
of an abstract Hilbert space. Let us denote Cn to be set of n-tupels ðx1; x2; . . . ; xn21; xnÞ;
where each xk for 1 # k # n is a complex number. In a real Hilbert space, the elements
xk are real numbers, and the set of n-tupels is denoted by Rn: However, we consider the
complex Hilbert space case as our default, because the real Hilbert space case is a
simplified version of it, and its mathematics follows immediately from the complex
case. We define a sum and a multiplication with a complex number as follows. For
ðx1; x2; . . . ; xn21; xnÞ; ðy1; y2; . . . ; yn21; ynÞ [ Cn and a [ C; we have:

ðx1; x2; . . . ; xn21; xnÞ þ ðy1; y2; . . . ; yn21; ynÞ

¼ ðx1 þ y1; x2 þ y2; . . . ; xn21 þ yn21; xn þ ynÞ
ð1Þ
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aðx1; x2; . . . ; xn21; xnÞ ¼ ða · x1;a · x2; . . . ;a · xn21;a · xnÞ ð2Þ

This makes Cn into a complex vector space. We can call the n tupels
ðx1; x2; . . . ; xn21; xnÞ vectors, and they are denoted as jxl [ Cn: We also define an
inproduct between vectors of Cn as follows. For jxl; jyl [ Cn we have:

kxjyl ¼ x*1 · y1 þ x*2 · y2 þ · · · þ x*n21 · yn21 þ x*n · yn ð3Þ

where x*i is the complex conjugate of xi. Clearly the inproduct of two vectors is a
complex number, hence kxjyl [ C: For a;b [ C and jxl; jyl; jzl [ Cn we have:

kaxþ byjzl ¼ a* kxjzlþ b* kyjzl ð4Þ

kxjayþ bzl ¼ akxjylþ bkyjzl ð5Þ

This shows that the inproduct is conjugate linear in the first slot, and linear in the
second slot of the operation k · j · l: The complex vector space Cn equipped with this
inproduct is an n-dimensional complex Hilbert space. It is important to mention that
any n-dimensional complex Hilbert space is isomorphic to Cn: The inproduct gives rise
to a length for vectors and an angle between two vectors, i.e. for jxl; jyl [ Cn we
define:

kxk ¼
ffiffiffiffiffiffiffiffiffiffi
kxjxl

p
and cosðx; yÞ ¼

jkxjylj
kxk · kyk

ð6Þ

Two non-zero vectors jxl; jyl [ Cn are said to be orthogonal iff kxjyl ¼ 0: Equation (6)
shows that if the inproduct between two non-zero vectors equals zero, the angle
between these vectors is 908. A linear operator A on Cn is a function A : Cn

! Cn such
that

Aðajxlþ bjylÞ ¼ aAjxlþ bAjyl ð7Þ

It can be proven that for the finite dimensional Hilbert space Cn each linear operator A
can be fully described by a n £ n matrix Aij, 1 # i # n; 1 # j # n of complex numbers,
where:

Ajxl ¼
Xn
j¼1

A1jxj;
Xn
j¼1

A2jxj; . . . ;
Xn
j¼1

An21; jxj;
Xn
j¼1

An; jxj

 !
ð8Þ

if jxl ¼ ðx1; x2; . . . ; xn21; xnÞ: We make no distinction between the linear operator A
and its matrix representation Aij. This gives us the necessary ingredients to explain
how states, contexts and properties of a concept are represented in the Hilbert space
model.

2.2 States
There are two types of states in quantum mechanics: pure state and density state A
pure state is represented by a unit vector jxl [ Cn; i.e. a vector jxl [ Cn such that
kxk ¼ 1: A density state is represented by a density operator r on Cn; which is a linear
operator that is self-adjoint. This means that:
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rij ¼ r*ji ð9Þ

for all i, j such that 1 # i # n; 1 # j # n: Furthermore, it is semi definite, which means
that kxjrjxl $ 0 ; jxl [ Cn and its trace, which is the sum of the diagonal elements
of its matrix representation, is equal to 1. Hence

Xn
i¼1

rii ¼ 1:

So, to represent the concept “pet” and the situation described previously using this
quantum model, we determine the dimension n of the Hilbert space, and represent the
states p1; p2; . . . ; pn [ S of “pet” using unit vectors or density operators of the Hilbert
space Cn:

2.3 Properties and weights
A property in quantum mechanics is represented by means of a linear operator, which
is an orthogonal projection operator or an orthogonal projector. An orthogonal
projection operator P is also a self-adjoint operator; hence equation (9) must be
satisfied, i.e. Pij ¼ P*ji: Furthermore for an orthogonal projector, it is necessary that the
square of the operator equals the operator itself. Hence P 2 ¼ P: Expressed using the
components of the matrix of P, this gives

Xn
j¼1

PijPjk ¼ Pik:

This means that to describe the concept “pet” we need to find two orthogonal
projection operators Pa and Pb of the complex Hilbert space Cn that represent the
properties a; b [ L:

Let us introduce the quantum mechanical rule for calculating the weights of
properties in different states. If the state p is a pure state represented by a unit vector
jxpl [ Cn we have:

nðp; aÞ ¼ kxpjPajxpl ð10Þ

If the state p is a density state represented by the density operator rp we have

nðp; aÞ ¼ TrrpPa ð11Þ

where TrrPa is the trace (the sum of the diagonal elements) of the product of operator r
with operator Pa.

2.4 Contexts, probabilities and change of state
In quantum mechanics, a measurement is described by a linear operator which is a
self-adjoint operator, hence represented by an n £ n matrix Mij that satisfies equation
(9), i.e. Mij ¼ M*ji: Although it is standard to represent a context – which in the case of
physics is generally a measurement – using a self-adjoint operator, we will use the set
of orthogonal projection operators that form the spectral decomposition of this
self-adjoint operator, which is equivalent representation. Note that we have been
considering “pieces of context” rather than total contexts, and a piece of context is
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represented by one of these projection operators. Hence, a (piece of) context e is
represented by a projector Pe. Such a context e changes a state p of the concept to state
q as follows. If p is a pure state represented by the unit vector jxpl [ Cn we have:

jxql ¼
Pejxplffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kxpjPejxpl

p ð12Þ

where

mðq; e; pÞ ¼ kxpjPejxpl ð13Þ

is the probability that this change takes place. If p is a density state represented by the
density operator rp we have:

rq ¼
PerpPe

TrrpPe
ð14Þ

where

mðq; e; pÞ ¼ TrrpPe ð15Þ

is the probability that this change takes place.

2.5 Orthonormal bases and superpositions
The representation of a state p by a density operator rp is general enough to include the
case of pure states. Indeed, it can be proven that if a density operator is also an
orthogonal projector, then it is an orthogonal projector that projects onto one vector.

A set of vectors B ¼ {jul : jul [ Cn} is an orthonormal base of Cn iff

(1) the set of vectors B is a generating set for Cn; which means that each vector of
Cn can be written as a linear combination, i.e. superposition, of vectors of B;

(2) each of the vectors of B has length equal to 1, i.e. kujul ¼ 1 for each jul [ B; and

(3) each two different vectors of B are orthogonal to each other, i.e. kvjwl ¼ 0 for
jvl; jwl [ B and jvl – jwl:

It can be shown that any orthonormal base of Cn contains exactly n elements. Given
such an orthonormal base B of Cn; any vector jxl [ Cn can be uniquely written as a
linear combination or superposition of the vectors of this base. This means that there
exist superposition coefficients au [ C such that

jxl ¼
jul[B

X
aujul:

Using equation (5) we have

kujxl ¼ uj
jvl[B

X
avjv

* +
¼

jvl[B

X
avkujvl ¼ au;

hence

jxl ¼
jul[B

X
julkujxl ð16Þ

From this it follows that
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jul[B

X
julkuj ¼ 1 ð17Þ

which is called the “resolution of this unity” in Hilbert space mathematics. Consider the
projector that projects on jul and denote it Pu. Suppose that jxl is a unit vector. Then
we have

jxl ¼
jul[B

X
Pujxl:

Taking into account equation (16) gives us Pu ¼ julkuj: We also have Pujxl ¼ aujul
and hence

kxjPujxl ¼ aua*u ¼ jauj
2

ð18Þ

This proves that the coefficients au of the superposition of a unit vector jxl in an
orthonormal base B have a specific meaning. From equations (13) and (18) it follows
that they are the square root of the probability that the state of the concept represented
by jxl changes under the influence of the context represented by Pu.

It is easy to see that the quantum model is a specific realization of a SCOP. Consider
the complex Hilbert space Cn; and define

SQ ¼ {rpjrp is a density operator of H};

MQ ¼ {PejPe is an orthogonal projection operator of H};

LQ ¼ {PajPa is an orthogonal projection operator of H};

and the functions m and n such that mQðq; e; pÞ ¼ TrrpPe; nQðp; aÞ ¼ TrrpPa and
rq ¼ PerpPe=TrrpPe; then ðSQ;MQ;LQ;mQ; nQÞ is a SCOP.

3. A Hilbert space representation of a concept
In this section, we explain how the quantum mechanical formalism is used to construct
a model for a concept. We limit ourselves to the construction of a model of “one”
concept. In the next section, we explain how it is possible to model combinations of two
or more concepts.

3.1 Basic contexts and basic states
Let us re-analyze the experiment in greater detail, taking into account the structure of
SCOP derived in Aerts and Gabora (2005). For this purpose, the states and contexts
corresponding to the exemplars considered in Table II of Aerts and Gabora (2005) are
presented in Table I. So, for example, e19 is the context “The pet is a hamster”, and p15

is the state of “pet” under the context e15, “The pet is a mouse”. In the experiment,
subjects were asked to estimate the frequency of a specific exemplar of “pet” given a
specific context; for example, the exemplar cat for the context e1, “The pet is chewing a
bone”, the frequency of the exemplar dog for the context e2, “The pet is being taught”,
etc. These estimates guide how we embed the SCOP into a Hilbert space. The
hypothesis followed in the construction of the embedding is that the frequency
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estimates reflect the presence of contexts that are stronger than those explicitly
considered in the model, and the distribution of these contexts reflects the frequencies
measured in the experiment. Let us call these contexts as basic contexts. For example,
the contexts:

e27; I remember how I have seen my sister trying to teach her dog to

jump over the fence on command
ð19Þ

e28; A snake as pet; oh yes; I remember having seen that weird guy

on television with snakes crawling all over his body
ð20Þ

e29; That is so funny; my friend is teaching his parrot to say my name

when I come in ð21Þ

could be such basic contexts. And indeed we have e27 # e2 and e27 # e24; e28 # e4 and
e28 # e22; and e29 # e5 and e29 # e17; which shows that these contexts are stronger
than any of those considered in the model. Let us denote X the set of such basic
contexts for the concept “pet”.

Here, we see how our model integrates similarity-based and theory-based
approaches. The introduction of this set of contexts might give the impression that
basic contexts play somewhat the same role as exemplars play in exemplar models.
This is however, not the case; we do not make claims about whether basic contexts are
stored in memory. It is possible, for example, that it is a mini-theory that is stored in
memory, a mini-theory that has grown out of the experience a subject has had with
(part of) the basic contexts, and hence incorporates knowledge about aspects
(for example, frequency of appearance in different contexts) of the basic contexts in this
way. But it is also possible that some basic contexts are stored in memory. At any rate,
they play a structural role in our model, a role related directly to the concept itself.
To clarify this, compare their status to the status of a property. The property a7,

Exemplar Context State

Rabbit E13 p13

Cat E14 p14

Mouse E15 p15

Bird E16 p16

Parrot E17 p17

Goldfish E18 p18

Hamster E19 p19

Canary E20 p20

Guppy E21 p21

Snake E22 p22

Spider E23 p23

Dog E24 p24

Hedgehog E25 p25

Guinea pig E26 p26

Table I.
States and contexts
relevant to exemplars of
the concept “pet”
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can swim is a property of the concept “goldfish” independent of the choice of a
specific theory of concept representation, or independent of what is or is not stored in
memory.

We now introduce some additional hypotheses. First, we suppose that each basic
context is an atomic context of M: This means that we stop refining the model with
basic contexts; it amounts to demanding that there are no stronger contexts available
in the model. They are the most concrete contexts we work with. As mentioned in
section 3.5 of Aerts and Gabora (2005), even if a context is an atomic context, there still
might be several eigenstates of this context. As an additional hypothesis, we demand
that each basic context has only one eigenstate in the model. This means that also on
the level of states we want the basic contexts to describe the most refined situation.
Indeed, if an atomic context has different eigenstates, the states penetrate more deeply
into the refinement of the model than the contexts do. So our demand reflects an
equilibrium in fine structure between states and contexts. The set of eigenstates of the
atomic contexts we denote U, and we call the elements of U basic states. The basic
states and contexts are not necessarily possible instances of the concept, but an
instance can play the role of a basic state and context. Basic states and contexts can be
states and contexts that the subject has been confronted with in texts, movies, dreams,
conversations, etc. Let us introduce:

Ei ¼ {uju # ei; u [ X} ð22Þ

Xij ¼ {uju # ei ^ ej; u [ X} ð23Þ

where Ei is the set of basic contexts that is stronger or equal to ei, and Xij the set of
basic contexts stronger or equal to ei ^ ej: It is easy to prove that Xij ¼ Ei > Ej:
Indeed, we have u [ Xij , u # ei ^ ej , u # ei and u # ej , u [ Ei > Ej: Suppose
that n is the total number of basic contexts. Let us denote n(Xij) the number of basic
contexts contained in Xij and n(Ei) the number of basic contexts contained in Ei. We
choose n(Xij) and n(Ei) as in Table II (we have denoted n(Xij) as nij in Table II).

3.2 Embedding in the Hilbert space
We consider a Hilbert space of dimension 1400, hence Cn; with n ¼ 1400: Each basic
context u [ X is represented by a projector julkuj; where jul [ Cn is a unit vector, and
such that B ¼ {julju [ X} is an orthonormal base of the Hilbert space Cn; and the
corresponding basic state u [ U is represented by this unit vector jul [ B: The
ground state p̂ of the concept “pet” is represented by a unit vector jxp̂l; superposition of
the base states B ¼ {julju [ X}

jxp̂l ¼
u[X

X
aujul ð24Þ

where au ¼ kujxp̂l
jauj

2
is the probability that the concept “pet” changes to be in base state jul under

context u. We write:

jauj
2
¼

1

1400
;u [ X ð25Þ

K 71379—21/12/2004—RAVICHANDRAN—127843

A theory of
concepts

183



This means that each of the basic states u [ U is considered to have an equal
probability of being elicited. We can rewrite the ground state p̂ of “pet” more explicitly
now:

jxp̂l ¼
u[X

X 1ffiffiffiffiffiffiffiffiffiffi
1400

p jul ð26Þ

This means that if the concept “pet” is in its ground state p̂; there is a probability of
1/1400 that one of the contexts u [ X acts as a basic context of “pet”, and changes
the ground state of “pet” to the basic state u [ U of “pet”. This means that for “pet”
in its ground state, the probability that a basic context that is contained in Ei gets
activated and changes the ground state of “pet” to the corresponding basic state, is
given by nðEiÞ=1400; where n(Ei) is given in Table II. Let us show that a
straightforward calculation proves that this gives exactly the weights in Table II of
Aerts and Gabora (2005). Following Table II in 98 of the 1400 basic contexts, the pet
is a hamster. This means that the weight of hamster in the ground state of “pet” is
98=1400 ¼ 0:07; which indeed corresponds with what we find in Table II of Aerts
and Gabora (2005) for hamster. In 28 of the 1400 basic contexts, the pet is a spider.
Hence the weight of spider in the ground state of “pet” is 28=1400 ¼ 0:02; as in Table
II of Aerts and Gabora (2005). There are 168 of the 1,400 basic contexts where the pet
is a dog, which means that the weight for dog is 168=1400 ¼ 0:12; as in Table II of
Aerts and Gabora (2005).

Now that we have introduced the mathematical apparatus of the quantum model,
we can show explicitly how a context changes the state of the concept to another state,
and the model remains predicting the data of the experiment. Consider the concept
“pet” and the context e1, “The pet is chewing a bone”. The context e1 is represented by
the projection operator Pe1

given by:

Pe1
¼

u[E1

X
julkuj ð27Þ

e1 e2 e3 e4 e5 e6 1
Exemplar n(E1)¼ 303 n(E2)¼ 495 n(E3)¼ 500 n(E4)¼ 101 n(E5)¼ 200 n(E6)¼ 100 n ¼ 1400

Rabbit n13,1¼ 12 n13,2¼ 35 n13,3¼ 75 n13,4 ¼ 5 n13,5 ¼ 2 n13,6 ¼ 0 n(E13)¼ 98
Cat n14,1¼ 75 n14,2¼ 65 n14,3¼ 110 n14,4 ¼ 3 n14,5 ¼ 6 n14,6 ¼ 1 n(E14)¼ 168
Mouse n15,1¼ 9 n15,2¼ 30 n15,3¼ 40 n15,4 ¼ 11 n15,5 ¼ 2 n15,6 ¼ 0 n(E15)¼ 70
Bird n16,1¼ 6 n16,2¼ 40 n16,3¼ 10 n16,4 ¼ 4 n16,5 ¼ 34 n16,6 ¼ 1 n(E16)¼ 112
Parrot n17,1¼ 6 n17,2¼ 80 n17,3¼ 5 n17,4 ¼ 4 n17,5 ¼ 126 n17,6 ¼ 1 n(E17)¼ 98
Goldfish n18,1¼ 3 n18,2¼ 10 n18,3¼ 0 n18,4 ¼ 2 n18,5 ¼ 0 n18,6 ¼ 48 n(E18)¼ 140
Hamster n19,1¼ 12 n19,2¼ 35 n19,3¼ 30 n19,4 ¼ 4 n19,5 ¼ 2 n19,6 ¼ 0 n(E19)¼ 98
Canary n20,1¼ 3 n20,2¼ 35 n20,3¼ 5 n20,4 ¼ 2 n20,5 ¼ 14 n20,6 ¼ 1 n(E20)¼ 112
Guppy n21,1¼ 3 n21,2¼ 10 n21,3¼ 0 n21,4 ¼ 2 n21,5 ¼ 0 n21,6 ¼ 46 n(E21)¼ 126
Snake n22,1¼ 6 n22,2¼ 10 n22,3¼ 5 n22,4 ¼ 22 n22,5 ¼ 0 n22,6 ¼ 1 n(E22)¼ 42
Spider n23,1¼ 3 n23,2¼ 5 n23,3¼ 15 n23,4 ¼ 23 n23,5 ¼ 0 n23,6 ¼ 0 n(E23)¼ 28
Dog n24,1¼ 150 n24,2¼ 95 n24,3¼ 120 n24,4 ¼ 3 n24,5 ¼ 12 n24,6 ¼ 1 n(E24)¼ 168
Hedgehog n25,1¼ 6 n25,2¼ 10 n25,3¼ 40 n25,4 ¼ 12 n25,5 ¼ 0 n25,6 ¼ 0 n(E25)¼ 42
Guinea pig n26,1¼ 9 n26,2¼ 35 n26,3¼ 45 n26,4 ¼ 4 n26,5 ¼ 2 n26,6 ¼ 0 n(E26)¼ 98

Table II.
Choice of the distribution
of the different types of
basic contexts for the
concept “pet”
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where E1 is the set of basic contexts that is stronger than or equal to e1, hence
E1 ¼ {uju # e1; u [ X}: Let us calculate the new state jxp1

l that jxp̂l changes to under
the influence of e1. Following equation (12) we have

jxp1
l ¼

Pe1
jxp̂lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kxp̂jPe1
jxp̂l

q ð28Þ

Let us calculate this new state explicitly. We have

Pe1
jxp̂l ¼

u[E1

X
julkujxp̂l ¼

u[E1

X 1ffiffiffiffiffiffiffiffiffiffi
1400

p jul ð29Þ

and

kxp̂jPe1
jxp̂l ¼

u[E1

X
kxp̂julkujxp̂l ¼

u[E1

X
jkxp̂julj

2
¼

u[E1

X 1

1400
¼

303

1400
ð30Þ

This gives

jxp1
l ¼

u[E1

X 1ffiffiffiffiffiffiffi
303

p jul ð31Þ

3.3 Different states and different weights
We can now show how the quantum model predicts different weights for the contexts
corresponding to different exemplars in the experiment. Consider for example, the
context e14, “The pet is a cat”, and the corresponding state p14, “The pet is a cat”, and
calculate the probability that p1 collapses to p14 under context e14. First we must
calculate the orthogonal projection operator of the Hilbert space that describes e14. This
projection operator is given by:

Pe14
¼

u[E14

X
julkuj ð32Þ

where E14 ¼ {uju # e14; u [ X}: Following the quantum mechanical calculation in
equation (13), we obtain the weight of the exemplar cat under context e1, i.e. the
probability that state p1 collapses to state p14 under context e14, “The pet is a cat”. We
have

mðp14; e14; p1Þ ¼ kxp1
jPe14

jxp1
l ð33Þ

which gives

kxp1
jPe14

jxp1
l ¼

u[E14

X
kxp1

julkujxp1
l ¼

u[E14

X
v[E1

X
w[E1

X 1

303
kvjulkujwl ð34Þ
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kxp1
jPe14

jxp1
l ¼

u[E14

X
v[E1

X
w[E1

X 1

303
dðv; uÞdðu;wÞ ¼

u[E1>E14

X 1

303
¼

75

303
¼ 0:25 ð35Þ

corresponding with the experimental result in given Table II of Aerts and Gabora
(2005). In contrast, let us calculate the weight of the exemplar cat for “pet” in the
ground state p̂: Applying the same formula (13) we have

mðp14; e14; p̂Þ ¼ kxp̂jPe14
jxp̂l ð36Þ

and

kxp̂jPe14
jxp̂l ¼

u[E14

X
kxp̂julkujxp̂l ¼

u[E14

X 1

1400
¼

168

1400
¼ 0:12 ð37Þ

This also corresponds to the experimental results given in Table II of Aerts and
Gabora (2005).

Let us make some more calculations of states and weights corresponding to
exemplars and contexts of the experiment. Consider the context e6, “The pet is a fish”.
This context e6 is represented by the projection operator Pe6

given by:

Pe6
¼

u[E6

X
julkuj ð38Þ

where E6 is the set of basic contexts that is stronger than or equal to e6. Hence
E6 ¼ {uju # e6; u [ X}: Following equation (12) we obtain the following expression
for the state jxp6

l

jxp6
l ¼

Pe6
jxp̂lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kxp̂jPe6
jxp̂l

q ð39Þ

We have

Pe6
jxp̂l ¼

u[E6

X
julkujxp̂l ¼

u[E6

X 1ffiffiffiffiffiffiffiffiffiffi
1400

p jul ð40Þ

and

kxp̂jPe6
jxp̂l ¼

u[E6

X
kxp̂julkujxp̂l ¼

u[E6

X
jkxp̂julj

2
¼

u[E6

X 1

1400
¼

100

1400
ð41Þ

This gives

jxp6
l ¼

u[E6

X 1ffiffiffiffiffiffiffi
100

p jul ð42Þ

Suppose we want to calculate the weights of the exemplar “hedgehog” for this state.
Again using formula (13) we obtain:
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mðp25; e25; p6Þ ¼ kxp6
jPe25

jxp6
l ð43Þ

From Table II follows that n25;6 ¼ 0; which means that E25 > E6 ¼ Y: We have no
basic contexts in our model where the pet is a fish and a hedgehog. This means that
Pe25

’ jxp6
l; and hence Pe25

jxp6
l ¼ j0l: As a consequence we have mðp25; e25; p6Þ ¼ 0;

which corresponds to the experimental result in Table II of Aerts and Gabora (2005).
Let us calculate the weight for the exemplar goldfish in the state p6. We have:

mðp18; e18; p6Þ ¼ kxp6
jPe18

jxp6
l ð44Þ

where

Pe18
¼

u[E18

X
julkuj ð45Þ

and E18 ¼ {uju # e18; u [ X}: Following equation (13) this gives:

kxp6
jPe18

jxp6
l ¼

u[E18

X
kxp6

julkujxp6
l ¼

u[E18

X
v[E6

X
w[E6

X 1

100
kvjulkujwl ð46Þ

kxp6
jPe18

jxp6
l ¼

u[E18

X
v[E6

X
w[E6

X 1

100
dðv; uÞdðu;wÞ ¼

u[E18>E6

X 1

100
¼

48

100
¼ 0:48 ð47Þ

corresponding with the experimental result given in Table II of Aerts and Gabora
(2005).

The foregoing calculations show that our SCOP theory in Hilbert space is able to
model the experimental data of the experiment put forward in section 2.2 of Aerts and
Gabora (2005). The choice of distribution of the basic contexts and states are presented
in Table II, and the corresponding dimension of the Hilbert space is crucial for the
model to predict that experimental data. It is possible to see that the distribution of
basic contexts and states (Table II) corresponds more or less to a set theoretical model
of the experimental data, such that the Hilbert space model can be considered to be a
quantization, in the sense used in quantum mechanics, of this set theoretical model.

4. Combinations of concepts in the SCOP model
The previous section explained how to build a model of one concept. This section
shows that conceptual combinations can be described naturally using the tensor
product of the corresponding Hilbert spaces, the procedure to describe compound
entities in quantum mechanics. We give an explicit model for the combinations of the
concepts “pet” and “fish”, and show that the pet fish problem is thereby solved. Then
we illustrate how combinations of more than two concepts can be described. First we
need to explain what the tensor product is.

4.1 The tensor product and entanglement
Consider two quantum entities S and T described, respectively, in Hilbert spaces HS

and HT : In quantum mechanics there exists a well known procedure to describe the
compound S^T of two quantum entities S and T by means of the Hilbert space
HS ^HT ; which is the tensor product of the Hilbert spaces HS and HT : The tensor
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product behaves like a product; for example, take a [ C; jxSl [ HS and jxTl [ HT ;
then we have

aðjxSl^ jxTlÞ ¼ ðajxSlÞ^ jxTl ¼ jxSl^ ðajxT lÞ ð48Þ

However, it is not commutative, meaning that even when a Hilbert space is tensored
with itself, for jxl [ H and jyl [ H we have jxl^ jyl [ H^H is in general not
equal to jyl^ jxl: The mathematical construction of the tensor product in all its details
is not trivial. The best way to imagine what the tensor product space is like is to
consider two orthonormal bases B S and B T, respectively, of the subspaces HS and
HT and note that the set of vectors {juSl^ juTl : juSl [ BS; juTl [ BT} is an
orthonormal base of the tensor product HS ^HT : Concretely this means that each
vector jzl [ HS ^HT can be written as a linear combination of elements of this
orthonormal base:

jzl ¼
ju Sl[BS ;juT l[BT

X
au S ;uT juSl^ juTl ð49Þ

We need to explain some of the more sophisticated aspects of the tensor product,
because they are crucial for the description of conceptual combinations. The first
aspect is that vectors of the tensor product can be product vectors or nonproduct
vectors. The difference between them can be illustrated with a simple example.
Consider the tensor product C2

^C2; and two vectors jxl; jyl [ C2; and their tensor
product jxl^ jyl [ C2 ^C2: Suppose further that jul1; jul2 is an orthonormal base of
C2; which means that we can write:

jxl ¼ ajul1 þ bjul2 and jyl ¼ gjul1 þ djul2 ð50Þ

which gives

jxl^ jyl ¼ ðajul1 þ bjul2Þ^ ðgjul1 þ djul2Þ ð51Þ

jxl^ jyl ¼ agjul1 ^ jul1 þ adjul1 ^ jul2 þ bgjul2 ^ jul1 þ bdjul2jul2 ð52Þ

Taking into account the uniqueness of the decomposition in equation (49) we have:

jxl^ jyl ¼ a11jul1 ^ jul1 þ a12jul1 ^ jul2 þ a21jul2 ^ jul1 þ a22jul2 ^ jul2 ð53Þ

with

a11 ¼ ag a12 ¼ ad a21 ¼ bg a22 ¼ bd ð54Þ

It is easy to see that an arbitrary vector jzl [ C2 ^C2 is not always of the form
jxl^ jyl: For example, choose

jzl ¼ jul1 ^ jul1 þ jul2 ^ jul2 ð55Þ

This amounts to choosing in the decomposition of jzl; following formula (49),
a11 ¼ a22 ¼ 1 and a12 ¼ a21 ¼ 0: If jzl chosen in this way were equal to a product
vector like jxl^ jyl; we would find a;b; g; d [ C such that equation (54) is satisfied.
This means that
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ag ¼ bd ¼ 1 and ad ¼ bg ¼ 0 ð56Þ

This is not possible; there does not exist a, b, g, d that satisfy equation (56). Indeed,
suppose that ad ¼ 0; then one of the two a or d has to equal zero. But then one of the
two ag or bd also equals zero, which proves that they both cannot equal 1, as
demanded in equation (56). This proves that jzl ¼ jul1 ^ jul1 þ jul2 ^ jul2 is a
nonproduct vector, i.e. it cannot be written as the product of a vector in C2 with another
vector in C2:

Nonproduct vectors of the tensor product Hilbert space represent nonproduct states
of the compound concept described by this tensor product Hilbert space. It is these
nonproduct states that contain entanglement, meaning that the effect of a context on
one of the two sub-entities (sub-concepts) also influences the other sub-entity
(sub-concept) in a specific way. As we will see, it is also these nonproduct states that
make it possible to represent the relation of entanglement amongst sub-concepts as one
of ways concepts can combine. Specifically (as we will show explicitly in Section 4.4)
combinations like “pet fish” are described as entangled (nonproduct) states of “pet” and
“fish” within the tensor product of their respective Hilbert spaces.

A second aspect of the tensor product structure that must be explained is how
projectors work. Projectors enable us to express the influence of context, and how
transition probabilities and weights are calculated. Suppose we consider a context
eS [ MS of the first concept S, represented by a projection operator PS

e of the Hilbert
space HS: This context e S can be considered as a context of the compound S^T of
the two concepts S and T, and will then be represented by the projection operator
PS
e ^ 1T ; where 1T is the unit operator on HT : If we have a context eS [ MS of the

first concept S and a context eT [ MT of the second concept T, represented,
respectively, by projection operators PS

e and PT
e ; then PS

e ^PT
e represents the context

eS ^ eT of the compound concept S^T: We have

PS
e ^PT

e ðjx
Sl^ jxTlÞ ¼ PS

e jx
Sl^PT

e jx
Tl ð57Þ

The transition probabilities and weights are calculated using the following formulas in
the tensor product

kxS ^ xT jyS ^ yT l ¼ kxSjySlkxT jyT l and TrðAS ^ATÞ ¼ TrAS ·TrAT ð58Þ

A third aspect of the tensor product is the reduced states. If the compound quantum
entity S^T is in a nonproduct state jzl [ HS ^HT of the tensor product Hilbert
space of the two Hilbert spaces HS and HT of the sub-entities, then it is not obvious
what states the sub-entities are in, because there are no vectors jxSl [ HS and
jxT l [ HT such that jzl ¼ jxSl^ jxTl: This means that we can say with certainty
that for such a nonproduct state jzl; the sub-entities cannot be in pure states. It can be
proven in general that the sub-entities are in density states, and these density states are
called the reduced states. We do not give the mathematical construction since we only
need to calculate the reduced states in specific cases, and refer to Jauch (1968
pp. Chapter 11 Section 7), for a general definition and derivation of the reduced states.

4.2 Combining pet and fish
In this section, we use the quantum formalism to describe how the concepts “pet” and
“fish” combine, and see that the “pet fish problem” (Osherson and Smith, 1981, 1982;
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Hampton, 1997; Fodor, 1994; Fodor and Lepore, 1996) finds a natural solution (refer
Aerts and Gabora (2005) for a presentation of the pet fish problem).

We first have to build the quantum model for the concept “fish”, and then combine
this, using the tensor product, with the quantum model for “pet”. To provide the
necessary data, another experiment was performed, using the same subjects and data
acquisition methods as for the experiment in Aerts and Gabora (2005). Subjects were
asked to rate the frequency of appearance of different exemplars of “fish” under two
contexts:

efish
30 ; The fish is a pet ð59Þ

and the unity context 1fish. We denote the ground state of “fish” by p̂ fish and the state
under context efish

30 by pfish
30 : The results are presented in Table III. We note a similar

effect than observed previously for the concept “pet”. For example, the weights of
goldfish and guppy are greater under context efish

30 than for the ground state under
the unity context 1fish, while the weights of all other exemplars are lower.

Let us call X fish the set of basic contexts and U fish the set of basic states that we
consider for the concept “fish”. We introduce the states and contexts corresponding to
the different exemplars that we have considered in the experiment in Table IV. So, for
example, the context efish

34 is the context “The fish is a dolphin” and the state pfish
40 is the

state of “fish” which is the ground state p̂ fish under the context efish
40 ; “The fish is a

mackerel”. Further, we introduce:

E fish
i ¼ uju # efish

i ; u [ X fish
� �

and X fish
ij ¼ uju # efish

i ^ efish
j ; u [ X fish

n o
ð60Þ

where E fish
i is the set of basic contexts that is stronger or equal to efish

i and X fish
ij the set

of basic contexts that is stronger or equal to efish
i ^ efish

j : We have X fish
ij ¼ E fish

i > E fish
j :

Suppose that m is the total number of basic contexts. Let us denote by m X fish
ij

� �
the

number of basic contexts contained in X fish
ij and by m E fish

i

� �
the number of basic

contexts contained in E fish
i : We choose m X fish

ij

� �
and m E fish

i

� �
as in Table V. For the

efish
30 1fish

Exemplar Rate Frequency Rate Frequency

Trout 0.54 0.02 4.67 0.09
Shark 0.51 0.02 4.37 0.09
Whale 0.15 0.01 3.36 0.07
Dolphin 0.91 0.04 3.72 0.07
Pike 0.37 0.01 2.94 0.05
Goldfish 6.73 0.40 5.19 0.10
Ray 0.27 0.01 3.10 0.06
Tuna 0.19 0.01 4.57 0.09
Barracuda 0.40 0.01 1.53 0.03
Mackerel 0.19 0.01 3.47 0.07
Herring 0.22 0.39 4.46 0.09
Guppy 6.60 0.01 4.10 0.08
Plaice 0.22 0.05 3.56 0.07
Carp 1.21 3.21 0.06

Table III.
Frequency ratings of
different exemplars of the
concept “fish” under two
contexts
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quantum model of the concept “fish”, we consider a Hilbert space Cm of 408
dimensions.

Let us construct the quantum model for the concept “fish”. Each basic context
u [ X fish is represented by a projector julkuj; where jul [ Cm is a unit vector, and
such that B fish ¼ {julju [ X fish} is an orthonormal base of the Hilbert space Cm:
The basic state corresponding to the basic context u is represented by the vector jul:
The ground state p̂ fish of the concept “fish” is represented by the unit vector xfish

p̂

��� E
;

superposition of the base states B fish ¼ {julju [ X fish} using the following
expression:

xfish
p̂

��� E
¼

u[X fish

X 1ffiffiffiffiffiffiffi
408

p jul ð61Þ

Hence, it the concept “fish” is in its ground state p̂ fish there is a probability of 1/408 that
one of the basic states u [ U fish; under contexts u [ X fish; is elicited. This means that
for “fish” in its ground state, the probability that a basic state gets elicited

corresponding to a context contained in E fish
i is given by m E fish

i

� �
=408; where

m E fish
i

� �
is given in Table V. A straightforward calculation proves that this gives

exactly the weights in Table III. Let us look at some examples. Following Table V, in
20 of the 408 basic contexts, the fish is a pike. This means that the weight of pike in the
ground state of “fish” is 20=408 ¼ 0:05; which indeed corresponds to what we find in
Table III for pike. In 28 of the 408 basic contexts, the fish is a dolphin. Hence the weight
of dolphin in the ground state of “fish” in 28=408 ¼ 0:07; as can be found in Table III.
In 32 of the 408 basic contexts, the fish is a guppy, thus the weight for guppy is
32=408 ¼ 0:08; as in Table III.

Exemplar Context State

Trout efish
31 pfish

31

Shark efish
32 pfish

32

Whale efish
33 pfish

33

Dolphin efish
34 pfish

34

Pike efish
35 pfish

35

Goldfish efish
36 pfish

36

Ray efish
37 pfish

37

Tuna efish
38 pfish

38

Barracuda efish
39 pfish

39

Mackerel efish
40 pfish

40

Herring efish
41 pfish

41

Guppy efish
42 pfish

42

Plaice efish
43 pfish

43

Carp efish
44 pfish

44

Table IV.
The states and contexts

connected to the
exemplars of the concept
“fish” that we considered
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Now consider the concept “fish” and the context efish
30 ; “The fish is a pet”. The context

efish
30 is represented by the projection operator P fish

e30
given by:

P fish
e30

¼

u[E fish
30

X
julkuj ð62Þ

where E fish
30 is the set of basic contexts of “fish” that is stronger than or equal to efish

30 ;

hence E fish
30 ¼ uju # efish

30 ; u [ X fish
� �

: Let us calculate the new state xfish
p30

��� E
that xfish

p̂

��� E
changes to under the influence of efish

30 : Following equation (12) we have

xfish
p30

��� E
¼

P fish
e30

xfish
p̂

��� E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xfish
p̂

���D
Pefish

30
xfish
p̂

��� Er ð63Þ

We have

P fish
e30

xfish
p̂

��� E
¼

u[E fish
30

X
jul u xfish

p̂

���D E
¼

u[E fish
30

X 1ffiffiffiffiffiffiffi
408

p jul ð64Þ

and

efish
0 1fish

Exemplar m efish
30

� �
¼ 100 m¼408

Trout m X fish
31;1

� �
¼ 2 m E fish

31

� �
¼ 36

Shark m X fish
32;1

� �
¼ 2 m E fish

32

� �
¼ 36

Whale m X fish
33;1

� �
¼ 1 m E fish

33

� �
¼ 28

Dolphin m X fish
34;1

� �
¼ 4 m E fish

34

� �
¼ 28

Pike m X fish
35;1

� �
¼ 1 m E fish

35

� �
¼ 20

Goldfish m X fish
36;1

� �
¼ 40 m E fish

36

� �
¼ 40

Ray m X fish
37;1

� �
¼ 1 m E fish

37

� �
¼ 24

Tuna m X fish
38;1

� �
¼ 1 m E fish

38

� �
¼ 36

Barracuda m X fish
39;1

� �
¼ 1 m E fish

39

� �
¼ 12

Mackerel m X fish
40;1

� �
¼ 1 m E fish

40

� �
¼ 28

Herring m X fish
41;1

� �
¼ 1 m E fish

41

� �
¼ 36

Guppy m X fish
42;1

� �
¼ 39 m E fish

42

� �
¼ 32

Plaice m X fish
43;1

� �
¼ 1 m E fish

43

� �
¼ 28

Carp m X fish
44;1

� �
¼ 5 m E fish

44

� �
¼ 24

Table V.
Choice of the distribution
of the different types of
basic contexts for the
concept “fish”
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xfish
p̂

P fish
e30

��� ���xfish
p̂

D E
¼

u[E fish
30

X
xfish
p̂

���uD E
u xfish

p̂

���D E
¼

u[E fish
30

X
xfish
p̂

���uD E��� ���2
u[Efish

30

X 1

408
¼

100

408
ð65Þ

This gives

xfish
p30

��� E
¼

u[E fish
30

X 1ffiffiffiffiffiffiffi
100

p jul ð66Þ

4.3 The compound pet ^ fish
The compound of the concepts “pet” and “fish”, denoted “pet ^ fish”, is described in
the space Cn

^Cm: A specific combination does not correspond to the totality of the
new concept “pet ^ fish”, but rather to subset of it. For example, the combination “a
pet and a fish” is one subset of states of “pet ^ fish”, and the combination “pet fish” is
another. As we will see, “a pet and a fish” corresponds to a subset containing only
product states of “pet ^ fish”, while “pet fish” corresponds to a subset containing
entangled states of “pet ^ fish”. Let us analyze what is meant by different possible
states of the compound “pet ^ fish” of the concepts “pet” and “fish”, hence vectors or
density operators of the tensor product Hilbert space Cn ^Cm:

The first state we consider is p̂pet ^ p̂ fish; the tensor product of the ground state p̂pet

of “pet” and the ground state p̂ fish of “fish”, which is represented in Cn
^Cm by the

vector xpet

p̂

��� E
^ xfish

p̂

��� E
: This state is a good representation of the conceptual

combination “pet and fish”, because for “pet and fish”, contexts can act on “pet”, or on
“fish”, or both, and they act independently. More concretely, consider the context epet

1 ;
“The pet is chewing a bone” acting on the concept “pet”. This context, then written like
epet

1 ^ 1fish; can also act on the “pet” sub-concept of “pet ^ fish”. Then this will just
change the ground state p̂pet of “pet” to state ppet

1 ; and the ground state p̂ fish of the “fish”

sub-concept of “pet ^ fish” will not be influenced. This is exactly the kind of change

that the state represented by xpet

p̂

��� E
^ xfish

p̂

��� E
entails.

Hence

p̂pet
epet

1
7! ppet

1 ) p̂pet ^ p̂ fish
epet

1
^ 1fish

7! ppet
1 ^ p̂ fish ð67Þ

p̂pet
epet

1
7! ppet

1 ) p̂pet ^ pfish
30

epet
1

^ 1fish

7! ppet
1 ^ pfish

30 ð68Þ

Similarly, a context that only works on the concept “fish”, can work on the
“fish” sub-concept of “pet ^ fish”, and in this case will not influence the state of “pet”.
Hence

p̂ fish
efish

30
7! pfish

30 ) p̂pet ^ p̂ fish
1pet ^ efish

30
7! p̂pet ^ pfish

30 ð69Þ

p̂ fish
efish

30
7! pfish

30 ) ppet
i ^ p̂ fish

1pet ^ efish
30

7! ppet
i ^ pfish

30 ð70Þ

Another state to consider is ppet
6 ^ pfish

30 ; represented by the vector xpet
p6

�� i^ xfish
p30

i: This is
a state where the “pet” is a “fish” and the “fish” is a “pet”, hence perhaps this state

K 71379—21/12/2004—RAVICHANDRAN—127843

A theory of
concepts

193



faithfully represents “pet fish”. How can we check this? We begin by verifying different
frequencies of exemplars and weights of properties in this state, and seeing whether
the guppy effect, described in section 2.1 in Aerts and Gabora (2005), is predicted by
the model. Equation (46) gives the calculation for the weight of the exemplar goldfish
for the concept “pet” in the state ppet

6 : Now we calculate the weight for the exemplar
goldfish for the compound concept “pet ^ fish” in the state ppet

6 ^ pfish
30 : Following the

quantum mechanical rules outlined in equation (57) we need to apply the projector
Ppet
e18

^ 1fish on the vector xpet
p6

�� 	
^ yfish

p30

��� E
; and use it in the quantum formula (13). This

gives:

m ppet
18 ^ pfish

30 ; epet
18 ^ 1fish; ppet

6 ^ pfish
30

� �
¼ xpet

p6

��

^ xfish

p30

���D �
Ppet
e18

^ 1fish
� �

xpet
p6

�� 	�
^ xfish

p30

��� E� �
ð71Þ

m ppet
18 ^ pfish

30 ; epet
18 ^ 1fish; ppet

6 ^ pfish
30

� �
¼ xpet

p6
Ppet
e18

��� ���xpet
p6

D E
xfish
p30

xfish
p30

���D E

¼ xpet
p6

Ppet
e18

��� ���xpet
p6

D E
ð72Þ

m ppet
18 ^ pfish

30 ; epet
18 ^ 1fish; ppet

6 ^ pfish
30

� �
¼

48

100
¼ 0:48 ð73Þ

This means that the weight of the exemplar goldfish of the sub-concept “pet” of the
compound “pet ^ fish” in the product state ppet

6 ^ pfish
30 (the state that represents a “pet

^ fish” that is a pet and a fish), is equal to the weight of the exemplar goldfish of the
concept “pet” in the state ppet

6 (the state that represents a pet that is a fish). This is not
surprising; it simply means that the tensor product in its simplest type of state, the
product state, takes over the weights that were there already for the separate
sub-concepts. The guppy effect, identified previously in the states ppet

6 of the concept
“pet” and pfish

30 of the concept “fish”, remains there in this combination of pet and fish
described by this product state ppet

6 ^ pfish
30 : Indeed, we can repeat the calculation of

equation (71) on the product state of the ground states – hence the state p̂pet ^ p̂ fish –
and find

m ppet
18 ^p̂ fish;epet

18 ^1fish;p̂pet^p̂ fish
� �

¼ xpet

p̂

���D
^ xfish

p̂

���D �
Ppet
e18
^1fish

� �
xpet

p̂

��� E�
^ xfish

p̂

��� E� �
ð74Þ

m ppet
18 ^p̂ fish;epet

18 ^1fish;p̂pet^p̂ fish
� �

¼ xpet

p̂
Ppet
e18

��� ���xpet

p̂

D E
xfish
p̂

xfish
p̂

���D E

¼ xpet

p̂
Ppet
e18

��� ���xpet

p̂

D E
ð75Þ

m ppet
18 ^p̂ fish;epet

18 ^1fish;p̂pet^p̂ fish
� �

¼
140

1400
¼0:10 ð76Þ

We see that the weight of goldfish for the sub-concept “pet” of the compound “pet ^
fish” equals the weight of goldfish for the concept “pet” in the ground state p̂pet:
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The difference between equations (73) and (76) is the guppy effect in our theory of the
compound “pet ^ fish”. It should be stated in the following way. The weight of
goldfish of the concept “pet” equals 0.10 if “pet” is in its ground state, and equals 0.48 if
“pet” is in a state under the context “The pet is a fish”. This is the pre-guppy effect
identified by introducing contexts for the description of one concept, namely “pet”.
When “pet” combines with “fish” we get the concept “pet ^ fish”. Now the guppy effect
manifests in the following way. The weight of goldfish for “pet” as a sub-concept of
“pet ^ fish” equals 0.10 if the state of “pet ^ fish” is such that we have “a pet and a
fish” in the state “a pet ... and ... a fish” (without necessarily the pet being a fish and
the fish being a pet, this is the product state of the two ground states, hence p̂pet^p̂ fish).
The weight of goldfish for “pet” as a sub-concept of “pet ^ fish” equals 0.48 if the state
of “pet ^ fish” is such that we have “a pet and a fish” in a state where the pet is a fish
and the fish is a pet (this is the product state ppet

6 ^pfish
30 ). So we get the guppy effect in

the combination of the concepts “pet” and “fish”. But does this mean that the state
ppet

6 ^pfish
30 describes a “pet fish”? The weights of exemplars seem to indicate this, but

there is still something fundamentally wrong. Look at formula (71). It reads
m ppet

18 ^pfish
30 ;epet

18 ^1fish;ppet
6 ^pfish

30

� �
: This means that under the influence of context

epet
18 ^1fish state ppet

6 ^pfish
30 changes to state ppet

18 ^pfish
30 : The state ppet

6 ^pfish
30 is a product

state of the compound “pet ^ fish” where the pet is a fish and the fish is a pet. But if
“pet” as sub-concept of the compound collapses to goldfish (this is the state
transformation ppet

6 7 !ppet
18 ), we see that pfish

30 remains unchanged in the collapse
translated to the compound (we have there ppet

6 ^pfish
30 7!ppet

18 ^pfish
30 ). This means that

the context “The pet is a goldfish” causes “pet” as a sub-concept to collapse to goldfish,
but leaves “fish” as a sub-concept unchanged. The end state after the collapse is
ppet

18 ^pfish
30 ; which means “a goldfish and a fish” (pet has become goldfish, but fish has

remained fish). We could have expected this, because the rules of the tensor product tell
us exactly that product states behave this way. Their rules are given in symbolic form
in equations (67) and (69). Product states describe combined concepts that remain
independent, i.e. the concepts are combined in such a way that the influence of a
context on one of the sub-concepts does not influence the other sub-concept. That is
why, as mentioned previously, the product states describe the combination with the
“and” between the concepts; hence “pet and fish”. Then what does the product state
ppet

6 ^pfish
30 describe? It describes the situation where the pet is a fish, and the fish is a

pet: hence two “pet fish” and not one! And indeed, the mathematics shows us this
subtlety. If for two “pet fish”, one collapses of goldfish, there is not reason at all that the
other also collapses to goldfish. It might for example, be goldfish and guppy. So to clarify
what we are saying here, a possible instance of state ppet

6 ^pfish
30 of the compound “pet

^ fish” is “a goldfish and a guppy”. Now we can see why this state ppet
6 ^pfish

30 gives
numerical indication of a guppy effect. But we did not really find the guppy effect, for
the simple reason that we did not yet identify the state that describes “pet fish”
(one unique living being that is a “pet” and a “fish”). It is here that one of the strangest
and most sophisticated of all quantum effects comes in, namely entanglement.

4.4 The “Pet Fish” as a quantum entangled state
Consider the context

e45; The pet swims around the little pool where the fish is being fed

by the girl
ð77Þ

K 71379—21/12/2004—RAVICHANDRAN—127843

A theory of
concepts

195



This is a context of “pet” as well as of “fish” It is possible to consider a big reservoir of
contexts that have not yet been classified as a context of a specific concept. We denote
this reservoir. M: This means concretely that Mpet , M and Mfish , M: Let us
denote Mpet;fish the set of contexts that are contexts of “pet” and also contexts of “fish”.
Amongst the concrete contexts that were considered in this paper, there are seven that
are elements of Mpet;fish; namely:

e6; e18; e21; e30; e36; e42; e45 [ Mpet;fish ð78Þ

We denote X pet,fish the set of basic contexts that are contexts of “pet” as well as
contexts of “fish”. We have

Epet
6 , X pet;fish and E fish

30 , X pet;fish ð79Þ

and to model the concept “pet fish” we make the hypothesis that Epet
6 ¼ E fish

30 ¼
E pet;fish; namely that the basic contexts of “pet” where the pet is a fish are the same as
the basic contexts of “fish” where the fish is a pet. It is not strictly necessary to
hypothesize that these two sets are equal. It is sufficient to make the hypothesis that
there is a subset of both that contains the basic contexts of “pet” as well as of “fish” that
are also basic context of a pet that is a fish.

We have now everything that is necessary to put forth the entangled state that
describes “pet fish”. It is the following state:

jsl ¼
u[E pet;fish

X 1ffiffiffiffiffiffiffi
100

p jul^ jul ð80Þ

We claim that this vector represents the state of “pet ^ fish” that corresponds to the
conceptual combination “pet fish”. Let us denote it with the symbol s.

Now we have to verify what the states of the sub-concepts “pet” and “fish” are if the
compound concept “pet ^ fish” is in the state s represented by jsl: Hence let us
calculate the reduced states for both “pet” and “fish” of the state jsl: As explained in
Section 4.1, for a non-product vector, the reduced states are density operators, not
vectors. We first calculate the density operator corresponding to jsl [ Cn

^Cm: This
is given by:

jslksj ¼
u[E pet;fish

X 1ffiffiffiffiffiffiffi
100

p jul^ jul

0
@

1
A

v[E pet;fish

X 1ffiffiffiffiffiffiffi
100

p kvj^ kvj

0
@

1
A ð81Þ

jslksj ¼
u;v[E pet;fish

X 1

100
julkvj^ julkvj ð82Þ

We find the two reduced density operators by exchanging one of the two products
julkvj by the inproduct kujvl: Taking into account that kujvl ¼ dðu; vÞ; we have

jslksjpet
¼

u[E pet;fish

X 1

100
julkuj and jslksjfish

¼

u[E pet;fish

X 1

100
julkuj ð83Þ
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as reduced states for “pet” and “fish”, respectively. It is easy to calculate and show that
these reduced states behave exactly like the states ppet

6 and pfish
30 ; respectively. This

means that for influences of contexts and weights of properties limited to one of the
two sub-concepts “pet” or “fish”, the state jsl behaves exactly as would the product

state xpet
p6

�� 	
^ xfish

p30

��� E
: This means that as far as the weights of exemplars and properties

are concerned, we find the values that have been calculated for the state xpet
p6

�� 	
^ xfish

p30

��� E
in the previous section when the compound concept “pet ^ fish” is in the entangled
state jsl:

Let us now see how the state jsl changes under the influence of the context
epet

18 ^ 1fish; “The pet is a goldfish” of the concept “pet”. We have

Ppet
e18

^ 1fish ¼

u[Epet
18

X
julkuj^ 1 ð84Þ

where Epet
18 ¼ uju # epet

18 ; u [ X
� �

: Hence the changed state of s under the influence
of context epet

18 ^ 1fish – let us denote it s0 – is given by

js0l ¼ Ppet
e18

^ 1fish
� �

jsl ¼
u[Epet

18

X
v[Epet

6

X
julkuj^ 1

1ffiffiffiffiffiffiffi
100

p jvl^ jvl ð85Þ

js0l ¼
u[Epet

18

X
v[Epet

6

X 1ffiffiffiffiffiffiffi
100

p kujvljul^ jvl ¼
u[Epet

18

X
v[Epet

6

X 1ffiffiffiffiffiffiffi
100

p dðu; vÞjul^ jvl ð86Þ

js0l ¼
u[Epet

18
>Epet

6

X 1ffiffiffiffiffiffiffi
100

p jul^ jul ð87Þ

Calculating the reduced density states gives:

js0lks0jpet
¼

u[Epet
18
>Epet

6

X 1

100
julkuj and js0lks0jfish

¼

u[Epet
18
>Epet

6

X 1

100
julkuj ð88Þ

The reduced state js0lks0jpet
with respect to the concept “pet” is the state of “pet” under

the context epet
6 ; “The pet is a fish”, and the context epet

18 ; “The pet is a goldfish”. This is
what we would have expected in any case, because indeed the context epet

18 ; influences
“pet” alone and not “fish”. However, the reduced state js0lks0jfish

with respect to the
concept “fish” after the change provoked by the context epet

18 ; “is a goldfish”, that only
influences the concept “pet” directly, is also a state of “fish” under the context “is a pet”
and under the context “is a goldfish”. This means that if for “pet fish” the pet becomes a
goldfish, then also for “fish” the fish becomes a goldfish. This is exactly what is
described by the entangled state jsl of the tensor product space given in equation (80).

4.5 Combining concepts in sentences
In this section, we apply our formalism to model more than two combinations of
concepts. Consider a simple archetypical sentence containing a subject, and object and
a predicate connecting both: “The cat eats the food”. Three concepts “cat”, “eat” and
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“food” are involved: two nouns and one verb. We want to show that it is possible to
represent this sentence as an entangled state of the compound concept “cat ^ eat ^
food”.

We introduce the SCOPs of “cat”, “eat” and “food”, ðScat;Mcat;Lcat;m cat; n catÞ;
ðS

eat;Meat;Leat;m eat; n eatÞ and ðS
food;Mfood;Lfood;m food; n foodÞ:M is the reservoir of

contexts that have not been decided to be relevant for a specific concept, hence
Mcat , M;Meat , M and Mfood , M: We choose Hilbert spaces Hcat;Heat and
Hfood to represent, respectively, the concepts “cat”, “eat” and “food”. Then we
construct the tensor product Hilbert space Hcat ^Heat ^Hfood to represent the

compound concept “cat ^ eat ^ food”. Consider the three ground states xcat
p̂

��� E
[

Hcat; xeat
p̂

��� E
[ Heat and xfood

p̂

��� E
[ Hfood of, respectively, “cat”, “eat” and “food”. The

product state xcat
p̂

��� E
^ xeat

p̂

��� E
^ xfood

p̂

��� E
[ Hcat ^Heat ^Hfood represents the

conceptual combination “cat and eat and food”. Although it is technically the

simplest combination, the one described by the product state of three ground states of
each concept apart, it is rare in everyday life. Indeed, upon exposure to the three
concepts “cat” “eat” “food” in a row, the mind seems to be caught in a spontaneous act
of entanglement that generates the sentence “the cat eats the food”. It is interesting to
note that the same phenomenon exists with quantum entities, i.e. separated states get
spontaneously entangled under influence of any kind of environment. Let us consider
the three concepts “cat”, “eats” and “food” connected by the word “and” in a
independent, hence non-entangled way; i.e. “cat and eat and food” described by the

product state xcat
p̂

��� E
^ xeat

p̂

��� E
^ xfood

p̂

��� E
: Concretely this means that if a specific context

influences the concept “cat”, then the concepts “eat” and “food” are not influenced. For

example, suppose that the ground state xcat
p̂

��� E
of the concept “cat” is changed by the

context:

ecat
46 ; The cat is Felix ð89Þ

into the state pcat
46 ; “The cat is Felix”. If this context ecat

46 is applied to the compound

concept “cat ^ eat ^ food” in the product state xcat
p̂

��� E
^ xeat

p̂

��� E
^ xfood

p̂

��� E
; then

the compound concept changes state to xcat
p46

��� E
^ xeat

p̂

��� E
^ xfood

p̂

��� E

xcat
p̂

��� E
^ xeat

p̂

��� E
^ xfood

p̂

��� Eecat
46

^ 1eat ^ 1food

7! xcat
p46

��� E
^ xeat

p̂

��� E
^ xfood

p̂

��� E
ð90Þ

This state express “Felix and eat and food” as a state of the compound concept “cat ^
eat ^ food”. Can we determine the state of the compound concept “cat ^ eat ^ food”
that describes the sentence “The cat eats the food”? Again, as in the case of “pet fish”
this will be an entangled state of the tensor product Hilbert space. Indeed, for the
sentence “The cat eats the food”, we require that if, for example, “cat” collapses to
“Felix”, then also “eat” must collapse to “Felix who eats”, and “food” must collapse to
“Felix and the food she eats”. This means that the sentence “The cat eats the food” is
certainly not described by a products state of the tensor product Hilbert space. How do
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we build the correct entangled state? Let us explain this step-by-step so that we can see
how this could work for any arbitrary sentence.

First, we observe that the sentence itself is a context for “cat”, “eat” and “food”. Let
us call it e47, hence

e47; The cat eats the food ð91Þ

We have e47 [ M; but also ecat
47 [ Mcat; eeat

47 [ Meat and efood
47 [ Mfood: Now we

introduce E47 ¼ {uju # e47; u [ X} is the set of basic contexts that are stronger than
or equal to e47. The entangled state, element of the tensor product Hilbert space
Hcat ^Heat ^Hfood; that describes the sentence “The cat eats the food” is given by:

jsl ¼
u[E47

X 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðE47Þ

p jul^ jul^ jul ð92Þ

where n(E47) is the number of basic contexts contained in E47.
Let us show that this state describes exactly the entanglement of the sentence

“The cat eats the food”. We calculate the reduced states of “cat”, “eat” and “food” when
the compound “cat ^ eat ^ food” is in the state s represented by jsl: We first
calculate the density operator corresponding to jsl: This is given by:

jslksj ¼
u[E47

X 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðE47Þ

p jul^ jul^ jul

0
@

1
A

v[E47

X 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðE47Þ

p kvj^ kvj^ kvj

0
@

1
A ð93Þ

jslksj ¼
u;v[E47

X 1

nðE47Þ
julkvj^ julkvj^ julkvj ð94Þ

This gives us

jslksjcat
¼

u[Ecat
47

X 1

n Ecat
47

� � julkuj ð95Þ

jslksjeat
¼

u[Eeat
47

X 1

n Eeat
47

� � julkuj ð96Þ

jslksjfood
¼

u[E food
47

X 1

n E food
47

� � julkuj ð97Þ

as reduced states for “cat”, “eat” and “food”, respectively. These reduced states behave
exactly like the states pcat

47 ; p
eat
47 and pfood

47 of, respectively, “cat”, “eat” and “food”, when it
comes to calculating frequency values of exemplars and applicability values of
properties.

Let us now see how the state jsl changes under the influence of the context
ecat

46 ^ 1eat ^ 1food; “The cat is Felix” of the concept “cat” as a sub-concept of the
compound concept “cat ^ eat ^ food”. We have:
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Pcat
e46

^ 1eat ^ 1food ¼

u[Ecat
46

X
julkuj^ 1^ 1 ð98Þ

where Ecat
46 ¼ uju # ecat

46 ; u [ X cat
� �

: Hence the changed state of s under the

influence of context ecat
46 ^ 1eat ^ 1food – let us denote it s0 – is given by:���s0l ¼ Pcat

e46
^ 1eat ^ 1food

� ����sl ¼
u[Ecat

46

X
v[E47

X
julkuj^ 1^ 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðE47Þ

p jvl^ jvl^ jvl ð99Þ

js0l ¼
u[Ecat

46

X
v[E47

X 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðE47Þ

p kujvljul^ jvl^ jvl

¼

u[Ecat
46

X
v[E47

X 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðE47Þ

p dðu; vÞjul^ jvl^ jvl ð100Þ

js0l ¼
u[Ecat

46 >E47

X 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðE47Þ

p jul^ jul^ jul ð101Þ

Calculating the reduced density states gives:

js0lks0jcat
¼

u[Ecat
46 >Ecat

47

X 1

nðE47Þ
julkuj ð102Þ

js0lks0jeat
¼

u[Ecat
46 >Eeat

47

X 1

nðE47Þ
julkuj ð103Þ

js0lks0jfood
¼

u[Ecat
46 >Efood

47

X 1

nðE47Þ
julkuj ð104Þ

The reduced state js0lks0jcat
with respect to the concept “cat” is the state of “cat” under

the context ecat
46 ^ e47; “The cat is Felix and the cat eats the food”. This is what we

would have expected in any case, because indeed the context ecat
46 ^ 1eat ^ 1food

influences “cat” alone and not “eat” and “food”. However, the reduced state js0lks0jeat

with respect to the concept “eat” after the change provoked by the context
ecat

46 ^ 1eat ^ 1food; “The cat is Felix”, that only influences “cat” directly, is also a state of
“eat” under the context ecat

46 ^ e47; “The cat is Felix and the cat eats the food”, hence
“Felix eats the food”. This means that if for “The cat eats the food” the “cat” becomes
“Felix”, then also “eat” becomes “Felix who eats”. A similar phenomenon happens for
the concept “food”. The reduced state js0lks0jfood

after the change provoked by the
context ecat

46 ^ 1eat ^ 1food; “The cat is Felix”, that only influences “cat” directly, is also
a state of “food” under the context ecat

46 ^ e47; “The cat is Felix and the cat eats the food”,
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hence “Felix eats the food”. This means that if for “The cat eats the food” the “cat”
becomes “Felix”, then also “food” becomes “Felix who eats the food”.

The approach that we have put forward in this paper can be used to elaborate the
vector space models for representing words that are used in semantic analysis. The
tensor product, and the way that we introduced entangled states to represent
sentences, can be used to “solve” the well known “bag of word” problem (texts are
treated as “bag of words”, hence order and syntax cannot be considered) as formulated
in semantic analysis (Aerts and Czachor, 2004). In a forthcoming paper we investigate
more directly how the quantum structures introduced in Aerts and Gabora (2005), i.e.
the complete orthocomplemented lattice structure, can be employed in semantic
analysis models, and also the relation of our approach with ideas formulated in
Widdows (2003) and Widdows and Peters (2003) about quantum logic and semantic
analysis.

4.6 A quantum theory of memory
Von Foerster (1950) develops a theory of memory and hints to show how a quantum
mechanical formalism could be used to formalize his theory. Von Foerster was inspired
by how quantum mechanics was introduced in biology. Genes, the carriers of heredity,
are described as quantized states of complex molecules. Von Foerster introduces what
he calls carriers of elementary impressions, which he calls mems, to stress the analogy
with genes, and introduces the notion of impregnation as an archetypical activation of a
carrier by an impression. Such an impregnation of a mem is formalized as a quantum
mechanical excitation of one energy level of the mem to another energy level of this
same mem, in analogy how this happens with a molecule. A molecule in an excited
state spontaneously falls back to a lower energy state, and this process is called decay.
The decay process of a mem in a high level energy state to a lower level energy state
describes the phenomenon of forgetting. The introduction of the quantum mechanical
mechanism of excitation and decay between different energy levels of a mem as the
fundamental process of memory, respectively, accounting for the learning and
the forgetting process, is not developed further in von Foerster’s publication.
Von Foerster’s conviction about the relevance of quantum mechanics to memory comes
from his phenomenological study of the dynamics of the forgetting process. Although
not very explicit about this aspect, it can be inferred from his paper that in his opinion
the physical carrier of the mem is a molecule in the brain, such as a large protein, and
that memory is hence stored within a micro-physical entity, entailing quantum
structure because of its micro-physical nature.

The theory of concepts that we have elaborated is in some respects quite different
from von Foerster’s approach, but in other respects can deliver a possible theoretical
background for this approach. It is different since we do not believe it to be necessary
that there need to be a micro-physical carrier for the quantum structure identified in
SCOP. It is not excluded that the quantum structure is encrypted in a quite unique way
in the brain, making use of the possibility to realize quantum structure in the
macro-world, without the need of micro-physical entities (Aerts, 1982, 1985; Aerts and
Van Bogaert, 1992; Aerts et al., 1993, n.d., 1994). On the other hand, if micro-physical
entities in the brain serve as carriers of quantum mechanical structure, our SCOP
theory could provide specific information about this structure. We can also now clarify
the notion of ground state. If a concept is not evoked in any specific kind of way, which

K 71379—21/12/2004—RAVICHANDRAN—127843

A theory of
concepts

201



is equivalent to it being under the influence of the bath of all types of contexts that can
evoke it, we consider it to be in its ground state. Here, we align our theory with von
Foerster’s idea and use the quantum mechanical processes of excitation and decay to
point out specific influences of contexts on the state of a concept. If the concept “pet”,
changes to the state p1 under the influence of context e1, “The pet is chewing a bone”,
then p1 is an excited state with respect to the ground state p̂ of “pet”. The state p1 will
spontaneously decay to the ground state p̂: We “forget” after a little while the influence
of context e1, “The pet is chewing a bone” on the concept “pet” and consider “pet” again
in its ground state when a new context arrives that excites it again to another state.
The process of excitation and de-excitation or decay, goes on in this way, and
constitutes the basic dynamics of a concept in interaction with contexts. This is very
much aligned with what von Foerster intuitively had in mind in von Foerster (1950),
and fits completely with a further quantum mechanical elaboration of our SCOP theory
of concepts. It is worth mentioning further steps that can be taken in this direction,
although they are speculative, since it shows some of the possible perspectives that can
be investigated in future research. If a molecule de-excites (or decays) and collapses to
its ground state (or to a lower energy state) it sends out a photon exactly of the amount
of energy that equals the difference between the energy of the ground state (the lower
energy state) and the excited state. This restores the energy balance, and also makes
the quantum process of de-excitation compatible with the second law of
thermodynamics. Indeed, a lower energy state is a state with less entropy as
compared to a higher energy state, and the ground state is the least entropy state. This
means that the decrease of entropy by de-excitation has to be compensated, and this
happens by the sending out of the photon that spreads out in space, and in this way
increases the entropy of the compound entity molecule and photon. The entropy
reasoning remains valid for the situation that we consider, independent of whether we
suppose that the quantum structure in the mind is carried by micro-physical entities or
not. This means that a de-excitation, e.g. the concept “pet” that in state p1 decays to the
ground state p̂; should involve a process of spreading out of a conceptual entity related
to “pet”. Our speculation is that speech, apart from the more obvious role it plays in
communication between different minds, also fulfills this role. This is probably the
reason that if the de-excitation is huge and carries a big emotional energy, speech can
function as a catharsis of this emotional energy, which would be why psychotherapy
consisting of talking can function quite independent of the content of what is said.

The global and speculative view that can be put forward is the following. The
compound of all concepts relevant to a certain individual are stored in memory (a more
correct way to say this would be: they are memory) and one specific state of mind of the
individual will determine one specific state of this compound of concepts. This state of
the compound of concepts is a hugely entangled state, but such that most of the time,
the reduced states for each concept apart are the ground states. Any specific context
will influence and change the state of mind of the individual, and hence also the
entangled state of the compound of concepts, and hence also the ground states of some
of the individual concepts. These are the concepts that we will identify as being evoked
by this specific context. Most of these changes of state are just excitations that
spontaneously will de-excite, such that all the individual concepts are in their ground
states again. From time to time however, a change of state will have consequences that
change the structure of the entanglement, or even the structure of some of the concepts
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themselves. This are the times that the individual learns something new that will be
remembered in his or her long-term memory, and that will provoke a change of his or
her world views. The energetic balance gets redefined when this happens, and a new
stable entangled state of the compound of all concepts is introduced, giving rise to new
ground states for the individual concepts (for example, pets are no longer seen as they
used to be once one has his or her own pet). This new situation, just as the earlier one, is
again open to influences of contexts that introduce again the dynamics of excitation
and spontaneous de-excitation.

5. Summary and conclusions
Von Foerster was inclined to push the formalization of whatever happened to interest
him at a given time as far as it could go using whatever tools did the job in order to
penetrate into the phenomenon more deeply. In this paper, we take a non-operational
step, embedding the SCOP in a more constrained structure, the complex Hilbert space,
the mathematical space used as a basis of the quantum mechanical formalism. We
have good reasons to do so. The generalized quantum formalisms entail the structure
of a complete orthocomplemented lattice, and its concrete form, standard quantum
mechanics, is formulated within a complex Hilbert space. The SCOP representation of a
concept thereby makes strong gains in terms of calculation and prediction power,
because it is formulated in terms of the much less abstract numerical space, the
complex Hilbert space.

Section 2 outlines the mathematics of a standard quantum mechanical model in a
complex Hilbert space. It is not only the vector space structure of the Hilbert space that
is important but also the quantum way of using the Hilbert space. A state is described
by a unit vector or a density operator, and a context or property by an orthogonal
projection. The quantum formalism furthermore determines the formulas that describe
the transition probabilities between states and the weights of the properties. It is by
means of these probabilities and weights that we model the typicality values of
exemplars and applicability values of properties.

In Section 3, we embed the SCOP in a complex Hilbert space, and call the resulting
model “the quantum model of a concept”, to distinguish it from the more abstract SCOP
model. The quantum model is similar to a SCOP model, but it is more precise and
powerful because it allows specific numerical predictions. We represented the
exemplars, contexts, and states that were tested experimentally for the concept “pet”.
Each exemplar is represented as a state of the concept. The contexts, states and
properties considered in the experiment are embedded in the complex Hilbert space,
where contexts figure as orthogonal projections, states as unit vectors or density
operators, and properties as orthogonal projections. The embedding is faithful in the
sense that the predictions about frequency values of exemplars and applicability
values of properties of the model coincide with the values yielded by the experiment
(Section 3.3).

Notice how the so-called “pet fish problem” disappears in our formalism. The pet
fish problem refers to the empirical result that a guppy is rated as a good example, not
of the concept “pet”, nor of the concept “fish”, but of the conjunction “pet fish”. This
phenomenon that the typicality of the conjunction is not a simple function of the
typicality of its constituent, has come to be known as the “guppy effect”, and it cannot
be predicted or explained by contemporary theories of concepts. In our experiment, and
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hence also in the quantum model, we have taken the context “The pet is a fish” to be a
context of the concept “pet”. Both experiment and quantum model description show the
guppy effect appearing in the state of “pet” under the context “The pet is a fish”.
Subjects rate guppy as a good example of “pet” under the context. “The pet is a fish”,
and not as a good example of “pet”, and the ratings are faithfully described by the
quantum model (Section 3.3). Of course this is not the real guppy effect, because we did
not yet describe the combination of the concept “pet” and “fish”. Section 4 is devoted to
modeling concept combination.

A specific procedure exists to describe the compound of two quantum entities. The
mathematical structure that is used is the structure of the tensor product of the Hilbert
spaces that are used to describe the two sub-entities. Section 4.1 outlines the tensor
product procedure for quantum entities. The tensor product of Hilbert spaces is a
sophisticated structure. One of its curious properties is that it contains elements that
are called non-product vectors. The states described in quantum mechanics by these
non-product vectors of the tensor product of two Hilbert spaces are the so-called
“entangled quantum states”. They describe entanglement between two quantum
entities when merging with each other to form a single compound. In the process of
working on this quantum representation of concepts, we were amazed to find that it is
these very non-products states that describe the most common combinations of
concepts, and that more specifically a “pet fish” is described by entangled states of the
concepts “pet” and “fish”. This enables us to present a full description of the conceptual
combination “pet fish” and hence a solution to the pet fish problem in Section 4.4. There
is more to the tensor product procedure than combining concepts. For example, it
allows the modeling of combinations of concepts such as “a pet and a fish”, something
completely different from “pet fish”. In this case, product states are involved, which
means that the combining of concepts by using the word “and” does not entail
entanglement (Section 4.3). Finally, we show how our theory makes it possible to
describe the combination of an arbitrary number of concepts, and work out the
concrete example of the sentence “The cat eats the food” (Section 4.5).
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