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Abstract

A recent mathematical treatment of Baars’ Global Workspace
consciousness model, much in the spirit of Dretske’s communi-
cation theory analysis of high level mental function, is used to
study the effects of embedding cultural heritage on a general-
ized form of inattentional blindenss. Culture should express
itself quite distinctly in this basic psychophysical phenom-
enon, acting across a variety of sensory and other modalities,
because the limited syntactic and grammatical ‘bandpass’ of
the topological rate distortion manifold characterizing con-
scious attention is itself strongly sculpted by the constraints
of cultural context.
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INTRODUCTION

Inattentional blindness occurs when focus of attention on a
single aspect of a complicated perceptual field precludes de-
tection of others, which may be quite strong and normally ex-
pected to register on consciousness. Mack (1998) and Simons
and Chabris (1998) provide background. The phenomenon
was apparently well known in the early part of the 20th cen-
tury, but its study languished thereafter, seemingly for many
of the reasons that consciousness studies fell into disfavor for
nearly a century.

Simons and Chabris (1999) detail a particularly spectacular
example. A videotape was made of a basketball game between
teams in white and black jerseys. Experimental subjects who
viewed the tape were asked to keep silent mental counts of
either the total number of passes made by one or the other
of the teams, or separate counts of the number of bounce and
areal passes. During the game, a figure in a full gorilla suit
appears, faces the camera, beats its breast, and walks off the
court. About one half of the experimental subjects completely
failed to notice the Gorilla during the experiment. See Simons
(2000) for an extended discussion.

Other case histories, involving an aircraft crew which be-
came fixated on an unexpectedly flashing control panel light
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during a landing, or a man walking a railroad track while
having a cell phone conversation, are less benign.

Dehaene and Changeux (2005) recently reported a neural
network simulation of Baars’ global workspace model of con-
sciousness in which ignition of a coherent, spontaneous, ex-
cited state blocked external sensory processing, an observa-
tion they relate to inattentional blindness. Here, by contrast,
we use a Dretske-style ‘necessary conditions’ analytic treat-
ment of Baars’ model to address the phenomenon, taking a
modular network/information theory perspective which does
not suffer the ‘sufficiency indeterminacy’ inherent to neural
network simulations of high level mental phenomena (Krebs,
2005). This approach explicitly includes the potential influ-
ence of ‘cultural factors’ on inattentional blindness.

The necessity for such inclusion lies in the observations
of Nisbett et al. (2001), and others, following the tradi-
tion of Markus and Kitayama (1991), regarding fundamental
differences in perception between test subjects of ‘Southeast
Asian’ and ‘Western’ cultural heritage across an broad realm
of experiments. East Asian perspectives are characterized as
‘holistic’ and Western as ‘analytic’. Nisbett et al. (2001) find:

(1) Social organization directs attention to some aspects of
the perceptual field at the expense of others.

(2) What is attended to influences metaphysics.
(3) Metaphysics guides tacit epistemology, that is, beliefs

about the nature of the world and causality.
(4) Epistemology dictates the development and application

of some cognitive processes at the expense of others.
(5) Social organization can directly affect the plausibility of

metaphysical assumptions, such as whether causality should
be regarded as residing in the field vs. in the object.

(6) Social organization and social practice can directly in-
fluence the development and use of cognitive processes such
as dialectical vs. logical ones.

Nisbett et al. (2001) conclude that tools of thought em-
body a culture’s intellectual history, that tools have theories
build into them, and that users accept these theories, albeit
unknowingly, when they use these tools.

We begin by invoking a detailed mathematical model of
consciousness in humans, which is elaborated up to and in-
cluding the influences of embedding culture.

THE FORMAL THEORY
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The Global Workspace consciousness model Bernard
Baars’ Global Workspace Theory (Baars, 1988, 2005) is
rapidly becoming the de facto standard model of conscious-
ness (e.g. Dehaene and Naccache, 2001; Dehaene and
Changeaux, 2005). The central ideas are as follows (Baars
and Franklin, 2003):

(1) The brain can be viewed as a collection of distributed
specialized networks (processors).

(2) Consciousness is associated with a global workspace in
the brain – a fleeting memory capacity whose focal contents
are widely distributed (broadcast) to many unconscious spe-
cialized networks.

(3) Conversely, a global workspace can also serve to inte-
grate many competing and cooperating input networks.

(4) Some unconscious networks, called contexts, shape con-
scious contents, for example unconscious parietal maps mod-
ulate visual feature cells that underlie the perception of color
in the ventral stream.

(5) Such contexts work together jointly to constrain con-
scious events.

(6) Motives and emotions can be viewed as goal contexts.
(7) Executive functions work as hierarchies of goal contexts.
Although this basic approach has been the focus of work

by many researchers for two decades, consciousness studies
has only recently, in the context of a deluge of empirical re-
sults from brain imaging experiments, begun digesting the
perspective and preparing to move on.

We reiterate that currently popular agent-based and artifi-
cial neural network (ANN) treatments of cognition, conscious-
ness and other higher order mental functions, to take Krebs’
(2005) view, are little more than sufficiency arguments, in
the same sense that a Fourier series expansion can be em-
pirically fitted to nearly any function over a fixed interval
without providing real understanding of the underlying struc-
ture. Necessary conditions, as Dretske argues (Dretske, 1981,
1988, 1993, 1994), give considerably more insight. Perhaps
the most cogent example is the difference between the Ptole-
maic and Copernican models of the solar system: one need not
always expand in epicycles, but can seek the central motion.
Dretske’s perspective provides such centrality. Keplerian and
Newtonian treatments, unfortunately, still lie ahead of us.

Wallace (2005a, b) has, in fact, addressed Baars’ theme
from Dretske’s viewpoint, examining the necessary conditions
which the asymptotic limit theorems of information theory
impose on the Global Workspace. A central outcome of this
work has been the incorporation, in a natural manner, of con-
straints on individual consciousness, i.e. what Baars calls
contexts. Using information theory methods, extended by
an obvious homology between information source uncertainty
and free energy density, it is possible to formally account
for the effects on individual consciousness of parallel physi-
ological modules like the immune system, embedding struc-
tures like the local social network, and, most importantly, the
all-encompassing cultural heritage which so uniquely marks
human biology (e.g. Richerson and Boyd, 2004). This em-
bedding evades the mereological fallacy which fatally bedev-
ils brain-only theories of human consciousness (Bennett and

Hacker, 2003).
Transfer of phase change approaches from statistical

physics to information theory via the same homology gen-
erates the punctuated nature of accession to consciousness in
a similarly natural manner. The necessary renormalization
calculation focuses on a phase transition driven by variation
in the average strength of nondisjunctive ‘weak ties’ (Gra-
novetter, 1973) linking unconscious cognitive submodules. A
second-order ‘universality class tuning’ allows for adaptation
of conscious attention via ‘rate distortion manifolds’ which
generalize the idea of a retina. Aversion of the Baars model
emerges as an almost exact parallel to hierarchical regression,
based, however, on the Shannon-McMillan rather than the
Central Limit Theorem.

Wallace (2005b) recently proposed a somewhat different ap-
proach, using classic results from random and semirandom
network theory (Erdos and Renyi, 1960; Albert and Barabasi,
2002; Newman, 2003) applied to a modular network of cogni-
tive processors. The unconscious modular network structure
of the brain is, of course, not random. However, in the spirit
of the wag who said “all mathematical models are wrong,
but some are useful”, the method serves as the foundation
of a different, but roughly parallel, treatment of the Global
Workspace to that given in Wallace (2005a), and hence as
another basis for a benchmark model against which empirical
data can be compared.

The first step is to argue for the existence of a network of
loosely linked cognitive unconscious modules, and to charac-
terize each of them by the ‘richness’ of the canonical language
– information source – associated with it. This is in some con-
trast to attempts to explicitly model neural structures them-
selves using network theory, e.g. the ‘neuropercolation’ ap-
proach of Kozma et al. (2004, 2005), which nonetheless uses
many similar mathematical techniques. Here, rather, we look
at the necessary conditions imposed by the asymptotic limits
of information theory on any realization of a cognitive process,
be it biological ‘wetware’, silicon dryware, or some direct or
systems-level hybrid. All cognitive processes, in this formu-
lation, are to be associated with a canonical ‘dual informa-
tion source’ which will be constrained by the Rate Distortion
Theorem, or, in the zero-error limit, the Shannon-McMillan
Theorem. It is interactions between nodes in this abstractly
defined network which will be of interest here, rather than
whatever mechanism or biological system, or mixture of them,
actually constitute the underlying cognitive modules.

The second step is to examine the conditions under which
a giant component (GC) suddenly emerges as a kind of phase
transition in a network of such linked cognitive modules, to
determine how large that component is, and to define the rela-
tion between the size of the component and the richness of the
cognitive language associated with it. This is the candidate
for Baars’ shifting Global Workspace of consciousness.

While Wallace (2005a) examines the effect of changing the
average strength of nondisjunctive weak ties acting across
linked unconscious modules, Wallace (2005b) focuses on
changing the average number of such ties having a fixed
strength, a complementary perspective whose extension via
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a kind of ‘renormalization’ leads to a far more general ap-
proach.

The third step, following Wallace (2005b), is to tune the
threshold at which the giant component comes into being, and
to tune vigilance, the threshold for accession to consciousness.

Wallace’s (2005b) information theory modular network
treatment can be enriched by introducing a groupoid for-
malism which is roughly similar to recent analyses of linked
dynamic networks described by differential equation models
(e.g. Stewart et al., 2003, Stewart, 2004; Weinstein, 1996;
Connes, 1994). Internal and external linkages between infor-
mation sources break the underlying groupoid symmetry, and
introduce more structure, the global workspace and the ef-
fect of contexts, respectively. The analysis provides a founda-
tion for further mathematical exploration of linked cognitive
processes.

Cognition as ‘language’ Cognition is not consciousness.
Most mental, and many physiological, functions, while cog-
nitive in a formal sense, hardly ever become entrained into
the Global Workspace of consciousness: one seldom is able to
consciously regulate immune function, blood pressure, or the
details of binocular tracking and bipedal motion, except to
decide ‘what shall I look at’, ‘where shall I walk’. Nonethe-
less, many cognitive processes, conscious or unconscious, ap-
pear intimately related to ‘language’, broadly speaking. The
construction is fairly straightforward (Wallace, 2000, 2005a,
b).

Atlan and Cohen (1998) and Cohen (2000) argue, in the
context of immune cognition, that the essence of cognitive
function involves comparison of a perceived signal with an
internal, learned picture of the world, and then, upon that
comparison, choice of one response from a much larger reper-
toire of possible responses.

Cognitive pattern recognition-and-response proceeds by an
algorithmic combination of an incoming external sensory sig-
nal with an internal ongoing activity – incorporating the
learned picture of the world – and triggering an appropriate
action based on a decision that the pattern of sensory activity
requires a response.

More formally, a pattern of sensory input is mixed in an un-
specified but systematic algorithmic manner with a pattern of
internal ongoing activity to create a path of combined signals
x = (a0, a1, ..., an, ...). Each ak thus represents some func-
tional composition of internal and external signals. Wallace
(2005a) provides two neural network examples.

This path is fed into a highly nonlinear, but otherwise sim-
ilarly unspecified, ‘decision oscillator’, h, which generates an
output h(x) that is an element of one of two disjoint sets B0

and B1 of possible system responses. Let

B0 ≡ b0, ..., bk,

B1 ≡ bk+1, ..., bm.

Assume a graded response, supposing that if

h(x) ∈ B0,

the pattern is not recognized, and if

h(x) ∈ B1,

the pattern is recognized, and some action bj , k+1 ≤ j ≤ m
takes place.

The principal objects of formal interest are paths x which
trigger pattern recognition-and-response. That is, given a
fixed initial state a0, we examine all possible subsequent paths
x beginning with a0 and leading to the event h(x) ∈ B1. Thus
h(a0, ..., aj) ∈ B0 for all 0 < j < m, but h(a0, ..., am) ∈ B1.

For each positive integer n, let N(n) be the number of high
probability ‘grammatical’ and ‘syntactical’ paths of length n
which begin with some particular a0 and lead to the condi-
tion h(x) ∈ B1. Call such paths ‘meaningful’, assuming, not
unreasonably, that N(n) will be considerably less than the
number of all possible paths of length n leading from a0 to
the condition h(x) ∈ B1.

While combining algorithm, the form of the nonlinear os-
cillator, and the details of grammar and syntax, are all un-
specified in this model, the critical assumption which permits
inference on necessary conditions constrained by the asymp-
totic limit theorems of information theory is that the finite
limit

H ≡ lim
n→∞

log[N(n)]
n

(1)

both exists and is independent of the path x.
We call such a pattern recognition-and-response cognitive

process ergodic. Not all cognitive processes are likely to be
ergodic, implying that H, if it indeed exists at all, is path
dependent, although extension to ‘nearly’ ergodic processes
seems possible (Wallace, 2005a).

Invoking the spirit of the Shannon-McMillan Theorem, it
is possible to define an adiabatically, piecewise stationary, er-
godic information source X associated with stochastic variates
Xj having joint and conditional probabilities P (a0, ..., an) and
P (an|a0, ..., an−1) such that appropriate joint and conditional
Shannon uncertainties satisfy the classic relations

H[X] = lim
n→∞

log[N(n)]
n

=

lim
n→∞

H(Xn|X0, ..., Xn−1) =

lim
n→∞

H(X0, ..., Xn)
n

.

This information source is defined as dual to the underlying
ergodic cognitive process (Wallace, 2005a).
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Recall that the Shannon uncertainties H(...) are
cross-sectional law-of-large-numbers sums of the form
−

∑
k Pk log[Pk], where the Pk constitute a probability

distribution. See Khinchin (1957), Ash (1990), or Cover and
Thomas (1991) for the standard details.

The cognitive modular network symmetry groupoid
A formal equivalence class algebra can be constructed by
choosing different origin points a0 and defining equivalence
by the existence of a high probability meaningful path con-
necting two points. Disjoint partition by equivalence class,
analogous to orbit equivalence classes for dynamical systems,
defines the vertices of the proposed network of cognitive dual
languages. Each vertex then represents a different informa-
tion source dual to a cognitive process. This is not a repre-
sentation of a neural network as such, or of some circuit in
silicon. It is, rather, an abstract set of ‘languages’ dual to the
cognitive processes instantiated by either biological wetware,
mechanical dryware, or their direct or systems-level hybrids.

This structure is a groupoid, in the sense of Weinstein
(1996). States aj , ak in a set A are related by the groupoid
morphism if and only if there exists a high probability gram-
matical path connecting them, and tuning across the various
possible ways in which that can happen – the different cogni-
tive languages – parametizes the set of equivalence relations
and creates the groupoid. This assertion requires some devel-
opment.

Note that not all possible pairs of states (aj , ak) can be
connected by such a morphism, i.e. by a high probability,
grammatical and syntactical cognitive path, but those that
can define the groupoid element, a morphism g = (aj , ak)
having the ‘natural’ inverse g−1 = (ak, aj). Given such a
pairing, connection by a meaningful path, it is possible to
define ‘natural’ end-point maps α(g) = aj , β(g) = ak from the
set of morphisms G into A, and a formally associative product
in the groupoid g1g2 provided α(g1g2) = α(g1), β(g1g2) =
β(g2), and β(g1) = α(g2). Then the product is defined, and
associative, i.e. (g1g2)g3 = g1(g2g3).

In addition there are ‘natural’ left and right identity ele-
ments λg, ρg such that λgg = g = gρg whose characterization
is left as an exercise (Weinstein, 1996).

An orbit of the groupoid G over A is an equivalence class
for the relation aj ∼ Gak if and only if there is a groupoid
element g with α(g) = aj and β(g) = ak.

The isotopy group of a ∈ X consists of those g in G with
α(g) = a = β(g).

In essence a groupoid is a category in which all morphisms
have an inverse, here defined in terms of connection by a
meaningful path of an information source dual to a cognitive
process.

If G is any groupoid over A, the map (α, β) : G→ A×A is
a morphism from G to the pair groupoid of A. The image of
(α, β) is the orbit equivalence relation ∼ G, and the functional
kernel is the union of the isotropy groups. If f : X → Y is a
function, then the kernel of f , ker(f) = [(x1, x2) ∈ X ×X :
f(x1) = f(x2)] defines an equivalence relation.

As Weinstein (1996) points out, the morphism (α, β) sug-
gests another way of looking at groupoids. A groupoid over

A identifies not only which elements of A are equivalent to
one another (isomorphic), but it also parametizes the different
ways (isomorphisms) in which two elements can be equivalent,
i.e. all possible information sources dual to some cognitive
process. Given the information theoretic characterization of
cognition presented above, this produces a full modular cog-
nitive network in a highly natural manner.

The groupoid approach has become quite popular in the
study of networks of coupled dynamical systems which can
be defined by differential equation models, e.g. Stewart et al.
(2003), Stewart (2004). Here we have outlined how to extend
the technique to networks of interacting information sources
which, in a dual sense, characterize cognitive processes, and
cannot at all be described by the usual differential equation
models. These latter, it seems, are much the spiritual off-
spring of 18th Century mechanical clock models. Cognitive
and conscious processes in humans involve neither computers
nor clocks, but remain constrained by the limit theorems of
information theory, and these permit scientific inference on
necessary conditions.

Internal forces breaking the symmetry groupoid The
symmetry groupoid, as we have constructed it for unconscious
cognitive submodules in ‘information space’, is parametized
across that space by the possible ways in which states aj , ak

can be ‘equivalent’, i.e. connected by a meaningful path of
an information source dual to a cognitive process. These
are different, and in this approximation, non-interacting un-
conscious cognitive processes. But symmetry groupoids, like
symmetry groups, are made to be broken: by internal cross-
talk akin to spin-orbit interactions within a symmetric atom,
and by cross-talk with slower, external, information sources,
akin to putting a symmetric atom in a powerful magnetic or
electric field.

As to the first process, suppose that linkages can fleet-
ingly occur between the ordinarily disjoint cognitive mod-
ules defined by the network groupoid. In the spirit of Wal-
lace (2005a), this is represented by establishment of a non-
zero mutual information measure between them: a cross-talk
which breaks the strict groupoid symmetry developed above.

Wallace (2005a) describes this structure in terms of fixed
magnitude disjunctive strong ties which give the equivalence
class partitioning of modules, and nondisjunctive weak ties
which link modules across the partition, and parametizes the
overall structure by the average strength of the weak ties, to
use Granovetter’s (1973) term. By contrast the approach of
Wallace (2005b), which we outline here, is to simply look at
the average number of fixed-strength nondisjunctive links in
a random topology. These are obviously the two analytically
tractable limits of a much more complicated regime.

Since we know nothing about how the cross-talk connec-
tions can occur, we will – at first – assume they are ran-
dom and construct a random graph in the classic Erdos/Renyi
manner. Suppose there are M disjoint cognitive modules – M
elements of the equivalence class algebra of languages dual to
some cognitive process – which we now take to be the vertices
of a possible graph.

For M very large, following Savante et al. (1993), when
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edges (defined by establishment of a fixed-strength mutual
information measure between the graph vertices) are added
at random to M initially disconnected vertices, a remarkable
transition occurs when the number of edges becomes approxi-
mately M/2. Erdos and Renyi (1960) studied random graphs
with M vertices and (M/2)(1 + µ) edges as M → ∞, and
discovered that such graphs almost surely have the follow-
ing properties (Molloy and Reed, 1995, 1998; Grimmett and
Stacey, 1998; Luczak, 1990; Aiello et al., 200; Albert and
Barabasi, 2002):

If µ < 0, only small trees and ‘unicyclic’ components are
present, where a unicyclic component is a tree with one addi-
tional edge; moreover, the size of the largest tree component
is (µ− ln(1 + µ))−1 +O(log log n).

If µ = 0, however, the largest component has size of order
M2/3.

And if µ > 0, there is a unique ‘giant component’ (GC)
whose size is of order M ; in fact, the size of this compo-
nent is asymptotically αM , where µ = −α−1[ln(1 − α) − 1],
which has an explicit solution for α in terms of the Lambert
W-function. Thus, for example, a random graph with approx-
imately M ln(2) edges will have a giant component containing
≈M/2 vertices.

Such a phase transition initiates a new, collective, cogni-
tive phenomenon: the Global Workspace of consciousness,
emergently defined by a set of cross-talk mutual information
measures between interacting unconscious cognitive submod-
ules. The source uncertainty, H, of the language dual to
the collective cognitive process, which characterizes the rich-
ness of the cognitive language of the workspace, will grow as
some monotonic function of the size of the GC, as more and
more unconscious processes are incorporated into it. Wallace
(2005b) provides details.

Others have taken similar network phase transition ap-
proaches to assemblies of neurons, e.g. ‘neuropercolation’
(Kozma et al., 2004, 2005), but their work has not focused
explicitly on modular networks of cognitive processes, which
may or may not be instantiated by neurons. Restricting
analysis to such modular networks finesses much of the under-
lying conceptual difficulty, and permits use of the asymptotic
limit theorems of information theory and the import of tech-
niques from statistical physics, a matter we will discuss later.

External forces breaking the symmetry groupoid
Just as a higher order information source, associated with the
GC of a random or semirandom graph, can be constructed
out of the interlinking of unconscious cognitive modules by
mutual information, so too external information sources, for
example in humans the cognitive immune and other physiolog-
ical systems, and embedding sociocultural structures, can be
represented as slower-acting information sources whose influ-
ence on the GC can be felt in a collective mutual information
measure. For machines these would be the onion-like ‘struc-
tured environment’, to be viewed as among Baars’ contexts
(Baars, 1988, 2005; Baars and Franklin, 2003). The collective
mutual information measure will, through the Joint Asymp-
totic Equipartition Theorem which generalizes the Shannon-
McMillan Theorem, be the splitting criterion for high and low

probability joint paths across the entire system.
The tool for this is network information theory (Cover and

Thomas, 1991, p. 388). Given three interacting information
sources, Y1, Y2, Z, the splitting criterion, taking Z as the ‘ex-
ternal context’, is given by

I(Y1, Y2|Z) = H(Z) + H(Y1|Z) + H(Y2|Z)−H(Y1, Y2, Z),

(2)

where H(..|..) and H(.., .., ..) represent conditional and joint
uncertainties (Khinchin, 1957; Ash, 1990; Cover and Thomas,
1991).

This generalizes to

I(Y1, ...Yn|Z) = H(Z) +
n∑

j=1

H(Yj |Z)−H(Y1, ..., Yn, Z).

(3)

If we assume the Global Workspace/Giant Component to
involve a very rapidly shifting, and indeed highly tunable,
dual information source X, embedding contextual cognitive
modules like the immune system will have a set of signifi-
cantly slower-responding sources Yj , j = 1..m, and external
social, cultural and other ‘environmental’ processes will be
characterized by even more slowly-acting sources Zk, k = 1..n.
Mathematical induction on equation (3) gives a complicated
expression for a mutual information splitting criterion which
we write as

I(X|Y1, .., Ym|Z1, .., Zn).

(4)

This encompasses a fully interpenetrating ‘biopsychosocio-
cultural’ structure for individual consciousness, one in which
Baars’ contexts act as important, but flexible, boundary con-
ditions, defining the underlying topology available to the far
more rapidly shifting global workspace (Wallace, 2005a, b).

This result does not commit the mereological fallacy which
Bennett and Hacker (2003) impute to excessively neurocentric
perspectives on consciousness in humans, that is, the mistake
of imputing to a part of a system the characteristics which
require functional entirety. The underlying concept of this
fallacy should extend to machines interacting with their en-
vironments, and its baleful influence probably accounts for a
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significant part of AI’s failure to deliver. See Wallace (2005a)
for further discussion.

Punctuation phenomena As a number of researchers
have noted, in one way or another, – see Wallace, (2005a)
for discussion – equation (1),

H ≡ lim
n→∞

log[N(n)]
n

,

is homologous to the thermodynamic limit in the definition
of the free energy density of a physical system. This has the
form

F (K) = lim
V→∞

log[Z(K)]
V

,

(5)

where F is the free energy density, K the inverse tempera-
ture, V the system volume, and Z(K) is the partition function
defined by the system Hamiltonian.

Wallace (2005a) shows at some length how this homology
permits the natural transfer of renormalization methods from
statistical mechanics to information theory. In the spirit of
the Large Deviations Program of applied probability theory,
this produces phase transitions and analogs to evolutionary
punctuation in systems characterized by piecewise, adiabati-
cally stationary, ergodic information sources. These ‘biologi-
cal’ phase changes appear to be ubiquitous in natural systems
and can be expected to dominate machine behaviors as well,
particularly those which seek to emulate biological paradigms.
Wallace (2002) uses these arguments to explore the differences
and similarities between evolutionary punctuation in genetic
and learning plateaus in neural systems.

Renormalizing the giant component: the second or-
der iteration The random network development above is
predicated on there being a variable average number of fixed-
strength linkages between components. Clearly, the mutual
information measure of cross-talk is not inherently fixed, but
can continuously vary in magnitude. This we address by a
parametized renormalization. In essence the modular net-
work structure linked by mutual information interactions has
a topology depending on the degree of interaction of interest.
Suppose we define an interaction parameter ω, a real positive
number, and look at geometric structures defined in terms
of linkages which are zero if mutual information is less than,
and ‘renormalized’ to unity if greater than, ω. Any given ω
will define a regime of giant components of network elements
linked by mutual information greater than or equal to it.

The fundamental conceptual trick at this point is to invert
the argument : A given topology for the giant component will,
in turn, define some critical value, ωC , so that network ele-
ments interacting by mutual information less than that value
will be unable to participate, i.e. will ‘locked out’ and not
be consciously perceived. We hence are assuming that the

ω is a tunable, syntactically-dependent, detection limit, and
depends critically on the instantaneous topology of the giant
component defining the global workspace of consciousness.
That topology is, fundamentally, the basic tunable syntactic
filter across the underlying modular symmetry groupoid, and
variation in ω is only one aspect of a much more general topo-
logical shift. More detailed analysis is given below in terms
of a topological rate distortion manifold.

Suppose the giant component at some ‘time’ k is character-
ized by a set of parameters Ωk ≡ ωk

1 , ..., ωk
m. Fixed parameter

values define a particular giant component having a particular
topological structure (Wallace, 2005b). Suppose that, over a
sequence of ‘times’ the giant component can be characterized
by a (possibly coarse-grained) path xn = Ω0,Ω1, ...,Ωn−1 hav-
ing significant serial correlations which, in fact, permit defini-
tion of an adiabatically, piecewise stationary, ergodic (APSE)
information source in the sense of Wallace (2005a). Call that
information source X.

Suppose, again in the manner of Wallace (2005a), that a
set of (external or else internal, systemic) signals impinging
on consciousness, i.e. the giant component, is also highly
structured and forms another APSE information source Y
which interacts not only with the system of interest globally,
but specifically with the tuning parameters of the giant com-
ponent characterized by X. Y is necessarily associated with
a set of paths yn.

Pair the two sets of paths into a joint path zn ≡ (xn, yn),
and invoke some inverse coupling parameter, K, between the
information sources and their paths. By the arguments of
Wallace (2005a) this leads to phase transition punctuation
of I[K], the mutual information between X and Y, under
either the Joint Asymptotic Equipartition Theorem, or, given
a distortion measure, under the Rate Distortion Theorem.

I[K] is a splitting criterion between high and low proba-
bility pairs of paths, and partakes of the homology with free
energy density described in Wallace (2005a). Attentional fo-
cusing then itself becomes a punctuated event in response to
increasing linkage between the organism or device and an ex-
ternal structured signal, or some particular system of internal
events. This iterated argument parallels the extension of the
General Linear Model into the Hierarchical Linear Model of
regression theory.

Call this the Hierarchical Cognitive Model (HCM).
The HCM version of Baars’ global workspace model, as we

have constructed it, stands in some contrast to other current
work.

Tononi (2004), for example, takes a ‘complexity’ perspec-
tive on consciousness, in which he averages mutual informa-
tion across all possible bipartitions of the thalamocortical sys-
tem, and, essentially, demands an ‘infomax’ clustering solu-
tion. Other clustering statistics, however, may serve as well
or better, as in generating phylogenetic trees, and the method
does not seem to produce conscious punctuation in any nat-
ural manner.

Dehaene and Changeux (2005) take an explicit Baars global
workspace perspective on consciousness, but use an elaborate
neural network simulation to generate a phenomenon analo-
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gous to inattentional blindness. While their model does in-
deed display the expected punctuated behaviors, as noted
above, Krebs (2005) unsparingly labels such constructions
with the phrase ‘neurological possibility does not imply neu-
rological plausibility’, suggesting that the method does little
more than fit a kind of Fourier series construction to high
level mental processes.

Here we have attempted a central motion model of con-
sciousness, focusing on modular networks defined by function
rather than by structure.

Cognitive quasi-thermodynamics A fundamental ho-
mology between the information source uncertainty dual to
a cognitive process and the free energy density of a physi-
cal system arises, in part, from the formal similarity between
their definitions in the asymptotic limit. Information source
uncertainty can be defined as in equation (1). This is quite
analogous to the free energy density of a physical system,
equation (5).

Feynman (1996) provides a series of physical examples,
based on Bennett’s work, where this homology is, in fact,
an identity, at least for very simple systems. Bennett argues,
in terms of irreducibly elementary computing machines, that
the information contained in a message can be viewed as the
work saved by not needing to recompute what has been trans-
mitted.

Feynman explores in some detail Bennett’s microscopic ma-
chine designed to extract useful work from a transmitted mes-
sage. The essential argument is that computing, in any form,
takes work, the more complicated a cognitive process, mea-
sured by its information source uncertainty, the greater its
energy consumption, and our ability to provide energy to
the brain is limited. Inattentional blindness emerges as an
inevitable thermodynamic limit on processing capacity in a
topologically-fixed global workspace, i.e. one which has been
strongly configured about a particular task (Wallace, 2006).

Understanding the time dynamics of cognitive systems
away from phase transition critical points requires a phe-
nomenology similar to the Onsager relations of nonequilib-
rium thermodynamics. If the dual source uncertainty of a
cognitive process is parametized by some vector of quanti-
ties K ≡ (K1, ...,Km), then, in analogy with nonequilibrium
thermodynamics, gradients in the Kj of the disorder, defined
as

S ≡ H(K)−
m∑

j=1

Kj∂H/∂Kj

(6)

become of central interest.
Equation (6) is similar to the definition of entropy in terms

of the free energy density of a physical system, as suggested
by the homology between free energy density and information
source uncertainty described above.

Pursuing the homology further, the generalized Onsager
relations defining temporal dynamics become

dKj/dt =
∑

i

Lj,i∂S/∂Ki,

(7)

where the Lj,i are, in first order, constants reflecting the
nature of the underlying cognitive phenomena. The L-matrix
is to be viewed empirically, in the same spirit as the slope and
intercept of a regression model, and may have structure far
different than familiar from more simple chemical or physi-
cal processes. The ∂S/∂K are analogous to thermodynamic
forces in a chemical system, and may be subject to override by
external physiological driving mechanisms (Wallace, 2005c).

Imposing a metric for different cognitive dual languages
parametized by K leads quickly into the rich structures of
Riemannian, or even Finsler, geometries (Wallace, 2005c).

One can apply this formalism to the example of the giant
component, with the information source uncertainty/channel
capacity taken as directly proportional to the component’s
size, which increases monotonically with the average number
of (renormalized) linkages, a, after the critical point. H(a)
then rises to some asymptotic limit.

As the system rides up with increasing a, H(a) increases
against the ‘force’ defined by −dS/da. Raising the cognitive
capacity of the giant component, making it larger, requires
energy, and is done against a particular kind of opposition.
Beyond a certain point, the system just runs out of steam.
Altering the topology of the network, no longer focusing on
a particular demanding task, would allow detection of cross-
talk signals from other submodules, as would the intrusion of
a signal above the renormalization limit ω.

We propose, then, that the manner in which the system
‘runs out of steam’ involves a maxed-out, fixed topology for
the giant component of consciousness. As argued above,
the renormalization parameter ω then becomes an informa-
tion/energy bottleneck. To keep the giant component at op-
timum function in its particular topology, i.e. focused on a
particular task involving a necessary set of interacting cogni-
tive submodules, a relatively high limit must be placed on the
magnitude of a mutual information signal which can intrude
into consciousness.

Consciousness is tunable, and signals outside the cho-
sen ‘syntactical/grammatical bandpass’ are often simply not
strong enough to be detected, accounting for the phenomena
of inattentional blindness (Wallace, 2006). This basic focus
mechanism can be modeled in far more detail.

Focusing the mind’s eye: the simplest rate distor-
tion manifold The second order iteration above – analogous
to expanding the General Linear Model to the Hierarchical
Linear Model – which involved paths in parameter space, can
itself be significantly extended. This produces a generalized
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tunable retina model which can be interpreted as a ‘Rate Dis-
tortion manifold’, a concept which further opens the way for
import of a vast array of tools from geometry and topology.

Suppose, now, that threshold behavior in conscious reac-
tion requires some elaborate system of nonlinear relationships
defining a set of renormalization parameters Ωk ≡ ωk

1 , ..., ωk
m.

The critical assumption is that there is a tunable ‘zero order
state,’ and that changes about that state are, in first order,
relatively small, although their effects on punctuated process
may not be at all small. Thus, given an initial m-dimensional
vector Ωk, the parameter vector at time k + 1, Ωk+1, can, in
first order, be written as

Ωk+1 ≈ Rk+1Ωk,

(8)

where Rt+1 is an m×m matrix, having m2 components.
If the initial parameter vector at time k = 0 is Ω0, then at

time k

Ωk = RkRk−1...R1Ω0.

(9)

The interesting correlates of consciousness are, in this de-
velopment, now represented by an information-theoretic path
defined by the sequence of operators Rk, each member having
m2 components. The grammar and syntax of the path de-
fined by these operators is associated with a dual information
source, in the usual manner.

The effect of an information source of external signals, Y,
is now seen in terms of more complex joint paths in Y and
R-space whose behavior is, again, governed by a mutual in-
formation splitting criterion according to the JAEPT.

The complex sequence in m2-dimensional R-space has,
by this construction, been projected down onto a parallel
path, the smaller set of m-dimensional ω-parameter vectors
Ω0, ...,Ωk.

If the punctuated tuning of consciousness is now charac-
terized by a ‘higher’ dual information source – an embedding
generalized language – so that the paths of the operators Rk

are autocorrelated, then the autocorrelated paths in Ωk rep-
resent output of a parallel information source which is, given
Rate Distortion limitations, apparently a grossly simplified,
and hence highly distorted, picture of the ‘higher’ conscious
process represented by the R-operators, having m as opposed
to m×m components.

High levels of distortion may not necessarily be the case for
such a structure, provided it is properly tuned to the incoming

signal. If it is inappropriately tuned, however, then distortion
may be extraordinary.

Let us examine a single iteration in more detail, assum-
ing now there is a (tunable) zero reference state, R0, for the
sequence of operators Rk, and that

Ωk+1 = (R0 + δRk+1)Ωk,

(10)

where δRk is ‘small’ in some sense compared to R0.
Note that in this analysis the operators Rk are, implic-

itly, determined by linear regression. We thus can invoke a
quasi-diagonalization in terms of R0. Let Q be the matrix of
eigenvectors which Jordan-block-diagonalizes R0. Then

QΩk+1 = (QR0Q−1 + QδRk+1Q−1)QΩk.

(11)

If QΩk is an eigenvector of R0, say Yj with eigenvalue λj ,
it is possible to rewrite this equation as a generalized spectral
expansion

Yk+1 = (J + δJk+1)Yj ≡ λjYj + δYk+1

= λjYj +
n∑

i=1

aiYi.

(12)

J is a block-diagonal matrix, δJk+1 ≡ QRk+1Q−1, and
δYk+1 has been expanded in terms of a spectrum of the eigen-
vectors of R0, with

|ai| � |λj |, |ai+1| � |ai|.

(13)

The point is that, provided R0 has been tuned so that this
condition is true, the first few terms in the spectrum of this
iteration of the eigenstate will contain most of the essential
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information about δRk+1. This appears quite similar to the
detection of color in the retina, where three overlapping non-
orthogonal eigenmodes of response are sufficient to character-
ize a huge plethora of color sensation. Here, if such a tuned
spectral expansion is possible, a very small number of ob-
served eigenmodes would suffice to permit identification of a
vast range of changes, so that the rate-distortion constraints
become quite modest. That is, there will not be much dis-
tortion in the reduction from paths in R-space to paths in
Ω-space. Inappropriate tuning, however, can produce very
marked distortion, even inattentional blindness.

Reflection suggests that, if consciousness indeed has some-
thing like a grammatically and syntactically-tunable retina,
then appropriately chosen observable correlates of conscious-
ness may, at a particular time and under particular circum-
stances, actually provide very good local characterization of
conscious process. Large-scale global processes are, like hy-
perfocal tuning, another matter.

Note that Rate Distortion Manifolds can be quite formally
described using standard techniques from topological mani-
fold theory (Glazebrook, 2005). The essential point is that a
rate distortion manifold is a topological structure which con-
strains the ‘stream of consciousness’ much the way a river-
bank constrains the flow of the river it contains. This is a
fundamental insight.

DISCUSSION AND CONCLUSIONS

The simple groupoid defined by underlying cognitive mod-
ular structure can be broken by intrusion of (rapid) crosstalk
within it, and by the imposition of (slower) crosstalk from
without it. The former, if strong enough, can initiate a
topologically-determined giant component global workspace
of consciousness, in a punctuated manner, while the latter
deforms the underlying topology of the entire system, limit-
ing what paths can actually be traversed by consciousness,
the ‘torus and sphere’ argument of Wallace (2005a). Broken
symmetry creates richer structure in systems characterized by
groupoids, just as it does for those characterized by groups.
Conscious attention acts through a Rate Distortion mani-
fold, a kind of retina-like filter for grammatical and syntacti-
cal ‘meaningful’ paths, which affects what can be brought to
consciousness. Signals outside the tunable syntax/grammar
bandpass of this manifold are subject to lessened probability
of punctuated conscious detection: generalized inattentional
blindness. Culture will, according to this model, profoundly
affect the phenomenon by imposing additional topological
constraints defining the ‘surface’ along which consciousness
can (and cannot) glide.

Glazebrook (2005) has suggested that, lurking in the back-
ground of this basic construction, is what Brown has called
the groupoid atlas, i.e. an extension of topological manifold
theory to groupoid mappings. Formalizing this insight should
prove to be an arduous enterprise. Also lurking is identifica-
tion and exploration of the ‘natural’ groupoid convolution al-
gebra which so often marks these structures (e.g. Weinstein,
1996; Connes, 1994).

Consideration suggests, in fact, that a path may be ‘mean-
ingful’ according to the groupoid parametization of all possi-
ble dual information sources, and that tuning is done across
that parametization via a rate distortion manifold.

Baars’ global workspace of consciousness is, in effect, a mov-
able bucket of limited capacity. If it is already filled up by
attention to a particular task, droplets from other tasks will
likely overflow, and may not be consciously perceived.

If one is, then, intensely focused on watching a basket-
ball game and counting passes, requiring a very particular
fixed (but highly tunable) cognitive topology, a gorilla beat-
ing its chest may simply not be a strong enough syntacti-
cally/grammatically correct signal to intrude on conscious-
ness. On the other hand, falling off one’s chair, a hotfoot,
or a particularly sharp comment from one’s significant other,
might prove intrusive enough – above the tunable syntax limit
characterized by ω – to permit detection in the given topolog-
ical configuration, or else powerful enough to shift conscious
topology altogether, i.e. to retune the operator R0 in the rate
distortion manifold argument above. Short of that, there re-
mains a significant probability that signals outside the range
of the grammar/syntax filter of conscious attention will not
be meaningful and will simply not be detected: inattentional
blindness.

Implicit, however, are the constraints imposed by embed-
ding cultural heritage, which may further limit the properties
of R0.

Clearly the phenomenon should not be restricted to the
visual system, but, in one form or another, is likely to be
ubiquitous across conscious experience, all of which should
display particular cultural characteristics.

The mathematical ecologist E.C. Pieou (1977, p.106) de-
scribes the utility of mathematical models of complex ecosys-
tem phenomena as follows:

“...[Mathematical models] are easy to devise;
even though the assumptions of which they are con-
structed may be hard to justify, the magic phrase ‘let
us assume that...’ overrides objections temporarily.
One is then confronted with a much harder task:
How is such a model to be tested? The correspon-
dence between a model’s predictions and observed
events is sometimes gratifyingly close but this can-
not be taken to imply the model’s simplifying as-
sumptions are reasonable in the sense that neglected
complications are indeed [always] negligible in their
effects...

In my opinion [in spite of these serious dangers]
the usefulness of models is great... [however] it con-
sists not in answering questions but in raising them.
Models can be used to inspire new field investiga-
tions and these are the only source of new knowledge
as opposed to new speculation.”

Extending that perspective slightly, the model we have pre-
sented, like a regression analysis, would perhaps provide the
most scientific value through its violation, i.e. new science is
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often found in the residuals (Kepler and Newton extending
Copernicus).

Thus, for example, variations in the forms of inattentional
blindness across vision, touch, taste, hearing, and their inter-
actions, should give deeper understanding of consciousness. A
second empirical implication is that the various forms of inat-
tentional blindness are likely subject to elaborate regulation:
too much distractibility while hunting, like too much fixation
on one’s prey while one is, in turn, being hunted, could be
rapidly fatal.

Attentional focus is necessary for consciousness to be effec-
tive in learning new, or successfully carrying out old, skills.
Too much focus, however, leads to inattentional blindness,
which can be dangerous. Here we have attempted to reexpress
this trade-off in terms of a syntactical/grammatical version of
conventional signal theory, i.e. as a ‘tuned meaningful path’
form of the classic balance between sensitivity and selectivity.

The final, and perhaps central, empirical implication is that
‘Western’, ‘East Asian’, and other cultural heritages should
impose observable differences in the manifestations of gener-
alized inattentional blindness.

These speculations, in particular the latter, are all subject
to explicit empirical test.
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