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Abstract 
In this study we investigated the effects of different 
morphological configurations on a robot swinging 
task using van der Pol oscillators. The task was 
examined using two separate degrees of freedom 
(DoF), both in the presence and absence of neural 
entrainment. Neural entrainment stabilises the 
system, reduces time-to-steady state and relaxes the 
requirement for a strong coupling with the 
environment in order to achieve mechanical 
entrainment. It was found that staged release of the 
distal DoF does not have any benefits over using both 
DoF from the onset of the experimentation. On the 
contrary, it is less efficient, both with respect to the 
time needed to reach a stable oscillatory regime and 
the maximum amplitude it can achieve. The same 
neural architecture is successful in achieving 
neuromechanical entrainment for a robotic walking 
task. 

1. Introduction 
Non-linear differential equations have been used in 

robotics as central pattern generators (CPGs) for a 
multitude of tasks such as robot swinging (Lungarella and 
Berthouze 2002), arm motion (Williamson 1998) and 
locomotion (Taga 1991; Zielinska 1996; Lewis, Etienne-
Cummings et al. 2003), both in simulation and robotic 
experiments. CPGs have become increasingly popular as 
they provide biologically-inspired, robust and adaptive 
motion. 

With the use of CPGs in robot swinging, an interesting 
range of rhythmical behaviours can be explored. Thus, 
what might seem as an uncomplicated task offers the right 
amount of complexity to investigate and make 
comparisons with theoretical findings and different 
oscillators, while at the same time maintaining a 
controlled experimental environment.  

An increasingly strong case has been made for 
embodiment and hence the use of real robots instead of 
simulations, initially with (Brooks 1991) and now many 
others such as (Thelen and Smith 1994; Beer, Chiel et al. 
1998). The main argument is that the body, “which 
mediates perception and affects behaviour, plays an 
integral role in the emergence of human cognition, […] 
the central tenet of embodied cognition is that cognitive 

and behavioural processes emerge from the reciprocal 
and dynamic coupling between the brain, body and 
environment” (Lungarella, Metta et al. 2003). We endorse 
this school of thought and have thus made use of an 
embodied robotic platform to investigate our problem. 

In a previous study (Lungarella and Berthouze 2002), 
the same task was investigated using a different non-linear 
oscillator (Matsuoka 1985). In this paper, we explore the 
behaviour of the system and its ability to achieve 
entrainment with the natural dynamics under different 
morphological configurations, with and without neural 
entrainment. The van der Pol oscillator (Strogatz 2001) 
was chosen for the smaller number of parameters 
requiring tuning, robustness (Matsuoka is a near-harmonic 
oscillator that does not feature an asymptotically stable 
limit cycle) and straightforward computational 
implementation. 

2. The Degrees of Freedom Problem 
The degrees of freedom problem was first attacked 

theoretically by Nikolai Bernstein in a series of papers, 
published collectively in The coordination and regulation 
of movements (Bernstein 1967). The main theme of his 
framework was the staged acquisition of control, in the 
proximal-to-distal direction. This is a three-staged 
process: 

1. Distal (peripheral) degrees of freedom (DoF) are 
decreased (frozen) to a minimum. 

2. Once control of the more proximal ones has been 
mastered, the frozen degrees of freedom are 
released and the process continues. 

3. Once the organism can control its morphology in its 
entirety, it can begin to exploit any reactive 
phenomena that occur to its advantage. 

This process is intuitive, e.g. the reduction of variables 
to be controlled is reasonably expected to accelerate 
acquisition of control and also draws a parallel to Piaget’s 
notion of stages of cognitive development. As such, it has 
been widely accepted for a long time. There is some 
experimental verification of the process, with the most 
widely cited example being that of the disappearing infant 
stepping/kicking reflex. Exhibited by infants as young as 
12 weeks in utero, this reflex disappears by the age of 
four or five months. It only reappears much later when the 
child learns how to walk at around 12 months. This is 
viewed as freezing of a distal DoF because the infant 
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cannot yet cope with a high number of variables and 
subsequent release due to attainment of control. 

 It was, however, later shown that the basis for this 
change in behaviour is not of neural, but of 
morphological, origin (Thelen and Smith 1994). That is, 
muscle strength is not able to cope with the dramatic leg 
mass increase accompanying infant maturation (Goldfield 
1995). Furthermore, there is experimental evidence that 
Bernstein’s 3-stage model is not universal. For some 
tasks, an additional stage of freezing and releasing some 
degrees of freedom may be required, depending on task 
constraints (Newell and Vaillancourt 2001). 

Utilising the task of robot swinging (Lungarella and 
Berthouze 2002), we will investigate the effects of the 
distal-proximal DoFs on the task depending on their 
degree of coupling. We also aim to characterise the 
swinging task under different morphological 
configurations. For this purpose, we activate each degree 
of freedom separately and observe the resultant behaviour. 
Subsequently both hip and knee joints are activated, under 
different coupling schemes. 

3. Experimental Setup 
The robot is held from a horizontal bar like a pendulum 

so that it can swing freely about it. A coloured marker is 
placed on the robot so that a webcam viewing the setup 
from the side can track the marker’s position. The x 
coordinate of this marker is then used as feedback for the 
neural oscillator. In this study, only the hip and knee 
joints were actuated, while all others on the robot were 
held stiff. This way the system can be viewed as an 
underactuated triple pendulum with the top joint being 
free while the bottom two joints are totally forced to the 
output of the nonlinear oscillator. The experimental setup 
and an equivalent representation are shown in Figure 1. 

 
Figure 1: The experimental setup and equivalent representation. 

It should be noted that this equivalent representation is 
only shown here for clarity and was not used as a model 
of the system. This is in accordance with a major design 
principle in the ontogenetic paradigm: The explicit 
avoidance of directly engineered approaches, as these 
stem from the designer’s understanding of robot physics 

and task dynamics. Instead of hard-wiring the problem’s 
solution in the robot’s brain, the “[control] structure 
should reflect the robot’s own process of understanding 
through interactions with the environment” (Asada, 
MacDorman et al. 2001). 

4. Non-linear Oscillator 
The equations of the van der Pol oscillator, as used in 

our experiments, are: 
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where 0µ ≥  is a parameter controlling the damping 
term, ω  is the natural frequency of the oscillator, fb  
represents the feedback from the vision system, inG  is the 

feedback gain, while hip kneeG −  and knee hipG −  are the 
cross-coupling term gains. The final output given to the 
position-controlled motors activating the joints, is: 

( ) ,  { , }i out iG sign x i hip kneeθ = ⋅ =   (3) 

where outG  is the output gain. 
 Using the derivative of the equation’s solution to 

generate the motor command has the effect of removing 
any DC components from the oscillator signal; taking the 
sign of this result generates a binary command for full 
joint extension or contraction (Figure 2).  

This is necessary for the low bandwidth motors that we 
use and also avoids the need for signal normalisation: 
unlike other nonlinear oscillators, the van der Pol’s output 
varies in amplitude, dependant on the amplitude of its 
inputs (Williamson 1999). We thus convert the periodic 
oscillator signal to a pulse-width modulated square wave 
retaining frequency information. 

 
Figure 2: Example oscillator output (e.g. xhip, bottom 
waveform) and corresponding motor commands (θ, top 
waveform). Note that the drift in the DC component of the 
oscillator output does not affect the motor command. 

By altering the gains, a range of different behaviours 
can be realised. If the value of inG  is too low, then the 
oscillator does not entrain to the feedback signal. 
Likewise, outG  has to be sufficiently high to ‘excite’ the 
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mechanical system, yet given the low actuator bandwidth 
not so high as to make the distance the joints have to 
move excessively large. The gains affecting the cross-
coupling terms control the influence each oscillator has on 
its counterpart. If they are not equal to each other, a phase 
difference between the two oscillators is introduced. To 
avoid this suboptimal behaviour, they were kept equal 
throughout this study. 

Unless mentioned otherwise, the following values were 
used throughout the study: 1.00µ = , 2 1.00ω = , 

0.143inG = , 0.500hip knee knee hipG G− −= =  and 

0.784outG = . The initial conditions given to the 
numerical integrators throughout this study were: 

{ } { }, , , , 0.00,0.00,0.00,0.00hip hip knee kneex x x x = . 

5. 1-DoF experimentation 
Initially the system was only allowed to actuate the hip 

joint. As shown in Figure 3, after a transient phase of 
increasing amplitude oscillations, the system settles into a 
stable oscillatory regime. The maximum amplitude 
reached was 163 units.  

 
Figure 3: The time series with the hip actuated. The top signal is 
fb and the bottom signal is oscillator output (xhip). 

 
Figure 4: Phase plots for the oscillator (left) and feedback 
signals (right) for a typical experimental run where the hip joint 
was actuated. 

Next, the system was run under the same setup, but with 
the output of the oscillator fed to the knee joints. Due to 
geometry and the fact that the motors move a smaller 

mass, the resultant oscillations were much smaller in 
amplitude Figure 5. 

This way the feedback gain had to be significantly 
increased to 0.50 for entrainment to take place. The 
maximum oscillation amplitude attained in this setup was 
just 61 units. The mechanical system limit cycle contains 
multiple closed circular regions per iteration (knots), 
suggesting suboptimal behaviour. 
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Figure 5: Actuating the knee joints alone resulted in small 
amplitude oscillations. On the left, the time series is shown; 
from top to bottom, the signals are: knee servo command (θ), 
mechanical system position (fb) and oscillator output (xknee). 
On the right is a 2D projection of the fb limit cycle. The isolated 
external trajectories belong to the initial oscillations  

6. Independent 2-DoF experiments 
Subsequently, both joints were actuated at the same 

time. It was found that the system was able to perform 
much better in the 2-DoF configurations than the 1-DoF 
ones. Oscillations were more stable, of larger amplitude 
and the steady state was attained faster. 

With the cross-coupling constants Ghip-knee and Gknee-hip 
set to 0, the two oscillators are only linked by means of 
the mechanical feedback signal. It was thus necessary to 
set the feedback gain parameter, Gin,, to a relatively high 
value (0.5) to allow sensory feedback to modulate the 
oscillator’s output. This results in a stable oscillatory 
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regime that attains maximal amplitude oscillations of 201 
units (Figure 6).  

The regime is, however, prone to sporadic glitches 
during the transient phase, indicating that it is not totally 
stable. The time series and corresponding limit cycle for 
such a trial can be seen in Figure 6. The glitches manifest 
themselves as single out-of-phase kicks, in addition to 
normal behaviour.  

 
Figure 6: Time series (left, top to bottom the signals shown are 
knee- and hip- servo commands, feedback signal and oscillator 
output) and mechanical phase plot (right) of the stable 
oscillatory regime obtained with cross-coupling disabled. 

7. Neural entrainment 
 With the cross-coupling gains both set to 0.50, an 

explicit connection is made between the two oscillators. 
The output of each one is fed directly into the other, 
before exciting the motors. With this connection, the 
system finds a very stable oscillatory regime, even for low 
feedback gain values. Furthermore, the system reaches its 
steady-state faster and attains the largest maximal 
amplitude (206 units) among all experimental 
configurations. The time series and mechanical system 
phase plot can be seen in Figure 7. 

The corresponding phase plots for this experiment can 
be seen in Figure 8. The mechanical limit cycle is now 
smoother and varies less with time, but the neural system 
exhibits a low-frequency oscillation enveloping the 
normal behaviour. 

Provided that the feedback gain is high enough, the 
system can always reach a stable regime. The presence of 
neural entrainment acts as a stabiliser, removing glitches 
in the oscillator output and avoiding sudden transient 

behaviour. With the cross-coupling gains set to 0.25 the 
system achieves a maximum oscillation amplitude of 198 
units and with the gains set to 0.10, 200 units.  

 
Figure 7: Time series of the stable oscillatory regime obtained 
with cross-coupling enabled. Top to bottom the signals shown 
are knee- and hip- servo commands, feedback signal and 
oscillator output. 

 
Figure 8: Phase plots for the oscillator output (top) and 
mechanical feedback (bottom) signals in the presence of strong 
neural entrainment (cross-coupling gains both set to 0.50). 

8. Staged distal DoF release 
Next, a staged release of the knee DoF was carried out. 

The system initially started oscillating using only the hip, 
with the knee output and feedback input inhibited. In two 
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different trials, the oscillator was enabled once the system 
had reached its steady state and at an earlier stage. 

The knee oscillator is very quick to entrain to the 
feedback signal, within one (neural system) period; this is 
expected as mechanical entrainment has already been 
achieved. The presence of neural entrainment improves 
upon this only marginally. The staged release of the 
second DoF has the effect of transitioning the system to a 
slightly suboptimal version of the 2-DoF oscillatory 
mode. This configuration achieves both a smaller 
maximum amplitude (by about 5%, 190 units) and 
requires far more time to reach the steady state.  

An aggregate performance comparison for all different 
morphological configurations can be seen in Figure 9. The 
best performance is achieved by using both DoF and 
strong neural entrainment, closely followed by the 
independent- and the two staged, 2-DoF configurations. 
The single-DoF setups exhibit the worst performance. 

 
Figure 9: Performance comparison for the 5 morphological 
configurations. Starting the experimental runs with both DoF 
enabled offers the best performance, both in terms of maximum 
oscillation amplitude attained and time to reach the steady state. 
The arrows denote the instant where the second DoF was 
released and its oscillator activated. 

9. Towards acquiring walking skills 
The same neural architecture was also used in a robotic 

walking task. The experimental setup can be seen in 
Figure 10. The robot is supported by a metal arm and thus 
restricted to move in the sagittal plane, i.e. vertical to the 
arm. The arm can rotate freely about a vertical axis, by 
means of a free revolute joint. The natural elasticity of the 
arm allows for limited vertical travel. A webcam is 
mounted on the arm itself, next to the axis of rotation, so 
that it rotates in the same frame of reference as the robot, 
yet does not move vertically. As in the case of swinging, 
the webcam is used to track the position of a coloured 
marker placed on the robot’s body. The marker’s ordinate 
is then used as the feedback signal for the neural 
oscillators. 

In the absence of a sufficiently large amplitude periodic 
feedback signal (as in the beginning of an experimental 
run, when the robot is stationary), the oscillator caused the 
motors to move at its natural frequency. This was too high 

for the motors that could not follow the gait trajectories in 
their entirety. Therefore, the steps the robot made were 
incomplete and stride length was small. These small and 
quick steps caused the robot to walk at a very slow pace. 
However, this caused the feedback signal amplitude to 
increase as the legs pushed upwards at each step, which in 
turn led to the oscillator entraining to the mechanical 
system’s dynamics. This was indicated by a reduction in 
the frequency of the neural oscillator and significant 
increases in walking speed and stride length. 

 
Figure 10: The experimental used for walking experiments. The 
elasticity of the suspending arm is exploited to absorb impact 
shocks and provide a rudimentary form of compliance. The 
vertical motion of the robot body as it walks is used as the 
feedback signal for the neural controller.  

Data from such an experiment is shown in Figure 11, 
where the feedback signal, oscillator output and motor 
commands are plotted against (oscillator) equation time. 
The three arrows in the figure denote the regions where 
entrainment was achieved. There the oscillator produced 
stable, large and generally constant amplitude oscillations, 
while frequency- and phase-locking to the feedback 
signal. It becomes clear that in between these regions of 
stability, the oscillator’s output amplitude and DC 
component show significant drift. However, this 
phenomenon is totally absent in the first case of 
entrainment and significantly reduced in the other two.  

 
Figure 11: Time series for a typical experimental run showing, 
from top to bottom, the motor commands, nonlinear oscillator 
output and feedback signal. The arrows denote the regions where 
entrainment was achieved. 
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The phase plots for the above two signals in this 
experiment are shown in Figure 12. The initial high 
frequency oscillations occur without forming a closed 
limit cycle. This is possible because the motor commands 
are generated by taking the oscillator’s derivative, rather 
than its direct output into account (equation 3). However, 
entrainment creates a stable limit cycle, seen as a ‘tunnel’ 
in the 3D plot. This type of graph additionally emphasises 
oscillator DC drift, allowing for a better assessment of 
entrainment ‘quality’. Thus, in its second occurrence, the 
‘entrainment tunnel’ can be seen drifting, indicating an 
imperfect lock.  

 
Figure 12: Oscillator output (top) and mechanical feedback 
signal (bottom) phase plots for the given experimental run. 
Again, the arrows denote the three regions during where 
entrainment was achieved; they are characterised by consistency 
in the oscillator output and large amplitude mechanical 
oscillations. The mechanical feedback signal has additionally 
been smoothed in this plot with a 5-point moving average to 
reduce high frequency noise and discriminate it from stable, 
large amplitude oscillations. 

This is reflected on the mechanical signal; when the 
oscillator entrains well with the natural dynamics, the 

mechanical system increases the amplitude and velocity of 
its oscillations very rapidly. Since there are very few 
iterations with increasing amplitude, this is indicated by a 
clear ‘entrance’ to the tunnel, as in the first and third 
cases. In the second case, the tunnel is preceded by a 
growing spiral and does not maintain constant volume 
throughout its length. Loss of entrainment is indicated by 
sharply diminishing amplitude of the mechanical 
oscillation in all cases. 

The system however, cannot maintain the entrained 
configuration for an extended period of time. The problem 
appears to be the distortion of the feedback signal by 
high-frequency harmonics, destroying entrainment. These 
harmonics are introduced after a small number of periods 
following the onset of entrainment. In behavioural terms, 
the humanoid typically makes 2-3 successful steps before 
motion becoming affected by these strong oscillations 
throughout the apparatus. They could be caused by the 
impact shock not being sufficiently absorbed by the 
compliant mechanism and thus transmitted to the robot’s 
body. 

10. Conclusions 
In the robot swingin task, the van der Pol oscillator 

successfully managed to achieve mechanical entrainment 
with either the proximal or distal degrees of freedom 
activated. While the latter exhibits suboptimal and volatile 
performance on its own, enabling both DoF results in a 
significant improvement of performance, without 
affecting stability. 

In the presence of strong neural entrainment, the system 
reaches its maximal performance. This is in agreement 
with prior art (Taga 1991; Lungarella and Berthouze 
2002). Furthermore, the strength of the connection 
between the oscillators seems to be directly related to the 
overall stability of the system, eliminating glitches in the 
oscillator outputs and reducing the duration of the 
transient phase. 

Use of the van der Pol oscillator in this study has 
resulted in a reduced search space compared to that of 
(Lungarella and Berthouze 2002), making our focus the 
resultant task performance characteristics instead of 
exploration efficiency. Our experiments demonstrate that 
a delayed introduction of the distal DoF does not offer any 
advantages over using both hip and knee from the 
beginning of the experiment. On the contrary, it is less 
efficient, both with respect to the time needed to reach a 
stable oscillatory regime and the maximum amplitude it 
can achieve.  

Work is currently underway to incorporate a learning 
algorithm in the developmental process such as 
reinforcement learning (Sutton and Barto 1998). This will 
then allow for a more detailed exploration of the 
behaviour of the system and also provide insight into the 
interaction of the complex behaviours observed with a 
higher-level process.  

Finally, it is of interest that a neural architecture 
originally designed for a robot swinging task was 
successful also in a robot walking task, demonstrating the 
elegance of the coupled dynamical systems approach.  
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