Smagt, P. van der (1994) Minimisation methods for training feed-forward networks. [Journal (Paginated)]
Full text available as:
Postscript
863Kb |
Abstract
Minimisation methods for training feed-forward networks with back-propagation are compared. Feed-forward neural network training is a special case of function minimisation, where no explicit model of the data is assumed. Therefore, and due to the high dimensionality of the data, linearisation of the training problem through use of orthogonal basis functions is not desirable. The focus is on function minimisation on any basis. Quasi-Newton and conjugate gradient methods are reviewed, and the latter are shown to be a special case of error back-propagation with momentum term. Three feed-forward learning problems are tested with five methods. It is shown that, due to the fixed stepsize, standard error back-propagation performs well in avoiding local minima. However, by using not only the local gradient but also the second derivative of the error function a much shorter training time is required. Conjugate gradient with Powell restarts shows to be the superior method.
Item Type: | Journal (Paginated) |
---|---|
Keywords: | feed-forward neural network training, numerical optimisation techniques, neural function approximation, error back-propagation, conjugate gradient, quasi-Newton |
Subjects: | Computer Science > Neural Nets |
ID Code: | 497 |
Deposited By: | van der Smagt, Patrick |
Deposited On: | 03 Jul 1998 |
Last Modified: | 11 Mar 2011 08:54 |
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page