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Abstract

This paper introduces a control architecture
for the learning of complex sequence of ges-
tures applied to autonomous robots. The ar-
chitecture is designed to exploit the robot in-
ternal sensory-motor dynamics generated by
visual, proprioceptive, and predictive infor-
mations in order to provide intuitive behav-
iors in the purpose of natural interactions
with humans.

1. Introduction

Discriminating and learning sequences is a
crucial mechanism in our efforts to device
robots that can learn from imitation. Previous
techniques have included wusing symbolic ap-
proaches and frequently they clearly separated
the demonstration and reproduction phases (see
from (Kuniyoshi, 1994) to (Tani, 2002) and a com-
plete review about sequence learning architectures
in (Tijsseling and Berthouze, 2003)).  Our archi-
tecture, taking inspiration from experiments with
pre-verbal children removes both these assumptions.
Indeed, addressing the problem of learning sequences
of gestures with an autonomous and developing sys-
tem arises important and very interesting remarks.
First, we can argue that at a given level of its ”de-
velopmental course” our system has no access to any
explicit nor symbolic informations. Nevertheless,
if we take a look at pre-verbal children, or even
young babies, learning sequences of action seems to
be possible, on the basis of, for example, imitation
games or/with simple sensory-motors interactions
(see (Uzgiris, 1999, Nadel, 2000) for a selective re-
view on infant imitation). Learning something new
from a gestural interaction, as a new arrangement
made of motor primitives of self but showed by
the other, constitutes an interesting building block
of ”pre-verbal” communication. In this sense, our
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problem arises the exciting question of how can
sense and high level categorization emerge in a basic
sensory-motor system from gestural interactions and
from the building of shared representations? For the
autonomous system designer interested in modeliz-
ing this course of development, it obviously means
that he can not constrain the environment nor the
demonstration phase in order to fit with previously
determined inputs or sensors. It also means that
the robot is a part of an interaction whose dynamics
may be constituted of actions of the demonstrator
and actions of the robot, and, unless the robot has
autonomously learned how to take turn or switch
role, actions of both actors could happen at any
time. Demonstration and/or reproduction phases
can occur at the same time, with the consequence
that the system will have to extract by itself the
relevant information from its perception. Conse-
quently, the sequence learning and recognition tasks
appear to be components of the same issue that
can difficultly be stated as independent problems.
This paper present a neural architecture that fuses
the demonstration and reproduction stages, which
correspond to two different dynamics of the same
perception action architecture: learning correspond
to a situation where the different input informations
are not at the equilibrium, and reproduction can
be done when this system is able to predict learned
sequences. Interestingly we will link these results
with what has been the drive of the development
of our architecture from scratch, the homeostatic
behavior, that has led the system to learn its first
visuo-motor repertory, and that triggered imitative
behaviors and first gestures imitations. Finally we
will discuss that our perception/action system in the
perspective of turn-taking : how different modalities
can determine the behavior of the system.

2. Homeostasis and development

Lets suppose a simple perception action architecture
using vision as main source of information, and a
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Figure 1: a). Simplified architecture for self visuo-motor
coordination and immediate imitation. The Visuo-motor map
allows to compare visual (V) and proprioceptive (P) informa-
tion on the same space. Visual information triggers dynamical
attractors on the neural field. b). Initially, (V) and (P) of the
same end point of self do not have the same value (random ini-
tialization). This error induce the change of the Visuo-motor
weights, and the step by step equilibrium of (P) and (V) dur-
ing random movements. Immediate imitation is obtained the

same way, if Vision of others is confused with vision of self.

device (of a given complexity) to perform its actions.
Such a system has to deal with at least 2 different
informations:

e Visual information (V), about the external en-
vironment. It can concern useful information,
such as the movements of others, an object being
grasped or self movements. This information is
often two-dimensional, related to the pixel space.

e Proprioception information (P), i.e information
about self movements that are being done (angle
of joints ¢1,¢2,...,¢0,, speed of the joints %, etc..);

In previous works (Andry et al., 2004), we have im-
plemented a model relying on dynamical neural fields
(see S. Amari’s equations (Amari, 1977)) allowing a
control architecture to behave like an homeostatic
machine. It tries to minimize differences between P
and V. We have shown that this homeostatic behav-
ior was enough to drive, in the order:

1. Visuo-motor learning of associations between P
and V about self devices. For example, an eye-
arm system during a babbling phase produce ran-
dom arm movements in order to learn to equili-
brate input V and P information projected on an
internal Visuo-motor map. The result is a sys-
tem that is able to transform Motor information
(¢1,02,-..,¢,) into a simpler 2D space correspond-
ing to the visual one. As a result, movements to
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reach visual goals can then be more easily com-
puted on this visual space.

2. Because the system perception is ambiguous, V
information about movements of other are con-
fused with movements of self. We have shown
that The homeostatic behavior and this percep-
tion ambiguity triggers for free an immediate and
systematic imitation behavior.

Now we propose that the same simple homeostasis
principle can still be applied to this same system in
order to switch from a phase of immediate system-
atic imitation of simple gestures , to the learning of
more complex sequences of theses gestures in order
to be able to reproduce them later. To do this, we
introduce a new structure that tries to predict the
next sensory-motor activity. This structure tries to
keep an equilibrium between its predictions (Pred)
and the sensory-motor activity of the system. More-
over, most sequences that are used for natural ges-
ture interactions turn to be complex, and a reliable
system need to use hidden states to code them in
the case of the involvement of the same state in dif-
ferent transitions (for example A-B-A-C-A-B, etc..).
We describe in the following section the system that
learn and predicts such complex sequences of actions.

3. Learning complex sequences

p neural field d-out motor
V. detection > ™ > ddo >
pred P
e Visuo-motar.
Prediction map
- Protyping | g-.-..._.—
Time base

Figure 2: The architecture for on line sequence learning.
Dashed lines correspond to learned connections. See text for
details.

Our system does not directly takes the visual input
as the model of the sequence to learn. Instead, im-
mediate imitation plays a crucial role in the learning
mechanism. Movements of the robot are a filtered re-
sponse of visual inputs, and the proprioception infor-
mation is therefore more continuous, less noisy and
still contain the dynamics of the demonstrated se-
quence. Hence, using the output of the visuo-motor
map provide a simpler and more reliable signal of the
demonstrated trajectory. An integration and deriva-
tion mechanism of this visuo-motor information al-
lows to detect changes in the trajectory. Theses de-
tected points form a temporal succession of relevant
positions (in the visuo-motor space). In real con-
ditions, a sequence of gestures demonstrated by a



human will not be exactly the same. In a gestural
game, for example, repetitions of the same sequence
turn to be different with numerous demonstrations.
In this case, detection of “via points” in a simple
sequence become quickly unstable from an iteration
to the other. To build a stable sequence, we intro-
duce a Prototyping group (see fig. 2) that learns the
spatial characteristic (in the visual space) of the rel-
evant points of the sequence, and exhibits robustness
to changes from iterations of the same sequence.

The neurons are activated as fol-
low (Hersch, 2004), eq. 1:

pstiey - 1S 5 PSHS ) P(S
! 325 P(x|Sh) - 32, P(SHS; ) P(Si™)
(1)
Moreover, this law combines properties of HMM
and Self Organizing Maps algorithms, where hid-
den states can be used to code complex sequences.
Neurons (S;, with activity P(S}|z) at time t) of
this group have one to all connections (W;;) whose
weights are modified in order to learn transitions be-
tween states :

dw;; = ewP(S§|x) -P(S!—1|z)(1 - wi;)  (2)

The main advantage is that computation can be
done on line, and the weight update is made ac-
cording to the previous activated state (P(S}'|z),
a kind of contextual activity at ¢ — 1). The neu-
rons of the Prediction group learn to predict the
timing of the transitions between activated neurons
of the prototyping group. Equations of activation
of Prediction and Time Basis neurons can be found
in (Andry et al., 2001). The rule learning the tim-
ing k of the transition between neurons ¢ and j of
the prototyping group, using time trace of the Time
Basis (TB) groups is the following :

Awy_;; = €-TB;y, - (Prototyping; — Pred,;) (3)

where € is the learning rate. The sequence learn-
ing mechanism generates step by step predictions
of sensory-motor information used to recall the se-
quence in order to play back a learned sequence.

4. Experiments and results

Experiments where made with a 2 degrees of free-
dom eye-neck device. Initially, the architecture
was planned to be tested with the 5 DOF robotic
arm used in previous works, but a mechanical
fault has delayed the tests '. The main point is
that the architecture remains unchanged for the
2 DOF device application, and that the transfor-
mation of complex device information into the 2

1A new robotic arm is under construction in order to vali-
date the present work

dimensional visuo-motor space was demonstrated
in (Andry et al., 2004). During the experiment, the
experimenter demonstrates repetitively the same se-
quence in front of the robot, adapting the speed
of its movements to the robot dynamics (but the
demonstration remains very close from natural move-
ments). The robots learns the sequence online. First,
the progressive learning of the sequence induces a
low prediction activity. This activity is not strong
enough to trigger the activity of the neural field. As
a result, the robot’s behavior is only triggered by
V information, that “drives” the motor command:
while the system is not able to process strong pre-
dictions, it keeps an imitative behavior. After several
demonstrations, the Prediction information reaches a
level strong enough to activate the neural field: Pred
“drives” the system movements and allow the repro-
duction of the learned sequence: the system switch
from imitation to the demonstration of the learned
sequence. Of course, proper reproduction is only pos-
sible if the experimenter stops the demonstrations
when the system starts to predict, otherwise V and
Pred information will be in competition to drive the
movements (imitation or reproduction 7). Figs: 3
and 4 shows the internal activities of the main groups
of neurons of the architecture during learning and re-
production.

5. Discussion

According to the purpose of this work, the main
question we can ask now is “is the robot behavior
autonomous ?”. The tested scenario was the fol-
lowing: the robot imitates the experimenter gestures
with the consequence that V information is filtered
by self movements in a more continuous visuo-motor
information. The sequence of visuo-motor activities
is then learned by changing the weights of the Pre-
diction (time) and the prototyping (space) groups.
Moreover, taking into account hidden states (algo-
rithm of the prototyping group) allow the experi-
menter to repeat during its interaction with the robot
the same sequence many times, until the prediction
information arises. But at this point, the interac-
tion stops to be intuitive and autonomous, in the
sense that a complete reproduction of the learned
sequence implies that the experimenter control the
system: First, when the prediction arises, the robot
reproduction can only be done if the experimenter
stops moving, otherwise V and prediction informa-
tions will compete, inducing an unstable behavior :
at any time, vision of the other moving can change
the system dynamics and confuse the reproduction
of the sequence. Second, to stop moving, the ex-
perimenter has to monitor the systems predictions
in order to see when the prediction information will
overshoot a given threshold and activate the neu-
ral field activity. To sum up, such a system is not
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Figure 3: Learning and reproducing a circle. Up : represen-
tation in the visual space. Left: Input activity (competition
of movement detection). Middle : Visuo-motor map activity
(filtered response) during immediate imitation. Right : Visuo-
motor map activity during the reproduction of the sequence;
this figure also show in black the neurons of the prototyping
sequence that have learn. Bottom: Activity showing the tran-
sitions learned by the Prediction group during a reproduction
of the sequence. The step by step recall of the transitions al-
low to trigger the neural field activity and the motor command

to reproduce the sequence.

able to know how to switch back from reproduction
to learning. If our system is able to build two dif-
ferent sensory-motor dynamics, immediate imitation
and learning vs reproduction of a learned sequence,
it is not able to cope between these two dynam-
ics. In future works, we plan to adapt on going
research (Andry et al., 2001) about the dynamics of
turn taking of simple perception action systems to
see if minimal changes can be applied to the ar-
chitecture in order to cope learning and reproduc-
tion dynamics for stable interactions, in the manner
of (TIto and tani, 2004) with the learning of sequences
of increasing complexity.
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