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1. Symbol manipulation in situated robots of London task called STOL and formulated the first re-

In traditional cognitive science, cognition amounts to
symbol manipulation (Newell and Simon, 1972). Sym-
bol manipulation is the processing of symbolic de-
scriptions to produce an output that benefits an objec-
tive. Moreover, embodied models of cognitive develop-
ment concern situated robots that do not rely on sym-
bolic descriptions or on their manipulation (see, e.g.,
(Schlesinger, 2003)). In this paper, we introduce an em-
bodied model of cognitive development that does rely
on symbol manipulation. It has been claimed that inter-
nalised interaction with the external environment consti-
tutes symbol manipulation (Phaf and Wolters, 1997). A
mechanism to internalise such interaction was suggested
in (Hesslow, 2002) as part of the simulation hypothesis.
The simulation hypothesis states that conscious thought
is based on the ability to simulate perception and be-
haviour internally. Such internal simulation consists of
imagining actions and their consequences without actu-
ally performing them.

In (Ziemke et al., 2005) it was demonstrated that sit-
uated robots can perform simple maze-following tasks
on the basis of internal simulation. In a study involv-
ing situated agents engaged in an active categorisation
task (van Dartel et al., 2005), we have shown that situated
robots with the ability to simulate perception and behav-
ior internally can outperform robots that do not have this
ability (van Dartel et al., 2004). Situated robots can thus
exploit their ability to simulate perception and behaviour
internally. As was stated above, this ability may also con-
stitute symbol manipulation.

Symbol manipulation is often associated with planning
(Newell and Simon, 1972), a skill that is generally re-
garded as high-level cognition (Cooper, 2002). To plan
ahead in time, one needs to be able to represent the
current state of the task in symbols and extrapolate to
future states by manipulation of these symbols. The
Tower of London (ToL) task is a typical planning task
(Shallice, 1982) and a standard neuropsychological test
to assess frontal lobe damage (Kolb and Whishaw, 1983),
which impairs planning performance (Baddeley, 1986).

In this paper we investigate whether symbol manipu-
lation tasks can be solved by robots with the ability to
simulate perception and behaviour internally. In order to
do so, we constructed the situated model of the Tower

search question: Does the ability to perform symbol ma-
nipulation by internal simulation enhance performance
on the ToL task in SToL? If this appears to be the case,
we will try to answer the second research question: How
does the symbol manipulation by internal simulation in
SToL enhance performance on the ToL task?

The ToL task will be discussed in more detail in sec-
tion 2. The STOL model is described in section 3. The
experiments conducted with the STOL model and the re-
sults found are reported in section 4. An analysis of the
internal simulation of the optimised robot will be con-
ducted in section 5. Finally, the results are discussed and
concluded upon in section 6.

2. The Tower of London task

The Tower of London (ToL) task is often employed to
test a subject’s ability to plan ahead (Shallice, 1982), and
proves especially useful to test the development of chil-
dren’s problem solving abilities (Krikorian et al., 1994,
Bull et al., 2004). In the ToL task, subjects are asked
to change a given starting configuration of three balls on
three pegs to a pre-defined goal configuration in the least
possible number of moves. Figure 1 shows four possible
states of the ToL task labelled O to 3. Each state consists
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Figure 1: Illustration of the actions required to reach goal state

3 from the initial state O through intermediate states 1 and 2 in
the ToL task. The arrows represent movements of balls. The
shaded circles are labelled according to their colour (R, G, and
B, for red, green, and blue, respectively. Dashed circles repre-
sent previous ball positions.

of a configuration of the three balls on the three pegs.
The balls are labelled according to their colour (R, G,
and B, for red, green, and blue, respectively). State 0
is the initial state, states 1 and 2 are intermediate states,
and state 3 is the goal state. The figure illustrates how,
when starting from the initial state 0, a subject can reach
goal state 3 by visiting two intermediate states (1 and
2) without violating the constraints of the ToL task. All

121



possible goal states can be reached from any initial state
of the ToL task. However, successful completion of the
task and the number of successive moves needed to reach
the goal configuration depend on a subject’s ability to
plan ahead in time. The ToL task is considered a typ-
ical high-level planning task, because “successful com-
pletion requires the participant to ‘look ahead’ and solve
the problem cognitively before actually moving the balls”
((Bull et al., 2004), p.743). The complexity of a ToL task
can be varied by changing the starting state and/or the
goal state. A standard set of 12 problems was defined in
(Shallice, 1982).

3. Assituated model of the Tower of London
task: SToL

Below, we describe STOL in terms of the task, the robot,
and the evolutionary algorithm that is used to optimise
the robot’s performance. In STOL, a robot is optimised to
perform the 12 ToL problems defined by (Shallice, 1982).

The robot in STOL is able to perceive the cur-
rent ToL state and can respond by moving a ball
from one peg to another. The model is situated be-
cause the robot can observe the consequences of its
own actions (Pfeifer and Scheier, 1999), and use these
to learn how to reach the goal configuration. Since
in (Nolfi and Floreano, 2000) it was shown that em-
bodiment can be simulated, we chose to simulate the
embodiment of the robot (cf., (van Dartel et al., 2005,
Ziemke et al., 2005)) rather than us a physical robot. The
robot consists of a neurocontroller that receives infor-
mation about the configuration of the balls on the pegs
through its sensors. The robot changes the position of a
ball according to the output of the neurocontroller and the
constraints of the ToL task. The interaction between the
robot and the ToL task is realised by encoding ToL states
and ToL actions in a straightforward way in the sensors
and actuators of the robot.

Figure 2 provides an illustration of the encoding of the
ToL state (current configuration of the ToL), goal state
(goal configuration of the ToL problem), and expected
state (to be described below) into the sensor array. In
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Figure 2: Example of encoding a ToL state, a goal state, and an
expected state in activation of the sensor array.

figure 2, the current, goal, and expected states are su-

perimposed resulting in the activation pattern shown in
the sensor-array configuration. The actuator array of the
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robot consists of six actuators. The first three actuators
encode the colour of the ball to be moved (red, green,
blue). The last three actuators encode the peg to which
the ball should be moved (left, middle, right).

The standard neurocontroller of a robot in STOL
(henceforth referred to as neurocontroller A) consists of
a simple recurrent neural network (RNN). The eighteen
input nodes of the RNN sample the sensory activations.
The input is mapped onto / hidden nodes and an equal
number of context nodes. The six output nodes of the
RNN encode the actions in the actuator array of the robot.

In section 1. we argued that a symbol-manipulating
robot may require an internal simulation mechanism.
Therefore, we test the robot with a neurocontroller with
an internal simulation mechanism (neurocontroller B).
The internal simulation mechanism consists of an addi-
tional output layer and feedback connection to the input
layer of the neurocontroller. Figure 3 illustrates the archi-
tecture of neurocontroller B. The additional output layer
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Figure 3: Architecture of neurocontroller B.

employs the same encoding as the plain output layer.
However, the output of the additional output layer is not
used to reconfigure the ToL, but is internally processed to
generate an expected state of the ToL: the ToL state that
would result from the action if it was actually performed.
This process continues until the plain output of the neuro-
controller provides an action that satisfies the constraints
of the ToL.

We optimised the performance of the robot on the ToL
task using a standard evolutionary algorithm that is simi-
lar to the one used in (van Dartel et al., 2005). The fitness
function F was defined as F = ((C+S) x 1000) — M, with
F the fitness of a robot, C the total number of balls posi-
tioned correctly upon termination of each problem, S the
number of the 12 ToL problems that were solved, and M
the total number of moves that the robot made to solve
those problems. In all experiments reported in this paper,
the number of generations is 50,000 and each generation
consists of 100 robots. Our performance measures are:
(i) S, the average proportion of solved ToL problems, and
(ii) M, M,,,;, (of the solved problems) divided by the av-
erage number of moves it used to solve the problems.

4. Experiment and results

In the experiment, STOL was used to determine the per-
formance of the situated robot on Shallice’s (1982) test
with neurocontrollers A and B. For both neurocontrollers,
the number of hidden nodes, A, (which is equal to the
number of context nodes) was optimised. Starting from
h =4, the value for h was repeatedly increased by 2, until
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Figure 4: S as a function of the number of hidden nodes and
context nodes (h) for neurocontroller A (solid line) and neuro-
controller B (dashed line).
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Figure 5: M as a function of the number of hidden nodes and
context nodes (/) for neurocontroller A (solid line) and neuro-
controller B (dashed line).

S reached the criterium p. > 0.95. Each individual evo-
lution was replicated 5 times to obtain a good estimate of
the optimised robot’s mean performance. Figure 4 illus-
trates the performance of the robot with neurocontroller
A and with neurocontroller B expressed in S, as a func-
tion of h. The figure shows that the robot with either neu-
rocontroller achieves the performance criterium S >0.95
when h = 14. Figure 5 illustrates the performance of the
robot expressed in M, as a function of 4. Of main rel-
evance is the performance for 7 = 14, because for that
value, the robots solve S > 0.95 ToL problems. Strik-
ingly, a significant difference in the average proportion
of moves made (M) by the robot between neurocontroller
A and neurocontroller B is observed for 4 = 14.

In summary, the results show that the robot with neuro-
controller B uses significantly less moves than with neu-
rocontroller A when the proportion of problems solved is
> 0.95. Apparently, when almost all 12 problems of the
test are solved by the robot, it can do so more efficiently
when equipped with an internal simulation mechanism.
Our results provide an answer to the first research ques-
tion. The ability to perform symbol manipulation by in-
ternal simulation enhances performance on the ToL task
in STOL.

5. Analysis of internal simulation

To investigate how symbol manipulation by internal sim-
ulation in STOL enhances performance on the ToL task

we analysed the internal simulation of the optimised
robot with neurocontroller B. A typical example of se-
quences of expected states that are generated by the inter-
nal simulation mechanism while solving a ToL. problem
is shown in table 1. The table shows the sequence of ToL
states that are visited by the robot while solving a ToL.
problem in the left column (top to bottom), and the as-
sociated sequences of expected states that are generated
by the internal simulation mechanism in the right column
(left to right). The arrows in the right column indicate the
transitions between the expected states. The number of
expected states that are generated before the ToL state is
changed by the robot varies per ToL state. The reason is
that the neurocontroller does not always produce actions
that satisfy the constraints of the ToL, and the neurocon-
troller generates expected states until such an action is
produced. Table 1 gives rise to the three observations
discussed below.

ToL state Expected state
R R — R — R — R
G B - (starting state) GB- GB- GB- G--
R R — R - R
GB- GB- GB- GB-
R - R
-BG RGB GB-
B — B - — B
RBG R-G R-G RBG R-G
B B
G G - G - G - G -
RB- R-B R-- R-- R-B
B B B
G — G — G —
continued R-- R-- R
B B B
G — G — G
continued R-- R-- R
B
G
R - - (goal state)

Table 1: The subsequent ToL states that are visited (left column,
top to bottom) and the associated expected states that are gener-
ated by the optimised robot while solving problem 9 of the task
(right column, left to right).

The first observation is that the robot changes the ex-
pected state independently from changing the ToL state,
i.e., the robot can make a simulated move in the absence
of a real move. The second observation is that the ex-
pected states occuring during the state preceeding the
goal state (in the sixth row of table 1) also occurs as a fu-
ture ToL state (the goal state), which suggests that moves
are sometimes internally simulated before they are per-
formed. However, during the ToL state preceeding the
goal state the expected state indicating the move towards
the goal state is generated eight times before it is re-
alised. This suggests that the internal simulation mech-
anism serves the function of building up sufficient acti-
vation in the neurocontroller to produce a certain move,
rather than to simulate a future move. The third observa-
tion is that most of the the expected states either match
the current ToL state or never occur as ToL states at all.

On the basis of these three observations, we argue that
the success of the robot’s behaviour depends on its abil-
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ity to generate and exploit expected states. The analysis
allows us to answer the second research question. The
symbol manipulation by internal simulation in STOL en-
hances performance on the ToL task by generating ex-
pected states that either predict future states or build up
activation to produce a certain move.

6. Discussion and Conclusions

To evaluate the performance of the robot in STOL re-
ported in section 4., we compared the performance of the
robot with that of human subjects. In figure 6 we plot-
ted the performances of the robot (for 2 = 14) with neu-
rocontroller A and with neurocontroller B together with
those of human subjects on Shallice’s test reported by
(Owen et al., 1990) in figure. The figure shows that the
performance of the robot with neurocontroller B (right)
better matches the performance of human subjects on the
ToL task than the performance of the robot with neuro-
controller A (left).
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Figure 6: Average number of moves made by the robot
with neurocontroller A (left), the robot with neurocontroller B
(right), and human subjects (left and right) over the minimal

number of moves in which a problem could be solved (Redrawn
from Owen et al. (1990)).

On the basis of the results reported in section 4., the
analysis reported in section 5., and the comparison shown
in figure 6 we conclude that the performance of infants
on symbol manipulation tasks may rely on their ability
to simulate perception and behaviour internally. There-
fore, embodied models of development that involve sym-
bol manipulation should incorporate a mechanism for the
internal simulation of perception and behaviour.
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