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Abstract. A technique for the credible modelling of economic agents
with bounded rationality based on the evolutionary techniques is
described. The genetic programming paradigm is most suited due to its
meaningful and flexible genome. The fact we are aiming to model agents
with real characteristics implies a different approach from those evolu-
tionary algorithms designed to efficiently solve specific problems. Some
of these are that we use very small populations, it is based on different
operators and uses a breeding selection mechanism. It is precisely some
of the “pathological” features of this algorithm that capture the target
behaviour. Some possibilities for integration of deductive logic-based
approaches and the GP paradigm are suggested. An example application
of an agent seeking to maximise its utility by modelling its own utility
function is briefly described.

1 Introduction

The purpose of this paper is to report on an approach to simulating economic
agents such that their behaviour matches their known characteristics. The
approach taken is to introduce characteristics of bounded rationality and
learning into these simulations using evolutionary techniques.

By using an approach to modelling learning that is close to that used in
genetic programming (GP) [10, 11], we open up a new range of possibilities in
the credible modelling of such boundedly rational agents, where an agent has
a population of candidate beliefs (or models) of its environment which evolve
as it learns. This contrasts in several respects from agent modelling approaches
that use “crisp” logic-like beliefs, or approaches that only involve some
inductive learning. In particular multiple and frequently inconsistent beliefs
are held as a resource for future model development. However, despite this
contrast this approach supports integration of such a style of learning with
deductive mechanisms.



2  Modelling Boundedly Rational Economic Agents

If you seek to model real economic agents then, unless you make some very
sweeping assumptions, the entities in your software model will also need the
broad characteristics of the real agents. This is in contrast to traditional
economics where, by and large, the agency nature of the agents is ignored, in
favour of trying to capture their behaviour en masse.

Thus the purpose of an agent in such a model is different from either agents
that are designed with a particular purpose in mind (e.g. [5]) or for exploration
of the most effective and flexible algorithm for a set of problems. In such
modelling one seeks for as much veracity as is possible given the usual
limitations of time, cost and technique and one does not necessarily look to
design them to be efficient, general, or consistent in their beliefs.

In particular we are interested in agents who:
¢ do not have perfect information about their environment, in general it will

only acquire information through interaction with its environment which

will be dynamically changing;
¢ do not have a perfect model of their environment;
¢ have limited computational power, so they can’t work out all the logical

consequences of their knowledge [18];
¢ other resources, like memory are limited (so they can’t hold large

populations of models);

In addition to these bounds on their rationality we also add some other

observed characteristics of real economic agents, namely:

¢ the mechanisms of learning dominate the mechanisms of deduction in
deciding their action;

¢ they tend to learn in an incremental, path-dependent [1] (or “exploitative”)
way rather than attempting a global search for the best possible model [16];

¢ even though they can’t perform inconsistent actions, they often entertain
mutually inconsistent models and beliefs.

The fundamental difference between these agents and, say, logic-based agents,
is that the updating of internal belief structures is done in a competitive
evolutionary manner using a continuously variable fitness measure rather
than in a “crisp” consistency preserving manner. This is appropriate in
situations of great uncertainty caused by a rationality that is not able to
completely “cope” with its environment but is more restricted in its ability.



3  The Agent Architecture

For the above reasons we have developed a paradigm of modelling the
learning that such agents engage in, as itself a process of modelling by the
agents. For more on this framework see [13].

Although economic agents primarily develop though a process of
incremental learning they also use some deductive procedures. In real
economic agents these processes may be arbitrarily mixed as well as
developed and abstracted over different layers of an organisation. Here we
will only look at a model which effectively separates out learning and
deduction and comes from an essentially unitary agent structure.

The agent works within a given a priori body of knowledge (e.g. accounting
rules). The agent may well make deductions from this in a traditional way and
apply these to the current hypotheses. This body of a priori knowledge may
also determine the syntax of the models the agent starts with, its principal
goals, default actions, fitness functions and the operations to be applied to its
models. Typically much of this a priori knowledge can be made implicit in the
syntax of the genome (which is the approach we have tended to take).

The agent here has many models of its environment. Once started the agent
incrementally develops and propagates these models according to a fitness
function which is based on its memory of past data and effects of its actions as
well as the complexity and specificity of its models. It then selects the best such
model according to that measure. From the best such model and its goals it
attempts to determine its action using a search-based, deductive or
quasi-deductive mechanism. It then takes that action and notes the effects in
the environment for future use. The setup is illustrated below in figure 1.

The development of these models (i.e. the learning) is modelled by an
evolutionary process on this population of internal models (similar to that
described in [4]). Important restrictions on such agents include the fact that it
may have only limited information gained as the result of inter-action with its
environment and that any action costs it so that it can not indulge in an
extensive exploratory search without this being weighed against the benefit
being gained (this is especially true given the course temporal graining of
typical economic simulations).
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Figure 1. Basic Structure of a Simplified Economic Agent

4  The GP Paradigm

An important special case of the above approach to learning is where the

range of operations includes selection and some mechanism for variation, i.e.

an evolutionary algorithm. In particular the paradigm of GP is particularly

appropriate, due to the structure of the genome. These techniques, however,

can not be blindly applied. For example, the efficiency of the learning process

is only a secondary concern when seeking to model economic agents by their

software cousins, but many of the other features of this approach for

modelling learning in an economic agent are appropriate, namely:

¢ the population of programs can represent a collection of multiple,
competing models of the world with which it is concerned;

¢ there is always at least one maximally fit individual model that can be used
to react to events and from which appropriate deductions can be made;

¢ the models are incrementally developed by the learning mechanism;

¢ the fithess measure can be tailored to include aspects such as cost and
complexity as well as the extent of the agreement with known data;

¢ the language of representation of the models can be fairly general and
expressive, e.g. logical expressions.



5  Adapting the GP Paradigm

There are several possible ways of using evolving populations to simulate a
community of economic agents:

1. each member of the evolving population could represent one agent;

2. each agent could be modelled by a whole evolving population;

3. the whole population could be modelled by the whole evolving population
but without an individually intended agent <-> gene correspondence.

Method (1) has been used in several models of agents which evolve (e.g.

[7, 19]), here the genetic development has nothing to do with the nature of an

agent’s cognitive processes but helps determine its goals or strategies. Method

(3) above is the most popular in economics (e.g. [1, 3]), but unless such a model

predicts pertinent properties of real populations of agents it represents a bit of

a fudge, and means that the observable behaviour and content of individual

entities in the model do not have a clear referent in what is being modelled.

This makes it far less useful if one wants to use such models to gain a detailed

insight into the internal dynamics of populations. Method (2) actually

addresses the cognitive process as the agent corresponds to a population of

mental models. This has been done before in a limited way in [15], but here

agents have a fixed menu of possible models which do not develop.
In using the evolutionary paradigm in this sort of modelling we tend to:

¢ represent the agent by a whole evolving population - each gene
corresponding to one of its alternative models (this is the approach taken in
the example in Section 7);

¢ populations of agents are thus modelled as populations of evolving
populations (i.e. populations of populations), with an intended agent to
evolving population correspondence (e.g. [14]);

s give the agents only small populations of models, representing limited
memory;

¢ base the fitness function on a combination of its error compared to past
data, size of model and its predictivity (precision and range of
applicability);

* restrict the variation operators to such as generalisation, specialisation,
averaging, combining and mutating;

¢ and give them only a limited inferential ability to use its best model to
choose its action.

This paradigm needs to be integrated with an agent-based approach and
adapted to relate to credible models of economic agents. In particular the
cross-over operator is somewhat arbitrary when simulating the development



of models in economic agents (although undeniably efficient). This also
introduces a globality to the search which is unrealistic.

In the example application presented below we use a process of combining
old models together as branches from a new node and introducing randomly
generated small new models. This produces more realistic results, for example
it allows for better fitting by parameterisation.

6  Possible integration with Logic-based Agent
Architectures

The structure of the agent described above and the GP style of chromosome
allow for some integrations of the evolutionary learning mechanism and
agents based on logic based inference mechanisms (e.g. the BDI framework
of). This can occur when the chromosomes representing the internal mental
models of the agent represent logical expressions. Given this there are two
main possibilities:

1. The population of genes can be constrained to those that are logically con-
sistent with a set of a priori knowledge expressed as logical expressions
within some formal logical framework;

2. The inference of possible actions could be done by using a logical frame-
work to infer the best action from its best model and its goals;

It would not be appropriate to constrain the population of internal models so
that they were consistent with each other or consistent with its goals as these
represent the competing partial beliefs of the agent about its world.

7  An Application - a model of utility learning

A simple application of the above approach is that of an economic agent that
seeks to maximise its utility by dividing its spending of a fixed budget
between two goods in each time period (what it does not spend on one good it
spends on the other).

Unlike classical economic agents, this one does not know its utility function
(even its form) but tries to induce it from past experience. It only gets
information about the utility of a particular spending pattern by actually
trying it. The agent wants to get the most utility from its spending. It will not
speculate with alternative spending patterns merely to learn more about the
utility curve.

To do this it attempts to model its utility with a function represented by a
GP type chromosome using +, -, * /, max, min, log, exp, average,



“cutbetween” (a three-argument function which takes the second value if the
first value is less than 1 and the third value thereafter) as branching nodes, and
a selection of random constants and variables representing the amounts
bought of the two products for the leaves. Thus the chromosome

[average

[divide
[amountBoughtOf 'product-2']
[constant 2.3]]

[constant 0.5]]

would predict that the utility gained would be
(x/2.3) +05
2

Where X is the amount spent of product 2.

The fitness function is based on the RMS error of the prediction of a model
compared to the actual utility gained over past spending actions. This is
modified by a slight parsimony pressure in favour of shallower chromosomes
and a bias in favour of chromosomes which mentioned more distinct variables
based on the among bought (a rough measure of specificity - called “volume”
in [13]). Only the fittest half of the population is retained each generation, so
that this is a kind of selective breeding algorithm and does not use fitness
proportionate random selection (thus is has some similarities to evolutionary
programming [6]).

Each time period the agent:

—

carries over its previous functional models;

produces some new ones by either combining the previous models with a
new operator or by growing a small new random one;

evaluates its current models using past data;

selects the best models in terms of fithess for survival,

it finds the fittest such model;

it then preforms a limited binary search on this model to find a reasonable
spending pattern in terms of increasing its utility;

7. finally it takes that action and observers its resulting utility.

N
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This model was realised in a language called SDML (Strictly Declarative
Modelling Language) - a language that has been specifically developed
in-house for this type of modelling. This is a declarative object-oriented
language with features that are optimized for the modelling of such economic,
business and organisational agents [9, 20].

Limiting the depth of the models created to 10, We preformed 10 runs over
100 time periods for each type of agent. The three types were characterised by
the memory they were given and the number of new models they created each



time period: respectively 10, 20 and 30. We call these 10-memory, 20-memory
and 30-memory agents, they represent agents with different bounds on their
rationality. The results were then averaged over these 10 runs.

The first graph shows the (RMS) error of the agent’s best model of the
utility function compared with the actual function (figure 2). It shows a great
improvement between the 10-memory agent’s and 20-memory agents, but
only a marginal improvement between 20 and 30-memory agent’s, suggesting
the existence of a sort of minimum capacity for this task.
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Figure 2: Error in Agent’s Best Model for Different Memories, Averaged Over 10 Runs

When you look at the utilities achieved by the agents with different memories
(figure 3), you see that a memory capacity (above 10) does not significantly
increase the average utility over time, but it does dramatically effect the
reliability of the utility it gains. If this were a firm with the utility being its
profits, this reliability would almost as important as its average profit level.
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Figure 3: Utility Ratio Achieved for Agents with Different Memories, Averaged over 10
Runs

To give a flavour of the sort of models these agents develop, in run 1 of the
30-memory agent batch the agent achieved the following model by date 75:

[average
[[divide
[[add [[constant 1.117] [amountBoughtOf ‘product-2']]
[average [[amountBoughtOf "product-2'] [constant 4.773]]]]]
[min
[[amountBoughtOf "product-2']
[cutBetween
[[average [[amountBoughtOf "product-2'] [constant 4.773]]]
[constant 1.044]
[add [[constant 1.117] [amountBoughtOf "‘product-2'T]111111].

The extent of the fit learnt by the agent is shown in figure 4.
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Figure 4: Learnt vs. Actual Utility Functions, Run 1 of 30-memory Agents

The purpose of this simulation is not to be an efficient maximiser of utility, but
to model economic agents in a more credible way. It will only be vindicated (or
otherwise) when compared to real economic data. However, the model does
show traits found in the real world. For example, one phenomenon that is
observed is that agents sometimes get “locked” into inferior models for a
considerable length of time (as in [2]) - the model implies an inferior course of
action, but this course of action is such that the agent never receives
disconformation of its model. Thus this remains its best model in terms of the
limited data it has, so it repeats that action. If, for example, some consumers
find a satisfactory brand at an early stage in the development of their tastes
and then they may never try any others - their (limited) experience will never
disconfirm their model of what would give them most satisfaction, even when
they would like other brands better.

Other related applications have included a model of intelligent price fixing
in Cournot Duopoly tournaments [12], and a model of emerging markets
where the agents are simultaneously building models of the economy they
inhabit (and mutually create) [14].

8 Discussion

Such modelling using evolutionary techniques, where there is an explicit
one-one correspondence between items modelled and the genes in the
population typically deal with very small populations (in evolutionary terms).



In the example above we had populations of mental models as small as 10.
Most of the models of abstract evolutionary algorithms deal only with large
populations (many assume an infinite population for formal purposes). The
behaviour of small populations may be pathological from the point of view of
an efficient search mechanism, but here we have different goals in using
evolutionary algorithms. It is precisely the pathological aspects of the process
that capture the qualitative behaviour observed: sharp path-dependence,
lock-in, exploitative search, a large spread of behaviours between different
populations and limited overall optimization.

Also it is not always the case that the usual genetic operators are very
efficient in such small populations. It is known that selective breeding can
work well with small populations [8]. In addition (in the example above) we
found that a traditional GP mixture of tree-crossover and propagation did
substantially worse than that of combining together old models, generating
small new random ones and propagation. This is important as the mechanism
chosen has to be credible for realistically small populations of mental models.
Much work needs to be done to understand the evolutionary dynamics of
small populations.

9 Future Work

Research into this style of modelling agents is at a very early stage. Future
work is almost unbounded. There some more immediate shortcomings of this
approach that we intent to focus on soon. In no particular order these include:
¢ the introduction of intentions and planning;
¢ the development of techniques to evolving logical expressions,
representing beliefs;
¢ the integration of the evolutionary module, with existing logic based
approaches as described above;

¢ the investigation of the effects of ditferent syntaxes (as exhorted by [17]);

¢ the increasing formalisation of the structure;

¢ the investigation of the effects of different genetic operators in very small
populations
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