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Abstract  

Several studies suggest that cyclooxygenase (COX)-2 plays a pivotal role in the progression 

of ischemic brain damage. In the present study, we investigated the effects of selective 

inhibition of COX-2 with nimesulide (12 mg/kg) and selective inhibition of COX-1 with 

valeryl salicylate (VAS, 12-120 mg/kg) on prostaglandin E2 (PGE2) levels, 

myeloperoxidase (MPO) activity, Evans Blue (EB) extravasation and infarct volume in a 

standardized model of transient focal cerebral ischemia in the rat. Postischemic treatment 

with nimesulide markedly reduced the increase in PGE2 levels in the ischemic cerebral 

cortex 24 h after stroke and diminished infarct size by 48 % with respect to vehicle-treated 

animals after 3 days of reperfusion. Furthermore, nimesulide significantly attenuated the 

blood-brain barrier (BBB) damage and leukocyte infiltration (as measured by EB leakage 

and MPO activity, respectively) seen at 48 h after the initial ischemic episode. These studies 

provide the first experimental evidence that COX-2 inhibition with nimesulide is able to 

limit BBB disruption and leukocyte infiltration following transient focal cerebral ischemia. 

Neuroprotection afforded by nimesulide is observed even when the treatment is delayed 

until 6 h after the onset of ischemia, confirming a wide therapeutic window of COX-2 

inhibitors in experimental stroke. On the other hand, selective inhibition of COX-1 with 

VAS had no significant effect on the evaluated parameters. These data suggest that COX-2 

activity, but not COX-1 activity, contributes to the progression of focal ischemic brain 

injury, and that the beneficial effects observed with non-selective COX inhibitors are 

probably associated to COX-2 rather than to COX-1 inhibition.  
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infiltration; cerebral ischemia; vasogenic edema; cerebral infarct; neuroprotection 
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Introduction 

Ischemic stroke disrupts the quality of patients’ life, extracts an enormous emotional and 

physical strain on caregivers, and cost society billions of dollars every year (Taylor et al. 

1996). Significant progress has been made in dissecting the molecular pathways of 

excitotoxicity, oxidative stress, apoptosis and neuroinflammation in ischemic neuronal cell 

death. However, translation of these preclinical results into clinically effective stroke 

treatments remains a major challenge for the stroke community.  

 

Although a significant amount of ischemic tissue dies in the core of the infarct within few 

hours after the vessel occlusion, there is evidence showing that the damage in the 

surrounding tissue (ischemic penumbra) progresses over a relative long period of time 

(Iadecola and Ross 1997;Dirnagl et al. 1999). Thus, pharmacological strategies limiting the 

delayed phase of the damage are probably more important in stroke therapy, since most of 

the patients arrive in the emergency room too late for preventing or minimizing the initial 

damage. Inflammation is one of the mechanisms known to participate in the progression of 

brain injury (Dirnagl et al. 1999;Dirnagl 2004). It has been shown that after several hours of 

the onset of ischemia, there is a significant disruption of the blood-brain barrier (BBB) 

followed by a massive infiltration of polymorphonuclear (PMN) leukocytes (Rosenberg et 

al. 1998;Batteur-Parmentier et al. 2000;Martin et al. 2006). This results in brain edema and 

microglial activation, and the production of large amounts of pro-inflammatory cytokines, 

ROS, nitric oxide, among other mediators of neuroinflammation, which exacerbate tissue 

damage. All these neuroinflammatory mechanisms have been demonstrated to contribute to 

ischemic brain injury (Barone and Feuerstein 1999;Dirnagl et al. 1999;Stanimirovic and 

Satoh 2000). A large number of studies indicates that blockade of the neuroinflammatory 

process dramatically reduces ischemic brain injury (Nogawa et al. 1997;Nogawa et al. 

1998;Nagayama et al. 1999;Batteur-Parmentier et al. 2000;Candelario-Jalil et al. 

2004;Candelario-Jalil et al. 2005;Ikeda-Matsuo et al. 2006;Kawano et al. 2006). 

 

Two different isoforms of the cyclooxygenase (COX) enzyme, COX-1 and COX-2, have 

been identified (Smith et al. 2000). In addition, a COX-1 splice variant, termed COX-3, has 

been recently cloned and characterized (Chandrasekharan et al. 2002;Snipes et al. 2005). 

Large amounts of free arachidonic acid are released during ischemic brain damage through 

the concert action of phospholipases (Phillis and O'Regan 2003;Phillis and O'Regan 

2004;Muralikrishna and Hatcher 2006). COX-2 inhibition is an attractive pharmacological 
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target since the metabolism of arachidonic acid through the COX pathway produces huge 

amounts of pro-inflammatory prostanoids and ROS, which are key mediators of the 

inflammatory process (Smith et al. 2000). Numerous studies have found a dramatic increase 

in COX-2 expression following ischemia (Planas et al. 1995;Collaco-Moraes et al. 

1996;Nogawa et al. 1997;Miettinen et al. 1997;Sasaki et al. 2004), and other insults 

resulting in neurodegeneration (Hewett et al. 2000;Scali et al. 2000;Strauss et al. 

2000;Salzberg-Brenhouse et al. 2003;Kawaguchi et al. 2005;Hewett et al. 2006). However, 

it is worth noting that COX-2 is linked to synaptic activity, and several healthy neuronal 

populations express COX-2 under normal conditions (Yamagata et al. 1993;Adams et al. 

1996). Furthermore, COX-2 is rapidly induced after a mild episode of focal ischemia, which 

does not result in neuronal damage (Planas et al. 1999).  

 

Several studies have demonstrated that selective COX-2 inhibition or COX-2 gene deletion 

confers neuroprotection in models of ischemic brain injury (Nogawa et al. 1997;Nogawa et 

al. 1998;Iadecola et al. 2001a;Sugimoto and Iadecola 2003;Candelario-Jalil et al. 

2004;Sasaki et al. 2004;Candelario-Jalil et al. 2005). However, there is debate on the 

specific role of COX-1 in cerebral ischemia. Some studies have found beneficial effects 

(Lin et al. 2002), others claim that COX-1 is detrimental (Iadecola et al. 2001b), while in 

another report COX-1 gene deletion has been shown not to affect ischemic brain injury 

(Cheung et al. 2002).  

 

In an earlier study, we assessed the relative contribution of each COX isoform to global 

ischemic brain injury. Interestingly, we found that either inhibition of COX-1 with valeryl 

salicylate (VAS) or selective inhibition of COX-2 with rofecoxib (Vioxx), potently reduced 

ischemia-induced neuronal cell death and oxidative stress in the hippocampus (Candelario-

Jalil et al. 2003b), thus challenging the traditional belief that only COX-2 is involved in 

neuroinflammation during brain ischemia.  

 

Since there are important differences between global and focal cerebral ischemia in terms of 

pathophysiological mechanisms involved in tissue damage, and considering that there are 

no previous reports evaluating the effects of selective blockade of each COX isozyme in a 

focal cerebral ischemia model in relation to BBB damage, PGE2 accumulation, leukocyte 

infiltration and vasogenic edema, we decided to conduct the present investigation to study 
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the specific role of each COX isoform in the ischemic brain, using a clinically-relevant 

model of stroke.  

 

Present findings support the notion that treatment with nimesulide reduces ischemic brain 

injury, and suggest for the first time that postischemic treatment with a COX-2 inhibitor 

confers a significant protection against the late opening of the BBB, which facilitates PMN 

leukocyte infiltration into the ischemic brain, and vasogenic edema. Selective inhibition of 

COX-1 with valeryl salicylate had no significant effect on the evaluated parameters. 

Together, these data suggest the key role of COX-2, rather than COX-1, in the late 

progression of tissue damage in focal cerebral ischemia.  

 

Materials and Methods 

Animals 

All the experimental procedures were performed strictly according to the regulations of the 

Havana University’s animal ethical committee and the guidelines of the National Institutes 

of Health (Bethesda, MD, USA) for the care and use of laboratory animals for experimental 

procedures. Our institutional animal care and use committee approved the experimental 

protocol. Appropriate measures were taken to minimize pain and distress of animals used in 

this study. A total of 349 male Sprague-Dawley rats (CENPALAB, Havana, Cuba) weighing 

270-320 g at the time of surgery were used in the present study. The animals were 

quarantined for at least 7 days before the experiment. Animals were housed on bagasse 

bedding in groups of 2-4 in polycarbonate cages in a room whose environment was 

maintained at 21-22ºC, 45-50 % humidity and 12 h light/dark cycle. They had free access to 

rodent pellet chow and water.  

 

Surgical preparation and procedure for inducing transient focal cerebral ischemia   

Rats were anesthetized with chloral hydrate (300 mg/kg body weight, i.p.). Once surgical 

levels of anesthesia were attained (assessed by absence of hind leg withdrawal to pinch), 

ischemia was induced by using an occluding intraluminal suture as described before 

(Koizumi et al. 1986;Reglodi et al. 2000;Candelario-Jalil et al. 2004;Candelario-Jalil et al. 

2005). Briefly, under microscopic magnification, the anterior neck was opened with a 

midline vertical incision, and the underlying submandibular gland dissected. Dissection 

medial to the right sternocleidomastoid muscle exposed the common carotid artery (CCA), 

and allowed separation of the CCA from the vagus nerve. Both, the CCA and the external 
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carotid artery (ECA) were ligated with a 3-0 silk suture. The pterygopalatine branch of the 

internal carotid artery was clipped to prevent incorrect insertion of the occluder filament. 

Arteriotomy was performed in the CCA approximately 3 mm proximal to the bifurcation 

and a 3-0 monofilament nylon suture (Shenzhen Runch Industrial Corp., China), whose tip 

had been rounded by being heated near a flame, was introduced into the internal carotid 

artery (ICA) until a mild resistance was felt (Candelario-Jalil et al. 2004;Candelario-Jalil et 

al. 2005). Mild resistance to this advancement indicated that the intraluminal occluder had 

entered the anterior cerebral artery (ACA) and occluded the origin of the ACA, the middle 

cerebral artery (MCA) and posterior communicating arteries. The occluding suture was kept 

in place for 1 h. At the end of the ischemic period, the suture was gently retracted to allow 

reperfusion of the ischemic region. The incision was closed and animals were allowed to 

recover from anesthesia and to eat and drink freely. Rectal temperature was maintained at 37 

± 0.5 °C with a heat lamp and electrically heated mat during surgery, stroke, and 

reperfusion. By using this standardized procedure, we obtained large and reproducible 

infarcted regions involving the temporoparietal cortex and the laterocaudal part of the 

caudate putamen in ischemic animals (Candelario-Jalil et al. 2004).  

 

Neurobehavioral testing  

An independent observer blinded to the animal treatment performed the neurological 

evaluations prior to the sacrifice of the animals according to a six-point scale: 0= no 

neurological deficits, 1= failure to extend left forepaw fully, 2= circling to the left, 3= 

falling to left, 4= no spontaneous walking with a depressed level of consciousness, 5= death 

(Longa et al. 1989;Minematsu et al. 1992).  

 

Infarct volume assessment 

The method for quantification of infarct volume was performed exactly as previously 

reported (Yang et al. 1998;Gonzalez-Falcon et al. 2003;Candelario-Jalil et al. 

2004;Candelario-Jalil et al. 2005). Briefly, the animals were sacrificed under deep 

anesthesia and brains were removed, frozen and coronally sectioned into six 2-mm-thick 

slices (from rostral to caudal, first to sixth) using a rat brain matrix (World Precision 

Instruments, Sarasota, FL, USA). The brain slices were incubated for 30 min in a 2% 

solution of 2,3,5-triphenyltetrazolium chloride (TTC) (Sigma Chemical Co., Saint Louis, 

MO, USA) at 37 °C and fixed by immersion in a 4% paraformaldehyde solution in 

phosphate-buffered saline pH 7.4. Six TTC-stained brain sections per animal were placed 
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directly on the scanning screen of a color flatbed scanner (Hewlett Packard, HP Scanjet 

5370 C) within 7 days. Following image acquisition, the images were analyzed blindly using 

a commercial image processing software program (Photoshop, version 7.0, Adobe Systems; 

Mountain View, CA, USA). An investigator blinded to the animal treatment performed the 

measurements of infarct volume by manually outlining the margins of infarcted areas. The 

unstained area of the fixed brain section was defined as infarcted. Cortical and subcortical 

uncorrected infarcted areas and total hemispheric areas were calculated separately for each 

coronal slice. Total, cortical and subcortical uncorrected infarct volumes were calculated by 

multiplying the infarcted area by the slice thickness and summing the volume of the six 

slices. A corrected infarct volume was calculated to compensate for the effect of brain 

edema. An edema index was calculated by dividing the total volume of the hemisphere 

ipsilateral to MCAO by the total volume of the contralateral hemisphere. The actual infarct 

volume adjusted for edema was calculated by dividing the infarct volume by the edema 

index (Yang et al. 1998;Reglodi et al. 2000;Yang et al. 2000;Candelario-Jalil et al. 2004).  

 

Prostaglandin E2 (PGE2) Enzyme Immunoassay 

Tissue concentration of PGE2, one of the major cyclooxygenase reaction products in the 

brain (Nogawa et al. 1997), was determined using a commercial enzyme immunoassay kit 

(RPN 222, Amersham Pharmacia Biotech Inc., Piscataway, NJ, USA) according to the 

instructions of the manufacturer. Unanesthetized animals were decapitated and brains were 

quickly removed from the skull, and frozen in liquid nitrogen. A 4-mm-thick coronal slice 

was cut at the level of the optic chiasm, and the cerebral cortex and striatum from both 

hemispheres were quickly dissected out on a chilled plate (placed on powdered dry ice). The 

tissue was homogenized in ice-cold 50 mM Tris-HCl (pH 7.4), and extracted with 100 % 

methanol (Powell 1982). After centrifugation, the supernatant was diluted with acidified 0.1 

M phosphate buffer (pH 4.0; final methanol concentration, 15%) and applied to activated 

octadecylsilyl (ODS)-silica reverse-phase columns (Sep-Pak C18, Waters Associates, 

Milford, MA, USA). In order to improve recovery, C18 cartridges were rinsed, in this order, 

with water-acetonitrile-chloroform-acetonitrile-water. After that, cartridges were activated 

with methanol, ethanol and water. The columns were rinsed with 5 mL of distilled water 

followed by 5 mL of n-hexane, and PGE2 was eluted twice with 2 mL of ethyl acetate 

containing 1% methanol. The ethyl acetate fraction was evaporated and resuspended in 1 

mL of the buffer provided with the kit. PGE2 concentration was determined 
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spectrophotometrically after incubation with tracer and PGE2 monoclonal antibody in a 96-

well plate following the manufacturer’s instructions. 

 

Evaluation of blood-brain barrier (BBB) integrity 

The integrity of the BBB was investigated using Evans blue (EB) dye as a marker of 

albumin extravasation as reported previously (Belayev et al. 1996;Belayev et al. 1998;Asahi 

et al. 2001;Matsuo et al. 2001). Evans blue (2% in saline, 4 mL/kg) was injected to rats via 

the tail vein under diethyl ether anesthesia at different times (time course experiment) or at 

46 h after the onset of MCAO (for evaluating the effect of nimesulide and valeryl salicylate; 

see below Section ‘Treatment groups and drug administration’). Two hours after the EB 

injection, the rats were anesthetized with chloral hydrate and perfused with physiological 

saline through the left ventricle until colorless perfusion fluid was obtained from the vena 

cava (150-200 mL of saline). Brain samples from ipsilateral and contralateral hemispheres 

were dissected out (cerebral cortex, striatum and rest of the hemisphere) for local 

measurement of EB extravasation. Samples were immediately weighed and placed in cold 

50% trichloroacetic acid solution. Following homogenization and centrifugation (10 min at 

12000 rpm), the extracted dye was measured spectrofluorimetrically, as described before 

(Belayev et al. 1996;Belayev et al. 1998). The quantitative calculation of the dye content in 

each brain area was based on external standards in the same solvent. The tissue content of 

EB was quantified from a linear standard curve derived from known amounts of the dye (25-

1000 ng of EB/mL), and expressed per gram of wet tissue. This procedure has been widely 

used to evaluate BBB breakdown following ischemic stroke (Belayev et al. 1996;Kondo et 

al. 1997;Belayev et al. 1998;Matsuo et al. 2001;Ding-Zhou et al. 2003). 
 

Cerebral Tissue Myeloperoxidase Content 

Myeloperoxidase (MPO), a lysosomal enzyme specific to leukocyte granules, has been used 

as an index of PMN leukocyte accumulation in the ischemic tissue. The method used to 

quantify MPO activity from rat brain samples was similar to that recently described by 

others (Batteur-Parmentier et al. 2000;Matsuo et al. 2001;Couturier et al. 2003;Ding-Zhou 

et al. 2003;Martin et al. 2006). Briefly, rats were anesthetized with diethyl ether and 

perfused transcardially with ice-cold physiological saline to flush all blood components 

from the vasculature. After brain dissection, samples were immediately weighed and quickly 

frozen in liquid nitrogen. Each sample was homogenized in 20 volumes of 5 mM potassium 

phosphate buffer (4°C, pH 6.0) followed by centrifugation at 30,000 x g for 30 minutes at 
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4°C. The supernatant was discarded and the pellet was washed again as described above. 

After decanting the supernatant, the pellet was extracted by suspension in 10 times the 

volume of 0.5% hexadecyltrimethylammonium bromide (HTAB, Sigma-Aldrich) in 50 mM 

potassium phosphate buffer (pH 6.0) at 25°C. HTAB is a detergent that releases the MPO 

enzyme from leukocyte granules. The samples were frozen on dry ice, and 3 freeze/thaw 

cycles were then performed to further disrupt granules, with sonication between cycles. 

After the last sonication, samples were incubated at 4°C for 20 min, and centrifuged at 

12,500 x g for 15 min at 4°C. MPO activity in the supernatant was assayed as described 

before (Biagas et al. 1992). Briefly, 100 µL supernatant was mixed with 2.9 mL 50 mM 

potassium phosphate buffer containing 0.167 mg/mL o-dianisidine dihydrochloride (Sigma) 

and 0.0005% hydrogen peroxide. The change in absorbance at 460 nm was recorded 

spectrophotometrically (Pharmacia LKB) at 15-second-intervals for 2 min in triplicate. 

MPO activity was calculated as the mean of the three readings. One unit (U) of MPO 

activity was defined as the amount that degraded 1 µmol hydrogen peroxide per minute at 

25°C, and was normalized on the basis of wet tissue weight (U/g wet tissue).  

 

Treatment groups and drug administration 

Nimesulide and VAS were dissolved in a 2% polyvinylpyrrolidone (PVP) solution in saline 

as reported before (Candelario-Jalil et al. 2002;Candelario-Jalil et al. 2003b;Candelario-Jalil 

et al. 2003a;Candelario-Jalil et al. 2004). These inhibitors were given intraperitoneally 

starting either immediately after ischemia or in a 6 h delayed treatment. Additional doses 

were given at 6, 12, 24, 36 and 48 h after stroke (for evaluating infarct volume and 

neurological deficits at 3 days). This treatment schedule and dosage were based on the 

pharmacokinetic profiles of nimesulide (Toutain et al. 2001), and on our previous 

experience with these COX inhibitors in models of cerebral ischemia, where different doses 

and treatment regimes were studied (Candelario-Jalil et al. 2002;Candelario-Jalil et al. 

2003b;Candelario-Jalil et al. 2004). In the experiments in which animals were sacrificed 

after 48 h of reperfusion for evaluating BBB damage, leukocyte infiltration, and edema, 

drugs were given either immediately or starting 6 h after MCAO, with additional doses at 6, 

12, 24 and 36 h. In the experiment evaluating the effects of these COX inhibitors on PGE2 

formation in the ischemic brain, animals were treated with vehicle, nimesulide (12 mg/kg) 

or VAS (12 or 120 mg/kg) starting immediately after ischemia, and additional doses were 

administered at 6, 14 and 22 h after induction of MCAO. Rats were sacrificed for PGE2 
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analysis 2 h after the last injection. This treatment paradigm is similar to that employed in 

previous studies (Nogawa et al. 1997;Candelario-Jalil et al. 2004).  

 

Statistical analysis 

Data are presented as mean ± S.D. Infarct volume, PGE2 data, MPO activity, EB content and 

percent of edema were analyzed using t-test (2 groups) or one-way ANOVA with post-hoc 

Student-Newman-Keuls test (multiple comparison). Neurological deficit scores were 

analyzed by Kruskal-Wallis nonparametric ANOVA followed by the Dunn test (multiple 

comparison) or Mann-Whitney test for analysis of individual differences. In all statistical 

tests, differences were considered significant when p<0.05. 

 

Results 

Temporal evolution of the ischemic lesion and PGE2 production after transient occlusion of 

the middle cerebral artery in the rat 

All animals studied had visible ischemic lesions in the MCA territory after 1 h ischemia and 

6 h of reperfusion (earliest time point studied). There was a significant increase in cortical 

infarct volume over the time, as observed in Fig. 1A. The size of the infarct in the cerebral 

cortex reached its maximal values by 3 days of recirculation, and no statistically significant 

differences were seen between 3 and 4 days of reperfusion (Fig. 1A). Infarct size in the 

cortical areas at 3-4 days of reperfusion almost doubled that seen after 24 h in this model of 

temporary MCA occlusion. Unlike the cerebral cortex, subcortical regions became necrotic 

within 6 h of reperfusion, and no appreciable increases in the lesion size over time were 

noticed in this model of ischemic stroke. Total infarct volume, evaluated at several times 

after the withdrawal of the occluding filament, followed a similar pattern to that observed in 

the cerebral cortex. As depicted in Fig. 1A, the growth of the ischemic lesion in the cerebral 

cortex accounted for the overall temporal increase in total infarct volume.   

 

In our next experiments, we investigated the time course of PGE2 production by the 

ischemic brain. By 12 h of recirculation, PGE2 levels in the ischemic cerebral cortex began 

to be significantly increased with respect to the contralateral (intact) side. Maximal PGE2 

production was observed at 24 h (p = 0.00127), although PGE2 concentrations remained 

significantly (p<0.05) augmented up to 72 h of reperfusion in the cerebral cortex of animals 

suffering from ischemic stroke, as shown in Fig. 1B. No significant increases in subcortical 

PGE2 levels were observed in our study at any recirculation time (data not shown).   
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Time course of the BBB damage, edema formation, and leukocyte infiltration following a 

temporary occlusion of the middle cerebral artery in the rat 

We studied the temporal changes in BBB damage by quantifying the extravasated Evans 

blue (EB) concentrations in the ischemic brain (cerebral cortex and subcortical areas) after 

several times of reperfusion following the ischemic episode. A very early significant 

(p<0.05) BBB breakdown was observed in both cortical and subcortical regions by 2 h of 

recirculation, as shown in Figs. 2A and 2B. Unlike the cerebral cortex, in the subcortical 

areas, this initial EB leakage persisted till 6 h, showing a significant increase in EB 

extravasation as compared to the contralateral side (Fig. 2B). Interestingly, a late opening in 

the BBB was then demonstrated 24-72 h post-reperfusion in all ischemic regions 

investigated. The BBB disruption was maximal at 48 h, and this late opening showed a 

similar pattern in both the cerebral cortex and subcortical areas (Figs. 2A and 2B).  

Significant formation of brain edema was seen starting after 12 h of reperfusion, and 

reached maximal values by 48-72 h post-recirculation, as depicted in Fig. 2C.    

The infiltration of PMN leukocytes into the brain parenchyma is another important hallmark 

of the postischemic neuroinflammatory component of cerebral ischemia. By measuring the 

activity of an enzymatic marker of these inflammatory cells (MPO), we assessed the degree 

of leukocyte infiltration into the cerebral cortex and subcortical regions following the focal 

ischemic event. With respect to the contralateral side, a significant increase (p<0.05) in 

MPO activity was observed as early as 2 h of reperfusion, and persisted until 3 days 

following the withdrawal of the nylon filament occluding the MCA. Maximal leukocyte 

infiltration was seen at 24-48 h in the cerebral cortex, and at 12-24 h post-reperfusion in the 

subcortical areas (Figs 3A and 3B).  

No significant changes in EB leakage, edema and MPO activity, were observed between the 

ipsilateral and contralateral side of rats that underwent a sham operation. Furthermore, no 

significant alterations in these variables were seen, when comparing the contralateral side of 

ischemic animals with respect to the contralateral side of sham-operated rats (data not 

presented).   

 

Effects of selective inhibition of COX-1 and COX-2 on infarct volume and neurological 

deficits  

Infarct volume was assessed with the vital TTC staining at 3 days of reperfusion after the 

ischemic event. As expected, based on findings of lesion size from our previous studies 
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(Candelario-Jalil et al. 2004;Candelario-Jalil et al. 2005), treatment with the selective COX-

2 inhibitor nimesulide significantly (p<0.05) reduced cortical and subcortical infarct size as 

presented in Table 1. Nimesulide was still effective in limiting ischemic damage when the 

first treatment began 6 h after ischemia. As far as the total infarct is concerned, nimesulide’s 

effect on total infarction is mainly the result of its potent reduction in the cortical rather than 

subcortical lesion (Table 1). The COX-1 selective inhibitor valeryl salicylate (VAS) failed 

to confer any protective effect, when administered immediately after ischemia, or in a 

delayed fashion. This lack of effect was seen in both cortical and subcortical areas of the 

infarct (Table 1).  

 

A scattergram of the neurological scores per treatment group is presented in Fig. 4. 

Nimesulide was able to produce a significant reduction (p<0.05; Mann-Whitney test) in the 

neurological deficits seen in the animals after ischemia as compared to vehicle-treated rats. 

This effect was observed even with the 6-h delayed treatment paradigm (Fig. 4). However, 

the COX-1 inhibitor VAS conferred no protective effect against stroke-induced neurological 

impairment, as shown in Fig. 4.   

 

Prostaglandin E2 concentrations in the ischemic cortex are reduced by nimesulide but not by 

the COX-1 inhibitor VAS 

We investigated the effect of selective inhibition of either COX-1 or COX-2 on PGE2 levels 

in the ischemic cerebral cortex after 24 h of reperfusion. As compared to the contralateral 

side or to the sham-operated animals, occlusion of the MCA resulted in a dramatic increase 

in the COX product PGE2 (Fig. 5). Administration of the COX-2 inhibitor nimesulide 

produced a significant protective effect against ischemia-induced PGE2 accumulation in the 

cerebral cortex, keeping PGE2 concentrations at the basal level (compared to ipsilateral side 

of sham-operated animals). Treatment with a similar dose of VAS (12 mg/kg) failed to 

prevent PGE2 increase in the ischemic brain, although a slight decrease in PGE2 levels in the 

ipsilateral cortex was observed when the dose was increased to 120 mg/kg. Both doses of 

VAS were able to significantly reduce PGE2 concentrations in the contralateral side when 

compared to the group of animals, which underwent the sham operation (Fig. 5).  

 

COX-2 inhibition protects against BBB disruption following ischemic stroke 

In our next experiments, the effect of selective inhibition of COX-1 or COX-2 on BBB 

breakdown was studied in this model of focal cerebral ischemia. We decided to perform 



 13

these experiments after 48 h of reperfusion, since at this time point EB leakage was maximal 

(Fig. 2). Nimesulide (12 mg/kg, i.p.), but not VAS, significantly (p<0.01) attenuated EB 

extravasation in the ischemic cortex even when the first treatment was delayed until 6 h after 

ischemia (Fig. 6). No protective effect of these COX inhibitors was observed on the 

ischemia-mediated BBB damage in the subcortical areas (Fig. 6). 

 

Leukocyte infiltration and vasogenic edema are potently reduced in nimesulide-treated rats  

We were also interested in the effects of nimesulide and VAS on brain leukocyte infiltration 

and edema associated to the ischemic injury. Selective inhibition of COX-2 with nimesulide 

conferred a potent protective effect against stroke-induced leukocyte infiltration into the 

cerebral cortex (Table 2), as evaluated by the MPO activity assay in the ischemic tissue at 

48 h after the withdrawal of the nylon filament occluding the MCA. The neuroprotective 

efficacy of nimesulide was still observed when the first dose was given 6 h after the 

occlusion of the MCA (Table 2). However, no effect of nimesulide was seen in the 

subcortical regions of the infarct.  

The protection of the BBB observed in the animals given nimesulide (Fig. 6) translated into 

a significant reduction in the vasogenic edema (p<0.01). As presented in Table 2, 

nimesulide potently limited the edema formation at 48 h after ischemia, when administered 

immediately after MCAO or in a delayed fashion (Table 2). The selective COX-1 inhibitor 

VAS showed no effect on ischemia-induced leukocyte infiltration and edema (Table 2). 

 

Discussion 

The availability of selective inhibitors of the COX isozymes provides a powerful 

pharmacological tool in order to dissect the relative contribution of each isoform to the 

inflammatory process in vitro and in vivo. Using this approach, we previously studied the 

role of each COX isoenzyme in CA1 hippocampal neuronal death in a model of temporary 

global cerebral ischemia, demonstrating an important role of both COX isoforms in 

ischemia-induced oxidative damage and neurodegeneration (Candelario-Jalil et al. 2003b). 

Interestingly, in the present study, we found that only COX-2 activity is responsible for the 

evolution of focal cerebral ischemic injury in relation to PGE2 accumulation, BBB 

disruption, leukocyte infiltration and vasogenic edema, well-known factors involved in brain 

damage. The different model of cerebral ischemia (global vs. focal) may explain the 

differences between our two studies. These new observations shed more light into the 

specific role of the COX/PGE2 pathway in ischemic brain injury, and might have important 
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implications for the potential use of COX inhibitors or agents modulating PGE2 

formation/signaling in different clinical settings of cerebral ischemia.   

 

The pharmacological effects of nimesulide have been attributed to its ability to selectively 

inhibit the COX-2 isoform (Famaey 1997). However, nimesulide is not a highly selective 

COX-2 inhibitor. Thus, we cannot rule out the possibility that some degree of COX-1 

inhibition is in play in the ischemic animals treated with nimesulide. However, the dose and 

administration regime used in the present study failed to significantly reduce basal PGE2 

levels in the intact side when compared to sham-operated controls (Fig. 5). Unlike 

nimesulide, the COX-1 inhibitor VAS significantly reduced basal levels of PGE2 in the 

cerebral cortex (Fig. 5). If a pharmacologically relevant degree of COX-1 inhibition occurs 

after nimesulide treatment, one might expect a significant reduction in basal PGE2 levels. 

These findings suggest that the beneficial effects of nimesulide are due to selective 

inhibition of COX-2, rather than to a non-selective inhibition of both COX isoforms.   

 

The present study has assessed for the first time the contribution of each COX isoform to 

PGE2 formation, BBB damage and infiltration of PMN leukocytes in an in vivo model of 

temporary cerebral ischemia. Furthermore, to the best of our knowledge, a detailed time 

course of PGE2 formation, and its relation to the evolution of brain infarct, had not been 

previously investigated.  

 

Restoration of cerebral blood flow after ischemia may cause damage to the BBB, exacerbate 

brain edema, and cause leukocyte infiltration (Chen et al. 1995;Batteur-Parmentier et al. 

2000). Thus, reperfusion injury is a potentially hazardous complication of surgical 

revascularization, temporary intraoperative cerebrovascular occlusion, or thrombolytic 

therapy for acute stroke. In the center of the lesion, severe ischemia leads to rapid necrosis 

(Fig. 1A), but in the surrounding penumbral regions, the tissue damage evolves slowly over 

many hours/days (Marchal et al. 1996). Therapeutic strategies to limit infarct size and 

improve functional outcome after acute stroke are aimed at rescuing this potentially 

reversible ischemic region (Fisher 1997). In humans, infarct expansion at the expense of 

potentially viable tissue has been documented even 24 h after stroke onset (Baird et al. 

1997).  
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Post-ischemic inflammation has recently emerged as an important factor responsible for the 

evolution of the ischemic brain injury. In this regard, present findings indicate that COX-2 

selective inhibition with nimesulide blocked late PGE2 production, ischemia-induced BBB 

breakdown, leukocyte infiltration and edema formation. It is worth noting that this 

protective effect was observed even when the first treatment was delayed up to 6 h after the 

onset of MCAO (Tables 1 and 2, Fig. 6). These results, together with the finding that 

selective COX-1 inhibition with VAS is not protective, tempt us to suggest that COX-2 

activity plays a role of paramount importance in the progression of focal ischemic brain 

injury. The lack of effect of VAS in the present study could not be explained by its poor 

penetrability into the brain, since we proved this inhibitor to significantly reduce basal PGE2 

levels in the non-ischemic hemisphere (Fig. 5). In addition, this COX-1 inhibitor has been 

demonstrated before to exert neuroprotective efficacy in global cerebral ischemia 

(Candelario-Jalil et al. 2003b) at similar or even lower doses than the ones tested in the 

present investigation. 

 

The wide therapeutic window of protection of COX-2 selective inhibitors has been 

demonstrated in models of cerebral ischemia (Nogawa et al. 1997;Nagayama et al. 

1999;Candelario-Jalil et al. 2002;Candelario-Jalil et al. 2003a;Candelario-Jalil et al. 

2003b;Sugimoto and Iadecola 2003;Candelario-Jalil et al. 2004;Sasaki et al. 2004) and 

traumatic brain injury (Gopez et al. 2005). The wide therapeutic time window of protection 

of COX-2 inhibitors in ischemic stroke has very important implications in the clinical 

practice. One of the most important predictors of clinical success in stroke is time to 

treatment. Most patients with ischemic stroke reach the hospital several hours after the onset 

of symptoms, a time at which most therapeutic strategies are no longer effective, or could 

worsen cerebral injury, as is the case of thrombolysis, which is contraindicated at later times 

due to increased cerebral hemorrhage (Clark et al. 1999;Davis et al. 2006).   

 

It has been previously shown that the normal function of the BBB is altered by ischemia 

(Ballabh et al. 2004;Hawkins and Davis 2005). Increase in BBB permeability is associated 

with severe ischemic damage, occurring with some delay after the initial insult. The biphasic 

opening of the BBB observed in the present study (Fig. 2) shows similarities to findings 

based on the assessment of EB dye and 3H-sucrose extravasation in models of focal cerebral 

ischemia in the rat (Belayev et al. 1996;Rosenberg et al. 1998;Huang et al. 1999). The 

mechanism of the delayed maximal opening at 48 h remains poorly understood. This second 
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opening is associated with severe ischemic injury, edema and leukocyte infiltration (Figs. 2 

and 3). There is also considerable evidence supporting a detrimental role of the delayed 

neutrophil infiltration to the development of ischemic brain damage (Hartl et al. 

1996;Matsuo et al. 2001;Martin et al. 2006). Moreover, tissue swelling ensues within the 

rigid confines of the skull, elevating intracranial pressure, and ultimately leading to brain 

herniation and death (Hacke et al. 1996). Vascular endothelial leakiness has been proposed 

to result from the release of cytokines, free radicals, matrix metalloproteinases (MMPs), 

nitric oxide, histamine, endothelin-1, and products of arachidonic acid metabolism (Wahl et 

al. 1988;Rosenberg et al. 1996;Rosenberg et al. 1998;Rosenberg 1999;Abbott 2000;Asahi et 

al. 2001;Matsuo et al. 2001;Heo et al. 2005).  

 

One caveat of the present study is that we didn’t elucidate the exact molecular mechanisms 

through which selective inhibition of COX-2 by nimesulide is able to protect the BBB 

during reperfusion injury. Elucidation of these mechanisms could explain, in part, the 

neuroprotective efficacy of COX-2 inhibitors in animal models of stroke, as demonstrated 

by several research groups. However, since this is the first report to document the ability of 

a COX-2 inhibitor to protect against ischemia-induced BBB disruption, leukocyte 

infiltration and edema, it will certainly fuel new investigations aimed at unraveling the 

mechanism of protection of this new class of COX inhibitors in the context of ischemic 

stroke.  

 

During the analysis of the data from the present study, and confronting these findings with 

the scientific literature, several new hypotheses and/or possible mechanisms arose in order 

to give a plausible explanation to our present findings: 1) COX-2 inhibition proved to 

prevent PGE2 formation in the ischemic cortex (Fig. 5), which might be linked to BBB 

injury. In fact, PGE2 has been previously shown to increase permeability in bovine brain 

microvessel endothelial cells (BBMEC), which is an in vitro model of BBB (Mark et al. 

2001). In the same study, it was demonstrated that increases in the expression of COX-2 and 

the release of PGE2 induced by TNF-α were correlated with the permeability and 

cytoskeletal changes observed in BBMEC in the presence of TNF-α. More importantly, it 

was also shown that inhibition of COX-2 with NS-398 potently reduced TNF-α-induced 

permeability (Mark et al. 2001). In support of this study, there is a very recent report 

indicating that the COX inhibitor ibuprofen completely preserved BBB permeability in an in 
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vitro BBB model using rat brain microvascular endothelial cells (Krizanac-Bengez et al. 

2006); 2) It has long been known that increased production of ROS is related to ischemic 

microcirculatory injury (Heo et al. 2005), and COX-2 activity is a major source of ROS 

during neuroinflammation both in vitro and in vivo, as previously demonstrated by our and 

other groups (Tyurin et al. 2000;Pepicelli et al. 2002;Akundi et al. 2005;Pepicelli et al. 

2005;Candelario-Jalil et al. 2006;Im et al. 2006); 3) COX expression/activity has been 

implicated in the regulation of endothelial-leukocyte interactions during ischemia at the site 

of the BBB. In an elegant study by (Stanimirovic et al. 1997), it was demonstrated that COX 

inhibition by indomethacin is able to reduce neutrophil adhesion to human cerebrovascular 

endothelial cells (HCEC) mediated by several stimuli including exposure to IL-1β and 

ischemia-like conditions. In the same report, indomethacin completely inhibited IL-1β- and 

ischemia-induced expression of ICAM-1 by HCEC (Stanimirovic et al. 1997); and 4) A 

potential link between COX-2 expression / PGE2 formation, and the expression/activity of 

matrix metalloproteinases, which are involved in BBB damage, should be also considered. 

This notion is based on recent evidences indicating a PGE2-mediated mechanism involved in 

MMPs expression by several cell types under inflammatory conditions (Khan et al. 

2004;Cipollone et al. 2005;Pavlovic et al. 2006).  

 

In summary, the present study sheds additional light on the neuroprotective effects of the 

COX-2 inhibitor nimesulide against ischemia-induced PGE2 formation, BBB damage, 

leukocyte infiltration, and vasogenic edema in a rat model of transient focal cerebral 

ischemia. It is important to note that this neuroprotective effect of nimesulide was 

demonstrated with postischemic treatment. Furthermore, this study also indicates that COX-

1 inhibition is unable to confer any protective effect in focal ischemic brain damage, 

demonstrating the major contribution of COX-2, rather than COX-1, to brain injury in this 

model of ischemic stroke. Inhibition of COX-2 may be a valuable therapeutic strategy 

targeted specifically to the delayed progression of the lesion that occurs in the postischemic 

phase.  
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Table 1. Effect of the COX-2 inhibitor nimesulide and the COX-1 inhibitor Valeryl 

Salicylate (VAS) on total, cortical and subcortical infarct volumes evaluated after 3 days of 

reperfusion following 1 h of MCAO in the rat. 

 

 Infarct Volume (mm3) 

Treatment Total  Cortical  Subcortical  

Vehicle (n=7) 291.6 ± 53.4 242.5 ± 49.8 50.4 ± 9.6 

Nimesulide 12 mg/kg; administered 

immediately after stroke (n=5) 

160.6 ± 8.3 * 125.6 ± 7.7 * 33.8 ± 13.1 * 

Nimesulide 12 mg/kg; 6 h delayed treatment 

(n=8) 

150.2 ± 21.4 * 111.5 ± 26.2 * 42.2 ± 18.8 

Valeryl Salicylate 120 mg/kg; administered 

immediately after stroke (n=6) 

279.7 ± 70.6 236.8 ± 59.9  48.1 ± 18.7  

Valeryl Salicylate 120 mg/kg; 6 h delayed 

treatment (n=6) 

296.9 ± 46.9 239.1 ± 39.2  57.6 ± 12.8 

 
*p<0.05 with respect to vehicle treated animals. Statistical analysis was performed using 

ANOVA followed by the Student-Newman-Keuls post-hoc test (multiple comparisons) or t-

test (for detecting individual differences between two groups).  
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Table 2. Effects of COX inhibitors on stroke-induced leukocyte infiltration and edema. The 

COX-2 inhibitor nimesulide significantly reduced cortical leukocyte infiltration seen after 

48 h of reperfusion (assessed by the MPO activity), and potently diminished edema 

formation in the ischemic brain.  

 
 
 
*p<0.05 and **p<0.01 with respect to vehicle-treated animals. ANOVA followed by the 

Student-Newman-Keuls post-hoc test (multiple comparisons) or t-test (for detecting 

individual differences between two groups).  

Treatment 
Cortical MPO 

activity (U/g tissue) 

Subcortical MPO 

activity (U/g tissue) 
Edema (%) 

Sham-operated (n=5) 0.10 ± 0.15 0.11 ± 0.23 - 

Vehicle (n=8) 2.95 ± 0.89 1.94 ± 0.92 7.62 ± 1.58 

Nimesulide 12 mg/kg; administered 

immediately after stroke (n=8) 
1.46 ± 0.86 ** 1.92 ± 0.77 1.75 ± 0.89 ** 

Nimesulide 12 mg/kg; 6 h delayed treatment 

(n=8) 
1.68 ± 0.87 * 1.82 ± 0.84 2.77 ± 1.61 * 

Valeryl Salicylate 120 mg/kg; administered 

immediately after stroke (n=6) 3.07 ± 0.92 1.78 ± 0.84 6.50 ± 2.25 

Valeryl Salicylate 120 mg/kg; 6 h delayed 

treatment (n=7) 
2.75 ± 1.08 1.90 ± 1.27 5.94 ± 1.74 
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Fig. 1. Temporal evolution of the ischemic lesion (A), and PGE2 production (B) in the rat brain (1 
h MCAO and different times of recirculation). Infarct volumes were calculated from six coronal 
TTC-stained brain slices, and assessed in the cerebral cortex and subcortical regions. Brain 
damage progresses several hours/days, and is completed by 3 days of recirculation. There is 
also a delayed production of PGE2 in the ischemic cortex, reaching maximal values by 24 h of 
reperfusion. In Panel A, *p<0.05 with respect to 12 h; #p<0.05 with respect to infarct volume at 
24 h; &p<0.05 with respect to the lesion size at 48 h. In Panel B, *p<0.05 and **p<0.01 with 
respect to contralateral at a given time point. ANOVA followed by the Student-Newman-Keuls
post-hoc test (multiple comparisons) or t-test (for detecting individual differences between two 
groups). N=5-9 per time point.
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Fig. 2. Evaluation of BBB disruption (A and B), and edema formation (C) at different times of reperfusion 
following MCAO in the rat. BBB breakdown was assessed by quantifying the concentration of Evans Blue leakage 
into the cerebral cortex (A) and subcortical areas (B). Edema index was calculated by dividing the total volume of 
the hemisphere ipsilateral to MCAO by the total volume of the contralateral hemisphere (Yang et al., 1998). In 
Panel A and B, *p<0.05 and **p<0.01 with respect to the contralateral side at a particular time point. In Panel C, 
*p<0.05 with respect to 6 h; &p<0.05 with respect to 12 h; **p<0.01 with respect to 24 h. ANOVA followed by the 
Student-Newman-Keuls post-hoc test (multiple comparisons) or t-test (for detecting individual differences between 
two groups). N=5-9 per time point. 
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Fig. 3. Time course of leukocyte infiltration into the ischemic brain. Myeloperoxidase 
(MPO) activity was evaluated in the cortical areas (A) and in the subcortex (B) in 
ischemic and contralateral sides at different times after removal of the filament 
occluding the MCA in the rat. *p<0.01 and **p<0.001 with respect to the 
contralateral MPO activity. Statistical analysis was performed using ANOVA 
followed by the Student-Newman-Keuls post-hoc test (multiple comparisons) or t-
test (for detecting individual differences between two groups). N=5-9 per time point. 
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Fig. 4. Scatter plots of neurological deficit scores in each treatment group 
evaluated at 3 days after the induction of transient focal cerebral ischemia 
in the rat. Statistical analysis was performed using the Mann-Whitney 
nonparametric test. N=5-9 per treatment group. 
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Fig. 5. Production of PGE2 in the ischemic cerebral cortex is potently reduced 
by the COX-2 inhibitor nimesulide, but only very modestly diminished by the
highest dose of the COX-1 inhibitor valeryl salicylate (VAS). PGE2 levels were 
determined using an enzyme immunoassay after 24 h of reperfusion following 
1 h of ischemia. **p<0.01 with respect to the contralateral side; #p<0.01 and 
§p<0.05 with respect to the stroke side of vehicle-treated animals; +p<0.05 
with respect to sham-operated rats.  ANOVA followed by the Student-
Newman-Keuls post-hoc test (multiple comparisons) or t-test (for detecting 
individual differences between two groups). N=5-7 animals per group. 
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Fig. 6. Effects of nimesulide and VAS on the damage to the BBB, as assessed by the 
Evans blue (EB) extravasation method. Concentrations of EB were determined in the 
ischemic cerebral cortex (A) and subcortical areas (B). °p<0.001 with respect to the 
contralateral side; **p<0.01 and *p<0.05 with respect to the stroke side of vehicle-
administered animals. Determination of statistical differences among treatment groups 
was performed using ANOVA followed by the Student-Newman-Keuls post-hoc test 
(multiple comparisons) or t-test (for detecting individual differences between two 
groups). N=6-12 animals per group. 


