Let's focus onto the increasing complexity of present organizations and the

difficulty we have to manage it. As a A. T. Kearney's study (1) shows it, increased

complexity originates from growth. Even if it would be possible to reduce it by

outsourcing some activities, it remains necessary to maintain the 'variety" required

by users. This study does not reveal any metrics but a valuation in terms of number

of products/services, markets, channels, customization combinations and so on. Of

course, you might translate these figures into graphs such as Petri nets, reckon the probabilities of transition from one state to another and infer any

complexity

entropy-based indicator uttered in bits (following to the Shannon

formula). It is a very pleasant result indeed especially if you have to compare different solutions of reengineering related to architecture,

processes, workflows, M & A, investment/disvestment and so on; but is a hard job

to be compared with Herculean labours, without any guarantee of accuracy.

Nevertheless, some intersting studies allow to solve problems in some peculiar

cases (2). We may quote D. C. Mikulecky of Medical College of Virginia Commonwealth University (3): "The system's important attributes are bevond

algorithmic definition or realization by algorithms and therefore not computable"

Complexity is not a goal in itself and is a source of costs and

you have to remove it when it is not necessary; but you must engage with it when it

is useful to make you more influent, more resilient, more competitive and more

able to attract customers; dealing with complexity means dealing with all kinds of

difficulties occurring because of complex relationships.

First of all, we have to do an historical survey for complexity is

cumulative and the trend is the superposition of structures and products that are more or

less profitearning and source of improductive costs. In fact, it is tantamount to adapt

to the necessity and the environment. Managing complexity is to

arbitrate between what is the most profitable for the firm and adding value for its

customers -not only in the short term- and what is less, making allowance of the increase of complexity

and its possible cost. This method is similar to value analysis but takes into account

the complexity cost which you can only evaluate by having a holistic point of view.

Indeed, the main feature of complexity is that it results from interdependence of

almost every component hence the metaphoric analogy of complex organizations

with living systems either at an individual level or at the level of social one; it involves recursive definitions, iterative processes, non-linear relations, delayed impacts, numerous feedbacks, positive or negative, being some times multi-nested without speaking of more unpredictable phenomena such as so-called "attractors" and emergence. complex systems behave as a whole and when you modify something in one

it may have repercussions upon others we might wish to remain unchanged; the

point,

recursive mechanisms which take place in complex systems propagate the consequences of any disturbance, either it is caused by the management or by the

environment; for instance, if you delete a product, it may diminish the production

of a component used in another product and so increase the price of this product;

you will have to sell this product at a higher price, the sales will be lower and the

unitary cost will increase; this is an endless spiral; you have in this very simple

example, not only a recursive relationship but a negative feedback loop which in turn

will have other consequences. That is why models (4) are so useful to better seize the

dynamics of systems and understand what takes place when changing the

key variable. You will find some interesting thoughts about it into a paper from Mani and Li (5)

Numerous methods were designed to understand and act upon complex systems but, pratically, their limits are fastly reached for want of being able to quantitatively express the necessary parameters.

For instance, the concept of elasticity used by economists has meaning only if you get at hand statistical data over a sufficiently long period.; on one hand, those data are seldom representative of a usable sample to perform regression computing because they don't cover a large enough scope; on the other hand, in the case of a long period of time, elasticity itself may change under the influence of various factors and this leads to a kind of mata-elasticity no manager will

Consequently, we must not discard those methods but use them if it is not possible otherwise in a qualitative way, which is nevertheless a good approach to appreciate the direction toward which we have to orientate our decision making.

It will be interesting to benefit by the Forrester model which calls into play flows and stocks linked to information, material, orders, money, labour and assets (6) while taking into consideration their interactions through non-linear relationships and ideed recursive ones, feedback loops and the lag of their influencing such and such parameters.

The role of managers is namely to understand and act upon the structures, the functions, and the behaviour of organizations as Gharajedaghi underlines it; he adds that only an iterative approach may improve a system as a whole by successively changing these characteristics.

. (1) The Complexity Challenge, A. T. Kearney Inc., 2004 (2) B. M. Arteta, R.E. Giachetti, A measure of agility as the complexity of the

enterprise system, Robotics and Computer-Integrated Manufacturing 20(2004)

495-503, Elsevier Ltd

(3) http://www.people.vcu.edu/~mikuleck/
(4) Jamshid Gharajedaghi, A Holistic Language of Interaction and
Design: Seing Through Chaos and Understanding Complexity, Interact,

(5) Kambiz Maani, Anson Li, Counter-Intuitive Managerial Interventions

Complex Systems, The University of Auckland Business School, Auckland

(6) Bernhard J. Angerhofer, Marios C. Angelides, System Dynamics Modelling in Supply Chain Management: Research Review, Proceedings of the 2000 Winter Simulation Conference, J. A. Joines, R. R. Barton, K. Kang, P. A. Fishwick, eds