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We present a model for the self-organized formation of place cells, head-direction cells, and spatial
view cells in the hippocampal formation based on unsupervised learning on quasi-natural visual stimuli.
The model comprises a hierarchy of Slow Feature Analysis (SFA) nodes, which were recently shown
to be a good model for complex cells in the early visual system (Berkes and Wiskott, 2005). The
system extracts a distributed grid-like representation of position and orientation, which is transcoded
into a localized place field, head direction, or view representation, respectively, by sparse coding. The
type of cells that develops depends solely on the relevant input statistics, i.e. the movement pattern of
the simulated animal. The numerical simulations are complemented by a mathematical analysis that
allows us to accurately predict the output of the top SFA layer.

1 Introduction

The brain needs to extract behaviorally relevant information from sensory inputs in order to successfully
interact with the environment. Position and head orientation of an animal in the space surrounding
it is part of this relevant information. Neural representations of a rodent’s spatial position - termed
place cells - have been found more than 35 years ago in hippocampal areas CA1 and CA3 (O’Keefe
and Dostrovsky, 1971), correlates of head orientation - termed head-direction cells - twenty years
later (Taube et al., 1990), and recently non-localized representations termed grid cells were found in
entorhinal cortex (EC) of rats (Hafting et al., 2005). While primates also have head-direction cells, no
place cells were found in primates yet. Instead, they have spatial view cells, which do not encode the
animal’s own (idiothetic) position but fire whenever the animal views a certain part of the environment
(Rolls, 1999, 2006).

All of these cells selectively encode some aspects of position and/or orientation of the animal, while
being invariant to others. Head-direction cells are strongly selective for the direction of the animal’s
head and largely invariant to its position (Sharp et al., 2001). They typically have a single peak
of activity with a Gaussian or triangular shape and a tuning width of roughly 60° to 150° (Taube
and Bassett, 2003) depending on brain area. In contrast, most place cells recorded in open fields are
invariant to head direction while being selective for the animal’s position. Interestingly, the degree of
orientation-invariance depends on the behavioral task of of the animal and possibly on the structure



of the environment. In linear track environments and for repeated linear paths in open environments
most place cells are orientation-specific (Markus et al., 1995). Grid cells in entorhinal cortex also
exhibit conjunctive representations of position and orientation (Sargolini et al., 2006). Spatial view
cells in primates show very different firing properties. These cells are neither position-invariant nor
orientation-invariant but fire when a certain part of the environment is in the animal’s field of view,
resembling head-direction cells for the case of an infinitely distant view. Figure 1 illustrates the
difference between grid cells, place cells, head-direction cells and spatial view cells.
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Figure 1: Spatial and orientation tuning of an idealized grid cell (A), place cell (B), head-
direction cell (C) and a spatial view cell (D). The activity of a grid cell is mostly orientation-
invariant and not spatially localized but repeats in a hexagonal grid, whereas a place cell is also
orientation-invariant but spatially localized. The activity of a head-direction cell shows a global direc-
tion preference but is spatially invariant, and the spatial view cell is maximally active when a specific
view is fixated (indicated by ’x’) with an amplitude that is independent of spatial position.

Throughout this paper, oriospatial cells will be used as a superordinate term for place cells, grid
cells, head-direction cells, and spatial view cells. While the precise role of these oriospatial cells is still
discussed, they probably form the neural basis for the ability of an animal to self-localize and navigate
(Knierim et al., 1995).

Stimuli available to oriospatial cells can be classified as either idiothetic, including motor feedback,
proprioception, and vestibular input, or as allothetic, which includes all information from sensors about
the external environment, e.g. vision or olfaction. While place cells are influenced by several modalities
they seem to be driven primarily by visual input (e.g. Jeffery and O’Keefe, 1999), but since their firing
properties remain stable in the absence of external sensory cues for several minutes, proprioceptive
stimuli must play a major role for place cell firing as well (Save et al., 2000). Even in complete absence
of allothetic sensory information an animal can integrate idiothetic self-motion cues to estimate its
position and orientation in space. This process, called path integration (or dead reckoning), inherently
accumulates errors over longer time scales, which can only be corrected by allothetic information. For
the head-direction cells it is commonly assumed that idiothetic input from the vestibular system is
dominant (e.g. Sharp et al., 2001), but like place cells they need external sensory stimuli to correct for
drift.

We introduce here a model for the self-organized formation of hippocampal place cells, head-
direction cells, and spatial view cells based on unsupervised learning on quasi natural visual stimuli.
Our model has no form of memory and receives raw high-dimensional visual input. The former means
that our model cannot perform path integration, the latter means that positional information has to
be extracted from complex images. While such a model can certainly not be a complete model of



oriospatial cells, it can show how far a memoryless purely sensory-driven system can model oriospatial
cells already. The learning rule of the model is based on the concept of slowness or temporal stability,
which is motivated by the observation that raw sensory signals (like a camera’s individual pixel values)
typically vary much more quickly than some behaviorally relevant features of the animal or its envi-
ronment, like the animal’s position in space. By extracting slowly varying features from the sensory
input one can hope to obtain a useful representation of the environment. This slowness principle forms
the basis for a variety of learning rules (e.g. Foldiak, 1991; Mitchison, 1991; Stone and Bray, 1995).
The implementation used here is Slow Feature Analysis (SFA) as introduced by Wiskott (Wiskott,
1998; Wiskott and Sejnowski, 2002). For a given set of time-dependent training data, in our case video
sequences, we are looking for a nonlinear scalar function from a given function space that generates
the slowest possible output signal y(¢) when applied to the training data. The slowness of the signal is
measured in terms of its A-value, which is given by the mean square of the signal’s temporal derivative
(see section 2). As small A-values correspond to slowly varying signals, the objective is to find the
function that minimizes the A-value. To avoid the trivial constant solution, the signal is required to
have unit variance and zero mean. Furthermore, we can find a second function that optimizes the
objective under the additional constraint that its output signal is uncorrelated to the first, a third
function, whose output is uncorrelated to the first two signals and so on. In this manner we generate
a sequence of functions with increasing A-value that extract slowly varying features from the training
data. More details on the approach as well as its mathematical formalization can be found in section 2.

SFA has been successfully applied as a model for the self-organized formation of complex cell
receptive fields in primary visual cortex (Berkes and Wiskott, 2005). Here, we embed this approach
in a biologically inspired hierarchical network of visual processing of a simulated rat where each layer
learns the slowest features from the previous layer by SFA (see experimental methods in section 3). We
find that the output of the highest layer performing SFA forms a distributed oriospatial representation.
In a subsequent linear step the model applies a mechanism for sparse coding resulting in localized
oriospatial codes. The same model in the same environment can reproduce the firing characteristics
of place cells, head-direction cells, and spatial view cells, depending solely on the movement statistics
of the simulated rat. For roughly uncorrelated head direction and body movement, the system learns
head-direction cells or place cells, depending on the relative speed of head rotation and body movement.
If the movement statistics is altered such that spots in the room are fixated for a while during simulated
locomotion, the model learns spatial view cell characteristics.

We introduce a mathematical framework in section 4 that analytically explains the results of the
SFA output. The mathematically less inclined reader may consider skipping this section. Both ana-
lytical and computer simulation results are presented in section 5.

We conclude that a purely sensory-driven model can capture the key properties of several major
cell types associated with spatial coding, namely place cells, head-direction cells, spatial view cells,
and to some extent grid-cells.

2 Slow Feature Analysis

Slow Feature Analysis solves the following learning task: Given a multidimensional input signal we
want to find instantaneous scalar input-output functions that generate output signals that vary as
slowly as possible but still carry significant information. To ensure the latter we require the output
signals to be uncorrelated and have unit variance. In mathematical terms, this can be stated as follows:

Optimization problem: Given a function space F and an I-dimensional input signal x(t) find a



set of J real-valued input-output functions gj(x) € F such that the output signals y;(t) := g;(x(t))

minimize A(y;) == <yj2>t (1)
under the constraints
(yj)e = 0 (zero mean), (2)
<yJ2>t = 1 (unit variance), (3)
Vi <j:{yyj)r = 0 (decorrelation and order), (4)

with (-); and § indicating temporal averaging and the derivative of y, respectively.

Equation (1) introduces the A-value, which is a measure of the temporal slowness of the signal
y(t). It is given by the mean square of the signal’s temporal derivative, so small A-values indicate
slowly varying signals. The constraints (2) and (3) avoid the trivial constant solution and constraint
(4) ensures that different functions g; code for different aspects of the input.

It is important to note that although the objective is slowness, the functions g; are instantaneous
functions of the input, so that slowness cannot be enforced by low-pass filtering. Slow output signals
can only be obtained if the input signal contains slowly varying features that can be extracted by the
functions g;, which are computed instantaneously for a given input.

In the computationally relevant case where F is finite-dimensional the solution to the optimization
problem can be found by means of Slow Feature Analysis (Wiskott and Sejnowski, 2002; Berkes and
Wiskott, 2005). This algorithm, which is based on an eigenvector approach, is guaranteed to find
the global optimum. More biologically plausible learning rules for the optimization problem, both for
graded response and spiking units exist (Hashimoto, 2003; Sprekeler et al., 2007).

If the function space is infinite-dimensional, the problem requires variational calculus and will
in general be difficult to solve. In section 4 we demonstrate that the optimization problem for the
high-dimensional visual input, as faced by the hierarchical model, can be reformulated for the low-
dimensional configural input of position and orientation. In this case, the variational calculus approach
becomes tractable and allows to make analytical predictions for the behavior of the full model.

3 Experimental methods

The outcome of an unsupervised learning rule, such as Slow Feature Analysis, is crucially determined
by the statistics of the training data. As we want to show that oriospatial cells can be learnt from
raw sensory stimuli, we approximate the retinal stimuli of a rat by video sequences generated in a
virtual-reality environment. The input statistics of the training data are thus jointly determined by
the structure of the virtual-reality environment and the movement pattern of the simulated rat. As this
video data is very high-dimensional, nonlinear SFA in a single step is computationally infeasible. To
overcome this problem, the model is organized as a hierarchy of SFA nodes in analogy to the hierarchy
of the brain’s visual system (see figure 2C).

Simulated environments

Many experimental place field data were recorded either in a linear track or in an open field apparatus.
For our simulations we use a linear track of 10:1 side length, and a rectangular open field of 3:2 side
length. We have also simulated radial mazes (e.g. plus or 8-arm mazes) as a third apparatus type but
they can be considered as a combination of an open field in the center with linear tracks extending
from it and simulation results for this type will not be presented here.



The input data consists of pixel images generated by a virtual-reality system based on OpenGL
with textures from the Vision Texture Database (Picard et al., 2002). The virtual rat’s horizontal field
of view is 320° (see figure 2A for a top view of the environment, and figure 2B for a typical rat’s view
from this environment) and consistent with that of a biological rat (Hughes, 1978). The vertical field
of view is reduced to 40° because outside this range usually only unstructured floor and ceiling are
visible. An input picture has 40 by 320 color pixels (RGB, 1pixel/°). The input dimensionality for the
system is thus 38400, while the dimensionality of the interesting oriospatial parameter space is only
three-dimensional (x- and y-position and orientation).

Movement patterns of the virtual rat

As an approximation of a rat’s trajectory during exploration in place field experiments we simulate
Brownian motion on the three-dimensional parameter space of position and orientation. The virtual
rat’s position pos(t) at each time step t is updated by a weighted sum of the current velocity and
Gaussian white noise noise with standard deviation vr. The momentum term m can assume values
between zero (massless particle) and one (infinitely heavy particle), so that higher values of m lead to
smoother trajectories and a more homogeneous sampling of the apparatus in limited time. When the
virtual rat’s movement would traverse the apparatus boundaries, the current velocity is halved and an
alternative random velocity update is generated, until a new valid position is reached (see table 1).

currentVelocity = pos(t) - pos(t - 1);
repeat
noise = GaussianWhiteNoise2d() * vr;
pos(t + 1) = pos(t) + m * currentVelocity + (1 - m) * noise;
if not isInsideApparatus(pos(t + 1))
currentVelocity = currentVelocity / 2;
end
until isInsideApparatus(pos(t + 1))

Table 1: Pseudocode for the computation of the translational movement for the virtual rat’s path.

We call the standard deviation (normalized by room size L) of the noise term translational speed
v, and the standard deviation of head direction trajectory rotational speed vg. On long timescales
and with finite room size this type of movement approximates homogeneous position and orientation
probability densities, except at the apparatus boundaries where a high momentum term can increase
the position probability. We call the ratio of rotational to translational speed vg4/v, the relative
rotational speed v,.q;.

The actual choice of v,.; is based on the rat’s behavior in different environments and behavioral
tasks. In linear track experiments the rat’s movement is essentially one-dimensional and the animal
rarely turns on mid-track but instead mostly at the track ends. Accordingly, we use a large momentum
term, so that the virtual rat often translates smoothly between track ends and rarely turns on mid-
track. In the open field, on the other hand, full two-dimensional movement and rotation is possible, but
the actual statistics depends on the behavioral task at hand. We mimick the common pellet-chasing
experiment (Markus et al., 1995) by using isotropic two-dimensional translational speed and setting
vre; to a relatively high value. Three different movement paradigms are explored in the following:
simple movement, restricted head movement and spatial view. In the simple movement paradigm head
orientation and body movement are completely independent, so that head direction can be modeled



with unrestricted Brownian motion. In the restricted head movement paradigm the head direction is
enforced to be within 90 degrees from the direction of body movement (see table 2).

repeat

noise = GaussianWhiteNoiseld() * vphi;

phi(t + 1) = phi(t) + m * (phi(t) - phi(t - 1)) + (1 - m) * noise;
until isHeadDirWithin90DegOfMovementDir(pos(t + 1) - pos(t), phi(t + 1))

Table 2: Pseudocode for the computation of the head direction on the virtual rat’s path in the restricted
head movement paradigm.

This constraint implicitly restricts the range of possible relative speeds: while it is still possible to
have arbitrarily high relative rotational speed by turning often or quickly, very low relative rotational
speed cannot be achieved anymore in finite rooms. Typically, if the rat reaches a wall, it has to
turn. Thus the maximum travel length for a full turn is roughly the circumference of the apparatus,
resulting in a lower bound for the relative rotational speed v,.;. In order to generate input sequences
with lower v,.; one would have to discard periods with dominant rotations from the input sequence. For
a biological implementation of such a mechanism the rat’s limbic system could access the vestibular
rotational acceleration signal in order to downregulate the learning rate during quick turns. We
will refer to this mechanism as learning rate adaptation (LRA). A third movement statistics can be
generated if we assume that an animal fixates objects or locations in the room for some time while
moving around. During this period the animal fixates a specific location L in the room, i.e. it always
turns its head into the direction of L, independent of its position. We implement L as a fixation point
on the wall and change its position with a similar statistics (and low v,¢;) as the head direction in
the other paradigms. In this paradigm both position and orientation are dependent and vary rather
quickly, while the position of L changes slowly. We call this movement pattern spatial view paradigm
and suggest that it is a more appropriate description of a primate’s movement pattern than the previous
two.

Model architecture

Our computational model consists of a converging hierarchy of layers of SFA nodes and a single
final sparse coding node (see figure 2C). Each SFA node finds the slowest output features from its
input according to the SFA learning rule given in section 2 and performs the following sequence of
operations: linear SFA for dimensionality reduction, quadratic expansion with additive Gaussian white
noise, another linear SFA step for slow-feature extraction, and clipping of extreme values at 44 (see
figure 2D). Effectively, a node implements a subset of full quadratic SFA. The clipping removes extreme
values that can occur on test data very different from training data.

In the following, the part of the input image that influences a node’s output will be denoted as its
receptive field. On the lowest layer the receptive field of each node consists of an image patch of 10 by
10 pixels with 3 color dimensions each. The nodes form a regular (i.e. non-foveated) 7 by 63 grid with
partially overlapping receptive fields that jointly cover the input image of 40 by 320 pixels. The second
layer contains 2 by 15 nodes where each receives input from 3 by 8 layer 1 nodes with neighboring
receptive fields, resembling a retinotopical layout. All layer 2 output converges onto a single node in
layer 3, whose output we call SFA-output. Thus the hierarchical organization of the model captures
two important aspects of cortical visual processing: increasing receptive field sizes and accumulating
computational power at higher layers.



The network’s SFA-output is subsequently fed into a final computational node that performs linear
sparse coding, either by applying independent component analysis (we use CuBICA which is based on
the diagonalization of third and fourth order cumulants (Blaschke and Wiskott, 2004)) or by performing
competitive learning (CL). The top-layer output will be called ICA-output, or CL-output. ICA applied
to non-localized grid-cell inputs finds sparser codes than CL, but the latter is biologically more realistic.
More details on different approaches for sparse coding of grid-cell input can be found in (Franzius et al.,
2007).

The network is implemented in Python using the MDP toolbox (Berkes and Zito, 2005) and the
code is available upon request.

A C ] D output to

layer N+1
i 4

1x1 x{8..32} nodes

o
4
O 2 T
- clipping
< 1x1 x{8..32} nodes”
« - linear SFA
1 )
: 2215 52 nodes
a N ) T
. quadratic
7x63 x32 nodes expansion
gT ; :
b linear SFA
40x320 x3 pixels (RGB) i i
input from
layer N-1

Figure 2: Model Architecture. At a given position and orientation of the virtual rat (arrow) in
the naturally textured virtual-reality environment (A), input views are generated (B), and processed
in a hierarchical network (C). The lower 3 layers perform the same sequence (D) of linear SFA (for
dimensionality reduction), expansion, additive noise, linear SFA (for feature extraction), and clipping,
the last layer performs sparse coding (either ICA or CL).

Model training

The layers are trained subsequently from bottom to top on different trajectories through one of the
simulated environments. For computational efficiency we train only one node with stimuli from all
node locations in its layer and replicate this node throughout the layer. This mechanism effectively
implements a weight sharing constraint. However, the system performance does not critically depend
on this mechanism. To the contrary, individually learned nodes improve the overall performance.

In analogy to a rat’s brain, the lower two layers are trained only once and are kept fixed for all
simulations presented here (like the visual system, which remains rather stable for adult animals).
Only the top SFA and ICA layer are retrained for different movement statistics and environments. For
our simulations we use 100.000 time points for the training of each layer. Since training time of the
entire model on a single PC is on the order of multiple days, the implementation is parallelized and
training times thus reduced to hours. The simulated rat’s views are generated from its configuration
(position and orientation) with floating point precision and are not artificially discretized to a smaller
configuration set.



Analysis methods

The highly nonlinear functions learned by the hierarchical model can be characterized by their out-
puts on the three-dimensional configuration space of position and head direction. We will call two-
dimensional sections of the output with constant (or averaged) head direction spatial firing maps and
one-dimensional sections of the output with constant (or averaged) position orientation tuning curves.
For the sparse coding results with ICA the otherwise arbitrary signs are chosen such that the largest
absolute response is positive.

The sensitivity of a function f to spatial position r will be characterized by its mean posi-
tional variance 7., which is the variance of f(r,¢) with respect to r averaged over all head di-
rections ¢: n.(f) = (var,(f(r,¢)))¢. Correspondingly, the sensitivity of a function f to head di-
rection ¢ will be characterized by its directional variance n4 averaged over all spatial positions r:
1o (f) = (vary(f(r,¢)))r. A perfect head-direction cell has no spatial structure and thus a vanishing 7,
and positive 74, while a perfect place cell has positive n, due to its spatial structure but no orientation
dependence and thus a vanishing 7.

4 Theoretical methods

Considering the complexity of the computational model presented in the last section, one might expect
that it would be impossible to make any analytical statement about the model’s behavior. However, in
this section we introduce a mathematical framework that actually allows us to make detailed predictions
depending on the movement statistics of the simulated rat. The theoretically less inclined reader should
feel free to skip all sections marked by a * without loss of the general understanding of our model and
the results.

4.1 The modified optimization problem*

Consider a rat in an environment that is kept unchanged for the duration of the experiment. The
visual input the rat perceives during the experiment is the input signal for the learning task stated
above. This section addresses the following question: Can we predict the functions learnt in such an
experiment and, in particular, will they encode the rat’s position in a structured way?

As the rat’s environment remains unchanged for the duration of the experiment, its visual input
cannot cover the full range of natural images but only the relatively small subset that can be realized
in our setup. Given the environment, the rat’s visual input can at all times be uniquely characterized
by the rat’s position and its head direction. We combine these parameters in a single configuration
vector s and denote the image the rat perceives when it is in a particular configuration s as x(s). We
refer to the manifold of possible configurations as configuration space V. Note, that V in general does
not have the structure of a vector space.

In a sufficiently complex environment we cannot only infer the image from the configuration but
also the configuration from the image, so that there is a one-to-one correspondence between the con-
figurations and the images. If we are not interested in how the functions the system learns respond to
images other than those possible in the experiment, we can think of them as functions of the configu-
ration s, since for any function §(x) of the images, we can immediately define an equivalent function
g(s) of the configuration:

g(s) := g(x(s)). (5)
This leads to a simplified version of our problem. Instead of using the images x(t) we use the configu-
ration s(t) as an input signal for our learning task.



It is intuitively clear that functions that vary slowly with respect to the configuration s will create
slowly varying output when applied to s(¢) as an input signal, because s(t) is continuous in time.
Mathematically, this is reflected by the chain rule:

i = Sai(5(0)) = Vgyls) -§ = Vy(s) v ©

where Vg, is the gradient of g; and v = $ is the velocity in configuration space (note the difference in
notation to V - A(s), which denotes the divergence of a vector-valued function A).

In order to generate slowly varying output, g; should vary slowly with s in configuration regions
with large velocities v and reserve stronger gradients for regions with small velocities. Thus, the
optimal functions depend on the velocity statistics of the input signal. As their dependence on the
detailed time-course of the input signal s(¢) is inconvenient to handle mathematically, we assume that
the duration of the experiment is long enough to do statistics on the behavior of the rat. Its motion
can then be described by means of a joint probability density function psv(s,v), which quantifies
how often the rat is found in a particular configuration s and moves with velocity v. We may then
equivalently replace the temporal averages in the original formulation of the learning task by weighted
averages over all configurations and velocities:

(V= (Y = / (5,V) Do (5, ) ds dv (7)

If we take the average of a function that does not explicitly depend on the velocity v, we can simplify
the average (-)s v by integrating over the velocity:

e = [ ests.viasdy = [(5)] [ pevtsv)av] as = . ®)

:3205(5)

Here pg is the marginal probability of finding the rat in configuration s, irrespective of its velocity.
Making use of (5-8) we can now state an equivalent alternative formulation of the learning task:
Optimization problem 2: Given a function space F on a configuration space V, which is sampled

with probability density P(s,v), find a set of J functions g;(s) € F that

minimize  A(g;) = ((Vg;(s) - v)?)sv (9)
under the constraints
(g9j(s))s = 0 (zero mean), (10)
(gi(s)®)s = 1 (unit variance) , (11)
Vi < j:{gi(s)gj(s))s = 0 (decorrelation and order) . (12)

If we do not impose any restriction on the function space F (apart from sufficient differentiability and
integrability), this modified optimization problem can be solved analytically for a number of cases.
Following a previous analytical treatment (Wiskott, 2003) we refer to the optimal functions in the
unrestricted function space as A-optimal functions; they are shown in section 5 together with the

numerical simulations.



4.2 A differential equation for the optimal functions*®

In this section we apply variational calculus to optimization problem 2 and derive a partial differential
equation for the optimal functions g;. We prove that the optimization problem can be simplified to
an eigenvalue problem of a partial differential operator D whose eigenfunctions and eigenvalues form
the A-optimal functions and their A-values, respectively. For the sake of brevity we shift the proofs
to the appendix, so that the reader can focus on the main theorems.
Using Lagrange multipliers we get an objective function for the functions g; that incorporates the
constraints:
1 1 9
V(g5) = 5A095) = Ajo{g;(8))s — 5A5i(95(8)")s — > Xjilgi(s)g5(s))s- (13)
i<j
Here, factors % have been introduced for mathematical convenience and have no influence on the
results.
In the following we will not need the full dependence of the probability density ps on the velocity,
but only the following function:

1
K(s) = — [ matsviav = [wpuvls) dv = (T, (14)
Ds(S

K is the matrix containing the second-order moments of the conditional velocity distribution P(v|s) =

P(s,v)

P(s)
in configuration s.

Applying variational calculus to the objective function (13), we can derive a necessary condition

for the solutions of optimization problem 2.

. It contains information on how fast and in which direction the rat typically moves given it is

Theorem 1 For a particular choice of the parameters A;;, the solutions g; of optimization problem 2
obey the Fuler-Lagrange equation

Dyg;(s) — Ajo — Ajjgi(s) = > Njigi(s) = 0 (15)
i<j
with the boundary condition

n(s)’K(s)Vg;(s) =0 fors e V. (16)

Here, the partial differential operator D is defined as

1

D:=— V - ps(s)K(s)V 17
ps(s) pS( ) ( ) ( )

and n(s) is the unit normal vector on the boundary OV of the configuration space V.

We now show that the solutions of optimization problem 2 are given by the eigenfunctions of the
operator D. The essential observation we need is stated in

Theorem 2 Let F, C F be the space of functions that obey the boundary condition (16). Then D is
self-adjoint on Fy with respect to the scalar product

(f9) = (F(s)g(s))s, (18)

i.e.
Vf,g € Fo: (Df,g) = (f,Dg). (19)
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This property is useful, as it allows the application of the spectral theorem known from functional
analysis, which states that any self-adjoint operator possesses a complete set of eigenfunctions f;(s) €
Fp with real eigenvalues Aj, which are pairwise orthogonal, i.e. a set of functions that fulfills the
following conditions:

Df;=A;f; with A; eR (eigenvalue equation) , (20)

(fi, f5) = 6i; (orthonormality) , (21)

VieFpday: f= Z e fr (completeness) . (22)
k=0

Because the weighted average over configurations is equivalent to a temporal average, the scalar
product (18) is essentially the covariance of the output of the functions f and g (if they have zero
mean). The orthonormality (21) of the eigenfunctions thus implies that the eigenfunctions fulfill the
unit variance and decorrelation constraint. This is stated in

Theorem 3 Apart from the constant function, which is always an eigenfunction, the (adequately nor-
malized) eigenfunctions f; € Fy, of the operator D fulfill the constraints (10-12).

If we set A\g; = Aj; = 0 for ¢ # j, the eigenfunctions also solve eqn. (15), making them good
candidates for the solution of optimization problem 2. To show that they indeed minimize the A-value
we need

Theorem 4 The A-value of the normalized eigenfunctions f; is given by their eigenvalue A;.

At this point, it is intuitively clear that the eigenfunctions with the smallest eigenvalues form the
solution to optimization problem 2. This is stated in

Theorem 5 The J eigenfunctions with the smallest eigenvalues A; # 0 are a solution of optimization
problem 2.

The advantage of this approach is that it transfers the original optimization problem to that of
finding the eigenfunctions of a partial differential operator. This type of problem is encountered
frequently in other contexts and has been studied extensively.

It is worth noting that the formalism described here is not restricted to the example used here. As it
is independent of the concrete nature of the configuration space, it can be applied to more complicated
problems, e.g. to a rat moving in an environment with moving objects, whose positions would then be
additional components of the configuration s.

5 Results

We apply our theoretical framework and computer simulations to a number of environments and
movement patterns that resemble typical place cell experiments. In section 5.1, we show results for the
open field, beginning with the mathematical analysis and simulation results for the simple movement
paradigms with high and low relative speeds. Subsequently, the simulation results for the restricted
head movement paradigm, including learning rate adaptation, and the spatial view paradigm are
shown. In section 5.2 the results for the linear track with its two-dimensional configuration space are
shown.
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5.1 Open field

One of the most common environments for place cell experiments is an open field apparatus of rectan-
gular or circular shape. Here, the most typical experimental paradigm is to throw food pellets randomly
into the apparatus at regular intervals leading to a random search behavior of the rat. For this case
the rat’s oriospatial configuration space comprises the full three dimensional manifold of position and
orientation. In this section, we present results from experiments with simulated rat trajectories at
either high or low relative rotational speeds leading to undirected place cells or position-invariant
head-direction cell type results, respectively.

5.1.1 Theoretical predictions for the simple movement paradigm*

In a rectangular open field the configuration space can be parametrized by the animals position,
indicated by the coordinates x and y, and its head direction ¢. The total configuration space is then
given by s = (z,y,¢) € [0,L;] x [0,L,] x [0,27]. L, and L, denote the size of the room in z- and
y-direction, respectively. We choose the origin of the head direction ¢ such that ¢ = 7/2 corresponds
to the rat looking to the north. The velocity vector is given by v = (v, vy, w), where vy, v, denote
the translation velocities and w is the rotation velocity. For the typical pellet-throwing experiment we
make the approximation that the velocities in the three different directions are decorrelated and that
the rat’s position and head direction are homogeneously distributed in configuration space. Moreover,
in an open field there is no reason why the variance of the velocity should be different in z- and
y-direction. The covariance matrix of the velocities then takes the form

) 0 0
K= 0 () 0 (23)
0 0 (w?)

and the probability density p(z,y, ¢) is a constant.
In this case the eigenvalue problem (20) for the operator D takes the following form:

[0 (B + o) + )] ) = B(a.0.0 24
0x2 Oy 02 T T
with the boundary conditions (16) yielding
9
%g(x,y,qﬁ) = 0 for z€{0,L;} (25)
6—yg(:1:,y,¢) = 0 for ze€{0,L,} (26)

and cyclic boundary conditions in the angular direction.
It is easy to check that the eigenfunctions and the corresponding A-values are given by

ok cos(lm+=) cos(mm £~

Gimn (T, Y, B) y)Sin(nTl@ for 1 odd o
Imn\Ly Y, =
V2 cos(lm =) cos(mm =) cos(3¢)  for I even
7 (v?) £_22 + m—j + (w?) (n21)2 for 1 odd
Almn = 9/ 2 l2m m% o\ 2 (28)
™ (V%) mtiz)+w >T for I even,



with [, m, and n being nonnegative natural numbers. Only [ = m = n = 0 is not allowed, as this case
corresponds to the constant solution, which violates the unit variance constraint.

To predict the actual outcome of the simulations we need to order these solutions by their A-values.
For better comparability with the simulation results it is convenient to rewrite the A-values in the
following form:

A 72(v2) 1%+ i—%mQ +v2,(n+1)* forlodd (29)
lmn —
L2 12+ %mz + Ufelnz for 1 even,

where o
U2 ; — <(§) > (30)
)
denotes the relative rotational speed, i.e. the ratio of the root mean square of rotational and transla-
tional velocity, if translational velocity is measured in room size in z-direction per second and rotational
velocity is measured in full circles per second.
We can now discuss two limit cases in terms of the relative velocity v,¢;. Let us first consider the
case where the rat moves at small velocities while making a lot of quick turns, i.e. v, > 1. In this

2
case, the smallest A-values can be reached by setting n = 0 unless 12 + %m2 > v2,,. Since for n =0

the functions g;,, do not depend on the angle ¢, the slowest functions forythis case are invariant with
respect to head direction and lead to place cells, see below. The behavior of the solutions and the
respective simulation results are depicted in figure 3A and B.

In the other extreme, v,.; is much smaller than one, i.e. the rat runs relatively fast while mak-
ing few or slow turns. The smallest A-values can then be reached by choosing [ = m = 0 unless

2
n? > min(1, i—g)/v?el. The corresponding functions are invariant with respect to position while being

selective to head direction, a feature that is characteristic for head-direction cells. A comparison of
these theoretically predicted functions with simulation results are shown in figure 3D and E.

5.1.2 Simulation results for the simple movement paradigm

It is intuitively clear and has been shown in the last section that for high relative orientational speed
vre; the system output becomes slowest if it is invariant to head direction and only codes for spatial
position. For low v, on the other hand invariance for position while coding for head orientation is
the best solution to the optimization problem.

In figure 3B the spatial firing maps of SFA output units from the simulation with high v,..; are shown.
Here, all units are almost completely orientation-invariant and resemble the theoretical predictions
from figure 3A. The first unit is not active when the simulated rat is in the south of the apparatus,
most active in the north, and shows a gradual increase in the shape of a half cosine wave in between.
The unit is invariant to movements in east-west direction. The second unit behaves similarly, but
its activity pattern is rotated by 90 degrees. The following units have more spatial oscillations and
somewhat resemble grid cells which are not localized.

Figure 3C shows ICA output units from the same simulation as in figure 3B. All units are orientation-
invariant, just as their input from the first 16 SFA units, but most have only a single peak of activity
and each at a different position. The sparser units are more localized in space while less sparse units
have larger firing fields or multiple peaks. These results closely resemble place cells from rodent’s
hippocampal areas CA1 and CA3.
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In figure 3E SFA output units from the simulation with low relative rotational speed v,..; are shown.
In this case, all units are almost completely position-invariant but their response oscillates with the
orientation of the rat. The first unit changes activity with the sine of orientation and the second unit
is modulated like a cosine. Unit #3 has twice the frequency, unit #5 has a frequency of three, and
unit #8 a frequency of eight. Figure 3F shows ICA output units from the same simulation as in figure
3E. All units are position-invariant like their inputs from the first 8 SFA units, but most have only
a single peak of activity and each at a different orientation. The sparser units are more localized in
orientation while later ones have broader tuning curves. These results closely resemble head-direction
cells from rodent’s subicular areas.
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Figure 3: Theoretical predictions and simulation results for the open field with the simple
movement paradigm (independent translation and head direction), separately learned
place cells and head-direction cells, and ICA for sparsification. Each row within each panel
shows the response of one unit as a function of position for different head directions, as well as the
mean value averaged over all head directions (indicated by the superimposed arrows). Panel D also
shows orientation tuning curves (at the position of a unit’s maximal activity). Panels D-F also show
orientation tuning curves (averaged over all positions) +1 standard deviation.

A: Theoretical prediction for the SFA layer with relatively quick rotational speed compared to trans-
lational speed. Solutions are ordered by slowness. All solutions are head direction invariant and form
regular rectangular grid structures.

B: Simulation results for the SFA layer for the same settings as in A, ordered by slowness. The results
are similar to the theoretical predictions up to mirroring, sign, and mixing of almost equally slow
solutions. All units are head direction invariant and code for spatial position but are not localized in
space.

C: Simulation results for the ICA layer for the same simulation as in B, ordered by sparseness (kurtosis).
Firing patterns of all units are head direction invariant and localized in space, resembling hippocampal
place cells.

D: Theoretical prediction for the SFA layer for relatively slow rotational speed compared to transla-
tional speed. Solutions are ordered by slowness. All solutions are position invariant and constitute a
Fourier basis in head direction space.

E: Simulation results for the SFA layer for the san® settings as in D, ordered by slowness. The results
are similar to the theoretical predictions up to phase shift and sign. All units are position invariant
and head direction specific but not localized in head direction space, i.e. all units except #1 and #2
have multiple peaks.

F: Simulation results for the ICA layer for the same simulation as in E ordered by sparseness (kurtosis).
Firing patterns of all units are position invariant and localized in head direction space resembling
subicular head-direction cells.



5.1.3 Simulation results for the restricted head movement paradigm

In the previous section we used independent head direction and body movement and used different
movement statistics for different cell types, such as fast rotational speed for place cells and slow
rotational speed for head-direction cells. This allowed us to obtain nearly ideal simulation results that
match closely the theoretical predictions, but it is unrealistic for two reasons. Firstly, in a real rat head-
direction and movement direction are correlated. Secondly, in a real rat place cells and head-direction
cells have to be learned simultaneously and thus with the same movement pattern.

In this section we introduce three changes for higher realism. Firstly, a more realistic movement
pattern is used, where the rat’s head is enforced to be within 90° of the current body movement (see
methods). Secondly, place cells and head-direction cells are learned on the same input statistics and
learning rate adaptation (LRA) is used in the top SFA layer for the head-direction cell population (see
methods). Thirdly, ICA for sparse coding in the last layer is replaced by competitive learning (CL).
Simulation results are shown in figure 4.

16



unit 1

= L

M
E-
@
(@] By
| L3
F M
nd I - L%
ozf PN a
L L ] .&%g “,\
180 360° . . . . :
DU 0z 04 06 0.8 1 /'7¢ n(b

Figure 4: Simulation results for the open field with more realistic movement patterns and
competitive learning (CL) for sparsification in the last layer.

The network was trained with a movement pattern of relatively high rotational speed. Two distinct
populations of cells were trained, one as before, the other was trained with learning rate adaptation
(LRA) in the top SFA layer, reducing the impact of periods with high rotational speed.

A: Simulation results for the top layer CL units without LRA. Each subplot shows the mean spatial
firing rate of one output unit averaged over all orientations. The slowest 16 SFA outputs were used
for CL, and 16 CL units were trained. All units are localized in space, closely resembling hippocampal
place cells.

B: Orientation tuning of the units shown in A. Firing patterns of all units are mostly head direction
invariant.

C: Simulation results for the top layer CL units with LRA in the top SFA layer. Each subplot shows the
mean orientation tuning curve in blue and a grey area indicating +1 standard deviation. The slowest
8 SFA-outputs were used for CL, and 8 CL units were trained. Firing patterns of all units are mostly
position invariant and localized in head direction space closely resembling subicular head-direction
cells.

D: Scatterplot of mean directional variance 14 and mean positional variance 7, for the results shown
in A (red circles) and C (blue triangles). Units from A cluster in an area with high positional variance
7 and low orientational variance 74, while units from C cluster in an area with low positional variance
7 and high orientational variance 7.

E: Scatterplot of 7y and 7, for the same simulation parameters as in A-D but with more CL output
units. 32 units were trained without LRA (red circles) and 16 with LRA (blue triangles). The solutions
lie in similar areas as in D.

F: Scatterplot of 14 and 7, for the same simulation parameters as in A-D, but with more SFA outputs
used for CL. 32 SFA units were used without LRA (red circles) and 16 with LRA (blue triangles circles).
The solutions show mixed dependence on positionldnd head direction but are still clearly divided into
a mostly head direction-invariant population (red) and a mostly position-invariant population (blue).



As the relative rotational speed is smaller than in the previous section some SFA solutions (not
shown) change with head direction: unit #16 of 32 is the first unit with noticeable head direction
dependence here while none of the first 32 SFA solutions in the last section was head direction de-
pendent. In figure 4A the spatial firing maps for all trained units without LRA are shown averaged
over all orientations. The corresponding orientation tuning curves (measured at the peak of the place
field) are given in panel B. All units are localized in space and largely independent of orientation with
activity centers distributed evenly in the room.

Figure 4C shows the simulation results with identical movement statistics but with LRA turned on
in the top SFA layer, so that learning is downregulated at timepoints with rapid head direction changes.
Tuning curves of all units are shown together with the spatial standard deviation of activity, which is
generally very small. All units are localized in head direction space and mostly position independent
with approximately even spacing of directions of maximum activity. The LRA can eliminate the effect
of head rotation only to some extent and thus SFA units #7 and #8 show significant dependence on
position while the slowest unit affected by position in the previous section was #15.

A scatterplot of the mean positional variance 7, versus mean orientational variance 7, (see methods)
of the units from A and C is shown in figure 4D. Perfect head-direction cells would be located in the
bottom right while perfect place cells would be located in the top left. Red circles denote the simulated
place cells from panel A; the blue triangles denote the simulated head-direction cells from panel C.
Both populations cluster near the positions of optimal solutions in the corners.

How does the number of inputs to the last layer (i.e. the number of SFA-outputs used) and the
number of CL outputs influence the results? Panel E shows the same analysis for a simulation with
identical settings except the number of CL-output units was doubled to 32 without LRA and 16 with
LRA, respectively. Most units lie in a similar area as in D, but the clusters are denser, since the
number of units has doubled. In panel F, the number of output units is again the same as in D, but
the number of SFA outputs for the last layer is doubled to 32 for the simulation without LRA and
16 for the simulation with LRA. The output units now get inputs from higher, i.e. quicker, SFA units
which tend to have stronger influence of both position and orientation. As a result, the CL units
span the entire spectrum of completely position invariant to complete orientation invariant solutions,
with the less position-dependent solutions coming from the simulations without LRA, and the less
head direction dependent solutions coming from the LRA simulation. We conclude that the number
of CL-output units mostly determines the density of place cells but not the qualitative behavior of the
solutions while the number of SFA-outputs directly affects the invariance properties of the solutions.

5.1.4 Simulation results for the spatial view paradigm

The previous sections have shown that the same learning mechanism in the same environment, just
with different movement statistics, results in either head-direction or place-cell like representations.
Although the last section introduced certain restrictions on the head direction, body position and head
direction remained mostly independent.

In the following simulation, the virtual animal fixates a location L on a wall while it moves through
the room. The position of L changes with the same statistics as for the head direction simulation above
(see methods). A visualization of the simulation results by plotting the activity of a unit at a given
position vs. “global” orientation, as in the previous figures, looks inconclusive (figure 5A). Plotting the
activity of a unit such that at each position the orientation is chosen to face a fixed specific location
marked by an ’x’ shows spatially homogeneous activities (figure 5C; cf. figure 1). These cells jointly
code for the ’view space’ but as before the SFA results are not localized. Figure 5B and D show the
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results of the ICA layer. The ’global direction’ plot in B is as inadequate as in A while plot D clearly
illustrates the behavior of these cells. Unit #2, for example, is active only when looking at the bottom
left corner of the rectangular room, independently of the animal’s position. This cell type resembles
spatial view cells found in the primate hippocampal formation (e.g. Rolls et al., 2005).
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Figure 5: Simulation results for the open field with trajectories where spots on the wall
were fixated. A: Spatial firing map of five representative SFA output units for different 'global head
directions’ (indicated by arrows) and averages over orientations and space. No unit shows spatial or
orientation invariance when plotting position and ’global head direction’ as in previous figures. C:
Same results as in A but plotted with ’local head direction’ (at each position oriented towards fixation
point *x’). B: ICA results plotted with ’global head direction’. D: Same results as in B but using the
plot method from C. All units code for a specific view closely resembling primate spatial view cells.
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5.2 Linear track

In a linear track the rat’s movement is essentially restricted to two degrees of freedom, a spatial and
an orientational one. In experimental measurements the orientational dimension is often collapsed into
a binary variable indicating only the direction of movement. In the linear track these two dimensions
are thus experimentally much easier to sample smoothly than the full three dimensional parameter
space of the open field.

5.2.1 Theoretical predictions for the linear track*

In principle the configuration space for the linear track is the same as for the open field, only with
small side length L, in one direction. Equation (28) shows that for small L, the solutions that are not
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constant in the z-direction, i.e. the solutions with k # 0, have large A-values and thus vary quickly.
Because slow functions will thus be independent of x, we will neglect this dimension and restrict the
configuration space to position in z-direction and head direction ¢.

Another difference between the simulation setup for the open field and the linear track lies in the
movement statistics of the rat. Due to the momentum of the Brownian motion the rat rarely turns on
mid-track. In combination with the coupling between head direction and body motion this implies that
given the sign of the velocity in y-direction the head direction is restricted to angles between either 0
and 7 (positive velocity) or between 7 and 27 (negative velocity). If, in addition, the rat makes a lot
of quick head rotations, the resulting functions can only be slowly varying if they are invariant with
respect to head direction within these ranges. This leaves us with a reduced configuration space that
contains the position y and a binary value d € {North, South} that determines whether 0 < ¢ < 7
(positive velocity in y-direction, north) or 7 < ¢ < 27 (negative velocity in y-direction, south).

We assume that the rat only switches between north and south at the ends of the track. Because
discontinuities in the functions lead to large A-values, slow functions g(y, d) should fulfill the continuity
condition that ¢(0,North) = g¢(0,South) and g(L,,North) = g(L,,South). This means that the
configuration space has the topology of a circle, where one half of the circle represents all positions
with the rat facing north and the other half the positions with the rat facing south. It is thus convenient
to introduce a different variable £ € [0,2L,] that labels the configurations in the following way:

(¢, North) for €< L,

(z(£),d(§)) = { (2L, — &, South) for &> 1L, . o

The topology of the configuration space is then captured by cyclic boundary conditions for the functions

9(§).

For simplicity we assume that there are no preferred positions or head directions, i.e. that both
the variance of the velocity K = (£2) and the probability distribution p(€) is independent of . The
equation for the optimal function is then given by

—<£2>§—§29<@ — Ag(e) (32)

The solutions that satisfy the cyclic boundary condition and their A-values are given by

V2 sin(jm— for j even
9;(§) = .(j 2, : ! : (33)
V2cos((j + 1)7rm) for j odd
w2 @—?jz for j even
Aj(6) = i (34)

720+ 1)2 for j odd

Note that there are always two functions with the same A-value. Theoretically, any linear combina-
tion of these functions has the same A-value and is thus also a possible solution. In the simulation, this
degeneracy does not occur, because mid-track turns do occur occasionally, so those functions that are
head-direction-dependent on mid-track (i.e. even j) will have higher A-values than theoretically pre-
dicted. This avoids mixed solutions and changes the order of the functions when ordered by slowness.
Figure 6A shows seven of the slowest functions g,.

5.2.2 Simulation results for the linear track

For simulations in the linear track we use the more realistic movement paradigm similar to the open
field experiment from section 5.1.3. A similar relative speed is assumed and sparse coding in the last
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layer is performed with ICA.

Figure 6B and C shows the simulation results for the linear track. The spatial firing maps of the
slowest seven SFA outputs out of 10 are shown in figure 6B. Units #1-6 are mostly head direction
invariant (g < 0.1), and code for spatial position in the form of sine waves with respective frequencies
of %, 1, 1%, 2, 2%, and 3, as theoretically predicted. Unit #7 codes for position and orientation. At track
ends, where most rotation occurs, all units are head-direction invariant and the spatial modulation
is compressed due to slower mean translational speeds compared to mid-track (cf. appendix). As
expected, none of these units are localized in space or orientation.

The spatial firing maps of the first seven out of ten ICA outputs for different head directions are
shown in figure 6C. Units #1 and #6 are only active at the southern track end independently of head
direction. The other five units are localized in the joint position-head-direction space meaning that
they fire only at specific positions on the track when the rat faces a specific direction. These results
are similar to place cell recordings from rats in linear tracks where most cells only fire when the rat
moves in one direction (Muller et al., 1994).

Changing the movement pattern to yield much higher or much lower mean relative rotational
speeds, respectively, leads to very different results resembling those presented earlier for the open field,
namely head-direction cells and head-direction invariant place cells.
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Figure 6: Theoretical predictions and simulation results for the linear track. Head directions
are indicated by arrows, orientation averages are indicated by superimposed arrows, and principal
directions (north, south) are emphasized with a dark border. A: Theoretical predictions. B: Spatial
firing maps of the first (slowest) seven SFA output units out of 10. Units #1-#6 are mostly head
direction invariant, whereas unit #7 responds differently to north and south views. C: Spatial firing
maps of the first (most kurtotic) seven out of 10 ICA output units. All units are localized in space
and most are only active for either north or south views closely resembling place fields recorded from
rats in linear track experiments.

5.3 Model parameters

Although most of the parameters in our model (i.e. all the weights in the SFA and ICA steps) are
learned in an unsupervised manner a number of parameters were chosen manually. These parameters
include the input picture size, receptive field sizes, receptive field positions and overlaps in all layers,
the room shape and textures, the expansion function space, number of layers, choice of sparsification
algorithm, movement pattern, field of view, and number of training steps. We cannot explore the
entire parameter space here and show instead that the model performance is very robust with respect
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to most of these parameters. The fact that the presented simulation results are very similar to the
analytical solutions also indicates that the results are generic and not a mere artifact of a specific
parameter set.

We use high-resolution input pictures of 40 by 320 RGB pixels showing the capability of the model
to handle high-dimensional sensory data. Nevertheless, it could be argued that the rat’s vision is rather
blurred and has little color sensitivity. However, we find that smaller and/or grayscale input pictures
yield similar results, which degrade only below a dimensionality of a few hundred input pixels.

The model’s field of view (FOV) has been modeled to represent the 320° of a rat’s FOV. Smaller
FOVs below 90° still reproduce our results and especially rotation invariance is not an effect of a
large FOV. Nevertheless, the views have to contain enough visual information in order to fulfill the
one-to-one correspondence between stimulus and oriospatial configuration. For smaller FOV values
and symmetrical environments the model’s representations become symmetrical as well.

The receptive fields are restricted to about 100 input dimensions (before quadratic expansion) due
to computational limitations. Larger receptive fields tend to yield better solutions, since the available
total function space increases. Position and overlap of receptive fields have been varied to some extent,
but have no noticeable impact on the result unless too many of the inputs are discarded.

The room shape has a strong impact on the SFA solutions, which can be predicted analytically. We
show here only results from convex rooms, but experiments with radial mazes and multiple rooms have
been performed and these results are similar to experimental data, too. Choice of specific textures
was irrelevant for the model’s performance except when multiple walls are textured with similar or
identical textures, which leads to degraded results due to visual ambiguities.

The expansion function was chosen as all monomials up to degree 2, but alternative function
spaces like linear random mixtures passed through sigmoidals with different offsets were successful,
too; however, the size of the function space is limited by computational constraints and monomials
have proven to be particularly efficient.

The number of layers is determined by receptive field sizes and overlaps. An increased number of
layers also increases the function space and can thus improve performance. We did not see any effect of
overfitting for larger numbers of layers. Additional top layers simply reproduced the output of earlier
layers.

As for the choice of the sparse coding algorithm, we found no large qualitative difference for
different techniques including CuBICA, fastICA, competitive learning, or just finding rotations of the
SFA output with maximal kurtosis (Franzius et al., 2007).

The choice of movement pattern has a clear impact on the optimal solutions of SFA. The theoretical
analysis presented here can in principle predict the solutions for arbitrary movement patterns but for
the predictions presented here we made simplifying assumptions to obtain closed form solutions. In
spite of these simplifications, the theoretical predictions are still close to the simulation results, e.g. in
section 5.1.3, where the head orientation is restricted to an angular range with respect to the direction
of body motion. simulation results are still similar to the theoretical predictions.

More training steps result in a smoother sampling of the virtual reality environment and yield better
approximations to the theoretical predictions. We found that a few laps crossing and spanning the
whole room within a few thousand training samples were sufficient for the qualitative results already.
For too little training data and too few crossings of paths an overfitting effect occurs resulting in a
slowly varying activity of the outputs on the training path but not on other (test) paths.
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6 Discussion

We have presented a model for the formation of oriospatial cells based on the unsupervised learning
principles of slowness and sparseness. The model is feed-forward, instantaneous, and purely sensory
driven. The architecture of the model is inspired by the hierarchical organization of the visual system
and applies the identical learning rule, Slow Feature Analysis, on all but the last layer, which performs
sparse coding. Our results show that all major oriospatial cell types - place cells, head-direction cells,
spatial view cells, and to some extent even grid cells - can be learned with this approach. We have
shown that this model is capable of extracting cognitive information such as an animal’s position
from complex high-dimensional visual stimuli, which we simulated as views in a virtual environment.
The generated representations were coding specifically for some information (e.g. position) and were
invariant to the others (e.g. orientation). These invariant representations are not explicitly built into
the model but induced by the input statistics, which in turn is determined by the room shape and
a specific movement paradigm. Nevertheless, the type of learned invariance can be influenced by a
temporal adaptation of the learning rate. Control experiments show that the model performance is
robust to noise and architectural details. This robustness is also supported by a general mathematical
framework that allows exact analytical predictions of the system behavior at the top SFA level.

Our model comprises sensory processing stages that mimic parts of the visual cortices and the
hippocampal formation. The model layers cannot be exactly associated with specific brain areas,
but we suggest some relations. The behavior of the lower two layers are primarily determined by
the visual environment and mostly independent of the spatial movement pattern. In the simulations
presented here, we trained the two lower layers only once and only adapted the higher layers for
different environments and movement patterns. The first layer could be associated with V1 (Berkes
and Wiskott, 2005), the second layer with higher visual cortices. Units in the third layer, whose
non-localized spatial activity pattern resembles grid cells, strongly depend on the movement pattern
and might be associated with grid cells in EC. Recent results from EC (Sargolini et al., 2006) show
that grid cells in MEC exhibit some head-direction dependency, similar to our model for the case of
the intermediate relative translational speed in the open field. Depending on the movement statistics
during learning, representations in the sparse coding layer resemble either place cells as found in
hippocampal areas CA1 and CA3 or head direction cells as found in many areas of the hippocampal
formation or spatial view cells as found in the hippocampal formation of monkeys.

For the case of approximately uncorrelated body movement and head direction, the model learns
either place or head-direction cells, depending on the relative speed of translation and rotation. For
much quicker rotation than translation the model develops orientation-invariant place fields while for
much quicker translation than rotation the model develops position-invariant head direction codes.
In intermediate cases, e.g. for the linear track, mixed representations such as direction-dependent
place fields emerge. In the case of correlated body movement and head direction caused by elongated
fixations of objects or positions, the model learns view-specific codes, similar to spatial view cells in
primates.

Although the model is capable of learning place cells and head direction cells if it learns on distinct
adequate movement statistics, a model rat should obviously not have to traverse its environment once
with high relative translational speed to learn head-direction cells and once more with low relative
translational speed to learn place cells. How can both populations be trained with a single given input
statistics? For this problem we consider output from the rat’s vestibular system as a possible solution.
This system is essential for the oriospatial specificity of head direction cells and place cells (Stackman
and Zugaro, 2005). Other models like the well established ring attractor model by Skaggs et al. (1995)
assume that the head direction system performs angular integration of body motion based on vestibular
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velocity signals. We hypothesize that these signals could also be used to influence the learning rate
of two populations of cells that learn according to our model. One of these populations learns more
strongly at periods with high relative translational speed (as signalled by the vestibular velocity signals)
and the other adapts more strongly for low relative translational speed. The former should develop
head-direction cell characteristics and the latter place cell characteristics. In our simulations the model
successfully learned both populations with the same input data, one population without learning rate
adaptation, and one population with reduced learning rate during quick turns. Once the model has
been trained, the vestibular acceleration signal is no longer needed for the model behavior. With
learning rate adaptation the model neurons effectively learn on a different movement statistics, e.g. head
direction cells learn more strongly at times with relatively high translational speed. Nevertheless, if the
real movement statistics contains very few episodes of relatively quick translation at all, the mechanism
fails and head direction cells cannot become position invariant.

Our implementation of the slowness principle involves solving an eigenvalue problem and cannot
be considered biologically plausible. However, more plausible equivalent formulations of the slowness
principle exist in the form of gradient-descent learning rules (Hashimoto, 2003; Kayser et al., 2001) and
as spike based learning mechanisms (Sprekeler et al., 2006). The choice of ICA to generate localized
representations from nonlocalized codes is also biologically unrealistic, whereas a formulation in the
form of Hebbian learning (Oja and Karhunen, 1995) or competitive learning seems more plausible. An
in-depth discussion of this topic can be found in Franzius et al. (2007).

Related work

According to Redish’s classification, our model is a local view model, for it “only depends on the local
view to explain place cell firing” (Redish, 1999). Models of this class usually extract a number of
features from sensory inputs in order to obtain a lower-dimensional representation that still carries
information about spatial position in the environment but is invariant to everything else. Pure local
view models do not comprise a path integration system and thus cannot fully explain oriospatial firing
properties, e.g. in darkness. Pure path integration systems without external sensory input on the
other hand inherently accumulate errors, and hence a sensory coding mechanism, as proposed here,
is necessary to complement any such model. Therefore many models combine local view and path
integration mechanisms (McNaughton et al., 2006; Redish, 1999).

The model by Wyss et al. (2006) is based on similar principles as our model. It applies a learning
rule based on temporal stability to natural stimuli, some of which are obtained from a robot. The
resulting spatial representations are localized, resembling hippocampal place fields. The learning rule
involves local memory and no explicit sparsification method is applied. The fact that the resulting
representations are localized is somewhat surprising, since by itself temporal stability does not lead
to localized representations (Franzius et al., 2007). We hypothesize that the decorrelation of the non-
negative activities in the model implicitly leads to a sparsification because it favors a code where at any
given time only one single unit is active. The article does not investigate head-direction-dependency
of the learned representations or dependencies on the movement statistics.

The model by Sharp (1991) assumes abstract sensory inputs and acquires a place code by compet-
itive learning, resulting in units that code for views with similar input features. Thus, this model is
similar to our model’s last layer performing sparsification. Similarly to our results, cells become less
orientation-dependent if more rotations occur in the training trajectory.

The work by Fuhs et al. (1998) uses realistic natural stimuli obtained by a robot and extracts
“blobs” of uniform intensity with rectangular or oval shape from these images. Radial basis functions
are tuned to blob parameters at specific views, and a competitive learning scheme on these yields
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place-cell-like representations. Our model agrees with their conclusion that rodents need no explicit
object recognition in order to extract spatial information from natural visual stimuli.

The model by Brunel and Trullier (1998) investigates the head-direction dependency of simulated
place fields using abstract local views as inputs. A recurrent network learns with an unsupervised Heb-
bian rule, associating local views with each other, such that their intrinsically directional place cells can
become head-direction invariant for maze positions with many rotations. The article also conjectures
that movement patterns determine head-direction dependence of place cells, which is consistent with
our results.

The results by de Araujo et al. (2001) suggest that the size of the rat’s field of view (FOV) is
important for the distinction between spatial view cells and place cells. With a large FOV (as for rats)
the animal can see most landmarks from all orientations while an animal with a small FOV (like a
monkey) can only see a subset of all landmarks at each timepoint. We find no dependence of our results
on the FOV size for values between 30 and 320 degree as long as the environment is rich enough (i.e.
diverse textures, not a single cue card). Instead, our results suggest that differences in the movement
statistics play a key role for establishing this difference.

To our knowledge, no prior model allows the learning of place cells, head-direction cells, and
spatial view cells with the same learning rule. Furthermore there are only few models that allow clear
theoretical predictions, learn oriospatial cells from (quasi) natural stimuli, and are based on a learning
rule that is also known to model early visual processing well.

Future perspectives

Our model is not limited to processing visual stimuli, as presented here, but can integrate other
modalities as well. The integration of olfactory cues, for example, might lead to even more accurate
representations and possibly to an independence of the model of visual stimuli (simulated darkness).

Our simulated visual stimuli come from a virtual reality environment which is completely static
during the training of the virtual rat. In this case the slowest features are position, orientation, or view
direction as shown before. However, the assumption that the environment remains unchanged during
oriospatial cell learning certainly does not hold for the real world. A more realistic environment will
include other changing variables like lighting direction, pitch and roll of the head etc. The impact of
these variables on the model representations depends on the timescale of the variable changes: e.g.
the additional white noise in all SFA layers of the model is ignored since it varies much quicker than
position and orientation, but the direction of sunlight might become the slowest feature. Generally,
the SFA solutions will depend on any variable whose timescale is equal or slower than the position
and orientation changes of the animal. After the sparse coding step representations will become not
only localized in position and/or head direction but in the other variables as well. This behavior is
not consistent with the definition of an ideal place or head-direction cell. However, many experiments
show correlations of place cell firing with nonspatial variables as well (Redish, 1999). One particularly
interesting instance of such a variable is 'room identity’. If a rat experiences multiple environments,
usually transitions between these will be seldom, i.e. the rat will more often turn and traverse a single
room than switch rooms. In this case room identity will be encoded by the SFA outputs. For n rooms
at most n — 1 decorrelated SFA outputs can code for the room identity. The following outputs will
then code for a joint representation of space and room identity. After sparse coding, many output
units will fire in one room only (the less sparse ones in few rooms), and possibly in a completely
unrelated fashion to their spatial firing patterns in another room. This behavior is consistent with the
‘remapping’ phenomenon in place cells (e.g. Muller and Kubie, 1987).

A great amount of work has been done investigating the impact of environmental manipulations
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on oriospatial cell firing in known rooms, e.g. shifts and rotations of landmarks relative to each other
(Redish, 1999). How would our model behave after such changes to the learned environment? Such
transformations effectively lead to visual input stimuli outside the set of all possible views in the
training environment. In this case, we expect the system’s performance to deteriorate unless a new
representation is learned, but more work is necessary to investigate this question.

Our approach predicts increasing slowness (i.e. decreasing eta-values of firing rates) in the processing
hierarchy between retina and hippocampus. Additionally, place cell and head direction cell output
should be significantly sparser than their inputs. Our main prediction is that changing movement
statistics directly influences the invariance properties of oriospatial cells: e.g. an experiment in a linear
track where the rat more often turns on mid-track should yield less head-direction dependent place
cells.

Experimentally, the joint positional and orientational dependence of oriospatial cells is hard to
measure due to the size of the three-dimensional parameter space, and even more so if the development
over time is to be measured. Furthermore, precise data on movement trajectories is rare in the existing
literature on oriospatial cells. Accordingly, little data is available to verify or falsify our prediction how
the brain’s oriospatial codes depend on the movement statistics. As an alternative to determining the
movement statistics in behavioral tasks, some work has been done on passive movement of rats, where
the movement statistics is completely controlled by the experimenter (e.g. Gavrilov et al. 1998), but
these results might not be representative for voluntary motion (Song et al., 2005). Markus et al. find
directional place fields in the center of a plus maze although in the center of the maze more rotations
occur than in the arms (Markus et al., 1995). This could be a contradiction to our model, although
not the frequency but the relative speed, which was not measured in (Markus et al., 1995), determines
head direction invariance in our model. Overall, the dependence of oriospatial cells on the animal’s
movement statistics as proposed here remains to be tested experimentally.

Conclusion

We conclude that a purely sensory driven unsupervised system can reproduce many properties of
oriospatial cells in the rodent brain, including place cells, head-direction cells, spatial view cells, and
to some extent even grid cells. These different cell types can be modeled with the same system, and
the output characteristics solely depends on the movement statistics of the virtual rat. Furthermore,
we showed that the integration of vestibular acceleration information can be used to learn place cells
and head-direction cells with the same movement statistics and thus at the same time.
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8 Appendix*
8.1 Proofs of Theorems

Proof of Theorem 1

The technique of variational calculus can be illustrated by means of an expansion in the spirit of a Taylor
expansion. Let us assume, we knew the function g; that optimizes the objective function W. The effect of a
small change dg of g; on the objective function ¥ can be written as

W(g; +b9) ~ W) = [ F(5)da(s)ds+ ., (35)
where the ellipses stand for higher order terms in dg. The function ‘f;—\l' is the variational derivative of the
functional ¥ and usually depends on the configuration, the optimal function g; and possibly derivatives of g;.
Its analogue in finite-dimensional calculus is the gradient.

We now derive an expression for the variational derivative of the objective function (13). To keep the
calculations tidy, we split the objective in two parts and omit the dependence on the configuration s.

1 -
V(g;) =: 5A(95) — ¥(95) (36)
The expansion of ¥ is straightforward:
(g +309) —W(g;) = (690 + X595+ D Njsgil)s + - (37)
i<j
= /5gps Mo + Xijg5 + > Ajigilds + ... (38)
i<j

For the expansion of A(g;) we first simplify the expression by carrying out the velocity integration and using
the velocity tensor K:

(9) (14)
A(g;) = (Vg v Vgi)snv = (Vgj (vw)ysVgs)s = (Vg; KVg;)s (39)

We can now expand A(g;) as follows

1 1 39 1 1
3A9;+09) = 5A(g) = 5(V(g +09) KV(g5+09))s — 5 (Vg KVg;)s (40)
1
= 3 (Vg KVég+ Vig"KVg;)s + ... (41)
= (VOgKVg])s+ ... (42)
(since K is symmetric)
@ /pchigKVgJT ds (43)
- / V. [(5gps nTKng] ds — / 59V - (psKVg;)ds + ... (44)
= dgpsn” KVg; dA — /5g V- (psKVg;)ds + ... (45)
av
(Gauss’ theorem)
ey dgpsn"KVg; dA + /5gpS (Dg;)ds + ... (46)
av
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Here, dA is an infinitesimal surface element of the boundary 0V of V' and n is the normal vector on dA. To
get the expansion of the full objective function, we add (38) and (46):

U(g; +069) — U(g;) = | dgpsn"KVg;dA+ / 6gps (Dg; — Ajo = Ajigs — D Njigi) ds + ... (47)
oV 1<j

In analogy to the finite-dimensional case, g; can only be an optimum of the objective function VU if any small
change dg leaves the objective unchanged up to linear order. As we employ a Lagrange multiplier ansatz,
we have an unrestricted optimization problem, so we are free in choosing dg. From this it is clear that the
right hand side of (47) can only vanish if the integrands of both the boundary and the volume integral vanish
separately. This leaves us with the differential equation (15) and the boundary condition (16).

Proof of Theorem 2

Proof: The proof can be carried out in a direct fashion. Again, we omit the explicit dependence on s.

8,17,18 1
(f,Dg) L —/psfp—V -psKVgds (48)
_ _/v. [psfnTKVg] ds+/p5VfTKngs (49)
= —/ psf nTKVyg dA+/Vpr5Kngs (50)
ov SN——
(16)
(Gauss’ theorem)
(0 /pszTKngs (51)
= /pSVgTKVf ds (52)
(since K is symmetric)
(48—52)
= (Df,9). (53)

Proof of Theorem 3

Zero mean: It is obvious that the constant function fy = 1 is always an eigenfunction of D for eigenvalue 0.
As all other eigenfunctions are orthogonal to fo, they must have zero mean:fo, f;) = (f;)s =0 Vj #0.
Decorrelation: For mean-free functions f and g the scalar product (f, g) is their covariance. The orthogo-
nality of the eigenfunctions is thus equivalent to decorrelation.

Unit variance: Unit variance can easily be achieved by renormalizing the eigenfunctions such that (f, f) =

(f)s=1.

Proof of Theorem 4

(39,52)

A(f5) (fi;Dfi) = (f5, 85 f5) = &5 (f5, f3) = A5 (54)
W—/

=1
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Proof of Theorem 5

Without loss of generality we assume that the eigenfunctions f; are ordered by increasing eigenvalue, starting
with the constant fo = 1. There are no negative eigenvalues, because the eigenvalue is the A-value of the
eigenfunction, which can only be positive by definition. According to Theorem 1, the optimal responses g;
obey the boundary condition (16) and are thus elements of the subspace F, C F defined in Theorem 2. Because
of the completeness of the eigenfunctions on F;, we can do the expansion

95 =Yl (55)
k=1

where we may omit fo because of the zero mean constraint. We can now prove by complete induction that
gj = fj solves the optimization problem.
Basis (j=1): Inserting g1 into eqn. (15) we find

0 = Dgi—Ao—Augt (56)
= —Awo+ Z o1k (Ak — A1) f (57)

k=1
= ey (58)

A (alk:O\/Ak:)\ll)Vk,

because fi and the constant are linearly independent and (56) must be fulfilled for all s. (58) implies that
the optimal response g1 must be an eigenfunction of D. As the A-value of the eigenfunctions is given by
their eigenvalue, it is obviously optimal to chose g1 = fi. Note that although this choice is optimal, it is not
necessarily unique, since there may be several eigenfunctions with the same eigenvalue. In this case any linear
combination of these functions is also optimal.

Induction step: Given that g; = f; for ¢ < j, we prove that g; = f; is optimal. Because of the
orthogonality of the eigenfunctions the decorrelation constraint (12) yields

02 (gig)s = (fir Y apufi) =y Vi<, (59)

k=1

Again inserting the expansion (55) into eqn. (15) yields

o “EY (p-ay > et = Ao — > Njifs (60)
k=1 1<j
® (D= X)) > erfe — Xjo— D _ Njifi (61)
k=j i<Jj
2 3 Ak = Nagrfi — Xjo— > Njifi (62)
k=j 1<J
Ao =0
= A Aji =0 Vi<j (63)

AN ojr=0VAr=X;; Vk>7j,
because the eigenfunctions f; are linearly independent. The conditions (63) can only be fulfilled if g; is an

eigenfunction of D. Because of Theorem 4 an optimal choice for minimizing the A-value without violating the
decorrelation constraint is g; = f;.
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8.2 Qualitative Behavior of the Solutions for inhomogenous movement
statistics

As seen in section 5.1.1 for the case where ps and K are independent of s, the solutions of the eigenvalue
equation (20) generally show oscillations. A brief calculation for a 1-dimensional configuration space shows
that their wavelength is given by 2w/K/A. It is reasonable to assume that this behavior will be preserved
qualitatively if ps and K are no longer homogeneous but depend weakly on the configuration. In particular,
if the wavelength of the oscillation is much shorter than the typical scale on which ps and K vary, it can
be expected that the oscillation “does not notice” the change. Of course, we are not principally interested in
quickly varying functions, but they can provide insights into the effect of variations in ps and K.

To examine this further, we consider the eigenvalue equation (20) for a 1-dimensional configuration space

and multiply it by ps:
d d (17,20)

Cpu($)K () 9(5) + Aps(s)ls) "EV =0 (64)
We can derive an approximate solution of this equation by treating € := 1/\/Z as a small but finite perturbation
parameter. This corresponds to large A-values, i.e. quickly varying functions. For this case we can apply a
perturbation theoretical approach that follows the scheme of Wentzel-Kramers-Brillouin (WKB) approximation
used in quantum mechanics. Knowing that the solution shows oscillations, we start with the complex ansatz

o) = dexp (La(s)) (65)

where ®(s) is a complex function that needs to be determined. Treating € as a small number, we can expand
® in orders of ¢
D(s) = Do(s) +ePi(s) + ... (66)

where again the ellipses stand for higher order terms. We insert this expansion into equation (64) and collect
terms of the same order in . Requiring each order to vanish separately and neglecting orders £ and higher,
we get equations for ®o and P;:

1
(I)/2 — -
2= = (67)
i (ps K®g)'
! i P K o) 68
= (68)
where the prime denotes the derivative with respect to s. These equations are solved by
®o(s) / R R (69)
0 = -
s | K()
Di(s) = % In(p.K'/?) (70)

where so is an arbitrary reference point. Inserting this back into the ansatz (65), we get the approximate

solution
9(s) = APK) M exp ( | ,/%m) (71)

This shows, that the solutions with large A-values show oscillations with local frequency \/A/K(s) and am-
plitude ~ (pgK)fl/‘l. As large values for K indicate that the rat moves quickly, this implies that the local
frequency of the solutions is smaller in regions with larger velocities whereas small velocities, e.g. close to walls,
lead to higher frequencies than expected for homogeneous movement. Intuitively this means that the functions
compensate for quick movements with smaller spatial frequencies such that the effective temporal frequency of
the output signal is kept constant.
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Understanding the dependence of the amplitude on ps and K is more subtle. Under the assumption that
K is independent of s, the amplitude decreases where p, is large and increases where p, is small. Intuitively,
this can be interpreted as an equalization of the fraction of the total variance that falls into a small interval
of length As > /K/A. This fraction is roughly given by the product of the probability p(s)As of being in
this section times the squared amplitude K (s)~*/?/p(s) of the oscillation. For constant K, this fraction is also
constant, so the amplitude is effectively rescaled to yield the same ’local variance’ everywhere. If p is constant,
on the other hand, the amplitude of the oscillation is small in places where the rat moves quickly and large
where the rat moves slowly. This corresponds to the intuition that from the perspective of slowness there are
two ways of treating places where the rat moves quickly: Decreasing the spatial frequency to generate slower
output signals and/or decreasing the amplitude to ’pay less attention’ to these regions. There is also a strong
formal argument why the amplitude should depend on p?K. As the optimization problem is invariant under
arbitrary invertible nonlinear coordinate changes, the amplitude of the oscillation should depend only on a
function of ps and K that is independent of the coordinate system. This constrains the amplitude to depend
on p?K , as this is the only combination that is invariant under coordinate changes.

The key insight of this analysis is that the optimal functions show oscillations that are spatially compressed
in regions where the rat moves with low velocities. This implies that the spatial resolution of the SFA solutions
is higher in those regions. Consequently, the size of the place fields after sparse coding should be smaller in
regions with small velocities.
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