
Unsupervised Learning ofPlae Cells, Head-Diretion Cells, and Spatial-View Cells withSlow Feature Analysis on Quasi-Natural VideosMathias Franzius, Henning Sprekeler, Laurenz WiskottApril 13, 2007Institute for Theoretial Biology, Humboldt-Universität zu Berlin.{m.franzius, h.sprekeler, l.wiskott}�biologie.hu-berlin.deWe present a model for the self-organized formation of plae ells, head-diretion ells, and spatialview ells in the hippoampal formation based on unsupervised learning on quasi-natural visual stimuli.The model omprises a hierarhy of Slow Feature Analysis (SFA) nodes, whih were reently shownto be a good model for omplex ells in the early visual system (Berkes and Wiskott, 2005). Thesystem extrats a distributed grid-like representation of position and orientation, whih is transodedinto a loalized plae �eld, head diretion, or view representation, respetively, by sparse oding. Thetype of ells that develops depends solely on the relevant input statistis, i.e. the movement pattern ofthe simulated animal. The numerial simulations are omplemented by a mathematial analysis thatallows us to aurately predit the output of the top SFA layer.1 IntrodutionThe brain needs to extrat behaviorally relevant information from sensory inputs in order to suessfullyinterat with the environment. Position and head orientation of an animal in the spae surroundingit is part of this relevant information. Neural representations of a rodent's spatial position - termedplae ells - have been found more than 35 years ago in hippoampal areas CA1 and CA3 (O'Keefeand Dostrovsky, 1971), orrelates of head orientation - termed head-diretion ells - twenty yearslater (Taube et al., 1990), and reently non-loalized representations termed grid ells were found inentorhinal ortex (EC) of rats (Hafting et al., 2005). While primates also have head-diretion ells, noplae ells were found in primates yet. Instead, they have spatial view ells, whih do not enode theanimal's own (idiotheti) position but �re whenever the animal views a ertain part of the environment(Rolls, 1999, 2006).All of these ells seletively enode some aspets of position and/or orientation of the animal, whilebeing invariant to others. Head-diretion ells are strongly seletive for the diretion of the animal'shead and largely invariant to its position (Sharp et al., 2001). They typially have a single peakof ativity with a Gaussian or triangular shape and a tuning width of roughly 60◦ to 150◦ (Taubeand Bassett, 2003) depending on brain area. In ontrast, most plae ells reorded in open �elds areinvariant to head diretion while being seletive for the animal's position. Interestingly, the degree oforientation-invariane depends on the behavioral task of of the animal and possibly on the struture1



of the environment. In linear trak environments and for repeated linear paths in open environmentsmost plae ells are orientation-spei� (Markus et al., 1995). Grid ells in entorhinal ortex alsoexhibit onjuntive representations of position and orientation (Sargolini et al., 2006). Spatial viewells in primates show very di�erent �ring properties. These ells are neither position-invariant nororientation-invariant but �re when a ertain part of the environment is in the animal's �eld of view,resembling head-diretion ells for the ase of an in�nitely distant view. Figure 1 illustrates thedi�erene between grid ells, plae ells, head-diretion ells and spatial view ells.

Figure 1: Spatial and orientation tuning of an idealized grid ell (A), plae ell (B), head-diretion ell (C) and a spatial view ell (D). The ativity of a grid ell is mostly orientation-invariant and not spatially loalized but repeats in a hexagonal grid, whereas a plae ell is alsoorientation-invariant but spatially loalized. The ativity of a head-diretion ell shows a global dire-tion preferene but is spatially invariant, and the spatial view ell is maximally ative when a spei�view is �xated (indiated by 'x') with an amplitude that is independent of spatial position.Throughout this paper, oriospatial ells will be used as a superordinate term for plae ells, gridells, head-diretion ells, and spatial view ells. While the preise role of these oriospatial ells is stilldisussed, they probably form the neural basis for the ability of an animal to self-loalize and navigate(Knierim et al., 1995).Stimuli available to oriospatial ells an be lassi�ed as either idiotheti, inluding motor feedbak,proprioeption, and vestibular input, or as allotheti, whih inludes all information from sensors aboutthe external environment, e.g. vision or olfation. While plae ells are in�uened by several modalitiesthey seem to be driven primarily by visual input (e.g. Je�ery and O'Keefe, 1999), but sine their �ringproperties remain stable in the absene of external sensory ues for several minutes, proprioeptivestimuli must play a major role for plae ell �ring as well (Save et al., 2000). Even in omplete abseneof allotheti sensory information an animal an integrate idiotheti self-motion ues to estimate itsposition and orientation in spae. This proess, alled path integration (or dead rekoning), inherentlyaumulates errors over longer time sales, whih an only be orreted by allotheti information. Forthe head-diretion ells it is ommonly assumed that idiotheti input from the vestibular system isdominant (e.g. Sharp et al., 2001), but like plae ells they need external sensory stimuli to orret fordrift.We introdue here a model for the self-organized formation of hippoampal plae ells, head-diretion ells, and spatial view ells based on unsupervised learning on quasi natural visual stimuli.Our model has no form of memory and reeives raw high-dimensional visual input. The former meansthat our model annot perform path integration, the latter means that positional information has tobe extrated from omplex images. While suh a model an ertainly not be a omplete model of2



oriospatial ells, it an show how far a memoryless purely sensory-driven system an model oriospatialells already. The learning rule of the model is based on the onept of slowness or temporal stability,whih is motivated by the observation that raw sensory signals (like a amera's individual pixel values)typially vary muh more quikly than some behaviorally relevant features of the animal or its envi-ronment, like the animal's position in spae. By extrating slowly varying features from the sensoryinput one an hope to obtain a useful representation of the environment. This slowness priniple formsthe basis for a variety of learning rules (e.g. Földiak, 1991; Mithison, 1991; Stone and Bray, 1995).The implementation used here is Slow Feature Analysis (SFA) as introdued by Wiskott (Wiskott,1998; Wiskott and Sejnowski, 2002). For a given set of time-dependent training data, in our ase videosequenes, we are looking for a nonlinear salar funtion from a given funtion spae that generatesthe slowest possible output signal y(t) when applied to the training data. The slowness of the signal ismeasured in terms of its ∆-value, whih is given by the mean square of the signal's temporal derivative(see setion 2). As small ∆-values orrespond to slowly varying signals, the objetive is to �nd thefuntion that minimizes the ∆-value. To avoid the trivial onstant solution, the signal is required tohave unit variane and zero mean. Furthermore, we an �nd a seond funtion that optimizes theobjetive under the additional onstraint that its output signal is unorrelated to the �rst, a thirdfuntion, whose output is unorrelated to the �rst two signals and so on. In this manner we generatea sequene of funtions with inreasing ∆-value that extrat slowly varying features from the trainingdata. More details on the approah as well as its mathematial formalization an be found in setion 2.SFA has been suessfully applied as a model for the self-organized formation of omplex ellreeptive �elds in primary visual ortex (Berkes and Wiskott, 2005). Here, we embed this approahin a biologially inspired hierarhial network of visual proessing of a simulated rat where eah layerlearns the slowest features from the previous layer by SFA (see experimental methods in setion 3). We�nd that the output of the highest layer performing SFA forms a distributed oriospatial representation.In a subsequent linear step the model applies a mehanism for sparse oding resulting in loalizedoriospatial odes. The same model in the same environment an reprodue the �ring harateristisof plae ells, head-diretion ells, and spatial view ells, depending solely on the movement statistisof the simulated rat. For roughly unorrelated head diretion and body movement, the system learnshead-diretion ells or plae ells, depending on the relative speed of head rotation and body movement.If the movement statistis is altered suh that spots in the room are �xated for a while during simulatedloomotion, the model learns spatial view ell harateristis.We introdue a mathematial framework in setion 4 that analytially explains the results of theSFA output. The mathematially less inlined reader may onsider skipping this setion. Both ana-lytial and omputer simulation results are presented in setion 5.We onlude that a purely sensory-driven model an apture the key properties of several majorell types assoiated with spatial oding, namely plae ells, head-diretion ells, spatial view ells,and to some extent grid-ells.2 Slow Feature AnalysisSlow Feature Analysis solves the following learning task: Given a multidimensional input signal wewant to �nd instantaneous salar input-output funtions that generate output signals that vary asslowly as possible but still arry signi�ant information. To ensure the latter we require the outputsignals to be unorrelated and have unit variane. In mathematial terms, this an be stated as follows:Optimization problem: Given a funtion spae F and an I-dimensional input signal x(t) �nd a3



set of J real-valued input-output funtions gj(x) ∈ F suh that the output signals yj(t) := gj(x(t))

minimize ∆(yj) := 〈ẏ2
j 〉t (1)under the onstraints

〈yj〉t = 0 (zero mean), (2)
〈y2

j 〉t = 1 (unit variane), (3)
∀i < j : 〈yiyj〉t = 0 (deorrelation and order), (4)with 〈·〉t and ẏ indiating temporal averaging and the derivative of y, respetively.Equation (1) introdues the ∆-value, whih is a measure of the temporal slowness of the signal

y(t). It is given by the mean square of the signal's temporal derivative, so small ∆-values indiateslowly varying signals. The onstraints (2) and (3) avoid the trivial onstant solution and onstraint(4) ensures that di�erent funtions gj ode for di�erent aspets of the input.It is important to note that although the objetive is slowness, the funtions gj are instantaneousfuntions of the input, so that slowness annot be enfored by low-pass �ltering. Slow output signalsan only be obtained if the input signal ontains slowly varying features that an be extrated by thefuntions gj , whih are omputed instantaneously for a given input.In the omputationally relevant ase where F is �nite-dimensional the solution to the optimizationproblem an be found by means of Slow Feature Analysis (Wiskott and Sejnowski, 2002; Berkes andWiskott, 2005). This algorithm, whih is based on an eigenvetor approah, is guaranteed to �ndthe global optimum. More biologially plausible learning rules for the optimization problem, both forgraded response and spiking units exist (Hashimoto, 2003; Sprekeler et al., 2007).If the funtion spae is in�nite-dimensional, the problem requires variational alulus and willin general be di�ult to solve. In setion 4 we demonstrate that the optimization problem for thehigh-dimensional visual input, as faed by the hierarhial model, an be reformulated for the low-dimensional on�gural input of position and orientation. In this ase, the variational alulus approahbeomes tratable and allows to make analytial preditions for the behavior of the full model.3 Experimental methodsThe outome of an unsupervised learning rule, suh as Slow Feature Analysis, is ruially determinedby the statistis of the training data. As we want to show that oriospatial ells an be learnt fromraw sensory stimuli, we approximate the retinal stimuli of a rat by video sequenes generated in avirtual-reality environment. The input statistis of the training data are thus jointly determined bythe struture of the virtual-reality environment and the movement pattern of the simulated rat. As thisvideo data is very high-dimensional, nonlinear SFA in a single step is omputationally infeasible. Tooverome this problem, the model is organized as a hierarhy of SFA nodes in analogy to the hierarhyof the brain's visual system (see �gure 2C).Simulated environmentsMany experimental plae �eld data were reorded either in a linear trak or in an open �eld apparatus.For our simulations we use a linear trak of 10:1 side length, and a retangular open �eld of 3:2 sidelength. We have also simulated radial mazes (e.g. plus or 8-arm mazes) as a third apparatus type butthey an be onsidered as a ombination of an open �eld in the enter with linear traks extendingfrom it and simulation results for this type will not be presented here.4



The input data onsists of pixel images generated by a virtual-reality system based on OpenGLwith textures from the Vision Texture Database (Piard et al., 2002). The virtual rat's horizontal �eldof view is 320◦ (see �gure 2A for a top view of the environment, and �gure 2B for a typial rat's viewfrom this environment) and onsistent with that of a biologial rat (Hughes, 1978). The vertial �eldof view is redued to 40◦ beause outside this range usually only unstrutured �oor and eiling arevisible. An input piture has 40 by 320 olor pixels (RGB, 1pixel/◦). The input dimensionality for thesystem is thus 38400, while the dimensionality of the interesting oriospatial parameter spae is onlythree-dimensional (x- and y-position and orientation).Movement patterns of the virtual ratAs an approximation of a rat's trajetory during exploration in plae �eld experiments we simulateBrownian motion on the three-dimensional parameter spae of position and orientation. The virtualrat's position pos(t) at eah time step t is updated by a weighted sum of the urrent veloity andGaussian white noise noise with standard deviation vr. The momentum term m an assume valuesbetween zero (massless partile) and one (in�nitely heavy partile), so that higher values of m lead tosmoother trajetories and a more homogeneous sampling of the apparatus in limited time. When thevirtual rat's movement would traverse the apparatus boundaries, the urrent veloity is halved and analternative random veloity update is generated, until a new valid position is reahed (see table 1).urrentVeloity = pos(t) - pos(t - 1);repeatnoise = GaussianWhiteNoise2d() * vr;pos(t + 1) = pos(t) + m * urrentVeloity + (1 - m) * noise;if not isInsideApparatus(pos(t + 1))urrentVeloity = urrentVeloity / 2;enduntil isInsideApparatus(pos(t + 1))Table 1: Pseudoode for the omputation of the translational movement for the virtual rat's path.We all the standard deviation (normalized by room size L) of the noise term translational speed
vr and the standard deviation of head diretion trajetory rotational speed vφ. On long timesalesand with �nite room size this type of movement approximates homogeneous position and orientationprobability densities, exept at the apparatus boundaries where a high momentum term an inreasethe position probability. We all the ratio of rotational to translational speed vφ/vr the relativerotational speed vrel.The atual hoie of vrel is based on the rat's behavior in di�erent environments and behavioraltasks. In linear trak experiments the rat's movement is essentially one-dimensional and the animalrarely turns on mid-trak but instead mostly at the trak ends. Aordingly, we use a large momentumterm, so that the virtual rat often translates smoothly between trak ends and rarely turns on mid-trak. In the open �eld, on the other hand, full two-dimensional movement and rotation is possible, butthe atual statistis depends on the behavioral task at hand. We mimik the ommon pellet-hasingexperiment (Markus et al., 1995) by using isotropi two-dimensional translational speed and setting
vrel to a relatively high value. Three di�erent movement paradigms are explored in the following:simple movement, restrited head movement and spatial view. In the simple movement paradigm headorientation and body movement are ompletely independent, so that head diretion an be modeled5



with unrestrited Brownian motion. In the restrited head movement paradigm the head diretion isenfored to be within 90 degrees from the diretion of body movement (see table 2).repeatnoise = GaussianWhiteNoise1d() * vphi;phi(t + 1) = phi(t) + m * (phi(t) - phi(t - 1)) + (1 - m) * noise;until isHeadDirWithin90DegOfMovementDir(pos(t + 1) - pos(t), phi(t + 1))Table 2: Pseudoode for the omputation of the head diretion on the virtual rat's path in the restritedhead movement paradigm.This onstraint impliitly restrits the range of possible relative speeds: while it is still possible tohave arbitrarily high relative rotational speed by turning often or quikly, very low relative rotationalspeed annot be ahieved anymore in �nite rooms. Typially, if the rat reahes a wall, it has toturn. Thus the maximum travel length for a full turn is roughly the irumferene of the apparatus,resulting in a lower bound for the relative rotational speed vrel. In order to generate input sequeneswith lower vrel one would have to disard periods with dominant rotations from the input sequene. Fora biologial implementation of suh a mehanism the rat's limbi system ould aess the vestibularrotational aeleration signal in order to downregulate the learning rate during quik turns. Wewill refer to this mehanism as learning rate adaptation (LRA). A third movement statistis an begenerated if we assume that an animal �xates objets or loations in the room for some time whilemoving around. During this period the animal �xates a spei� loation L in the room, i.e. it alwaysturns its head into the diretion of L, independent of its position. We implement L as a �xation pointon the wall and hange its position with a similar statistis (and low vrel) as the head diretion inthe other paradigms. In this paradigm both position and orientation are dependent and vary ratherquikly, while the position of L hanges slowly. We all this movement pattern spatial view paradigmand suggest that it is a more appropriate desription of a primate's movement pattern than the previoustwo.Model arhitetureOur omputational model onsists of a onverging hierarhy of layers of SFA nodes and a single�nal sparse oding node (see �gure 2C). Eah SFA node �nds the slowest output features from itsinput aording to the SFA learning rule given in setion 2 and performs the following sequene ofoperations: linear SFA for dimensionality redution, quadrati expansion with additive Gaussian whitenoise, another linear SFA step for slow-feature extration, and lipping of extreme values at ±4 (see�gure 2D). E�etively, a node implements a subset of full quadrati SFA. The lipping removes extremevalues that an our on test data very di�erent from training data.In the following, the part of the input image that in�uenes a node's output will be denoted as itsreeptive �eld. On the lowest layer the reeptive �eld of eah node onsists of an image path of 10 by10 pixels with 3 olor dimensions eah. The nodes form a regular (i.e. non-foveated) 7 by 63 grid withpartially overlapping reeptive �elds that jointly over the input image of 40 by 320 pixels. The seondlayer ontains 2 by 15 nodes where eah reeives input from 3 by 8 layer 1 nodes with neighboringreeptive �elds, resembling a retinotopial layout. All layer 2 output onverges onto a single node inlayer 3, whose output we all SFA-output. Thus the hierarhial organization of the model apturestwo important aspets of ortial visual proessing: inreasing reeptive �eld sizes and aumulatingomputational power at higher layers. 6



The network's SFA-output is subsequently fed into a �nal omputational node that performs linearsparse oding, either by applying independent omponent analysis (we use CuBICA whih is based onthe diagonalization of third and fourth order umulants (Blashke andWiskott, 2004)) or by performingompetitive learning (CL). The top-layer output will be alled ICA-output, or CL-output. ICA appliedto non-loalized grid-ell inputs �nds sparser odes than CL, but the latter is biologially more realisti.More details on di�erent approahes for sparse oding of grid-ell input an be found in (Franzius et al.,2007).The network is implemented in Python using the MDP toolbox (Berkes and Zito, 2005) and theode is available upon request.

Figure 2: Model Arhiteture. At a given position and orientation of the virtual rat (arrow) inthe naturally textured virtual-reality environment (A), input views are generated (B), and proessedin a hierarhial network (C). The lower 3 layers perform the same sequene (D) of linear SFA (fordimensionality redution), expansion, additive noise, linear SFA (for feature extration), and lipping,the last layer performs sparse oding (either ICA or CL).Model trainingThe layers are trained subsequently from bottom to top on di�erent trajetories through one of thesimulated environments. For omputational e�ieny we train only one node with stimuli from allnode loations in its layer and repliate this node throughout the layer. This mehanism e�etivelyimplements a weight sharing onstraint. However, the system performane does not ritially dependon this mehanism. To the ontrary, individually learned nodes improve the overall performane.In analogy to a rat's brain, the lower two layers are trained only one and are kept �xed for allsimulations presented here (like the visual system, whih remains rather stable for adult animals).Only the top SFA and ICA layer are retrained for di�erent movement statistis and environments. Forour simulations we use 100.000 time points for the training of eah layer. Sine training time of theentire model on a single PC is on the order of multiple days, the implementation is parallelized andtraining times thus redued to hours. The simulated rat's views are generated from its on�guration(position and orientation) with �oating point preision and are not arti�ially disretized to a smalleron�guration set. 7



Analysis methodsThe highly nonlinear funtions learned by the hierarhial model an be haraterized by their out-puts on the three-dimensional on�guration spae of position and head diretion. We will all two-dimensional setions of the output with onstant (or averaged) head diretion spatial �ring maps andone-dimensional setions of the output with onstant (or averaged) position orientation tuning urves.For the sparse oding results with ICA the otherwise arbitrary signs are hosen suh that the largestabsolute response is positive.The sensitivity of a funtion f to spatial position r will be haraterized by its mean posi-tional variane ηr, whih is the variane of f(r, φ) with respet to r averaged over all head di-retions φ: ηr(f) = 〈varr(f(r, φ))〉φ. Correspondingly, the sensitivity of a funtion f to head di-retion φ will be haraterized by its diretional variane ηφ averaged over all spatial positions r:
ηφ(f) = 〈varφ(f(r, φ))〉r . A perfet head-diretion ell has no spatial struture and thus a vanishing ηrand positive ηφ, while a perfet plae ell has positive ηr due to its spatial struture but no orientationdependene and thus a vanishing ηφ.4 Theoretial methodsConsidering the omplexity of the omputational model presented in the last setion, one might expetthat it would be impossible to make any analytial statement about the model's behavior. However, inthis setion we introdue a mathematial framework that atually allows us to make detailed preditionsdepending on the movement statistis of the simulated rat. The theoretially less inlined reader shouldfeel free to skip all setions marked by a * without loss of the general understanding of our model andthe results.4.1 The modi�ed optimization problem*Consider a rat in an environment that is kept unhanged for the duration of the experiment. Thevisual input the rat pereives during the experiment is the input signal for the learning task statedabove. This setion addresses the following question: Can we predit the funtions learnt in suh anexperiment and, in partiular, will they enode the rat's position in a strutured way?As the rat's environment remains unhanged for the duration of the experiment, its visual inputannot over the full range of natural images but only the relatively small subset that an be realizedin our setup. Given the environment, the rat's visual input an at all times be uniquely haraterizedby the rat's position and its head diretion. We ombine these parameters in a single on�gurationvetor s and denote the image the rat pereives when it is in a partiular on�guration s as x(s). Werefer to the manifold of possible on�gurations as on�guration spae V . Note, that V in general doesnot have the struture of a vetor spae.In a su�iently omplex environment we annot only infer the image from the on�guration butalso the on�guration from the image, so that there is a one-to-one orrespondene between the on-�gurations and the images. If we are not interested in how the funtions the system learns respond toimages other than those possible in the experiment, we an think of them as funtions of the on�gu-ration s, sine for any funtion g̃(x) of the images, we an immediately de�ne an equivalent funtion
g(s) of the on�guration:

g(s) := g̃(x(s)). (5)This leads to a simpli�ed version of our problem. Instead of using the images x(t) we use the on�gu-ration s(t) as an input signal for our learning task.8



It is intuitively lear that funtions that vary slowly with respet to the on�guration s will reateslowly varying output when applied to s(t) as an input signal, beause s(t) is ontinuous in time.Mathematially, this is re�eted by the hain rule:
ẏj =

ddtgj(s(t)) = ∇gj(s) · ṡ =: ∇gj(s) · v (6)where ∇gj is the gradient of gj and v = ṡ is the veloity in on�guration spae (note the di�erene innotation to ∇ ·A(s), whih denotes the divergene of a vetor-valued funtion A).In order to generate slowly varying output, gj should vary slowly with s in on�guration regionswith large veloities v and reserve stronger gradients for regions with small veloities. Thus, theoptimal funtions depend on the veloity statistis of the input signal. As their dependene on thedetailed time-ourse of the input signal s(t) is inonvenient to handle mathematially, we assume thatthe duration of the experiment is long enough to do statistis on the behavior of the rat. Its motionan then be desribed by means of a joint probability density funtion ps,v(s,v), whih quanti�eshow often the rat is found in a partiular on�guration s and moves with veloity v. We may thenequivalently replae the temporal averages in the original formulation of the learning task by weightedaverages over all on�gurations and veloities:
〈·〉t → 〈·〉s,v =

∫

·(s,v) p
s,v(s,v)ds dv (7)If we take the average of a funtion that does not expliitly depend on the veloity v, we an simplifythe average 〈·〉s,v by integrating over the veloity:

〈·〉s,v =

∫

·(s)ps,v(s,v)ds dv =

∫

·(s)
[∫

ps,v(s,v)dv]

︸ ︷︷ ︸

=:ps(s)

ds =: 〈·〉s (8)Here ps is the marginal probability of �nding the rat in on�guration s, irrespetive of its veloity.Making use of (5-8) we an now state an equivalent alternative formulation of the learning task:Optimization problem 2: Given a funtion spae F on a on�guration spae V , whih is sampledwith probability density P (s,v), �nd a set of J funtions gj(s) ∈ F thatminimize ∆(gj) := 〈(∇gj(s) · v)2〉s,v (9)under the onstraints
〈gj(s)〉s = 0 (zero mean), (10)
〈gj(s)

2〉s = 1 (unit variane) , (11)
∀i < j : 〈gi(s)gj(s)〉s = 0 (deorrelation and order) . (12)If we do not impose any restrition on the funtion spae F (apart from su�ient di�erentiability andintegrability), this modi�ed optimization problem an be solved analytially for a number of ases.Following a previous analytial treatment (Wiskott, 2003) we refer to the optimal funtions in theunrestrited funtion spae as ∆-optimal funtions ; they are shown in setion 5 together with thenumerial simulations. 9



4.2 A di�erential equation for the optimal funtions*In this setion we apply variational alulus to optimization problem 2 and derive a partial di�erentialequation for the optimal funtions gj . We prove that the optimization problem an be simpli�ed toan eigenvalue problem of a partial di�erential operator D whose eigenfuntions and eigenvalues formthe ∆-optimal funtions and their ∆-values, respetively. For the sake of brevity we shift the proofsto the appendix, so that the reader an fous on the main theorems.Using Lagrange multipliers we get an objetive funtion for the funtions gj that inorporates theonstraints:
Ψ(gj) =

1

2
∆(gj) − λj0〈gj(s)〉s −

1

2
λjj〈gj(s)

2〉s −
∑

i<j

λji〈gi(s)gj(s)〉s. (13)Here, fators 1
2 have been introdued for mathematial onveniene and have no in�uene on theresults.In the following we will not need the full dependene of the probability density ps,v on the veloity,but only the following funtion:

K(s) :=
1

ps(s)

∫

vv
T ps,v(s,v)dv =

∫

vv
T p

v|s(v|s)dv = 〈vv
T 〉

v|s . (14)
K is the matrix ontaining the seond-order moments of the onditional veloity distribution P (v|s) =
P (s,v)
P (s) . It ontains information on how fast and in whih diretion the rat typially moves given it isin on�guration s.Applying variational alulus to the objetive funtion (13), we an derive a neessary onditionfor the solutions of optimization problem 2.Theorem 1 For a partiular hoie of the parameters λij , the solutions gj of optimization problem 2obey the Euler-Lagrange equation

Dgj(s) − λj0 − λjjgj(s) −
∑

i<j

λjigi(s) = 0 (15)with the boundary ondition
n(s)T

K(s)∇gj(s) = 0 for s ∈ ∂V. (16)Here, the partial di�erential operator D is de�ned as
D := − 1

ps(s)
∇ · ps(s)K(s)∇ (17)and n(s) is the unit normal vetor on the boundary ∂V of the on�guration spae V .We now show that the solutions of optimization problem 2 are given by the eigenfuntions of theoperator D. The essential observation we need is stated inTheorem 2 Let Fb ⊂ F be the spae of funtions that obey the boundary ondition (16). Then D isself-adjoint on Fb with respet to the salar produt

(f, g) := 〈f(s)g(s)〉s, (18)i.e.
∀f, g ∈ Fb : (Df, g) = (f,Dg). (19)10



This property is useful, as it allows the appliation of the spetral theorem known from funtionalanalysis, whih states that any self-adjoint operator possesses a omplete set of eigenfuntions fj(s) ∈
Fb with real eigenvalues ∆j , whih are pairwise orthogonal, i.e. a set of funtions that ful�lls thefollowing onditions:

Dfj = ∆jfj with ∆j ∈ R (eigenvalue equation) , (20)
(fi, fj) = δij (orthonormality) , (21)

∀f ∈ Fb ∃αk : f =

∞∑

k=0

αkfk (ompleteness) . (22)Beause the weighted average over on�gurations is equivalent to a temporal average, the salarprodut (18) is essentially the ovariane of the output of the funtions f and g (if they have zeromean). The orthonormality (21) of the eigenfuntions thus implies that the eigenfuntions ful�ll theunit variane and deorrelation onstraint. This is stated inTheorem 3 Apart from the onstant funtion, whih is always an eigenfuntion, the (adequately nor-malized) eigenfuntions fj ∈ Fb of the operator D ful�ll the onstraints (10-12).If we set λ0j = λji = 0 for i 6= j, the eigenfuntions also solve eqn. (15), making them goodandidates for the solution of optimization problem 2. To show that they indeed minimize the ∆-valuewe needTheorem 4 The ∆-value of the normalized eigenfuntions fj is given by their eigenvalue ∆j .At this point, it is intuitively lear that the eigenfuntions with the smallest eigenvalues form thesolution to optimization problem 2. This is stated inTheorem 5 The J eigenfuntions with the smallest eigenvalues ∆j 6= 0 are a solution of optimizationproblem 2.The advantage of this approah is that it transfers the original optimization problem to that of�nding the eigenfuntions of a partial di�erential operator. This type of problem is enounteredfrequently in other ontexts and has been studied extensively.It is worth noting that the formalism desribed here is not restrited to the example used here. As itis independent of the onrete nature of the on�guration spae, it an be applied to more ompliatedproblems, e.g. to a rat moving in an environment with moving objets, whose positions would then beadditional omponents of the on�guration s.5 ResultsWe apply our theoretial framework and omputer simulations to a number of environments andmovement patterns that resemble typial plae ell experiments. In setion 5.1, we show results for theopen �eld, beginning with the mathematial analysis and simulation results for the simple movementparadigms with high and low relative speeds. Subsequently, the simulation results for the restritedhead movement paradigm, inluding learning rate adaptation, and the spatial view paradigm areshown. In setion 5.2 the results for the linear trak with its two-dimensional on�guration spae areshown. 11



5.1 Open �eldOne of the most ommon environments for plae ell experiments is an open �eld apparatus of retan-gular or irular shape. Here, the most typial experimental paradigm is to throw food pellets randomlyinto the apparatus at regular intervals leading to a random searh behavior of the rat. For this asethe rat's oriospatial on�guration spae omprises the full three dimensional manifold of position andorientation. In this setion, we present results from experiments with simulated rat trajetories ateither high or low relative rotational speeds leading to undireted plae ells or position-invarianthead-diretion ell type results, respetively.5.1.1 Theoretial preditions for the simple movement paradigm*In a retangular open �eld the on�guration spae an be parametrized by the animals position,indiated by the oordinates x and y, and its head diretion φ. The total on�guration spae is thengiven by s = (x, y, φ) ∈ [0, Lx] × [0, Ly] × [0, 2π[. Lx and Ly denote the size of the room in x- and
y-diretion, respetively. We hoose the origin of the head diretion φ suh that φ = π/2 orrespondsto the rat looking to the north. The veloity vetor is given by v = (vx, vy, ω), where vx, vy denotethe translation veloities and ω is the rotation veloity. For the typial pellet-throwing experiment wemake the approximation that the veloities in the three di�erent diretions are deorrelated and thatthe rat's position and head diretion are homogeneously distributed in on�guration spae. Moreover,in an open �eld there is no reason why the variane of the veloity should be di�erent in x- and
y-diretion. The ovariane matrix of the veloities then takes the form

K =





〈v2〉 0 0
0 〈v2〉 0
0 0 〈ω2〉



 (23)and the probability density p(x, y, φ) is a onstant.In this ase the eigenvalue problem (20) for the operator D takes the following form:
−

[

〈v2〉
(

∂2

∂x2
+

∂2

∂y2

)

+ 〈ω2〉 ∂2

∂φ2

]

g(x, y, φ) = ∆g(x, y, φ) (24)with the boundary onditions (16) yielding
∂

∂x
g(x, y, φ) = 0 for x ∈ {0, Lx} (25)

∂

∂y
g(x, y, φ) = 0 for x ∈ {0, Ly} (26)and yli boundary onditions in the angular diretion.It is easy to hek that the eigenfuntions and the orresponding ∆-values are given by

glmn(x, y, φ) =

{ √
2
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cos(lπ x
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) cos(mπ y

Ly

) sin(n+1
2 φ) for l odd
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) cos(n
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∆lmn =







π2〈v2〉
(

l2

L2
x

+ m2

L2
y

)
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4 for l odd
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4 for l even, (28)12



with l, m, and n being nonnegative natural numbers. Only l = m = n = 0 is not allowed, as this aseorresponds to the onstant solution, whih violates the unit variane onstraint.To predit the atual outome of the simulations we need to order these solutions by their ∆-values.For better omparability with the simulation results it is onvenient to rewrite the ∆-values in thefollowing form:
∆lmn =

π2〈v2〉
L2

x







l2 +
L2

x

L2
y

m2 + v2
rel(n + 1)2 for l odd

l2 +
L2

x

L2
y

m2 + v2
reln

2 for l even, (29)where
v2

rel =
〈( ω

2π
)2〉

〈( v
Lx

)2〉 (30)denotes the relative rotational speed, i.e. the ratio of the root mean square of rotational and transla-tional veloity, if translational veloity is measured in room size in x-diretion per seond and rotationalveloity is measured in full irles per seond.We an now disuss two limit ases in terms of the relative veloity vrel. Let us �rst onsider thease where the rat moves at small veloities while making a lot of quik turns, i.e. vrel ≫ 1. In thisase, the smallest ∆-values an be reahed by setting n = 0 unless l2 +
L2

x

L2
y

m2 > v2
rel. Sine for n = 0the funtions glmn do not depend on the angle φ, the slowest funtions for this ase are invariant withrespet to head diretion and lead to plae ells, see below. The behavior of the solutions and therespetive simulation results are depited in �gure 3A and B.In the other extreme, vrel is muh smaller than one, i.e. the rat runs relatively fast while mak-ing few or slow turns. The smallest ∆-values an then be reahed by hoosing l = m = 0 unless

n2 > min(1,
L2

x

L2
y

)/v2
rel. The orresponding funtions are invariant with respet to position while beingseletive to head diretion, a feature that is harateristi for head-diretion ells. A omparison ofthese theoretially predited funtions with simulation results are shown in �gure 3D and E.5.1.2 Simulation results for the simple movement paradigmIt is intuitively lear and has been shown in the last setion that for high relative orientational speed

vrel the system output beomes slowest if it is invariant to head diretion and only odes for spatialposition. For low vrel on the other hand invariane for position while oding for head orientation isthe best solution to the optimization problem.In �gure 3B the spatial �ring maps of SFA output units from the simulation with high vrel are shown.Here, all units are almost ompletely orientation-invariant and resemble the theoretial preditionsfrom �gure 3A. The �rst unit is not ative when the simulated rat is in the south of the apparatus,most ative in the north, and shows a gradual inrease in the shape of a half osine wave in between.The unit is invariant to movements in east-west diretion. The seond unit behaves similarly, butits ativity pattern is rotated by 90 degrees. The following units have more spatial osillations andsomewhat resemble grid ells whih are not loalized.Figure 3C shows ICA output units from the same simulation as in �gure 3B. All units are orientation-invariant, just as their input from the �rst 16 SFA units, but most have only a single peak of ativityand eah at a di�erent position. The sparser units are more loalized in spae while less sparse unitshave larger �ring �elds or multiple peaks. These results losely resemble plae ells from rodent'shippoampal areas CA1 and CA3. 13



In �gure 3E SFA output units from the simulation with low relative rotational speed vrel are shown.In this ase, all units are almost ompletely position-invariant but their response osillates with theorientation of the rat. The �rst unit hanges ativity with the sine of orientation and the seond unitis modulated like a osine. Unit #3 has twie the frequeny, unit #5 has a frequeny of three, andunit #8 a frequeny of eight. Figure 3F shows ICA output units from the same simulation as in �gure3E. All units are position-invariant like their inputs from the �rst 8 SFA units, but most have onlya single peak of ativity and eah at a di�erent orientation. The sparser units are more loalized inorientation while later ones have broader tuning urves. These results losely resemble head-diretionells from rodent's subiular areas.
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Figure 3: Theoretial preditions and simulation results for the open �eld with the simplemovement paradigm (independent translation and head diretion), separately learnedplae ells and head-diretion ells, and ICA for sparsi�ation. Eah row within eah panelshows the response of one unit as a funtion of position for di�erent head diretions, as well as themean value averaged over all head diretions (indiated by the superimposed arrows). Panel D alsoshows orientation tuning urves (at the position of a unit's maximal ativity). Panels D-F also showorientation tuning urves (averaged over all positions) ±1 standard deviation.A: Theoretial predition for the SFA layer with relatively quik rotational speed ompared to trans-lational speed. Solutions are ordered by slowness. All solutions are head diretion invariant and formregular retangular grid strutures.B: Simulation results for the SFA layer for the same settings as in A, ordered by slowness. The resultsare similar to the theoretial preditions up to mirroring, sign, and mixing of almost equally slowsolutions. All units are head diretion invariant and ode for spatial position but are not loalized inspae.C: Simulation results for the ICA layer for the same simulation as in B, ordered by sparseness (kurtosis).Firing patterns of all units are head diretion invariant and loalized in spae, resembling hippoampalplae ells.D: Theoretial predition for the SFA layer for relatively slow rotational speed ompared to transla-tional speed. Solutions are ordered by slowness. All solutions are position invariant and onstitute aFourier basis in head diretion spae.E: Simulation results for the SFA layer for the same settings as in D, ordered by slowness. The resultsare similar to the theoretial preditions up to phase shift and sign. All units are position invariantand head diretion spei� but not loalized in head diretion spae, i.e. all units exept #1 and #2have multiple peaks.F: Simulation results for the ICA layer for the same simulation as in E ordered by sparseness (kurtosis).Firing patterns of all units are position invariant and loalized in head diretion spae resemblingsubiular head-diretion ells.
15



5.1.3 Simulation results for the restrited head movement paradigmIn the previous setion we used independent head diretion and body movement and used di�erentmovement statistis for di�erent ell types, suh as fast rotational speed for plae ells and slowrotational speed for head-diretion ells. This allowed us to obtain nearly ideal simulation results thatmath losely the theoretial preditions, but it is unrealisti for two reasons. Firstly, in a real rat head-diretion and movement diretion are orrelated. Seondly, in a real rat plae ells and head-diretionells have to be learned simultaneously and thus with the same movement pattern.In this setion we introdue three hanges for higher realism. Firstly, a more realisti movementpattern is used, where the rat's head is enfored to be within 90◦ of the urrent body movement (seemethods). Seondly, plae ells and head-diretion ells are learned on the same input statistis andlearning rate adaptation (LRA) is used in the top SFA layer for the head-diretion ell population (seemethods). Thirdly, ICA for sparse oding in the last layer is replaed by ompetitive learning (CL).Simulation results are shown in �gure 4.
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Figure 4: Simulation results for the open �eld with more realisti movement patterns andompetitive learning (CL) for sparsi�ation in the last layer.The network was trained with a movement pattern of relatively high rotational speed. Two distintpopulations of ells were trained, one as before, the other was trained with learning rate adaptation(LRA) in the top SFA layer, reduing the impat of periods with high rotational speed.A: Simulation results for the top layer CL units without LRA. Eah subplot shows the mean spatial�ring rate of one output unit averaged over all orientations. The slowest 16 SFA outputs were usedfor CL, and 16 CL units were trained. All units are loalized in spae, losely resembling hippoampalplae ells.B: Orientation tuning of the units shown in A. Firing patterns of all units are mostly head diretioninvariant.C: Simulation results for the top layer CL units with LRA in the top SFA layer. Eah subplot shows themean orientation tuning urve in blue and a grey area indiating ±1 standard deviation. The slowest8 SFA-outputs were used for CL, and 8 CL units were trained. Firing patterns of all units are mostlyposition invariant and loalized in head diretion spae losely resembling subiular head-diretionells.D: Satterplot of mean diretional variane ηφ and mean positional variane ηr for the results shownin A (red irles) and C (blue triangles). Units from A luster in an area with high positional variane
ηr and low orientational variane ηφ, while units from C luster in an area with low positional variane
ηr and high orientational variane ηφ.E: Satterplot of ηφ and ηr for the same simulation parameters as in A-D but with more CL outputunits. 32 units were trained without LRA (red irles) and 16 with LRA (blue triangles). The solutionslie in similar areas as in D.F: Satterplot of ηφ and ηr for the same simulation parameters as in A-D, but with more SFA outputsused for CL. 32 SFA units were used without LRA (red irles) and 16 with LRA (blue triangles irles).The solutions show mixed dependene on position and head diretion but are still learly divided intoa mostly head diretion-invariant population (red) and a mostly position-invariant population (blue).17



As the relative rotational speed is smaller than in the previous setion some SFA solutions (notshown) hange with head diretion: unit #16 of 32 is the �rst unit with notieable head diretiondependene here while none of the �rst 32 SFA solutions in the last setion was head diretion de-pendent. In �gure 4A the spatial �ring maps for all trained units without LRA are shown averagedover all orientations. The orresponding orientation tuning urves (measured at the peak of the plae�eld) are given in panel B. All units are loalized in spae and largely independent of orientation withativity enters distributed evenly in the room.Figure 4C shows the simulation results with idential movement statistis but with LRA turned onin the top SFA layer, so that learning is downregulated at timepoints with rapid head diretion hanges.Tuning urves of all units are shown together with the spatial standard deviation of ativity, whih isgenerally very small. All units are loalized in head diretion spae and mostly position independentwith approximately even spaing of diretions of maximum ativity. The LRA an eliminate the e�etof head rotation only to some extent and thus SFA units #7 and #8 show signi�ant dependene onposition while the slowest unit a�eted by position in the previous setion was #15.A satterplot of the mean positional variane ηr versus mean orientational variane ηφ (see methods)of the units from A and C is shown in �gure 4D. Perfet head-diretion ells would be loated in thebottom right while perfet plae ells would be loated in the top left. Red irles denote the simulatedplae ells from panel A; the blue triangles denote the simulated head-diretion ells from panel C.Both populations luster near the positions of optimal solutions in the orners.How does the number of inputs to the last layer (i.e. the number of SFA-outputs used) and thenumber of CL outputs in�uene the results? Panel E shows the same analysis for a simulation withidential settings exept the number of CL-output units was doubled to 32 without LRA and 16 withLRA, respetively. Most units lie in a similar area as in D, but the lusters are denser, sine thenumber of units has doubled. In panel F, the number of output units is again the same as in D, butthe number of SFA outputs for the last layer is doubled to 32 for the simulation without LRA and16 for the simulation with LRA. The output units now get inputs from higher, i.e. quiker, SFA unitswhih tend to have stronger in�uene of both position and orientation. As a result, the CL unitsspan the entire spetrum of ompletely position invariant to omplete orientation invariant solutions,with the less position-dependent solutions oming from the simulations without LRA, and the lesshead diretion dependent solutions oming from the LRA simulation. We onlude that the numberof CL-output units mostly determines the density of plae ells but not the qualitative behavior of thesolutions while the number of SFA-outputs diretly a�ets the invariane properties of the solutions.5.1.4 Simulation results for the spatial view paradigmThe previous setions have shown that the same learning mehanism in the same environment, justwith di�erent movement statistis, results in either head-diretion or plae-ell like representations.Although the last setion introdued ertain restritions on the head diretion, body position and headdiretion remained mostly independent.In the following simulation, the virtual animal �xates a loation L on a wall while it moves throughthe room. The position of L hanges with the same statistis as for the head diretion simulation above(see methods). A visualization of the simulation results by plotting the ativity of a unit at a givenposition vs. �global� orientation, as in the previous �gures, looks inonlusive (�gure 5A). Plotting theativity of a unit suh that at eah position the orientation is hosen to fae a �xed spei� loationmarked by an '×' shows spatially homogeneous ativities (�gure 5C; f. �gure 1). These ells jointlyode for the 'view spae' but as before the SFA results are not loalized. Figure 5B and D show the18



results of the ICA layer. The 'global diretion' plot in B is as inadequate as in A while plot D learlyillustrates the behavior of these ells. Unit #2, for example, is ative only when looking at the bottomleft orner of the retangular room, independently of the animal's position. This ell type resemblesspatial view ells found in the primate hippoampal formation (e.g. Rolls et al., 2005).

Figure 5: Simulation results for the open �eld with trajetories where spots on the wallwere �xated. A: Spatial �ring map of �ve representative SFA output units for di�erent 'global headdiretions' (indiated by arrows) and averages over orientations and spae. No unit shows spatial ororientation invariane when plotting position and 'global head diretion' as in previous �gures. C:Same results as in A but plotted with 'loal head diretion' (at eah position oriented towards �xationpoint '×'). B: ICA results plotted with 'global head diretion'. D: Same results as in B but using theplot method from C. All units ode for a spei� view losely resembling primate spatial view ells.5.2 Linear trakIn a linear trak the rat's movement is essentially restrited to two degrees of freedom, a spatial andan orientational one. In experimental measurements the orientational dimension is often ollapsed intoa binary variable indiating only the diretion of movement. In the linear trak these two dimensionsare thus experimentally muh easier to sample smoothly than the full three dimensional parameterspae of the open �eld.5.2.1 Theoretial preditions for the linear trak*In priniple the on�guration spae for the linear trak is the same as for the open �eld, only withsmall side length Lx in one diretion. Equation (28) shows that for small Lx the solutions that are not19



onstant in the x-diretion, i.e. the solutions with k 6= 0, have large ∆-values and thus vary quikly.Beause slow funtions will thus be independent of x, we will neglet this dimension and restrit theon�guration spae to position in x-diretion and head diretion φ.Another di�erene between the simulation setup for the open �eld and the linear trak lies in themovement statistis of the rat. Due to the momentum of the Brownian motion the rat rarely turns onmid-trak. In ombination with the oupling between head diretion and body motion this implies thatgiven the sign of the veloity in y-diretion the head diretion is restrited to angles between either 0and π (positive veloity) or between π and 2π (negative veloity). If, in addition, the rat makes a lotof quik head rotations, the resulting funtions an only be slowly varying if they are invariant withrespet to head diretion within these ranges. This leaves us with a redued on�guration spae thatontains the position y and a binary value d ∈ {North, South} that determines whether 0 ≤ φ < π(positive veloity in y-diretion, north) or π ≤ φ < 2π (negative veloity in y-diretion, south).We assume that the rat only swithes between north and south at the ends of the trak. Beausedisontinuities in the funtions lead to large ∆-values, slow funtions g(y, d) should ful�ll the ontinuityondition that g(0,North) = g(0, South) and g(Ly,North) = g(Ly, South). This means that theon�guration spae has the topology of a irle, where one half of the irle represents all positionswith the rat faing north and the other half the positions with the rat faing south. It is thus onvenientto introdue a di�erent variable ξ ∈ [0, 2Ly] that labels the on�gurations in the following way:
(x(ξ), d(ξ)) =

{
(ξ,North) for ξ < Ly

(2Ly − ξ, South) for ξ ≥ Ly .
(31)The topology of the on�guration spae is then aptured by yli boundary onditions for the funtions

g(ξ).For simpliity we assume that there are no preferred positions or head diretions, i.e. that boththe variane of the veloity K = 〈ξ̇2〉 and the probability distribution p(ξ) is independent of ξ. Theequation for the optimal funtion is then given by
−〈ξ̇2〉 ∂2

∂ξ2
g(ξ) = ∆g(ξ) (32)The solutions that satisfy the yli boundary ondition and their ∆-values are given by
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{ √
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(j + 1)2 for j odd . (34)Note that there are always two funtions with the same ∆-value. Theoretially, any linear ombina-tion of these funtions has the same ∆-value and is thus also a possible solution. In the simulation, thisdegeneray does not our, beause mid-trak turns do our oasionally, so those funtions that arehead-diretion-dependent on mid-trak (i.e. even j) will have higher ∆-values than theoretially pre-dited. This avoids mixed solutions and hanges the order of the funtions when ordered by slowness.Figure 6A shows seven of the slowest funtions g,.5.2.2 Simulation results for the linear trakFor simulations in the linear trak we use the more realisti movement paradigm similar to the open�eld experiment from setion 5.1.3. A similar relative speed is assumed and sparse oding in the last20



layer is performed with ICA.Figure 6B and C shows the simulation results for the linear trak. The spatial �ring maps of theslowest seven SFA outputs out of 10 are shown in �gure 6B. Units #1�6 are mostly head diretioninvariant (ηφ ≤ 0.1), and ode for spatial position in the form of sine waves with respetive frequeniesof 1
2 , 1, 1 1

2 , 2, 2 1
2 , and 3, as theoretially predited. Unit #7 odes for position and orientation. At trakends, where most rotation ours, all units are head-diretion invariant and the spatial modulationis ompressed due to slower mean translational speeds ompared to mid-trak (f. appendix). Asexpeted, none of these units are loalized in spae or orientation.The spatial �ring maps of the �rst seven out of ten ICA outputs for di�erent head diretions areshown in �gure 6C. Units #1 and #6 are only ative at the southern trak end independently of headdiretion. The other �ve units are loalized in the joint position-head-diretion spae meaning thatthey �re only at spei� positions on the trak when the rat faes a spei� diretion. These resultsare similar to plae ell reordings from rats in linear traks where most ells only �re when the ratmoves in one diretion (Muller et al., 1994).Changing the movement pattern to yield muh higher or muh lower mean relative rotationalspeeds, respetively, leads to very di�erent results resembling those presented earlier for the open �eld,namely head-diretion ells and head-diretion invariant plae ells.
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Figure 6: Theoretial preditions and simulation results for the linear trak. Head diretionsare indiated by arrows, orientation averages are indiated by superimposed arrows, and prinipaldiretions (north, south) are emphasized with a dark border. A: Theoretial preditions. B: Spatial�ring maps of the �rst (slowest) seven SFA output units out of 10. Units #1-#6 are mostly headdiretion invariant, whereas unit #7 responds di�erently to north and south views. C: Spatial �ringmaps of the �rst (most kurtoti) seven out of 10 ICA output units. All units are loalized in spaeand most are only ative for either north or south views losely resembling plae �elds reorded fromrats in linear trak experiments.5.3 Model parametersAlthough most of the parameters in our model (i.e. all the weights in the SFA and ICA steps) arelearned in an unsupervised manner a number of parameters were hosen manually. These parametersinlude the input piture size, reeptive �eld sizes, reeptive �eld positions and overlaps in all layers,the room shape and textures, the expansion funtion spae, number of layers, hoie of sparsi�ationalgorithm, movement pattern, �eld of view, and number of training steps. We annot explore theentire parameter spae here and show instead that the model performane is very robust with respet22



to most of these parameters. The fat that the presented simulation results are very similar to theanalytial solutions also indiates that the results are generi and not a mere artifat of a spei�parameter set.We use high-resolution input pitures of 40 by 320 RGB pixels showing the apability of the modelto handle high-dimensional sensory data. Nevertheless, it ould be argued that the rat's vision is ratherblurred and has little olor sensitivity. However, we �nd that smaller and/or graysale input pituresyield similar results, whih degrade only below a dimensionality of a few hundred input pixels.The model's �eld of view (FOV) has been modeled to represent the 320◦ of a rat's FOV. SmallerFOVs below 90◦ still reprodue our results and espeially rotation invariane is not an e�et of alarge FOV. Nevertheless, the views have to ontain enough visual information in order to ful�ll theone-to-one orrespondene between stimulus and oriospatial on�guration. For smaller FOV valuesand symmetrial environments the model's representations beome symmetrial as well.The reeptive �elds are restrited to about 100 input dimensions (before quadrati expansion) dueto omputational limitations. Larger reeptive �elds tend to yield better solutions, sine the availabletotal funtion spae inreases. Position and overlap of reeptive �elds have been varied to some extentbut have no notieable impat on the result unless too many of the inputs are disarded.The room shape has a strong impat on the SFA solutions, whih an be predited analytially. Weshow here only results from onvex rooms, but experiments with radial mazes and multiple rooms havebeen performed and these results are similar to experimental data, too. Choie of spei� textureswas irrelevant for the model's performane exept when multiple walls are textured with similar oridential textures, whih leads to degraded results due to visual ambiguities.The expansion funtion was hosen as all monomials up to degree 2, but alternative funtionspaes like linear random mixtures passed through sigmoidals with di�erent o�sets were suessful,too; however, the size of the funtion spae is limited by omputational onstraints and monomialshave proven to be partiularly e�ient.The number of layers is determined by reeptive �eld sizes and overlaps. An inreased number oflayers also inreases the funtion spae and an thus improve performane. We did not see any e�et ofover�tting for larger numbers of layers. Additional top layers simply reprodued the output of earlierlayers.As for the hoie of the sparse oding algorithm, we found no large qualitative di�erene fordi�erent tehniques inluding CuBICA, fastICA, ompetitive learning, or just �nding rotations of theSFA output with maximal kurtosis (Franzius et al., 2007).The hoie of movement pattern has a lear impat on the optimal solutions of SFA. The theoretialanalysis presented here an in priniple predit the solutions for arbitrary movement patterns but forthe preditions presented here we made simplifying assumptions to obtain losed form solutions. Inspite of these simpli�ations, the theoretial preditions are still lose to the simulation results, e.g. insetion 5.1.3, where the head orientation is restrited to an angular range with respet to the diretionof body motion. simulation results are still similar to the theoretial preditions.More training steps result in a smoother sampling of the virtual reality environment and yield betterapproximations to the theoretial preditions. We found that a few laps rossing and spanning thewhole room within a few thousand training samples were su�ient for the qualitative results already.For too little training data and too few rossings of paths an over�tting e�et ours resulting in aslowly varying ativity of the outputs on the training path but not on other (test) paths.
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6 DisussionWe have presented a model for the formation of oriospatial ells based on the unsupervised learningpriniples of slowness and sparseness. The model is feed-forward, instantaneous, and purely sensorydriven. The arhiteture of the model is inspired by the hierarhial organization of the visual systemand applies the idential learning rule, Slow Feature Analysis, on all but the last layer, whih performssparse oding. Our results show that all major oriospatial ell types - plae ells, head-diretion ells,spatial view ells, and to some extent even grid ells - an be learned with this approah. We haveshown that this model is apable of extrating ognitive information suh as an animal's positionfrom omplex high-dimensional visual stimuli, whih we simulated as views in a virtual environment.The generated representations were oding spei�ally for some information (e.g. position) and wereinvariant to the others (e.g. orientation). These invariant representations are not expliitly built intothe model but indued by the input statistis, whih in turn is determined by the room shape anda spei� movement paradigm. Nevertheless, the type of learned invariane an be in�uened by atemporal adaptation of the learning rate. Control experiments show that the model performane isrobust to noise and arhitetural details. This robustness is also supported by a general mathematialframework that allows exat analytial preditions of the system behavior at the top SFA level.Our model omprises sensory proessing stages that mimi parts of the visual orties and thehippoampal formation. The model layers annot be exatly assoiated with spei� brain areas,but we suggest some relations. The behavior of the lower two layers are primarily determined bythe visual environment and mostly independent of the spatial movement pattern. In the simulationspresented here, we trained the two lower layers only one and only adapted the higher layers fordi�erent environments and movement patterns. The �rst layer ould be assoiated with V1 (Berkesand Wiskott, 2005), the seond layer with higher visual orties. Units in the third layer, whosenon-loalized spatial ativity pattern resembles grid ells, strongly depend on the movement patternand might be assoiated with grid ells in EC. Reent results from EC (Sargolini et al., 2006) showthat grid ells in MEC exhibit some head-diretion dependeny, similar to our model for the ase ofthe intermediate relative translational speed in the open �eld. Depending on the movement statistisduring learning, representations in the sparse oding layer resemble either plae ells as found inhippoampal areas CA1 and CA3 or head diretion ells as found in many areas of the hippoampalformation or spatial view ells as found in the hippoampal formation of monkeys.For the ase of approximately unorrelated body movement and head diretion, the model learnseither plae or head-diretion ells, depending on the relative speed of translation and rotation. Formuh quiker rotation than translation the model develops orientation-invariant plae �elds while formuh quiker translation than rotation the model develops position-invariant head diretion odes.In intermediate ases, e.g. for the linear trak, mixed representations suh as diretion-dependentplae �elds emerge. In the ase of orrelated body movement and head diretion aused by elongated�xations of objets or positions, the model learns view-spei� odes, similar to spatial view ells inprimates.Although the model is apable of learning plae ells and head diretion ells if it learns on distintadequate movement statistis, a model rat should obviously not have to traverse its environment onewith high relative translational speed to learn head-diretion ells and one more with low relativetranslational speed to learn plae ells. How an both populations be trained with a single given inputstatistis? For this problem we onsider output from the rat's vestibular system as a possible solution.This system is essential for the oriospatial spei�ity of head diretion ells and plae ells (Stakmanand Zugaro, 2005). Other models like the well established ring attrator model by Skaggs et al. (1995)assume that the head diretion system performs angular integration of body motion based on vestibular24



veloity signals. We hypothesize that these signals ould also be used to in�uene the learning rateof two populations of ells that learn aording to our model. One of these populations learns morestrongly at periods with high relative translational speed (as signalled by the vestibular veloity signals)and the other adapts more strongly for low relative translational speed. The former should develophead-diretion ell harateristis and the latter plae ell harateristis. In our simulations the modelsuessfully learned both populations with the same input data, one population without learning rateadaptation, and one population with redued learning rate during quik turns. One the model hasbeen trained, the vestibular aeleration signal is no longer needed for the model behavior. Withlearning rate adaptation the model neurons e�etively learn on a di�erent movement statistis, e.g. headdiretion ells learn more strongly at times with relatively high translational speed. Nevertheless, if thereal movement statistis ontains very few episodes of relatively quik translation at all, the mehanismfails and head diretion ells annot beome position invariant.Our implementation of the slowness priniple involves solving an eigenvalue problem and annotbe onsidered biologially plausible. However, more plausible equivalent formulations of the slownesspriniple exist in the form of gradient-desent learning rules (Hashimoto, 2003; Kayser et al., 2001) andas spike based learning mehanisms (Sprekeler et al., 2006). The hoie of ICA to generate loalizedrepresentations from nonloalized odes is also biologially unrealisti, whereas a formulation in theform of Hebbian learning (Oja and Karhunen, 1995) or ompetitive learning seems more plausible. Anin-depth disussion of this topi an be found in Franzius et al. (2007).Related workAording to Redish's lassi�ation, our model is a loal view model, for it �only depends on the loalview to explain plae ell �ring� (Redish, 1999). Models of this lass usually extrat a number offeatures from sensory inputs in order to obtain a lower-dimensional representation that still arriesinformation about spatial position in the environment but is invariant to everything else. Pure loalview models do not omprise a path integration system and thus annot fully explain oriospatial �ringproperties, e.g. in darkness. Pure path integration systems without external sensory input on theother hand inherently aumulate errors, and hene a sensory oding mehanism, as proposed here,is neessary to omplement any suh model. Therefore many models ombine loal view and pathintegration mehanisms (MNaughton et al., 2006; Redish, 1999).The model by Wyss et al. (2006) is based on similar priniples as our model. It applies a learningrule based on temporal stability to natural stimuli, some of whih are obtained from a robot. Theresulting spatial representations are loalized, resembling hippoampal plae �elds. The learning ruleinvolves loal memory and no expliit sparsi�ation method is applied. The fat that the resultingrepresentations are loalized is somewhat surprising, sine by itself temporal stability does not leadto loalized representations (Franzius et al., 2007). We hypothesize that the deorrelation of the non-negative ativities in the model impliitly leads to a sparsi�ation beause it favors a ode where at anygiven time only one single unit is ative. The artile does not investigate head-diretion-dependenyof the learned representations or dependenies on the movement statistis.The model by Sharp (1991) assumes abstrat sensory inputs and aquires a plae ode by ompet-itive learning, resulting in units that ode for views with similar input features. Thus, this model issimilar to our model's last layer performing sparsi�ation. Similarly to our results, ells beome lessorientation-dependent if more rotations our in the training trajetory.The work by Fuhs et al. (1998) uses realisti natural stimuli obtained by a robot and extrats�blobs� of uniform intensity with retangular or oval shape from these images. Radial basis funtionsare tuned to blob parameters at spei� views, and a ompetitive learning sheme on these yields25



plae-ell-like representations. Our model agrees with their onlusion that rodents need no expliitobjet reognition in order to extrat spatial information from natural visual stimuli.The model by Brunel and Trullier (1998) investigates the head-diretion dependeny of simulatedplae �elds using abstrat loal views as inputs. A reurrent network learns with an unsupervised Heb-bian rule, assoiating loal views with eah other, suh that their intrinsially diretional plae ells anbeome head-diretion invariant for maze positions with many rotations. The artile also onjeturesthat movement patterns determine head-diretion dependene of plae ells, whih is onsistent withour results.The results by de Araujo et al. (2001) suggest that the size of the rat's �eld of view (FOV) isimportant for the distintion between spatial view ells and plae ells. With a large FOV (as for rats)the animal an see most landmarks from all orientations while an animal with a small FOV (like amonkey) an only see a subset of all landmarks at eah timepoint. We �nd no dependene of our resultson the FOV size for values between 30 and 320 degree as long as the environment is rih enough (i.e.diverse textures, not a single ue ard). Instead, our results suggest that di�erenes in the movementstatistis play a key role for establishing this di�erene.To our knowledge, no prior model allows the learning of plae ells, head-diretion ells, andspatial view ells with the same learning rule. Furthermore there are only few models that allow leartheoretial preditions, learn oriospatial ells from (quasi) natural stimuli, and are based on a learningrule that is also known to model early visual proessing well.Future perspetivesOur model is not limited to proessing visual stimuli, as presented here, but an integrate othermodalities as well. The integration of olfatory ues, for example, might lead to even more auraterepresentations and possibly to an independene of the model of visual stimuli (simulated darkness).Our simulated visual stimuli ome from a virtual reality environment whih is ompletely statiduring the training of the virtual rat. In this ase the slowest features are position, orientation, or viewdiretion as shown before. However, the assumption that the environment remains unhanged duringoriospatial ell learning ertainly does not hold for the real world. A more realisti environment willinlude other hanging variables like lighting diretion, pith and roll of the head et. The impat ofthese variables on the model representations depends on the timesale of the variable hanges: e.g.the additional white noise in all SFA layers of the model is ignored sine it varies muh quiker thanposition and orientation, but the diretion of sunlight might beome the slowest feature. Generally,the SFA solutions will depend on any variable whose timesale is equal or slower than the positionand orientation hanges of the animal. After the sparse oding step representations will beome notonly loalized in position and/or head diretion but in the other variables as well. This behavior isnot onsistent with the de�nition of an ideal plae or head-diretion ell. However, many experimentsshow orrelations of plae ell �ring with nonspatial variables as well (Redish, 1999). One partiularlyinteresting instane of suh a variable is 'room identity'. If a rat experienes multiple environments,usually transitions between these will be seldom, i.e. the rat will more often turn and traverse a singleroom than swith rooms. In this ase room identity will be enoded by the SFA outputs. For n roomsat most n − 1 deorrelated SFA outputs an ode for the room identity. The following outputs willthen ode for a joint representation of spae and room identity. After sparse oding, many outputunits will �re in one room only (the less sparse ones in few rooms), and possibly in a ompletelyunrelated fashion to their spatial �ring patterns in another room. This behavior is onsistent with the'remapping' phenomenon in plae ells (e.g. Muller and Kubie, 1987).A great amount of work has been done investigating the impat of environmental manipulations26



on oriospatial ell �ring in known rooms, e.g. shifts and rotations of landmarks relative to eah other(Redish, 1999). How would our model behave after suh hanges to the learned environment? Suhtransformations e�etively lead to visual input stimuli outside the set of all possible views in thetraining environment. In this ase, we expet the system's performane to deteriorate unless a newrepresentation is learned, but more work is neessary to investigate this question.Our approah predits inreasing slowness (i.e. dereasing eta-values of �ring rates) in the proessinghierarhy between retina and hippoampus. Additionally, plae ell and head diretion ell outputshould be signi�antly sparser than their inputs. Our main predition is that hanging movementstatistis diretly in�uenes the invariane properties of oriospatial ells: e.g. an experiment in a lineartrak where the rat more often turns on mid-trak should yield less head-diretion dependent plaeells.Experimentally, the joint positional and orientational dependene of oriospatial ells is hard tomeasure due to the size of the three-dimensional parameter spae, and even more so if the developmentover time is to be measured. Furthermore, preise data on movement trajetories is rare in the existingliterature on oriospatial ells. Aordingly, little data is available to verify or falsify our predition howthe brain's oriospatial odes depend on the movement statistis. As an alternative to determining themovement statistis in behavioral tasks, some work has been done on passive movement of rats, wherethe movement statistis is ompletely ontrolled by the experimenter (e.g. Gavrilov et al. 1998), butthese results might not be representative for voluntary motion (Song et al., 2005). Markus et al. �nddiretional plae �elds in the enter of a plus maze although in the enter of the maze more rotationsour than in the arms (Markus et al., 1995). This ould be a ontradition to our model, althoughnot the frequeny but the relative speed, whih was not measured in (Markus et al., 1995), determineshead diretion invariane in our model. Overall, the dependene of oriospatial ells on the animal'smovement statistis as proposed here remains to be tested experimentally.ConlusionWe onlude that a purely sensory driven unsupervised system an reprodue many properties oforiospatial ells in the rodent brain, inluding plae ells, head-diretion ells, spatial view ells, andto some extent even grid ells. These di�erent ell types an be modeled with the same system, andthe output harateristis solely depends on the movement statistis of the virtual rat. Furthermore,we showed that the integration of vestibular aeleration information an be used to learn plae ellsand head-diretion ells with the same movement statistis and thus at the same time.7 AknowledgmentsWe thank Konrad Körding for disussions about the onnetion between slowness and plae �elds.This researh was funded by the Volkswagen Foundation through a grant to LW for a junior researhgroup.
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8 Appendix*8.1 Proofs of TheoremsProof of Theorem 1The tehnique of variational alulus an be illustrated by means of an expansion in the spirit of a Taylorexpansion. Let us assume, we knew the funtion gj that optimizes the objetive funtion Ψ. The e�et of asmall hange δg of gj on the objetive funtion Ψ an be written as
Ψ(gj + δg) − Ψ(gj) =

Z
δΨ

δg
(s) δg(s)ds + ... , (35)where the ellipses stand for higher order terms in δg. The funtion δΨ

δg
is the variational derivative of thefuntional Ψ and usually depends on the on�guration, the optimal funtion gj and possibly derivatives of gj .Its analogue in �nite-dimensional alulus is the gradient.We now derive an expression for the variational derivative of the objetive funtion (13). To keep thealulations tidy, we split the objetive in two parts and omit the dependene on the on�guration s.

Ψ(gj) =:
1

2
∆(gj) − Ψ̃(gj) (36)The expansion of Ψ̃ is straightforward:

Ψ̃(gj + δg) − Ψ̃(gj) = 〈δg [λj0 + λjjgj +
X

i<j

λjigi]〉s + ... (37)
=

Z

δg ps [λj0 + λjjgj +
X

i<j

λjigi]ds + ... (38)For the expansion of ∆(gj) we �rst simplify the expression by arrying out the veloity integration and usingthe veloity tensor K:
∆(gj)

(9)
= 〈∇gT

j vv
T∇gj〉s,v = 〈∇gT

j 〈vv
T 〉

v|s∇gj〉s (14)
= 〈∇gT

j K∇gj〉s (39)We an now expand ∆(gj) as follows
1

2
∆(gj + δg) − 1

2
∆(gj)

(39)
=

1

2
〈∇(gj + δg)T

K∇(gj + δg)〉s − 1

2
〈∇gT

j K∇gj〉s (40)
=

1

2
〈∇gT

j K∇δg + ∇δgT
K∇gj〉s + ... (41)

= 〈∇δgK∇gT
j 〉s + ... (42)

(sine K is symmetri)
(8)
=

Z

ps∇δgK∇gT
j d s (43)

=

Z

∇ ·
h

δgps n
T
K∇gj

i ds − Z δg∇ · (psK∇gj) ds + ... (44)
=

Z

∂V

δgps n
T
K∇gj dA −

Z

δg∇ · (psK∇gj)ds + ... (45)
(Gauss' theorem)

(17)
=

Z

∂V

δgps n
T
K∇gj dA +

Z

δgps (Dgj) ds + ... (46)28



Here, dA is an in�nitesimal surfae element of the boundary ∂V of V and n is the normal vetor on dA. Toget the expansion of the full objetive funtion, we add (38) and (46):
Ψ(gj + δg) − Ψ(gj) =

Z

∂V

δgps n
T
K∇gj dA +

Z

δgps (Dgj − λj0 − λjjgj −
X

i<j

λjigi)ds + ... (47)In analogy to the �nite-dimensional ase, gj an only be an optimum of the objetive funtion Ψ if any smallhange δg leaves the objetive unhanged up to linear order. As we employ a Lagrange multiplier ansatz,we have an unrestrited optimization problem, so we are free in hoosing δg. From this it is lear that theright hand side of (47) an only vanish if the integrands of both the boundary and the volume integral vanishseparately. This leaves us with the di�erential equation (15) and the boundary ondition (16).Proof of Theorem 2Proof : The proof an be arried out in a diret fashion. Again, we omit the expliit dependene on s.
(f,Dg)

(8,17,18)
= −

Z

psf
1

ps

∇ · psK∇g ds (48)
= −

Z

∇ ·
h

psfn
T
K∇g

ids +

Z

ps∇fT
K∇gds (49)

= −
Z

∂V

psf n
T
K∇g

| {z }

(16)
=

dA +

Z

∇fT psK∇gds (50)
(Gauss' theorem)

(16)
=

Z

ps∇fT
K∇g ds (51)

=

Z

ps∇gT
K∇f ds (52)

(sine K is symmetri)
(48−52)

= (Df, g) . (53)Proof of Theorem 3Zero mean: It is obvious that the onstant funtion f0 = 1 is always an eigenfuntion of D for eigenvalue 0.As all other eigenfuntions are orthogonal to f0, they must have zero mean:f0, fj) = 〈fj〉s = 0 ∀ j 6= 0.Deorrelation: For mean-free funtions f and g the salar produt (f, g) is their ovariane. The orthogo-nality of the eigenfuntions is thus equivalent to deorrelation.Unit variane: Unit variane an easily be ahieved by renormalizing the eigenfuntions suh that (f, f) =
〈f2〉s = 1.Proof of Theorem 4

∆(fj)
(39,52)

= (fj ,Dfj) = (fj , ∆jfj) = ∆j (fj , fj)
| {z }

=1

= ∆j . (54)
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Proof of Theorem 5Without loss of generality we assume that the eigenfuntions fj are ordered by inreasing eigenvalue, startingwith the onstant f0 = 1. There are no negative eigenvalues, beause the eigenvalue is the ∆-value of theeigenfuntion, whih an only be positive by de�nition. Aording to Theorem 1, the optimal responses gjobey the boundary ondition (16) and are thus elements of the subspae Fb ⊂ F de�ned in Theorem 2. Beauseof the ompleteness of the eigenfuntions on Fb we an do the expansion
gj =

∞X

k=1

αjkfk (55)where we may omit f0 beause of the zero mean onstraint. We an now prove by omplete indution that
gj = fj solves the optimization problem.Basis (j=1): Inserting g1 into eqn. (15) we �nd

0 = Dg1 − λ10 − λ11g1 (56)
= −λ10 +

∞X

k=1

α1k(∆k − λ11)fk (57)
⇒ λ10 = 0

∧ (α1k = 0 ∨ ∆k = λ11)∀k ,
(58)beause fk and the onstant are linearly independent and (56) must be ful�lled for all s. (58) implies thatthe optimal response g1 must be an eigenfuntion of D. As the ∆-value of the eigenfuntions is given bytheir eigenvalue, it is obviously optimal to hose g1 = f1. Note that although this hoie is optimal, it is notneessarily unique, sine there may be several eigenfuntions with the same eigenvalue. In this ase any linearombination of these funtions is also optimal.Indution step: Given that gi = fi for i < j, we prove that gj = fj is optimal. Beause of theorthogonality of the eigenfuntions the deorrelation onstraint (12) yields

0
(12)
= 〈gigj〉s = (fi,

∞X

k=1

αjkfk) = αji ∀i < j . (59)Again inserting the expansion (55) into eqn. (15) yields
0

(15,55)
= (D − λjj)

∞X

k=1

αjkfk − λj0 −
X

i<j

λjifi (60)
(59)
= (D − λjj)

∞X

k=j

αjkfk − λj0 −
X

i<j

λjifi (61)
20
=

∞X

k=j

(∆k − λjj)αjkfk − λj0 −
X

i<j

λjifi (62)
⇒

λj0 = 0
∧ λji = 0 ∀i < j
∧ αjk = 0 ∨ ∆k = λjj ∀k ≥ j ,

(63)beause the eigenfuntions fi are linearly independent. The onditions (63) an only be ful�lled if gj is aneigenfuntion of D. Beause of Theorem 4 an optimal hoie for minimizing the ∆-value without violating thedeorrelation onstraint is gj = fj . 30



8.2 Qualitative Behavior of the Solutions for inhomogenous movementstatistisAs seen in setion 5.1.1 for the ase where ps and K are independent of s, the solutions of the eigenvalueequation (20) generally show osillations. A brief alulation for a 1-dimensional on�guration spae showsthat their wavelength is given by 2π
p

K/∆. It is reasonable to assume that this behavior will be preservedqualitatively if ps and K are no longer homogeneous but depend weakly on the on�guration. In partiular,if the wavelength of the osillation is muh shorter than the typial sale on whih ps and K vary, it anbe expeted that the osillation �does not notie� the hange. Of ourse, we are not prinipally interested inquikly varying funtions, but they an provide insights into the e�et of variations in ps and K.To examine this further, we onsider the eigenvalue equation (20) for a 1-dimensional on�guration spaeand multiply it by ps:
d

ds
ps(s)K(s)

d

ds
g(s) + ∆ps(s)g(s)

(17,20)
= = 0 (64)We an derive an approximate solution of this equation by treating ε := 1/

√
∆ as a small but �nite perturbationparameter. This orresponds to large ∆-values, i.e. quikly varying funtions. For this ase we an apply aperturbation theoretial approah that follows the sheme of Wentzel-Kramers-Brillouin (WKB) approximationused in quantum mehanis. Knowing that the solution shows osillations, we start with the omplex ansatz

g(s) = A exp

„
i

ε
Φ(s)

« (65)where Φ(s) is a omplex funtion that needs to be determined. Treating ε as a small number, we an expand
Φ in orders of ε

Φ(s) = Φ0(s) + εΦ1(s) + ... (66)where again the ellipses stand for higher order terms. We insert this expansion into equation (64) and olletterms of the same order in ε. Requiring eah order to vanish separately and negleting orders ε2 and higher,we get equations for Φ0 and Φ1:
Φ′2

0 =
1

K
(67)

Φ′
1 =

i

2

(psKΦ′
0)

′

psKΦ′
0

(68)where the prime denotes the derivative with respet to s. These equations are solved by
Φ0(s) =

Z s

s0

s

1

K(x)
dx (69)

Φ1(s) =
i

2
ln(psK

1/2) (70)where s0 is an arbitrary referene point. Inserting this bak into the ansatz (65), we get the approximatesolution
g(s) = A(p2

sK)−1/4 exp

 

i

Z s

s0

s

∆

K(x)
dx

! (71)This shows, that the solutions with large ∆-values show osillations with loal frequeny p∆/K(s) and am-plitude ∼ (p2
sK)−1/4. As large values for K indiate that the rat moves quikly, this implies that the loalfrequeny of the solutions is smaller in regions with larger veloities whereas small veloities, e.g. lose to walls,lead to higher frequenies than expeted for homogeneous movement. Intuitively this means that the funtionsompensate for quik movements with smaller spatial frequenies suh that the e�etive temporal frequeny ofthe output signal is kept onstant. 31



Understanding the dependene of the amplitude on ps and K is more subtle. Under the assumption that
K is independent of s, the amplitude dereases where ps is large and inreases where ps is small. Intuitively,this an be interpreted as an equalization of the fration of the total variane that falls into a small intervalof length ∆s ≫

p
K/∆. This fration is roughly given by the produt of the probability p(s)∆s of being inthis setion times the squared amplitude K(s)−1/2/p(s) of the osillation. For onstant K, this fration is alsoonstant, so the amplitude is e�etively resaled to yield the same 'loal variane' everywhere. If p is onstant,on the other hand, the amplitude of the osillation is small in plaes where the rat moves quikly and largewhere the rat moves slowly. This orresponds to the intuition that from the perspetive of slowness there aretwo ways of treating plaes where the rat moves quikly: Dereasing the spatial frequeny to generate sloweroutput signals and/or dereasing the amplitude to 'pay less attention' to these regions. There is also a strongformal argument why the amplitude should depend on p2
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