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e 
ells, head-dire
tion 
ells, and spatialview 
ells in the hippo
ampal formation based on unsupervised learning on quasi-natural visual stimuli.The model 
omprises a hierar
hy of Slow Feature Analysis (SFA) nodes, whi
h were re
ently shownto be a good model for 
omplex 
ells in the early visual system (Berkes and Wiskott, 2005). Thesystem extra
ts a distributed grid-like representation of position and orientation, whi
h is trans
odedinto a lo
alized pla
e �eld, head dire
tion, or view representation, respe
tively, by sparse 
oding. Thetype of 
ells that develops depends solely on the relevant input statisti
s, i.e. the movement pattern ofthe simulated animal. The numeri
al simulations are 
omplemented by a mathemati
al analysis thatallows us to a

urately predi
t the output of the top SFA layer.1 Introdu
tionThe brain needs to extra
t behaviorally relevant information from sensory inputs in order to su

essfullyintera
t with the environment. Position and head orientation of an animal in the spa
e surroundingit is part of this relevant information. Neural representations of a rodent's spatial position - termedpla
e 
ells - have been found more than 35 years ago in hippo
ampal areas CA1 and CA3 (O'Keefeand Dostrovsky, 1971), 
orrelates of head orientation - termed head-dire
tion 
ells - twenty yearslater (Taube et al., 1990), and re
ently non-lo
alized representations termed grid 
ells were found inentorhinal 
ortex (EC) of rats (Hafting et al., 2005). While primates also have head-dire
tion 
ells, nopla
e 
ells were found in primates yet. Instead, they have spatial view 
ells, whi
h do not en
ode theanimal's own (idiotheti
) position but �re whenever the animal views a 
ertain part of the environment(Rolls, 1999, 2006).All of these 
ells sele
tively en
ode some aspe
ts of position and/or orientation of the animal, whilebeing invariant to others. Head-dire
tion 
ells are strongly sele
tive for the dire
tion of the animal'shead and largely invariant to its position (Sharp et al., 2001). They typi
ally have a single peakof a
tivity with a Gaussian or triangular shape and a tuning width of roughly 60◦ to 150◦ (Taubeand Bassett, 2003) depending on brain area. In 
ontrast, most pla
e 
ells re
orded in open �elds areinvariant to head dire
tion while being sele
tive for the animal's position. Interestingly, the degree oforientation-invarian
e depends on the behavioral task of of the animal and possibly on the stru
ture1



of the environment. In linear tra
k environments and for repeated linear paths in open environmentsmost pla
e 
ells are orientation-spe
i�
 (Markus et al., 1995). Grid 
ells in entorhinal 
ortex alsoexhibit 
onjun
tive representations of position and orientation (Sargolini et al., 2006). Spatial view
ells in primates show very di�erent �ring properties. These 
ells are neither position-invariant nororientation-invariant but �re when a 
ertain part of the environment is in the animal's �eld of view,resembling head-dire
tion 
ells for the 
ase of an in�nitely distant view. Figure 1 illustrates thedi�eren
e between grid 
ells, pla
e 
ells, head-dire
tion 
ells and spatial view 
ells.

Figure 1: Spatial and orientation tuning of an idealized grid 
ell (A), pla
e 
ell (B), head-dire
tion 
ell (C) and a spatial view 
ell (D). The a
tivity of a grid 
ell is mostly orientation-invariant and not spatially lo
alized but repeats in a hexagonal grid, whereas a pla
e 
ell is alsoorientation-invariant but spatially lo
alized. The a
tivity of a head-dire
tion 
ell shows a global dire
-tion preferen
e but is spatially invariant, and the spatial view 
ell is maximally a
tive when a spe
i�
view is �xated (indi
ated by 'x') with an amplitude that is independent of spatial position.Throughout this paper, oriospatial 
ells will be used as a superordinate term for pla
e 
ells, grid
ells, head-dire
tion 
ells, and spatial view 
ells. While the pre
ise role of these oriospatial 
ells is stilldis
ussed, they probably form the neural basis for the ability of an animal to self-lo
alize and navigate(Knierim et al., 1995).Stimuli available to oriospatial 
ells 
an be 
lassi�ed as either idiotheti
, in
luding motor feedba
k,proprio
eption, and vestibular input, or as allotheti
, whi
h in
ludes all information from sensors aboutthe external environment, e.g. vision or olfa
tion. While pla
e 
ells are in�uen
ed by several modalitiesthey seem to be driven primarily by visual input (e.g. Je�ery and O'Keefe, 1999), but sin
e their �ringproperties remain stable in the absen
e of external sensory 
ues for several minutes, proprio
eptivestimuli must play a major role for pla
e 
ell �ring as well (Save et al., 2000). Even in 
omplete absen
eof allotheti
 sensory information an animal 
an integrate idiotheti
 self-motion 
ues to estimate itsposition and orientation in spa
e. This pro
ess, 
alled path integration (or dead re
koning), inherentlya

umulates errors over longer time s
ales, whi
h 
an only be 
orre
ted by allotheti
 information. Forthe head-dire
tion 
ells it is 
ommonly assumed that idiotheti
 input from the vestibular system isdominant (e.g. Sharp et al., 2001), but like pla
e 
ells they need external sensory stimuli to 
orre
t fordrift.We introdu
e here a model for the self-organized formation of hippo
ampal pla
e 
ells, head-dire
tion 
ells, and spatial view 
ells based on unsupervised learning on quasi natural visual stimuli.Our model has no form of memory and re
eives raw high-dimensional visual input. The former meansthat our model 
annot perform path integration, the latter means that positional information has tobe extra
ted from 
omplex images. While su
h a model 
an 
ertainly not be a 
omplete model of2



oriospatial 
ells, it 
an show how far a memoryless purely sensory-driven system 
an model oriospatial
ells already. The learning rule of the model is based on the 
on
ept of slowness or temporal stability,whi
h is motivated by the observation that raw sensory signals (like a 
amera's individual pixel values)typi
ally vary mu
h more qui
kly than some behaviorally relevant features of the animal or its envi-ronment, like the animal's position in spa
e. By extra
ting slowly varying features from the sensoryinput one 
an hope to obtain a useful representation of the environment. This slowness prin
iple formsthe basis for a variety of learning rules (e.g. Földiak, 1991; Mit
hison, 1991; Stone and Bray, 1995).The implementation used here is Slow Feature Analysis (SFA) as introdu
ed by Wiskott (Wiskott,1998; Wiskott and Sejnowski, 2002). For a given set of time-dependent training data, in our 
ase videosequen
es, we are looking for a nonlinear s
alar fun
tion from a given fun
tion spa
e that generatesthe slowest possible output signal y(t) when applied to the training data. The slowness of the signal ismeasured in terms of its ∆-value, whi
h is given by the mean square of the signal's temporal derivative(see se
tion 2). As small ∆-values 
orrespond to slowly varying signals, the obje
tive is to �nd thefun
tion that minimizes the ∆-value. To avoid the trivial 
onstant solution, the signal is required tohave unit varian
e and zero mean. Furthermore, we 
an �nd a se
ond fun
tion that optimizes theobje
tive under the additional 
onstraint that its output signal is un
orrelated to the �rst, a thirdfun
tion, whose output is un
orrelated to the �rst two signals and so on. In this manner we generatea sequen
e of fun
tions with in
reasing ∆-value that extra
t slowly varying features from the trainingdata. More details on the approa
h as well as its mathemati
al formalization 
an be found in se
tion 2.SFA has been su

essfully applied as a model for the self-organized formation of 
omplex 
ellre
eptive �elds in primary visual 
ortex (Berkes and Wiskott, 2005). Here, we embed this approa
hin a biologi
ally inspired hierar
hi
al network of visual pro
essing of a simulated rat where ea
h layerlearns the slowest features from the previous layer by SFA (see experimental methods in se
tion 3). We�nd that the output of the highest layer performing SFA forms a distributed oriospatial representation.In a subsequent linear step the model applies a me
hanism for sparse 
oding resulting in lo
alizedoriospatial 
odes. The same model in the same environment 
an reprodu
e the �ring 
hara
teristi
sof pla
e 
ells, head-dire
tion 
ells, and spatial view 
ells, depending solely on the movement statisti
sof the simulated rat. For roughly un
orrelated head dire
tion and body movement, the system learnshead-dire
tion 
ells or pla
e 
ells, depending on the relative speed of head rotation and body movement.If the movement statisti
s is altered su
h that spots in the room are �xated for a while during simulatedlo
omotion, the model learns spatial view 
ell 
hara
teristi
s.We introdu
e a mathemati
al framework in se
tion 4 that analyti
ally explains the results of theSFA output. The mathemati
ally less in
lined reader may 
onsider skipping this se
tion. Both ana-lyti
al and 
omputer simulation results are presented in se
tion 5.We 
on
lude that a purely sensory-driven model 
an 
apture the key properties of several major
ell types asso
iated with spatial 
oding, namely pla
e 
ells, head-dire
tion 
ells, spatial view 
ells,and to some extent grid-
ells.2 Slow Feature AnalysisSlow Feature Analysis solves the following learning task: Given a multidimensional input signal wewant to �nd instantaneous s
alar input-output fun
tions that generate output signals that vary asslowly as possible but still 
arry signi�
ant information. To ensure the latter we require the outputsignals to be un
orrelated and have unit varian
e. In mathemati
al terms, this 
an be stated as follows:Optimization problem: Given a fun
tion spa
e F and an I-dimensional input signal x(t) �nd a3



set of J real-valued input-output fun
tions gj(x) ∈ F su
h that the output signals yj(t) := gj(x(t))

minimize ∆(yj) := 〈ẏ2
j 〉t (1)under the 
onstraints

〈yj〉t = 0 (zero mean), (2)
〈y2

j 〉t = 1 (unit varian
e), (3)
∀i < j : 〈yiyj〉t = 0 (de
orrelation and order), (4)with 〈·〉t and ẏ indi
ating temporal averaging and the derivative of y, respe
tively.Equation (1) introdu
es the ∆-value, whi
h is a measure of the temporal slowness of the signal

y(t). It is given by the mean square of the signal's temporal derivative, so small ∆-values indi
ateslowly varying signals. The 
onstraints (2) and (3) avoid the trivial 
onstant solution and 
onstraint(4) ensures that di�erent fun
tions gj 
ode for di�erent aspe
ts of the input.It is important to note that although the obje
tive is slowness, the fun
tions gj are instantaneousfun
tions of the input, so that slowness 
annot be enfor
ed by low-pass �ltering. Slow output signals
an only be obtained if the input signal 
ontains slowly varying features that 
an be extra
ted by thefun
tions gj , whi
h are 
omputed instantaneously for a given input.In the 
omputationally relevant 
ase where F is �nite-dimensional the solution to the optimizationproblem 
an be found by means of Slow Feature Analysis (Wiskott and Sejnowski, 2002; Berkes andWiskott, 2005). This algorithm, whi
h is based on an eigenve
tor approa
h, is guaranteed to �ndthe global optimum. More biologi
ally plausible learning rules for the optimization problem, both forgraded response and spiking units exist (Hashimoto, 2003; Sprekeler et al., 2007).If the fun
tion spa
e is in�nite-dimensional, the problem requires variational 
al
ulus and willin general be di�
ult to solve. In se
tion 4 we demonstrate that the optimization problem for thehigh-dimensional visual input, as fa
ed by the hierar
hi
al model, 
an be reformulated for the low-dimensional 
on�gural input of position and orientation. In this 
ase, the variational 
al
ulus approa
hbe
omes tra
table and allows to make analyti
al predi
tions for the behavior of the full model.3 Experimental methodsThe out
ome of an unsupervised learning rule, su
h as Slow Feature Analysis, is 
ru
ially determinedby the statisti
s of the training data. As we want to show that oriospatial 
ells 
an be learnt fromraw sensory stimuli, we approximate the retinal stimuli of a rat by video sequen
es generated in avirtual-reality environment. The input statisti
s of the training data are thus jointly determined bythe stru
ture of the virtual-reality environment and the movement pattern of the simulated rat. As thisvideo data is very high-dimensional, nonlinear SFA in a single step is 
omputationally infeasible. Toover
ome this problem, the model is organized as a hierar
hy of SFA nodes in analogy to the hierar
hyof the brain's visual system (see �gure 2C).Simulated environmentsMany experimental pla
e �eld data were re
orded either in a linear tra
k or in an open �eld apparatus.For our simulations we use a linear tra
k of 10:1 side length, and a re
tangular open �eld of 3:2 sidelength. We have also simulated radial mazes (e.g. plus or 8-arm mazes) as a third apparatus type butthey 
an be 
onsidered as a 
ombination of an open �eld in the 
enter with linear tra
ks extendingfrom it and simulation results for this type will not be presented here.4



The input data 
onsists of pixel images generated by a virtual-reality system based on OpenGLwith textures from the Vision Texture Database (Pi
ard et al., 2002). The virtual rat's horizontal �eldof view is 320◦ (see �gure 2A for a top view of the environment, and �gure 2B for a typi
al rat's viewfrom this environment) and 
onsistent with that of a biologi
al rat (Hughes, 1978). The verti
al �eldof view is redu
ed to 40◦ be
ause outside this range usually only unstru
tured �oor and 
eiling arevisible. An input pi
ture has 40 by 320 
olor pixels (RGB, 1pixel/◦). The input dimensionality for thesystem is thus 38400, while the dimensionality of the interesting oriospatial parameter spa
e is onlythree-dimensional (x- and y-position and orientation).Movement patterns of the virtual ratAs an approximation of a rat's traje
tory during exploration in pla
e �eld experiments we simulateBrownian motion on the three-dimensional parameter spa
e of position and orientation. The virtualrat's position pos(t) at ea
h time step t is updated by a weighted sum of the 
urrent velo
ity andGaussian white noise noise with standard deviation vr. The momentum term m 
an assume valuesbetween zero (massless parti
le) and one (in�nitely heavy parti
le), so that higher values of m lead tosmoother traje
tories and a more homogeneous sampling of the apparatus in limited time. When thevirtual rat's movement would traverse the apparatus boundaries, the 
urrent velo
ity is halved and analternative random velo
ity update is generated, until a new valid position is rea
hed (see table 1).
urrentVelo
ity = pos(t) - pos(t - 1);repeatnoise = GaussianWhiteNoise2d() * vr;pos(t + 1) = pos(t) + m * 
urrentVelo
ity + (1 - m) * noise;if not isInsideApparatus(pos(t + 1))
urrentVelo
ity = 
urrentVelo
ity / 2;enduntil isInsideApparatus(pos(t + 1))Table 1: Pseudo
ode for the 
omputation of the translational movement for the virtual rat's path.We 
all the standard deviation (normalized by room size L) of the noise term translational speed
vr and the standard deviation of head dire
tion traje
tory rotational speed vφ. On long times
alesand with �nite room size this type of movement approximates homogeneous position and orientationprobability densities, ex
ept at the apparatus boundaries where a high momentum term 
an in
reasethe position probability. We 
all the ratio of rotational to translational speed vφ/vr the relativerotational speed vrel.The a
tual 
hoi
e of vrel is based on the rat's behavior in di�erent environments and behavioraltasks. In linear tra
k experiments the rat's movement is essentially one-dimensional and the animalrarely turns on mid-tra
k but instead mostly at the tra
k ends. A

ordingly, we use a large momentumterm, so that the virtual rat often translates smoothly between tra
k ends and rarely turns on mid-tra
k. In the open �eld, on the other hand, full two-dimensional movement and rotation is possible, butthe a
tual statisti
s depends on the behavioral task at hand. We mimi
k the 
ommon pellet-
hasingexperiment (Markus et al., 1995) by using isotropi
 two-dimensional translational speed and setting
vrel to a relatively high value. Three di�erent movement paradigms are explored in the following:simple movement, restri
ted head movement and spatial view. In the simple movement paradigm headorientation and body movement are 
ompletely independent, so that head dire
tion 
an be modeled5



with unrestri
ted Brownian motion. In the restri
ted head movement paradigm the head dire
tion isenfor
ed to be within 90 degrees from the dire
tion of body movement (see table 2).repeatnoise = GaussianWhiteNoise1d() * vphi;phi(t + 1) = phi(t) + m * (phi(t) - phi(t - 1)) + (1 - m) * noise;until isHeadDirWithin90DegOfMovementDir(pos(t + 1) - pos(t), phi(t + 1))Table 2: Pseudo
ode for the 
omputation of the head dire
tion on the virtual rat's path in the restri
tedhead movement paradigm.This 
onstraint impli
itly restri
ts the range of possible relative speeds: while it is still possible tohave arbitrarily high relative rotational speed by turning often or qui
kly, very low relative rotationalspeed 
annot be a
hieved anymore in �nite rooms. Typi
ally, if the rat rea
hes a wall, it has toturn. Thus the maximum travel length for a full turn is roughly the 
ir
umferen
e of the apparatus,resulting in a lower bound for the relative rotational speed vrel. In order to generate input sequen
eswith lower vrel one would have to dis
ard periods with dominant rotations from the input sequen
e. Fora biologi
al implementation of su
h a me
hanism the rat's limbi
 system 
ould a

ess the vestibularrotational a

eleration signal in order to downregulate the learning rate during qui
k turns. Wewill refer to this me
hanism as learning rate adaptation (LRA). A third movement statisti
s 
an begenerated if we assume that an animal �xates obje
ts or lo
ations in the room for some time whilemoving around. During this period the animal �xates a spe
i�
 lo
ation L in the room, i.e. it alwaysturns its head into the dire
tion of L, independent of its position. We implement L as a �xation pointon the wall and 
hange its position with a similar statisti
s (and low vrel) as the head dire
tion inthe other paradigms. In this paradigm both position and orientation are dependent and vary ratherqui
kly, while the position of L 
hanges slowly. We 
all this movement pattern spatial view paradigmand suggest that it is a more appropriate des
ription of a primate's movement pattern than the previoustwo.Model ar
hite
tureOur 
omputational model 
onsists of a 
onverging hierar
hy of layers of SFA nodes and a single�nal sparse 
oding node (see �gure 2C). Ea
h SFA node �nds the slowest output features from itsinput a

ording to the SFA learning rule given in se
tion 2 and performs the following sequen
e ofoperations: linear SFA for dimensionality redu
tion, quadrati
 expansion with additive Gaussian whitenoise, another linear SFA step for slow-feature extra
tion, and 
lipping of extreme values at ±4 (see�gure 2D). E�e
tively, a node implements a subset of full quadrati
 SFA. The 
lipping removes extremevalues that 
an o

ur on test data very di�erent from training data.In the following, the part of the input image that in�uen
es a node's output will be denoted as itsre
eptive �eld. On the lowest layer the re
eptive �eld of ea
h node 
onsists of an image pat
h of 10 by10 pixels with 3 
olor dimensions ea
h. The nodes form a regular (i.e. non-foveated) 7 by 63 grid withpartially overlapping re
eptive �elds that jointly 
over the input image of 40 by 320 pixels. The se
ondlayer 
ontains 2 by 15 nodes where ea
h re
eives input from 3 by 8 layer 1 nodes with neighboringre
eptive �elds, resembling a retinotopi
al layout. All layer 2 output 
onverges onto a single node inlayer 3, whose output we 
all SFA-output. Thus the hierar
hi
al organization of the model 
apturestwo important aspe
ts of 
orti
al visual pro
essing: in
reasing re
eptive �eld sizes and a

umulating
omputational power at higher layers. 6



The network's SFA-output is subsequently fed into a �nal 
omputational node that performs linearsparse 
oding, either by applying independent 
omponent analysis (we use CuBICA whi
h is based onthe diagonalization of third and fourth order 
umulants (Blas
hke andWiskott, 2004)) or by performing
ompetitive learning (CL). The top-layer output will be 
alled ICA-output, or CL-output. ICA appliedto non-lo
alized grid-
ell inputs �nds sparser 
odes than CL, but the latter is biologi
ally more realisti
.More details on di�erent approa
hes for sparse 
oding of grid-
ell input 
an be found in (Franzius et al.,2007).The network is implemented in Python using the MDP toolbox (Berkes and Zito, 2005) and the
ode is available upon request.

Figure 2: Model Ar
hite
ture. At a given position and orientation of the virtual rat (arrow) inthe naturally textured virtual-reality environment (A), input views are generated (B), and pro
essedin a hierar
hi
al network (C). The lower 3 layers perform the same sequen
e (D) of linear SFA (fordimensionality redu
tion), expansion, additive noise, linear SFA (for feature extra
tion), and 
lipping,the last layer performs sparse 
oding (either ICA or CL).Model trainingThe layers are trained subsequently from bottom to top on di�erent traje
tories through one of thesimulated environments. For 
omputational e�
ien
y we train only one node with stimuli from allnode lo
ations in its layer and repli
ate this node throughout the layer. This me
hanism e�e
tivelyimplements a weight sharing 
onstraint. However, the system performan
e does not 
riti
ally dependon this me
hanism. To the 
ontrary, individually learned nodes improve the overall performan
e.In analogy to a rat's brain, the lower two layers are trained only on
e and are kept �xed for allsimulations presented here (like the visual system, whi
h remains rather stable for adult animals).Only the top SFA and ICA layer are retrained for di�erent movement statisti
s and environments. Forour simulations we use 100.000 time points for the training of ea
h layer. Sin
e training time of theentire model on a single PC is on the order of multiple days, the implementation is parallelized andtraining times thus redu
ed to hours. The simulated rat's views are generated from its 
on�guration(position and orientation) with �oating point pre
ision and are not arti�
ially dis
retized to a smaller
on�guration set. 7



Analysis methodsThe highly nonlinear fun
tions learned by the hierar
hi
al model 
an be 
hara
terized by their out-puts on the three-dimensional 
on�guration spa
e of position and head dire
tion. We will 
all two-dimensional se
tions of the output with 
onstant (or averaged) head dire
tion spatial �ring maps andone-dimensional se
tions of the output with 
onstant (or averaged) position orientation tuning 
urves.For the sparse 
oding results with ICA the otherwise arbitrary signs are 
hosen su
h that the largestabsolute response is positive.The sensitivity of a fun
tion f to spatial position r will be 
hara
terized by its mean posi-tional varian
e ηr, whi
h is the varian
e of f(r, φ) with respe
t to r averaged over all head di-re
tions φ: ηr(f) = 〈varr(f(r, φ))〉φ. Correspondingly, the sensitivity of a fun
tion f to head di-re
tion φ will be 
hara
terized by its dire
tional varian
e ηφ averaged over all spatial positions r:
ηφ(f) = 〈varφ(f(r, φ))〉r . A perfe
t head-dire
tion 
ell has no spatial stru
ture and thus a vanishing ηrand positive ηφ, while a perfe
t pla
e 
ell has positive ηr due to its spatial stru
ture but no orientationdependen
e and thus a vanishing ηφ.4 Theoreti
al methodsConsidering the 
omplexity of the 
omputational model presented in the last se
tion, one might expe
tthat it would be impossible to make any analyti
al statement about the model's behavior. However, inthis se
tion we introdu
e a mathemati
al framework that a
tually allows us to make detailed predi
tionsdepending on the movement statisti
s of the simulated rat. The theoreti
ally less in
lined reader shouldfeel free to skip all se
tions marked by a * without loss of the general understanding of our model andthe results.4.1 The modi�ed optimization problem*Consider a rat in an environment that is kept un
hanged for the duration of the experiment. Thevisual input the rat per
eives during the experiment is the input signal for the learning task statedabove. This se
tion addresses the following question: Can we predi
t the fun
tions learnt in su
h anexperiment and, in parti
ular, will they en
ode the rat's position in a stru
tured way?As the rat's environment remains un
hanged for the duration of the experiment, its visual input
annot 
over the full range of natural images but only the relatively small subset that 
an be realizedin our setup. Given the environment, the rat's visual input 
an at all times be uniquely 
hara
terizedby the rat's position and its head dire
tion. We 
ombine these parameters in a single 
on�gurationve
tor s and denote the image the rat per
eives when it is in a parti
ular 
on�guration s as x(s). Werefer to the manifold of possible 
on�gurations as 
on�guration spa
e V . Note, that V in general doesnot have the stru
ture of a ve
tor spa
e.In a su�
iently 
omplex environment we 
annot only infer the image from the 
on�guration butalso the 
on�guration from the image, so that there is a one-to-one 
orresponden
e between the 
on-�gurations and the images. If we are not interested in how the fun
tions the system learns respond toimages other than those possible in the experiment, we 
an think of them as fun
tions of the 
on�gu-ration s, sin
e for any fun
tion g̃(x) of the images, we 
an immediately de�ne an equivalent fun
tion
g(s) of the 
on�guration:

g(s) := g̃(x(s)). (5)This leads to a simpli�ed version of our problem. Instead of using the images x(t) we use the 
on�gu-ration s(t) as an input signal for our learning task.8



It is intuitively 
lear that fun
tions that vary slowly with respe
t to the 
on�guration s will 
reateslowly varying output when applied to s(t) as an input signal, be
ause s(t) is 
ontinuous in time.Mathemati
ally, this is re�e
ted by the 
hain rule:
ẏj =

ddtgj(s(t)) = ∇gj(s) · ṡ =: ∇gj(s) · v (6)where ∇gj is the gradient of gj and v = ṡ is the velo
ity in 
on�guration spa
e (note the di�eren
e innotation to ∇ ·A(s), whi
h denotes the divergen
e of a ve
tor-valued fun
tion A).In order to generate slowly varying output, gj should vary slowly with s in 
on�guration regionswith large velo
ities v and reserve stronger gradients for regions with small velo
ities. Thus, theoptimal fun
tions depend on the velo
ity statisti
s of the input signal. As their dependen
e on thedetailed time-
ourse of the input signal s(t) is in
onvenient to handle mathemati
ally, we assume thatthe duration of the experiment is long enough to do statisti
s on the behavior of the rat. Its motion
an then be des
ribed by means of a joint probability density fun
tion ps,v(s,v), whi
h quanti�eshow often the rat is found in a parti
ular 
on�guration s and moves with velo
ity v. We may thenequivalently repla
e the temporal averages in the original formulation of the learning task by weightedaverages over all 
on�gurations and velo
ities:
〈·〉t → 〈·〉s,v =

∫

·(s,v) p
s,v(s,v)ds dv (7)If we take the average of a fun
tion that does not expli
itly depend on the velo
ity v, we 
an simplifythe average 〈·〉s,v by integrating over the velo
ity:

〈·〉s,v =

∫

·(s)ps,v(s,v)ds dv =

∫

·(s)
[∫

ps,v(s,v)dv]

︸ ︷︷ ︸

=:ps(s)

ds =: 〈·〉s (8)Here ps is the marginal probability of �nding the rat in 
on�guration s, irrespe
tive of its velo
ity.Making use of (5-8) we 
an now state an equivalent alternative formulation of the learning task:Optimization problem 2: Given a fun
tion spa
e F on a 
on�guration spa
e V , whi
h is sampledwith probability density P (s,v), �nd a set of J fun
tions gj(s) ∈ F thatminimize ∆(gj) := 〈(∇gj(s) · v)2〉s,v (9)under the 
onstraints
〈gj(s)〉s = 0 (zero mean), (10)
〈gj(s)

2〉s = 1 (unit varian
e) , (11)
∀i < j : 〈gi(s)gj(s)〉s = 0 (de
orrelation and order) . (12)If we do not impose any restri
tion on the fun
tion spa
e F (apart from su�
ient di�erentiability andintegrability), this modi�ed optimization problem 
an be solved analyti
ally for a number of 
ases.Following a previous analyti
al treatment (Wiskott, 2003) we refer to the optimal fun
tions in theunrestri
ted fun
tion spa
e as ∆-optimal fun
tions ; they are shown in se
tion 5 together with thenumeri
al simulations. 9



4.2 A di�erential equation for the optimal fun
tions*In this se
tion we apply variational 
al
ulus to optimization problem 2 and derive a partial di�erentialequation for the optimal fun
tions gj . We prove that the optimization problem 
an be simpli�ed toan eigenvalue problem of a partial di�erential operator D whose eigenfun
tions and eigenvalues formthe ∆-optimal fun
tions and their ∆-values, respe
tively. For the sake of brevity we shift the proofsto the appendix, so that the reader 
an fo
us on the main theorems.Using Lagrange multipliers we get an obje
tive fun
tion for the fun
tions gj that in
orporates the
onstraints:
Ψ(gj) =

1

2
∆(gj) − λj0〈gj(s)〉s −

1

2
λjj〈gj(s)

2〉s −
∑

i<j

λji〈gi(s)gj(s)〉s. (13)Here, fa
tors 1
2 have been introdu
ed for mathemati
al 
onvenien
e and have no in�uen
e on theresults.In the following we will not need the full dependen
e of the probability density ps,v on the velo
ity,but only the following fun
tion:

K(s) :=
1

ps(s)

∫

vv
T ps,v(s,v)dv =

∫

vv
T p

v|s(v|s)dv = 〈vv
T 〉

v|s . (14)
K is the matrix 
ontaining the se
ond-order moments of the 
onditional velo
ity distribution P (v|s) =
P (s,v)
P (s) . It 
ontains information on how fast and in whi
h dire
tion the rat typi
ally moves given it isin 
on�guration s.Applying variational 
al
ulus to the obje
tive fun
tion (13), we 
an derive a ne
essary 
onditionfor the solutions of optimization problem 2.Theorem 1 For a parti
ular 
hoi
e of the parameters λij , the solutions gj of optimization problem 2obey the Euler-Lagrange equation

Dgj(s) − λj0 − λjjgj(s) −
∑

i<j

λjigi(s) = 0 (15)with the boundary 
ondition
n(s)T

K(s)∇gj(s) = 0 for s ∈ ∂V. (16)Here, the partial di�erential operator D is de�ned as
D := − 1

ps(s)
∇ · ps(s)K(s)∇ (17)and n(s) is the unit normal ve
tor on the boundary ∂V of the 
on�guration spa
e V .We now show that the solutions of optimization problem 2 are given by the eigenfun
tions of theoperator D. The essential observation we need is stated inTheorem 2 Let Fb ⊂ F be the spa
e of fun
tions that obey the boundary 
ondition (16). Then D isself-adjoint on Fb with respe
t to the s
alar produ
t

(f, g) := 〈f(s)g(s)〉s, (18)i.e.
∀f, g ∈ Fb : (Df, g) = (f,Dg). (19)10



This property is useful, as it allows the appli
ation of the spe
tral theorem known from fun
tionalanalysis, whi
h states that any self-adjoint operator possesses a 
omplete set of eigenfun
tions fj(s) ∈
Fb with real eigenvalues ∆j , whi
h are pairwise orthogonal, i.e. a set of fun
tions that ful�lls thefollowing 
onditions:

Dfj = ∆jfj with ∆j ∈ R (eigenvalue equation) , (20)
(fi, fj) = δij (orthonormality) , (21)

∀f ∈ Fb ∃αk : f =

∞∑

k=0

αkfk (
ompleteness) . (22)Be
ause the weighted average over 
on�gurations is equivalent to a temporal average, the s
alarprodu
t (18) is essentially the 
ovarian
e of the output of the fun
tions f and g (if they have zeromean). The orthonormality (21) of the eigenfun
tions thus implies that the eigenfun
tions ful�ll theunit varian
e and de
orrelation 
onstraint. This is stated inTheorem 3 Apart from the 
onstant fun
tion, whi
h is always an eigenfun
tion, the (adequately nor-malized) eigenfun
tions fj ∈ Fb of the operator D ful�ll the 
onstraints (10-12).If we set λ0j = λji = 0 for i 6= j, the eigenfun
tions also solve eqn. (15), making them good
andidates for the solution of optimization problem 2. To show that they indeed minimize the ∆-valuewe needTheorem 4 The ∆-value of the normalized eigenfun
tions fj is given by their eigenvalue ∆j .At this point, it is intuitively 
lear that the eigenfun
tions with the smallest eigenvalues form thesolution to optimization problem 2. This is stated inTheorem 5 The J eigenfun
tions with the smallest eigenvalues ∆j 6= 0 are a solution of optimizationproblem 2.The advantage of this approa
h is that it transfers the original optimization problem to that of�nding the eigenfun
tions of a partial di�erential operator. This type of problem is en
ounteredfrequently in other 
ontexts and has been studied extensively.It is worth noting that the formalism des
ribed here is not restri
ted to the example used here. As itis independent of the 
on
rete nature of the 
on�guration spa
e, it 
an be applied to more 
ompli
atedproblems, e.g. to a rat moving in an environment with moving obje
ts, whose positions would then beadditional 
omponents of the 
on�guration s.5 ResultsWe apply our theoreti
al framework and 
omputer simulations to a number of environments andmovement patterns that resemble typi
al pla
e 
ell experiments. In se
tion 5.1, we show results for theopen �eld, beginning with the mathemati
al analysis and simulation results for the simple movementparadigms with high and low relative speeds. Subsequently, the simulation results for the restri
tedhead movement paradigm, in
luding learning rate adaptation, and the spatial view paradigm areshown. In se
tion 5.2 the results for the linear tra
k with its two-dimensional 
on�guration spa
e areshown. 11



5.1 Open �eldOne of the most 
ommon environments for pla
e 
ell experiments is an open �eld apparatus of re
tan-gular or 
ir
ular shape. Here, the most typi
al experimental paradigm is to throw food pellets randomlyinto the apparatus at regular intervals leading to a random sear
h behavior of the rat. For this 
asethe rat's oriospatial 
on�guration spa
e 
omprises the full three dimensional manifold of position andorientation. In this se
tion, we present results from experiments with simulated rat traje
tories ateither high or low relative rotational speeds leading to undire
ted pla
e 
ells or position-invarianthead-dire
tion 
ell type results, respe
tively.5.1.1 Theoreti
al predi
tions for the simple movement paradigm*In a re
tangular open �eld the 
on�guration spa
e 
an be parametrized by the animals position,indi
ated by the 
oordinates x and y, and its head dire
tion φ. The total 
on�guration spa
e is thengiven by s = (x, y, φ) ∈ [0, Lx] × [0, Ly] × [0, 2π[. Lx and Ly denote the size of the room in x- and
y-dire
tion, respe
tively. We 
hoose the origin of the head dire
tion φ su
h that φ = π/2 
orrespondsto the rat looking to the north. The velo
ity ve
tor is given by v = (vx, vy, ω), where vx, vy denotethe translation velo
ities and ω is the rotation velo
ity. For the typi
al pellet-throwing experiment wemake the approximation that the velo
ities in the three di�erent dire
tions are de
orrelated and thatthe rat's position and head dire
tion are homogeneously distributed in 
on�guration spa
e. Moreover,in an open �eld there is no reason why the varian
e of the velo
ity should be di�erent in x- and
y-dire
tion. The 
ovarian
e matrix of the velo
ities then takes the form

K =





〈v2〉 0 0
0 〈v2〉 0
0 0 〈ω2〉



 (23)and the probability density p(x, y, φ) is a 
onstant.In this 
ase the eigenvalue problem (20) for the operator D takes the following form:
−

[

〈v2〉
(

∂2

∂x2
+

∂2

∂y2

)

+ 〈ω2〉 ∂2

∂φ2

]

g(x, y, φ) = ∆g(x, y, φ) (24)with the boundary 
onditions (16) yielding
∂

∂x
g(x, y, φ) = 0 for x ∈ {0, Lx} (25)

∂

∂y
g(x, y, φ) = 0 for x ∈ {0, Ly} (26)and 
y
li
 boundary 
onditions in the angular dire
tion.It is easy to 
he
k that the eigenfun
tions and the 
orresponding ∆-values are given by

glmn(x, y, φ) =

{ √
2
3
cos(lπ x

Lx

) cos(mπ y

Ly

) sin(n+1
2 φ) for l odd

√
2
3
cos(lπ x

Lx

) cos(mπ y

Ly

) cos(n
2 φ) for l even (27)

∆lmn =







π2〈v2〉
(

l2

L2
x

+ m2

L2
y

)

+ 〈ω2〉 (n+1)2

4 for l odd
π2〈v2〉

(
l2

L2
x

+ m2

L2
y

)

+ 〈ω2〉n2

4 for l even, (28)12



with l, m, and n being nonnegative natural numbers. Only l = m = n = 0 is not allowed, as this 
ase
orresponds to the 
onstant solution, whi
h violates the unit varian
e 
onstraint.To predi
t the a
tual out
ome of the simulations we need to order these solutions by their ∆-values.For better 
omparability with the simulation results it is 
onvenient to rewrite the ∆-values in thefollowing form:
∆lmn =

π2〈v2〉
L2

x







l2 +
L2

x

L2
y

m2 + v2
rel(n + 1)2 for l odd

l2 +
L2

x

L2
y

m2 + v2
reln

2 for l even, (29)where
v2

rel =
〈( ω

2π
)2〉

〈( v
Lx

)2〉 (30)denotes the relative rotational speed, i.e. the ratio of the root mean square of rotational and transla-tional velo
ity, if translational velo
ity is measured in room size in x-dire
tion per se
ond and rotationalvelo
ity is measured in full 
ir
les per se
ond.We 
an now dis
uss two limit 
ases in terms of the relative velo
ity vrel. Let us �rst 
onsider the
ase where the rat moves at small velo
ities while making a lot of qui
k turns, i.e. vrel ≫ 1. In this
ase, the smallest ∆-values 
an be rea
hed by setting n = 0 unless l2 +
L2

x

L2
y

m2 > v2
rel. Sin
e for n = 0the fun
tions glmn do not depend on the angle φ, the slowest fun
tions for this 
ase are invariant withrespe
t to head dire
tion and lead to pla
e 
ells, see below. The behavior of the solutions and therespe
tive simulation results are depi
ted in �gure 3A and B.In the other extreme, vrel is mu
h smaller than one, i.e. the rat runs relatively fast while mak-ing few or slow turns. The smallest ∆-values 
an then be rea
hed by 
hoosing l = m = 0 unless

n2 > min(1,
L2

x

L2
y

)/v2
rel. The 
orresponding fun
tions are invariant with respe
t to position while beingsele
tive to head dire
tion, a feature that is 
hara
teristi
 for head-dire
tion 
ells. A 
omparison ofthese theoreti
ally predi
ted fun
tions with simulation results are shown in �gure 3D and E.5.1.2 Simulation results for the simple movement paradigmIt is intuitively 
lear and has been shown in the last se
tion that for high relative orientational speed

vrel the system output be
omes slowest if it is invariant to head dire
tion and only 
odes for spatialposition. For low vrel on the other hand invarian
e for position while 
oding for head orientation isthe best solution to the optimization problem.In �gure 3B the spatial �ring maps of SFA output units from the simulation with high vrel are shown.Here, all units are almost 
ompletely orientation-invariant and resemble the theoreti
al predi
tionsfrom �gure 3A. The �rst unit is not a
tive when the simulated rat is in the south of the apparatus,most a
tive in the north, and shows a gradual in
rease in the shape of a half 
osine wave in between.The unit is invariant to movements in east-west dire
tion. The se
ond unit behaves similarly, butits a
tivity pattern is rotated by 90 degrees. The following units have more spatial os
illations andsomewhat resemble grid 
ells whi
h are not lo
alized.Figure 3C shows ICA output units from the same simulation as in �gure 3B. All units are orientation-invariant, just as their input from the �rst 16 SFA units, but most have only a single peak of a
tivityand ea
h at a di�erent position. The sparser units are more lo
alized in spa
e while less sparse unitshave larger �ring �elds or multiple peaks. These results 
losely resemble pla
e 
ells from rodent'shippo
ampal areas CA1 and CA3. 13



In �gure 3E SFA output units from the simulation with low relative rotational speed vrel are shown.In this 
ase, all units are almost 
ompletely position-invariant but their response os
illates with theorientation of the rat. The �rst unit 
hanges a
tivity with the sine of orientation and the se
ond unitis modulated like a 
osine. Unit #3 has twi
e the frequen
y, unit #5 has a frequen
y of three, andunit #8 a frequen
y of eight. Figure 3F shows ICA output units from the same simulation as in �gure3E. All units are position-invariant like their inputs from the �rst 8 SFA units, but most have onlya single peak of a
tivity and ea
h at a di�erent orientation. The sparser units are more lo
alized inorientation while later ones have broader tuning 
urves. These results 
losely resemble head-dire
tion
ells from rodent's subi
ular areas.
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Figure 3: Theoreti
al predi
tions and simulation results for the open �eld with the simplemovement paradigm (independent translation and head dire
tion), separately learnedpla
e 
ells and head-dire
tion 
ells, and ICA for sparsi�
ation. Ea
h row within ea
h panelshows the response of one unit as a fun
tion of position for di�erent head dire
tions, as well as themean value averaged over all head dire
tions (indi
ated by the superimposed arrows). Panel D alsoshows orientation tuning 
urves (at the position of a unit's maximal a
tivity). Panels D-F also showorientation tuning 
urves (averaged over all positions) ±1 standard deviation.A: Theoreti
al predi
tion for the SFA layer with relatively qui
k rotational speed 
ompared to trans-lational speed. Solutions are ordered by slowness. All solutions are head dire
tion invariant and formregular re
tangular grid stru
tures.B: Simulation results for the SFA layer for the same settings as in A, ordered by slowness. The resultsare similar to the theoreti
al predi
tions up to mirroring, sign, and mixing of almost equally slowsolutions. All units are head dire
tion invariant and 
ode for spatial position but are not lo
alized inspa
e.C: Simulation results for the ICA layer for the same simulation as in B, ordered by sparseness (kurtosis).Firing patterns of all units are head dire
tion invariant and lo
alized in spa
e, resembling hippo
ampalpla
e 
ells.D: Theoreti
al predi
tion for the SFA layer for relatively slow rotational speed 
ompared to transla-tional speed. Solutions are ordered by slowness. All solutions are position invariant and 
onstitute aFourier basis in head dire
tion spa
e.E: Simulation results for the SFA layer for the same settings as in D, ordered by slowness. The resultsare similar to the theoreti
al predi
tions up to phase shift and sign. All units are position invariantand head dire
tion spe
i�
 but not lo
alized in head dire
tion spa
e, i.e. all units ex
ept #1 and #2have multiple peaks.F: Simulation results for the ICA layer for the same simulation as in E ordered by sparseness (kurtosis).Firing patterns of all units are position invariant and lo
alized in head dire
tion spa
e resemblingsubi
ular head-dire
tion 
ells.
15



5.1.3 Simulation results for the restri
ted head movement paradigmIn the previous se
tion we used independent head dire
tion and body movement and used di�erentmovement statisti
s for di�erent 
ell types, su
h as fast rotational speed for pla
e 
ells and slowrotational speed for head-dire
tion 
ells. This allowed us to obtain nearly ideal simulation results thatmat
h 
losely the theoreti
al predi
tions, but it is unrealisti
 for two reasons. Firstly, in a real rat head-dire
tion and movement dire
tion are 
orrelated. Se
ondly, in a real rat pla
e 
ells and head-dire
tion
ells have to be learned simultaneously and thus with the same movement pattern.In this se
tion we introdu
e three 
hanges for higher realism. Firstly, a more realisti
 movementpattern is used, where the rat's head is enfor
ed to be within 90◦ of the 
urrent body movement (seemethods). Se
ondly, pla
e 
ells and head-dire
tion 
ells are learned on the same input statisti
s andlearning rate adaptation (LRA) is used in the top SFA layer for the head-dire
tion 
ell population (seemethods). Thirdly, ICA for sparse 
oding in the last layer is repla
ed by 
ompetitive learning (CL).Simulation results are shown in �gure 4.
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Figure 4: Simulation results for the open �eld with more realisti
 movement patterns and
ompetitive learning (CL) for sparsi�
ation in the last layer.The network was trained with a movement pattern of relatively high rotational speed. Two distin
tpopulations of 
ells were trained, one as before, the other was trained with learning rate adaptation(LRA) in the top SFA layer, redu
ing the impa
t of periods with high rotational speed.A: Simulation results for the top layer CL units without LRA. Ea
h subplot shows the mean spatial�ring rate of one output unit averaged over all orientations. The slowest 16 SFA outputs were usedfor CL, and 16 CL units were trained. All units are lo
alized in spa
e, 
losely resembling hippo
ampalpla
e 
ells.B: Orientation tuning of the units shown in A. Firing patterns of all units are mostly head dire
tioninvariant.C: Simulation results for the top layer CL units with LRA in the top SFA layer. Ea
h subplot shows themean orientation tuning 
urve in blue and a grey area indi
ating ±1 standard deviation. The slowest8 SFA-outputs were used for CL, and 8 CL units were trained. Firing patterns of all units are mostlyposition invariant and lo
alized in head dire
tion spa
e 
losely resembling subi
ular head-dire
tion
ells.D: S
atterplot of mean dire
tional varian
e ηφ and mean positional varian
e ηr for the results shownin A (red 
ir
les) and C (blue triangles). Units from A 
luster in an area with high positional varian
e
ηr and low orientational varian
e ηφ, while units from C 
luster in an area with low positional varian
e
ηr and high orientational varian
e ηφ.E: S
atterplot of ηφ and ηr for the same simulation parameters as in A-D but with more CL outputunits. 32 units were trained without LRA (red 
ir
les) and 16 with LRA (blue triangles). The solutionslie in similar areas as in D.F: S
atterplot of ηφ and ηr for the same simulation parameters as in A-D, but with more SFA outputsused for CL. 32 SFA units were used without LRA (red 
ir
les) and 16 with LRA (blue triangles 
ir
les).The solutions show mixed dependen
e on position and head dire
tion but are still 
learly divided intoa mostly head dire
tion-invariant population (red) and a mostly position-invariant population (blue).17



As the relative rotational speed is smaller than in the previous se
tion some SFA solutions (notshown) 
hange with head dire
tion: unit #16 of 32 is the �rst unit with noti
eable head dire
tiondependen
e here while none of the �rst 32 SFA solutions in the last se
tion was head dire
tion de-pendent. In �gure 4A the spatial �ring maps for all trained units without LRA are shown averagedover all orientations. The 
orresponding orientation tuning 
urves (measured at the peak of the pla
e�eld) are given in panel B. All units are lo
alized in spa
e and largely independent of orientation witha
tivity 
enters distributed evenly in the room.Figure 4C shows the simulation results with identi
al movement statisti
s but with LRA turned onin the top SFA layer, so that learning is downregulated at timepoints with rapid head dire
tion 
hanges.Tuning 
urves of all units are shown together with the spatial standard deviation of a
tivity, whi
h isgenerally very small. All units are lo
alized in head dire
tion spa
e and mostly position independentwith approximately even spa
ing of dire
tions of maximum a
tivity. The LRA 
an eliminate the e�e
tof head rotation only to some extent and thus SFA units #7 and #8 show signi�
ant dependen
e onposition while the slowest unit a�e
ted by position in the previous se
tion was #15.A s
atterplot of the mean positional varian
e ηr versus mean orientational varian
e ηφ (see methods)of the units from A and C is shown in �gure 4D. Perfe
t head-dire
tion 
ells would be lo
ated in thebottom right while perfe
t pla
e 
ells would be lo
ated in the top left. Red 
ir
les denote the simulatedpla
e 
ells from panel A; the blue triangles denote the simulated head-dire
tion 
ells from panel C.Both populations 
luster near the positions of optimal solutions in the 
orners.How does the number of inputs to the last layer (i.e. the number of SFA-outputs used) and thenumber of CL outputs in�uen
e the results? Panel E shows the same analysis for a simulation withidenti
al settings ex
ept the number of CL-output units was doubled to 32 without LRA and 16 withLRA, respe
tively. Most units lie in a similar area as in D, but the 
lusters are denser, sin
e thenumber of units has doubled. In panel F, the number of output units is again the same as in D, butthe number of SFA outputs for the last layer is doubled to 32 for the simulation without LRA and16 for the simulation with LRA. The output units now get inputs from higher, i.e. qui
ker, SFA unitswhi
h tend to have stronger in�uen
e of both position and orientation. As a result, the CL unitsspan the entire spe
trum of 
ompletely position invariant to 
omplete orientation invariant solutions,with the less position-dependent solutions 
oming from the simulations without LRA, and the lesshead dire
tion dependent solutions 
oming from the LRA simulation. We 
on
lude that the numberof CL-output units mostly determines the density of pla
e 
ells but not the qualitative behavior of thesolutions while the number of SFA-outputs dire
tly a�e
ts the invarian
e properties of the solutions.5.1.4 Simulation results for the spatial view paradigmThe previous se
tions have shown that the same learning me
hanism in the same environment, justwith di�erent movement statisti
s, results in either head-dire
tion or pla
e-
ell like representations.Although the last se
tion introdu
ed 
ertain restri
tions on the head dire
tion, body position and headdire
tion remained mostly independent.In the following simulation, the virtual animal �xates a lo
ation L on a wall while it moves throughthe room. The position of L 
hanges with the same statisti
s as for the head dire
tion simulation above(see methods). A visualization of the simulation results by plotting the a
tivity of a unit at a givenposition vs. �global� orientation, as in the previous �gures, looks in
on
lusive (�gure 5A). Plotting thea
tivity of a unit su
h that at ea
h position the orientation is 
hosen to fa
e a �xed spe
i�
 lo
ationmarked by an '×' shows spatially homogeneous a
tivities (�gure 5C; 
f. �gure 1). These 
ells jointly
ode for the 'view spa
e' but as before the SFA results are not lo
alized. Figure 5B and D show the18



results of the ICA layer. The 'global dire
tion' plot in B is as inadequate as in A while plot D 
learlyillustrates the behavior of these 
ells. Unit #2, for example, is a
tive only when looking at the bottomleft 
orner of the re
tangular room, independently of the animal's position. This 
ell type resemblesspatial view 
ells found in the primate hippo
ampal formation (e.g. Rolls et al., 2005).

Figure 5: Simulation results for the open �eld with traje
tories where spots on the wallwere �xated. A: Spatial �ring map of �ve representative SFA output units for di�erent 'global headdire
tions' (indi
ated by arrows) and averages over orientations and spa
e. No unit shows spatial ororientation invarian
e when plotting position and 'global head dire
tion' as in previous �gures. C:Same results as in A but plotted with 'lo
al head dire
tion' (at ea
h position oriented towards �xationpoint '×'). B: ICA results plotted with 'global head dire
tion'. D: Same results as in B but using theplot method from C. All units 
ode for a spe
i�
 view 
losely resembling primate spatial view 
ells.5.2 Linear tra
kIn a linear tra
k the rat's movement is essentially restri
ted to two degrees of freedom, a spatial andan orientational one. In experimental measurements the orientational dimension is often 
ollapsed intoa binary variable indi
ating only the dire
tion of movement. In the linear tra
k these two dimensionsare thus experimentally mu
h easier to sample smoothly than the full three dimensional parameterspa
e of the open �eld.5.2.1 Theoreti
al predi
tions for the linear tra
k*In prin
iple the 
on�guration spa
e for the linear tra
k is the same as for the open �eld, only withsmall side length Lx in one dire
tion. Equation (28) shows that for small Lx the solutions that are not19




onstant in the x-dire
tion, i.e. the solutions with k 6= 0, have large ∆-values and thus vary qui
kly.Be
ause slow fun
tions will thus be independent of x, we will negle
t this dimension and restri
t the
on�guration spa
e to position in x-dire
tion and head dire
tion φ.Another di�eren
e between the simulation setup for the open �eld and the linear tra
k lies in themovement statisti
s of the rat. Due to the momentum of the Brownian motion the rat rarely turns onmid-tra
k. In 
ombination with the 
oupling between head dire
tion and body motion this implies thatgiven the sign of the velo
ity in y-dire
tion the head dire
tion is restri
ted to angles between either 0and π (positive velo
ity) or between π and 2π (negative velo
ity). If, in addition, the rat makes a lotof qui
k head rotations, the resulting fun
tions 
an only be slowly varying if they are invariant withrespe
t to head dire
tion within these ranges. This leaves us with a redu
ed 
on�guration spa
e that
ontains the position y and a binary value d ∈ {North, South} that determines whether 0 ≤ φ < π(positive velo
ity in y-dire
tion, north) or π ≤ φ < 2π (negative velo
ity in y-dire
tion, south).We assume that the rat only swit
hes between north and south at the ends of the tra
k. Be
ausedis
ontinuities in the fun
tions lead to large ∆-values, slow fun
tions g(y, d) should ful�ll the 
ontinuity
ondition that g(0,North) = g(0, South) and g(Ly,North) = g(Ly, South). This means that the
on�guration spa
e has the topology of a 
ir
le, where one half of the 
ir
le represents all positionswith the rat fa
ing north and the other half the positions with the rat fa
ing south. It is thus 
onvenientto introdu
e a di�erent variable ξ ∈ [0, 2Ly] that labels the 
on�gurations in the following way:
(x(ξ), d(ξ)) =

{
(ξ,North) for ξ < Ly

(2Ly − ξ, South) for ξ ≥ Ly .
(31)The topology of the 
on�guration spa
e is then 
aptured by 
y
li
 boundary 
onditions for the fun
tions

g(ξ).For simpli
ity we assume that there are no preferred positions or head dire
tions, i.e. that boththe varian
e of the velo
ity K = 〈ξ̇2〉 and the probability distribution p(ξ) is independent of ξ. Theequation for the optimal fun
tion is then given by
−〈ξ̇2〉 ∂2

∂ξ2
g(ξ) = ∆g(ξ) (32)The solutions that satisfy the 
y
li
 boundary 
ondition and their ∆-values are given by

gj(ξ) =

{ √
2 sin(jπ ξ

2Ly

) for j even√
2 cos((j + 1)π ξ

2Ly

) for j odd , (33)
∆j(ξ) =







π2 〈ξ̇2〉
4L2

y

j2 for j even
π2 〈ξ̇2〉

4Ly

(j + 1)2 for j odd . (34)Note that there are always two fun
tions with the same ∆-value. Theoreti
ally, any linear 
ombina-tion of these fun
tions has the same ∆-value and is thus also a possible solution. In the simulation, thisdegenera
y does not o

ur, be
ause mid-tra
k turns do o

ur o

asionally, so those fun
tions that arehead-dire
tion-dependent on mid-tra
k (i.e. even j) will have higher ∆-values than theoreti
ally pre-di
ted. This avoids mixed solutions and 
hanges the order of the fun
tions when ordered by slowness.Figure 6A shows seven of the slowest fun
tions g,.5.2.2 Simulation results for the linear tra
kFor simulations in the linear tra
k we use the more realisti
 movement paradigm similar to the open�eld experiment from se
tion 5.1.3. A similar relative speed is assumed and sparse 
oding in the last20



layer is performed with ICA.Figure 6B and C shows the simulation results for the linear tra
k. The spatial �ring maps of theslowest seven SFA outputs out of 10 are shown in �gure 6B. Units #1�6 are mostly head dire
tioninvariant (ηφ ≤ 0.1), and 
ode for spatial position in the form of sine waves with respe
tive frequen
iesof 1
2 , 1, 1 1

2 , 2, 2 1
2 , and 3, as theoreti
ally predi
ted. Unit #7 
odes for position and orientation. At tra
kends, where most rotation o

urs, all units are head-dire
tion invariant and the spatial modulationis 
ompressed due to slower mean translational speeds 
ompared to mid-tra
k (
f. appendix). Asexpe
ted, none of these units are lo
alized in spa
e or orientation.The spatial �ring maps of the �rst seven out of ten ICA outputs for di�erent head dire
tions areshown in �gure 6C. Units #1 and #6 are only a
tive at the southern tra
k end independently of headdire
tion. The other �ve units are lo
alized in the joint position-head-dire
tion spa
e meaning thatthey �re only at spe
i�
 positions on the tra
k when the rat fa
es a spe
i�
 dire
tion. These resultsare similar to pla
e 
ell re
ordings from rats in linear tra
ks where most 
ells only �re when the ratmoves in one dire
tion (Muller et al., 1994).Changing the movement pattern to yield mu
h higher or mu
h lower mean relative rotationalspeeds, respe
tively, leads to very di�erent results resembling those presented earlier for the open �eld,namely head-dire
tion 
ells and head-dire
tion invariant pla
e 
ells.
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Figure 6: Theoreti
al predi
tions and simulation results for the linear tra
k. Head dire
tionsare indi
ated by arrows, orientation averages are indi
ated by superimposed arrows, and prin
ipaldire
tions (north, south) are emphasized with a dark border. A: Theoreti
al predi
tions. B: Spatial�ring maps of the �rst (slowest) seven SFA output units out of 10. Units #1-#6 are mostly headdire
tion invariant, whereas unit #7 responds di�erently to north and south views. C: Spatial �ringmaps of the �rst (most kurtoti
) seven out of 10 ICA output units. All units are lo
alized in spa
eand most are only a
tive for either north or south views 
losely resembling pla
e �elds re
orded fromrats in linear tra
k experiments.5.3 Model parametersAlthough most of the parameters in our model (i.e. all the weights in the SFA and ICA steps) arelearned in an unsupervised manner a number of parameters were 
hosen manually. These parametersin
lude the input pi
ture size, re
eptive �eld sizes, re
eptive �eld positions and overlaps in all layers,the room shape and textures, the expansion fun
tion spa
e, number of layers, 
hoi
e of sparsi�
ationalgorithm, movement pattern, �eld of view, and number of training steps. We 
annot explore theentire parameter spa
e here and show instead that the model performan
e is very robust with respe
t22



to most of these parameters. The fa
t that the presented simulation results are very similar to theanalyti
al solutions also indi
ates that the results are generi
 and not a mere artifa
t of a spe
i�
parameter set.We use high-resolution input pi
tures of 40 by 320 RGB pixels showing the 
apability of the modelto handle high-dimensional sensory data. Nevertheless, it 
ould be argued that the rat's vision is ratherblurred and has little 
olor sensitivity. However, we �nd that smaller and/or grays
ale input pi
turesyield similar results, whi
h degrade only below a dimensionality of a few hundred input pixels.The model's �eld of view (FOV) has been modeled to represent the 320◦ of a rat's FOV. SmallerFOVs below 90◦ still reprodu
e our results and espe
ially rotation invarian
e is not an e�e
t of alarge FOV. Nevertheless, the views have to 
ontain enough visual information in order to ful�ll theone-to-one 
orresponden
e between stimulus and oriospatial 
on�guration. For smaller FOV valuesand symmetri
al environments the model's representations be
ome symmetri
al as well.The re
eptive �elds are restri
ted to about 100 input dimensions (before quadrati
 expansion) dueto 
omputational limitations. Larger re
eptive �elds tend to yield better solutions, sin
e the availabletotal fun
tion spa
e in
reases. Position and overlap of re
eptive �elds have been varied to some extentbut have no noti
eable impa
t on the result unless too many of the inputs are dis
arded.The room shape has a strong impa
t on the SFA solutions, whi
h 
an be predi
ted analyti
ally. Weshow here only results from 
onvex rooms, but experiments with radial mazes and multiple rooms havebeen performed and these results are similar to experimental data, too. Choi
e of spe
i�
 textureswas irrelevant for the model's performan
e ex
ept when multiple walls are textured with similar oridenti
al textures, whi
h leads to degraded results due to visual ambiguities.The expansion fun
tion was 
hosen as all monomials up to degree 2, but alternative fun
tionspa
es like linear random mixtures passed through sigmoidals with di�erent o�sets were su

essful,too; however, the size of the fun
tion spa
e is limited by 
omputational 
onstraints and monomialshave proven to be parti
ularly e�
ient.The number of layers is determined by re
eptive �eld sizes and overlaps. An in
reased number oflayers also in
reases the fun
tion spa
e and 
an thus improve performan
e. We did not see any e�e
t ofover�tting for larger numbers of layers. Additional top layers simply reprodu
ed the output of earlierlayers.As for the 
hoi
e of the sparse 
oding algorithm, we found no large qualitative di�eren
e fordi�erent te
hniques in
luding CuBICA, fastICA, 
ompetitive learning, or just �nding rotations of theSFA output with maximal kurtosis (Franzius et al., 2007).The 
hoi
e of movement pattern has a 
lear impa
t on the optimal solutions of SFA. The theoreti
alanalysis presented here 
an in prin
iple predi
t the solutions for arbitrary movement patterns but forthe predi
tions presented here we made simplifying assumptions to obtain 
losed form solutions. Inspite of these simpli�
ations, the theoreti
al predi
tions are still 
lose to the simulation results, e.g. inse
tion 5.1.3, where the head orientation is restri
ted to an angular range with respe
t to the dire
tionof body motion. simulation results are still similar to the theoreti
al predi
tions.More training steps result in a smoother sampling of the virtual reality environment and yield betterapproximations to the theoreti
al predi
tions. We found that a few laps 
rossing and spanning thewhole room within a few thousand training samples were su�
ient for the qualitative results already.For too little training data and too few 
rossings of paths an over�tting e�e
t o

urs resulting in aslowly varying a
tivity of the outputs on the training path but not on other (test) paths.
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6 Dis
ussionWe have presented a model for the formation of oriospatial 
ells based on the unsupervised learningprin
iples of slowness and sparseness. The model is feed-forward, instantaneous, and purely sensorydriven. The ar
hite
ture of the model is inspired by the hierar
hi
al organization of the visual systemand applies the identi
al learning rule, Slow Feature Analysis, on all but the last layer, whi
h performssparse 
oding. Our results show that all major oriospatial 
ell types - pla
e 
ells, head-dire
tion 
ells,spatial view 
ells, and to some extent even grid 
ells - 
an be learned with this approa
h. We haveshown that this model is 
apable of extra
ting 
ognitive information su
h as an animal's positionfrom 
omplex high-dimensional visual stimuli, whi
h we simulated as views in a virtual environment.The generated representations were 
oding spe
i�
ally for some information (e.g. position) and wereinvariant to the others (e.g. orientation). These invariant representations are not expli
itly built intothe model but indu
ed by the input statisti
s, whi
h in turn is determined by the room shape anda spe
i�
 movement paradigm. Nevertheless, the type of learned invarian
e 
an be in�uen
ed by atemporal adaptation of the learning rate. Control experiments show that the model performan
e isrobust to noise and ar
hite
tural details. This robustness is also supported by a general mathemati
alframework that allows exa
t analyti
al predi
tions of the system behavior at the top SFA level.Our model 
omprises sensory pro
essing stages that mimi
 parts of the visual 
orti
es and thehippo
ampal formation. The model layers 
annot be exa
tly asso
iated with spe
i�
 brain areas,but we suggest some relations. The behavior of the lower two layers are primarily determined bythe visual environment and mostly independent of the spatial movement pattern. In the simulationspresented here, we trained the two lower layers only on
e and only adapted the higher layers fordi�erent environments and movement patterns. The �rst layer 
ould be asso
iated with V1 (Berkesand Wiskott, 2005), the se
ond layer with higher visual 
orti
es. Units in the third layer, whosenon-lo
alized spatial a
tivity pattern resembles grid 
ells, strongly depend on the movement patternand might be asso
iated with grid 
ells in EC. Re
ent results from EC (Sargolini et al., 2006) showthat grid 
ells in MEC exhibit some head-dire
tion dependen
y, similar to our model for the 
ase ofthe intermediate relative translational speed in the open �eld. Depending on the movement statisti
sduring learning, representations in the sparse 
oding layer resemble either pla
e 
ells as found inhippo
ampal areas CA1 and CA3 or head dire
tion 
ells as found in many areas of the hippo
ampalformation or spatial view 
ells as found in the hippo
ampal formation of monkeys.For the 
ase of approximately un
orrelated body movement and head dire
tion, the model learnseither pla
e or head-dire
tion 
ells, depending on the relative speed of translation and rotation. Formu
h qui
ker rotation than translation the model develops orientation-invariant pla
e �elds while formu
h qui
ker translation than rotation the model develops position-invariant head dire
tion 
odes.In intermediate 
ases, e.g. for the linear tra
k, mixed representations su
h as dire
tion-dependentpla
e �elds emerge. In the 
ase of 
orrelated body movement and head dire
tion 
aused by elongated�xations of obje
ts or positions, the model learns view-spe
i�
 
odes, similar to spatial view 
ells inprimates.Although the model is 
apable of learning pla
e 
ells and head dire
tion 
ells if it learns on distin
tadequate movement statisti
s, a model rat should obviously not have to traverse its environment on
ewith high relative translational speed to learn head-dire
tion 
ells and on
e more with low relativetranslational speed to learn pla
e 
ells. How 
an both populations be trained with a single given inputstatisti
s? For this problem we 
onsider output from the rat's vestibular system as a possible solution.This system is essential for the oriospatial spe
i�
ity of head dire
tion 
ells and pla
e 
ells (Sta
kmanand Zugaro, 2005). Other models like the well established ring attra
tor model by Skaggs et al. (1995)assume that the head dire
tion system performs angular integration of body motion based on vestibular24



velo
ity signals. We hypothesize that these signals 
ould also be used to in�uen
e the learning rateof two populations of 
ells that learn a

ording to our model. One of these populations learns morestrongly at periods with high relative translational speed (as signalled by the vestibular velo
ity signals)and the other adapts more strongly for low relative translational speed. The former should develophead-dire
tion 
ell 
hara
teristi
s and the latter pla
e 
ell 
hara
teristi
s. In our simulations the modelsu

essfully learned both populations with the same input data, one population without learning rateadaptation, and one population with redu
ed learning rate during qui
k turns. On
e the model hasbeen trained, the vestibular a

eleration signal is no longer needed for the model behavior. Withlearning rate adaptation the model neurons e�e
tively learn on a di�erent movement statisti
s, e.g. headdire
tion 
ells learn more strongly at times with relatively high translational speed. Nevertheless, if thereal movement statisti
s 
ontains very few episodes of relatively qui
k translation at all, the me
hanismfails and head dire
tion 
ells 
annot be
ome position invariant.Our implementation of the slowness prin
iple involves solving an eigenvalue problem and 
annotbe 
onsidered biologi
ally plausible. However, more plausible equivalent formulations of the slownessprin
iple exist in the form of gradient-des
ent learning rules (Hashimoto, 2003; Kayser et al., 2001) andas spike based learning me
hanisms (Sprekeler et al., 2006). The 
hoi
e of ICA to generate lo
alizedrepresentations from nonlo
alized 
odes is also biologi
ally unrealisti
, whereas a formulation in theform of Hebbian learning (Oja and Karhunen, 1995) or 
ompetitive learning seems more plausible. Anin-depth dis
ussion of this topi
 
an be found in Franzius et al. (2007).Related workA

ording to Redish's 
lassi�
ation, our model is a lo
al view model, for it �only depends on the lo
alview to explain pla
e 
ell �ring� (Redish, 1999). Models of this 
lass usually extra
t a number offeatures from sensory inputs in order to obtain a lower-dimensional representation that still 
arriesinformation about spatial position in the environment but is invariant to everything else. Pure lo
alview models do not 
omprise a path integration system and thus 
annot fully explain oriospatial �ringproperties, e.g. in darkness. Pure path integration systems without external sensory input on theother hand inherently a

umulate errors, and hen
e a sensory 
oding me
hanism, as proposed here,is ne
essary to 
omplement any su
h model. Therefore many models 
ombine lo
al view and pathintegration me
hanisms (M
Naughton et al., 2006; Redish, 1999).The model by Wyss et al. (2006) is based on similar prin
iples as our model. It applies a learningrule based on temporal stability to natural stimuli, some of whi
h are obtained from a robot. Theresulting spatial representations are lo
alized, resembling hippo
ampal pla
e �elds. The learning ruleinvolves lo
al memory and no expli
it sparsi�
ation method is applied. The fa
t that the resultingrepresentations are lo
alized is somewhat surprising, sin
e by itself temporal stability does not leadto lo
alized representations (Franzius et al., 2007). We hypothesize that the de
orrelation of the non-negative a
tivities in the model impli
itly leads to a sparsi�
ation be
ause it favors a 
ode where at anygiven time only one single unit is a
tive. The arti
le does not investigate head-dire
tion-dependen
yof the learned representations or dependen
ies on the movement statisti
s.The model by Sharp (1991) assumes abstra
t sensory inputs and a
quires a pla
e 
ode by 
ompet-itive learning, resulting in units that 
ode for views with similar input features. Thus, this model issimilar to our model's last layer performing sparsi�
ation. Similarly to our results, 
ells be
ome lessorientation-dependent if more rotations o

ur in the training traje
tory.The work by Fuhs et al. (1998) uses realisti
 natural stimuli obtained by a robot and extra
ts�blobs� of uniform intensity with re
tangular or oval shape from these images. Radial basis fun
tionsare tuned to blob parameters at spe
i�
 views, and a 
ompetitive learning s
heme on these yields25



pla
e-
ell-like representations. Our model agrees with their 
on
lusion that rodents need no expli
itobje
t re
ognition in order to extra
t spatial information from natural visual stimuli.The model by Brunel and Trullier (1998) investigates the head-dire
tion dependen
y of simulatedpla
e �elds using abstra
t lo
al views as inputs. A re
urrent network learns with an unsupervised Heb-bian rule, asso
iating lo
al views with ea
h other, su
h that their intrinsi
ally dire
tional pla
e 
ells 
anbe
ome head-dire
tion invariant for maze positions with many rotations. The arti
le also 
onje
turesthat movement patterns determine head-dire
tion dependen
e of pla
e 
ells, whi
h is 
onsistent withour results.The results by de Araujo et al. (2001) suggest that the size of the rat's �eld of view (FOV) isimportant for the distin
tion between spatial view 
ells and pla
e 
ells. With a large FOV (as for rats)the animal 
an see most landmarks from all orientations while an animal with a small FOV (like amonkey) 
an only see a subset of all landmarks at ea
h timepoint. We �nd no dependen
e of our resultson the FOV size for values between 30 and 320 degree as long as the environment is ri
h enough (i.e.diverse textures, not a single 
ue 
ard). Instead, our results suggest that di�eren
es in the movementstatisti
s play a key role for establishing this di�eren
e.To our knowledge, no prior model allows the learning of pla
e 
ells, head-dire
tion 
ells, andspatial view 
ells with the same learning rule. Furthermore there are only few models that allow 
leartheoreti
al predi
tions, learn oriospatial 
ells from (quasi) natural stimuli, and are based on a learningrule that is also known to model early visual pro
essing well.Future perspe
tivesOur model is not limited to pro
essing visual stimuli, as presented here, but 
an integrate othermodalities as well. The integration of olfa
tory 
ues, for example, might lead to even more a

uraterepresentations and possibly to an independen
e of the model of visual stimuli (simulated darkness).Our simulated visual stimuli 
ome from a virtual reality environment whi
h is 
ompletely stati
during the training of the virtual rat. In this 
ase the slowest features are position, orientation, or viewdire
tion as shown before. However, the assumption that the environment remains un
hanged duringoriospatial 
ell learning 
ertainly does not hold for the real world. A more realisti
 environment willin
lude other 
hanging variables like lighting dire
tion, pit
h and roll of the head et
. The impa
t ofthese variables on the model representations depends on the times
ale of the variable 
hanges: e.g.the additional white noise in all SFA layers of the model is ignored sin
e it varies mu
h qui
ker thanposition and orientation, but the dire
tion of sunlight might be
ome the slowest feature. Generally,the SFA solutions will depend on any variable whose times
ale is equal or slower than the positionand orientation 
hanges of the animal. After the sparse 
oding step representations will be
ome notonly lo
alized in position and/or head dire
tion but in the other variables as well. This behavior isnot 
onsistent with the de�nition of an ideal pla
e or head-dire
tion 
ell. However, many experimentsshow 
orrelations of pla
e 
ell �ring with nonspatial variables as well (Redish, 1999). One parti
ularlyinteresting instan
e of su
h a variable is 'room identity'. If a rat experien
es multiple environments,usually transitions between these will be seldom, i.e. the rat will more often turn and traverse a singleroom than swit
h rooms. In this 
ase room identity will be en
oded by the SFA outputs. For n roomsat most n − 1 de
orrelated SFA outputs 
an 
ode for the room identity. The following outputs willthen 
ode for a joint representation of spa
e and room identity. After sparse 
oding, many outputunits will �re in one room only (the less sparse ones in few rooms), and possibly in a 
ompletelyunrelated fashion to their spatial �ring patterns in another room. This behavior is 
onsistent with the'remapping' phenomenon in pla
e 
ells (e.g. Muller and Kubie, 1987).A great amount of work has been done investigating the impa
t of environmental manipulations26



on oriospatial 
ell �ring in known rooms, e.g. shifts and rotations of landmarks relative to ea
h other(Redish, 1999). How would our model behave after su
h 
hanges to the learned environment? Su
htransformations e�e
tively lead to visual input stimuli outside the set of all possible views in thetraining environment. In this 
ase, we expe
t the system's performan
e to deteriorate unless a newrepresentation is learned, but more work is ne
essary to investigate this question.Our approa
h predi
ts in
reasing slowness (i.e. de
reasing eta-values of �ring rates) in the pro
essinghierar
hy between retina and hippo
ampus. Additionally, pla
e 
ell and head dire
tion 
ell outputshould be signi�
antly sparser than their inputs. Our main predi
tion is that 
hanging movementstatisti
s dire
tly in�uen
es the invarian
e properties of oriospatial 
ells: e.g. an experiment in a lineartra
k where the rat more often turns on mid-tra
k should yield less head-dire
tion dependent pla
e
ells.Experimentally, the joint positional and orientational dependen
e of oriospatial 
ells is hard tomeasure due to the size of the three-dimensional parameter spa
e, and even more so if the developmentover time is to be measured. Furthermore, pre
ise data on movement traje
tories is rare in the existingliterature on oriospatial 
ells. A

ordingly, little data is available to verify or falsify our predi
tion howthe brain's oriospatial 
odes depend on the movement statisti
s. As an alternative to determining themovement statisti
s in behavioral tasks, some work has been done on passive movement of rats, wherethe movement statisti
s is 
ompletely 
ontrolled by the experimenter (e.g. Gavrilov et al. 1998), butthese results might not be representative for voluntary motion (Song et al., 2005). Markus et al. �nddire
tional pla
e �elds in the 
enter of a plus maze although in the 
enter of the maze more rotationso

ur than in the arms (Markus et al., 1995). This 
ould be a 
ontradi
tion to our model, althoughnot the frequen
y but the relative speed, whi
h was not measured in (Markus et al., 1995), determineshead dire
tion invarian
e in our model. Overall, the dependen
e of oriospatial 
ells on the animal'smovement statisti
s as proposed here remains to be tested experimentally.Con
lusionWe 
on
lude that a purely sensory driven unsupervised system 
an reprodu
e many properties oforiospatial 
ells in the rodent brain, in
luding pla
e 
ells, head-dire
tion 
ells, spatial view 
ells, andto some extent even grid 
ells. These di�erent 
ell types 
an be modeled with the same system, andthe output 
hara
teristi
s solely depends on the movement statisti
s of the virtual rat. Furthermore,we showed that the integration of vestibular a

eleration information 
an be used to learn pla
e 
ellsand head-dire
tion 
ells with the same movement statisti
s and thus at the same time.7 A
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8 Appendix*8.1 Proofs of TheoremsProof of Theorem 1The te
hnique of variational 
al
ulus 
an be illustrated by means of an expansion in the spirit of a Taylorexpansion. Let us assume, we knew the fun
tion gj that optimizes the obje
tive fun
tion Ψ. The e�e
t of asmall 
hange δg of gj on the obje
tive fun
tion Ψ 
an be written as
Ψ(gj + δg) − Ψ(gj) =

Z
δΨ

δg
(s) δg(s)ds + ... , (35)where the ellipses stand for higher order terms in δg. The fun
tion δΨ

δg
is the variational derivative of thefun
tional Ψ and usually depends on the 
on�guration, the optimal fun
tion gj and possibly derivatives of gj .Its analogue in �nite-dimensional 
al
ulus is the gradient.We now derive an expression for the variational derivative of the obje
tive fun
tion (13). To keep the
al
ulations tidy, we split the obje
tive in two parts and omit the dependen
e on the 
on�guration s.

Ψ(gj) =:
1

2
∆(gj) − Ψ̃(gj) (36)The expansion of Ψ̃ is straightforward:

Ψ̃(gj + δg) − Ψ̃(gj) = 〈δg [λj0 + λjjgj +
X

i<j

λjigi]〉s + ... (37)
=

Z

δg ps [λj0 + λjjgj +
X

i<j

λjigi]ds + ... (38)For the expansion of ∆(gj) we �rst simplify the expression by 
arrying out the velo
ity integration and usingthe velo
ity tensor K:
∆(gj)

(9)
= 〈∇gT

j vv
T∇gj〉s,v = 〈∇gT

j 〈vv
T 〉

v|s∇gj〉s (14)
= 〈∇gT

j K∇gj〉s (39)We 
an now expand ∆(gj) as follows
1

2
∆(gj + δg) − 1

2
∆(gj)

(39)
=

1

2
〈∇(gj + δg)T

K∇(gj + δg)〉s − 1

2
〈∇gT

j K∇gj〉s (40)
=

1

2
〈∇gT

j K∇δg + ∇δgT
K∇gj〉s + ... (41)

= 〈∇δgK∇gT
j 〉s + ... (42)

(sin
e K is symmetri
)
(8)
=

Z

ps∇δgK∇gT
j d s (43)

=

Z

∇ ·
h

δgps n
T
K∇gj

i ds − Z δg∇ · (psK∇gj) ds + ... (44)
=

Z

∂V

δgps n
T
K∇gj dA −

Z

δg∇ · (psK∇gj)ds + ... (45)
(Gauss' theorem)

(17)
=

Z

∂V

δgps n
T
K∇gj dA +

Z

δgps (Dgj) ds + ... (46)28



Here, dA is an in�nitesimal surfa
e element of the boundary ∂V of V and n is the normal ve
tor on dA. Toget the expansion of the full obje
tive fun
tion, we add (38) and (46):
Ψ(gj + δg) − Ψ(gj) =

Z

∂V

δgps n
T
K∇gj dA +

Z

δgps (Dgj − λj0 − λjjgj −
X

i<j

λjigi)ds + ... (47)In analogy to the �nite-dimensional 
ase, gj 
an only be an optimum of the obje
tive fun
tion Ψ if any small
hange δg leaves the obje
tive un
hanged up to linear order. As we employ a Lagrange multiplier ansatz,we have an unrestri
ted optimization problem, so we are free in 
hoosing δg. From this it is 
lear that theright hand side of (47) 
an only vanish if the integrands of both the boundary and the volume integral vanishseparately. This leaves us with the di�erential equation (15) and the boundary 
ondition (16).Proof of Theorem 2Proof : The proof 
an be 
arried out in a dire
t fashion. Again, we omit the expli
it dependen
e on s.
(f,Dg)

(8,17,18)
= −

Z

psf
1

ps

∇ · psK∇g ds (48)
= −

Z

∇ ·
h

psfn
T
K∇g

ids +

Z

ps∇fT
K∇gds (49)

= −
Z

∂V

psf n
T
K∇g

| {z }

(16)
=

dA +

Z

∇fT psK∇gds (50)
(Gauss' theorem)

(16)
=

Z

ps∇fT
K∇g ds (51)

=

Z

ps∇gT
K∇f ds (52)

(sin
e K is symmetri
)
(48−52)

= (Df, g) . (53)Proof of Theorem 3Zero mean: It is obvious that the 
onstant fun
tion f0 = 1 is always an eigenfun
tion of D for eigenvalue 0.As all other eigenfun
tions are orthogonal to f0, they must have zero mean:f0, fj) = 〈fj〉s = 0 ∀ j 6= 0.De
orrelation: For mean-free fun
tions f and g the s
alar produ
t (f, g) is their 
ovarian
e. The orthogo-nality of the eigenfun
tions is thus equivalent to de
orrelation.Unit varian
e: Unit varian
e 
an easily be a
hieved by renormalizing the eigenfun
tions su
h that (f, f) =
〈f2〉s = 1.Proof of Theorem 4

∆(fj)
(39,52)

= (fj ,Dfj) = (fj , ∆jfj) = ∆j (fj , fj)
| {z }

=1

= ∆j . (54)
29



Proof of Theorem 5Without loss of generality we assume that the eigenfun
tions fj are ordered by in
reasing eigenvalue, startingwith the 
onstant f0 = 1. There are no negative eigenvalues, be
ause the eigenvalue is the ∆-value of theeigenfun
tion, whi
h 
an only be positive by de�nition. A

ording to Theorem 1, the optimal responses gjobey the boundary 
ondition (16) and are thus elements of the subspa
e Fb ⊂ F de�ned in Theorem 2. Be
auseof the 
ompleteness of the eigenfun
tions on Fb we 
an do the expansion
gj =

∞X

k=1

αjkfk (55)where we may omit f0 be
ause of the zero mean 
onstraint. We 
an now prove by 
omplete indu
tion that
gj = fj solves the optimization problem.Basis (j=1): Inserting g1 into eqn. (15) we �nd

0 = Dg1 − λ10 − λ11g1 (56)
= −λ10 +

∞X

k=1

α1k(∆k − λ11)fk (57)
⇒ λ10 = 0

∧ (α1k = 0 ∨ ∆k = λ11)∀k ,
(58)be
ause fk and the 
onstant are linearly independent and (56) must be ful�lled for all s. (58) implies thatthe optimal response g1 must be an eigenfun
tion of D. As the ∆-value of the eigenfun
tions is given bytheir eigenvalue, it is obviously optimal to 
hose g1 = f1. Note that although this 
hoi
e is optimal, it is notne
essarily unique, sin
e there may be several eigenfun
tions with the same eigenvalue. In this 
ase any linear
ombination of these fun
tions is also optimal.Indu
tion step: Given that gi = fi for i < j, we prove that gj = fj is optimal. Be
ause of theorthogonality of the eigenfun
tions the de
orrelation 
onstraint (12) yields

0
(12)
= 〈gigj〉s = (fi,

∞X

k=1

αjkfk) = αji ∀i < j . (59)Again inserting the expansion (55) into eqn. (15) yields
0

(15,55)
= (D − λjj)

∞X

k=1

αjkfk − λj0 −
X

i<j

λjifi (60)
(59)
= (D − λjj)

∞X

k=j

αjkfk − λj0 −
X

i<j

λjifi (61)
20
=

∞X

k=j

(∆k − λjj)αjkfk − λj0 −
X

i<j

λjifi (62)
⇒

λj0 = 0
∧ λji = 0 ∀i < j
∧ αjk = 0 ∨ ∆k = λjj ∀k ≥ j ,

(63)be
ause the eigenfun
tions fi are linearly independent. The 
onditions (63) 
an only be ful�lled if gj is aneigenfun
tion of D. Be
ause of Theorem 4 an optimal 
hoi
e for minimizing the ∆-value without violating thede
orrelation 
onstraint is gj = fj . 30



8.2 Qualitative Behavior of the Solutions for inhomogenous movementstatisti
sAs seen in se
tion 5.1.1 for the 
ase where ps and K are independent of s, the solutions of the eigenvalueequation (20) generally show os
illations. A brief 
al
ulation for a 1-dimensional 
on�guration spa
e showsthat their wavelength is given by 2π
p

K/∆. It is reasonable to assume that this behavior will be preservedqualitatively if ps and K are no longer homogeneous but depend weakly on the 
on�guration. In parti
ular,if the wavelength of the os
illation is mu
h shorter than the typi
al s
ale on whi
h ps and K vary, it 
anbe expe
ted that the os
illation �does not noti
e� the 
hange. Of 
ourse, we are not prin
ipally interested inqui
kly varying fun
tions, but they 
an provide insights into the e�e
t of variations in ps and K.To examine this further, we 
onsider the eigenvalue equation (20) for a 1-dimensional 
on�guration spa
eand multiply it by ps:
d

ds
ps(s)K(s)

d

ds
g(s) + ∆ps(s)g(s)

(17,20)
= = 0 (64)We 
an derive an approximate solution of this equation by treating ε := 1/

√
∆ as a small but �nite perturbationparameter. This 
orresponds to large ∆-values, i.e. qui
kly varying fun
tions. For this 
ase we 
an apply aperturbation theoreti
al approa
h that follows the s
heme of Wentzel-Kramers-Brillouin (WKB) approximationused in quantum me
hani
s. Knowing that the solution shows os
illations, we start with the 
omplex ansatz

g(s) = A exp

„
i

ε
Φ(s)

« (65)where Φ(s) is a 
omplex fun
tion that needs to be determined. Treating ε as a small number, we 
an expand
Φ in orders of ε

Φ(s) = Φ0(s) + εΦ1(s) + ... (66)where again the ellipses stand for higher order terms. We insert this expansion into equation (64) and 
olle
tterms of the same order in ε. Requiring ea
h order to vanish separately and negle
ting orders ε2 and higher,we get equations for Φ0 and Φ1:
Φ′2

0 =
1

K
(67)

Φ′
1 =

i

2

(psKΦ′
0)

′

psKΦ′
0

(68)where the prime denotes the derivative with respe
t to s. These equations are solved by
Φ0(s) =

Z s

s0

s

1

K(x)
dx (69)

Φ1(s) =
i

2
ln(psK

1/2) (70)where s0 is an arbitrary referen
e point. Inserting this ba
k into the ansatz (65), we get the approximatesolution
g(s) = A(p2

sK)−1/4 exp

 

i

Z s

s0

s

∆

K(x)
dx

! (71)This shows, that the solutions with large ∆-values show os
illations with lo
al frequen
y p∆/K(s) and am-plitude ∼ (p2
sK)−1/4. As large values for K indi
ate that the rat moves qui
kly, this implies that the lo
alfrequen
y of the solutions is smaller in regions with larger velo
ities whereas small velo
ities, e.g. 
lose to walls,lead to higher frequen
ies than expe
ted for homogeneous movement. Intuitively this means that the fun
tions
ompensate for qui
k movements with smaller spatial frequen
ies su
h that the e�e
tive temporal frequen
y ofthe output signal is kept 
onstant. 31



Understanding the dependen
e of the amplitude on ps and K is more subtle. Under the assumption that
K is independent of s, the amplitude de
reases where ps is large and in
reases where ps is small. Intuitively,this 
an be interpreted as an equalization of the fra
tion of the total varian
e that falls into a small intervalof length ∆s ≫

p
K/∆. This fra
tion is roughly given by the produ
t of the probability p(s)∆s of being inthis se
tion times the squared amplitude K(s)−1/2/p(s) of the os
illation. For 
onstant K, this fra
tion is also
onstant, so the amplitude is e�e
tively res
aled to yield the same 'lo
al varian
e' everywhere. If p is 
onstant,on the other hand, the amplitude of the os
illation is small in pla
es where the rat moves qui
kly and largewhere the rat moves slowly. This 
orresponds to the intuition that from the perspe
tive of slowness there aretwo ways of treating pla
es where the rat moves qui
kly: De
reasing the spatial frequen
y to generate sloweroutput signals and/or de
reasing the amplitude to 'pay less attention' to these regions. There is also a strongformal argument why the amplitude should depend on p2

sK. As the optimization problem is invariant underarbitrary invertible nonlinear 
oordinate 
hanges, the amplitude of the os
illation should depend only on afun
tion of ps and K that is independent of the 
oordinate system. This 
onstrains the amplitude to dependon p2
sK , as this is the only 
ombination that is invariant under 
oordinate 
hanges.The key insight of this analysis is that the optimal fun
tions show os
illations that are spatially 
ompressedin regions where the rat moves with low velo
ities. This implies that the spatial resolution of the SFA solutionsis higher in those regions. Consequently, the size of the pla
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