
Towards automatic personalised content creation for racing games

Julian Togelius, Renzo De Nardi and Simon M. Lucas
Department of Computer Science

University of Essex, UK
{jtogel, rdenar, sml}@essex.ac.uk

Abstract— Evolutionary algorithms are commonly used to
create high-performing strategies or agents for computer games.
In this paper, we instead choose to evolve the racing tracks
in a car racing game. An evolvable track representation is
devised, and a multiobjective evolutionary algorithm maximises
the entertainment value of the track relative to a particular
human player. This requires a way to create accurate models of
players’ driving styles, as well as a tentative definition of when
a racing track is fun, both of which are provided. We believe
this approach opens up interesting new research questions and
is potentially applicable to commercial racing games.

Keywords: Car racing, player modelling, entertainment
metrics, content creation, evolution.

I. THREE APPROACHES TO COMPUTATIONAL
INTELLIGENCE IN GAMES

Much of the research done under the heading “com-
putational intelligence and games” aims to optimise game
playing strategies or game agent controllers. While these
endeavours are certainly worthwhile, there are several other
quite different approaches that could be at least as interesting,
from both an academic and a commercial point of view.

In this paper we discuss three approaches to computational
intelligence in games: optimisation, imitation and innovation.
We describe these approaches as they apply to games in
general and exemplify them as they apply to racing games
in particular. We then describe an experiment where these
approaches are used in a racing game to augment player
satisfaction. The taxonomy given below is of course neither
final nor exhaustive, but it is a start.

A. The optimisation approach

Most research into computational intelligence and games
takes the optimisation approach, which means that an optimi-
sation algorithm is used to tune values of some aspect of the
game. Examples abound of using evolutionary computation
to develop good game-playing strategies, in all sorts of games
from chess to poker to warcraft [1][2].

Several groups of researchers have taken this approach
towards racing games. Tanev [3] developed an anticipatory
control algorithm for an R/C racing simulator, and used
evolutionary computation to tune the parameters of this al-
gorithm for optimal lap time. Chaperot and Fyfe [4] evolved
neural network controllers for minimal lap time in a 3D
motocross game, and we previously ourselves investigated
which controller architectures are best suited for such optimi-
sation in a simple racing game [5]. Sometimes optimisation
is multiobjective, as in our previous work on optimising
controllers for performance on particular racing tracks versus

robustness in driving on new tracks [6]. And there are other
things than controllers that can be optimised in car racing,
as is demonstrated by the work of Wloch and Bentley, who
optimised the parameters for simulated Formula 1 cars in a
physically sophisticated racing game [7].

While games can be excellent test-beds for evolutionary
and other optimisation algorithms, it can be argued that
improving game-playing agents is in itself of little prac-
tical value. From the point of view of commercial game
developers, most game genres are not in a great need of
more effective computer-controlled agents or strategies, as
it is already easy to create competitors that beat all human
players (though there are exceptions to this, such as real-time
strategy games, where more effective AI is a hot research
topic [2]). The problem is rather that game agents don’t
behave interestingly enough.

From the points of view of evolutionary roboticists, neu-
roscientists and other cognitive scientists, optimal behaviour
is often uninteresting. Games can definitely be interesting as
environments in which to study the emergence of intelligence
or certain neural mechanisms, but this requires that both
fitness function and environment allows for behaviours of
the right complexity, and that the particular phenomena to be
studied are not “abstracted away” by the non-computational
intelligence parts of the game.

B. The innovation approach

The boundary between the optimisation approach and
the innovation approach is not clear-cut, but the innova-
tion approach is more focused on generating interesting, or
complex, as opposed to optimal behaviour. The innovation
approach sees games as environments for the development of
complex intelligence, rather than computational intelligence
techniques as means of achieving particular results as games.
(Though the two perspectives are of course not exclusive, and
many projects take both.) Typically this entails not knowing
exactly what one is looking for.

In this approach, it is desirable not to constrain the creativ-
ity of the evolutionary algorithm, and, if evolving controllers,
that the controller is situated within a closed sensorimotor
loop [8]. Therefore, the agents are usually fed relatively
unprocessed data (such as first-person visual or other sensor
data) instead of abstract and pre-categorized representations
of the environment (such as types and numbers of enemies
around, or parameters describing the racing track), and the
outputs of the controller are treated as primitive movement
commands rather than e.g. which plan to select.



In car racing we can see examples of the innovation
approach to computational intelligence in work done by
Floreano et al. [9] on evolving active vision, work which was
undertaken not to produce a controller which would follow
optimal race-lines but to see what sort of vision system would
emerge from the evolutionary process. We have previously
studied the effect of different fitness measures in competitive
co-evolution of two cars on the same tracks, finding that
qualitatively different behaviour can emerge depending on
whether controllers are rewarded for relative or absolute
progress [10].

C. The imitation approach

While evolutionary computation is predominant in the two
previous approaches, the imitation approach relies on various
forms of supervised learning. Typically, what is imitated is a
human player, but a game agent can of course plausibly try
to imitate another agent.

A major example of the imitation approach to computa-
tional intelligence in racing games is the XBox game Forza
Motorsport from Microsoft Game Studios. In this game,
the player can train a “drivatar” to play just like himself,
and then use this virtual copy of himself to get ranked on
tracks he doesn’t want to drive himself, or test his skill
against other players’ drivatars. Moving from racing games
to real car driving, Pomerleau’s work on teaching a real car
to drive on highways through supervised learning based on
human driving data is worth mentioning as an example of
the imitation approach [11]. The reason for using imitation
rather than optimisation in this case was probably not that
interesting driving was preferred to optimal driving, but
rather that evolution using real cars on real roads would be
costly.

Our own work on imitating the driving styles of real
human players

D. Combining imitation and innovation for content creation

All the above examples deal with designing or tuning
behaviours and other aspects of agents, i.e. vehicles. But
there are no obvious reasons why this should not be done
with other aspects of racing games. Indeed, very large parts
of the budget of a commercial game go into creating game
content, such as levels, tracks, and artwork, and there is no
reason why computational intelligence should not be brought
to bear on this domain.

In this paper, we propose a method for on-line personalised
automatic content creation, combining the imitation and
innovation approaches. The first step of this method is to
acquire a model of the human driver, which is accurate in
relevant respects. The controller representation and racing
game used for the modelling is the same as in our ear-
lier experiments using the optimisation approach. Next, we
evolve new racing tracks specifically tailored to the modelled
human, using the controller generated through modelling to
test the tracks. The tracks are “optimised” for entertainment
value.

Fig. 1. Close-up of the car, and a section of the test track. Lines protruding
from the car represent the positions and ranges of the wall sensors.

This paper is based on ideas and preliminary experiments
reported in our earlier workshop paper [12]. In this paper,
we extend the discussion, and report new and significantly
different methods for both player modelling and track evo-
lution.

II. RACING GAME, SENSORS, CONTROLLERS

Our experiments make use of a simple racing game,
which was developed in order to qualitatively reproduce
the experience of driving a toy radio-controlled car on a
tabletop track. The car actuators accept a discrete set of
nine movement commands, corresponding to the keyboard
arrow keys and combinations of them. A Newtonian physics
model is implemented, allowing for momentum, skidding,
and complex rebounds from collisions with walls or other
vehicles. Apart from walls, tracks also consist of a number of
waypoints, which the car must pass in order. In our previous
experiments the fitness of the controller was computed as
the number of waypoints passed in a certain period of time;
below we use the waypoints in a slightly more sophisticated
way.

The controllers are based on neural networks, and take
sensor information as inputs and produces movement com-
mands as outputs. As for the sensors, these consist of the
speed of the car, a waypoint sensor giving the angle between
the car’s heading and the direction to the current waypoint,
and a number of wall sensors. The wall sensors return
the approximate distance to the nearest wall in a certain
direction, or zero if no wall is within range. For the current
experiments we use ten wall sensors on the car, ranges
between 100 and 200 pixels and more sensors in the front
of the car than in the back. All sensors are normalised to
returning values between 0 and 1, and have a small amount
of noise added to them.

III. THE CASCADING ELITISM ALGORITHM

We use artificial evolution both for modelling players
and constructing new tracks, and in both cases we have to
deal with multiobjective fitness functions. While evolutionary
multiobjective optimisation is a rich and active research field,
what we need here is just a simple way of handling more
than one fitness function. We are not interested in pareto
fronts; what we are interested in is specifying which fitness
measures have higher priorities than others. A simple solution



to this is using an evolution strategy with multiple elites. In
the case of three fitness measures, it works as follows: out
of a population of 100, the best 50 genomes are selected
according to fitness measure f1. From these 50, the 30 best
according to fitness measure f2 are selected, and finally the
best 20 according to fitness measure f3 are selected. Then
these 20 individuals are copied four times each to replenish
the 80 genomes that were selected against, and finally the
newly copied genomes are mutated.

This algorithm, which we call Cascading Elitism, is in-
spired by an experiment by Jirenhed et al. [13].

1) On the effects of Cascading Elitism: At each generation
this algorithm selects the elite on the basis of what is a non-
linear combination of the fitness functions. If we consider the
extreme case of two independent fitnesses, each one of the
selection steps behaves like an independent elitist algorithm
in which part of the elite is randomly removed (by the
other selections). In another extreme case, that of inversely
dependent fitnesses, the second selection step would always
pick the worst part (the worst according to the first fitness
but the best according to the second) of the first elite. The
size of the first elite and the ratio between the two elites
therefore starts to be important.

In our situation, like in most interesting problems, the fit-
nesses are neither independent nor fully inversely dependent,
and a more in depth and systematic analysis is needed to
go beyond mere speculations. While reserving this to future
research, in our experiments the ratios 3/5 and 2/3 were
arrived at through manual tuning.

IV. PLAYER MODELLING

The first step in our method is to acquire a good model of
the human driver, that can then be used to test tracks during
evolution. Here, we first need to define what it means for
a player model to be good, and then decide what learning
algorithm and representation to use.

A. When is a player model adequate?

The only complete model of a human player is the human
player himself. This is both because human brains and
sensory systems are rather more complex than anything
machine learning can learn, and because of the limited
amount of training data available from the few laps around
a test track which is the most we can realistically expect a
player to put up with. Further, it is likely that a controller that
accurately reproduces the player’s behaviour in some respects
and circumstances work less well in others. Therefore we
need to decide what features we want from the player model,
and which features have higher priority than others.

As we want to use our model for evaluating fitness of
tracks in an evolutionary algorithm, and evolutionary algo-
rithms are known to exploit weaknesses in fitness function
design, the highest priority for our model is robustness. This
means that the controller does not act in ways that are grossly
inconsistent with the modelled human, especially that it does
not crash into walls when faced with a novel situation. The
second criterion is that the model has the same average speed

as the human on similar stretches of track, e.g. if the human
drives fast on straight segments but slows down well before
sharp turns, the controller should do the same. That the
controller has a similar driving style to the human, e.g. drives
in the middle of straight segments but close to the inner wall
in smooth curves (if the human does so), is also important
but has a lower priority.

B. Direct modelling

What we call direct modelling is what is arguably the most
straightforward way of acquiring a player model: use super-
vised learning to associate the state of the car with the actions
the human take given that car state. We let several human
players drive test tracks, and logged the speed and the outputs
of waypoint sensor and the wall sensors (as defined above)
together with the action taken by the human at each timestep.
Two methods of supervised learning were tried on this data
set: training a multilayer perceptron for use in the controller
with backpropagation, and using the unprocessed data for
controlling the car with nearest neighbour classification of
input data. Both methods resulted in worthless controllers
that rarely completed a whole lap. While the trained neural
networks were worthless in an uninteresting way, the nearest
neighbour-based controllers reproduced the modelled play-
ers’ driving style almost perfectly, until the slight random
perturbations in the game presented the controller with a
situation that differed enough from anything present in the
training data, and the car crashed. None of the controllers
were able to recover from crashes, as the human players had
not crashed during the data collection, and thus the situation
was not in the data set.

We believe this not to be a problem with the particu-
lar supervised learning algorithms we used but rather an
unavoidable problem with the direct modelling approach.
As no model is perfect, controllers developed with direct
modelling will tend to err, which diminish their performance
to lower than the modelled human. In general, it is very
unlikely that they will perform better than or as good as
the modelled human (though it is theoretically possible that
individual controllers could perform well), as any deviance
from correct modelling will tend toward random behaviour.
Such imperfect controllers will likely crash into walls, and
will not know how to recover, as the controllers can’t learn
from their mistakes.

This problem was recognized by the developers of Forza
Motorsport, who solved it by placing certain constraints on
the types of tracks that were allowed in the game, and
then recording the player’s racing line over each possible
track segment. Still, collisions with walls could not be
entirely avoided, so a hard-coded crash-recovery behaviour
was needed [14]. While this modelling method ostensibly
works, it places far too many constraints on the tracks to be
useful for our purposes.

C. Indirect modelling

Indirect modelling means measuring certain properties of
the player’s behaviour and somehow inferring a controller



that displays the same properties. This approach has been
taken by e.g. Yannakakis in a simplified version of the
Pacman game [15]. In our case, we start from a neural
network-based controller that has previously been evolved
for robust but not optimal performance over a wide variety
of tracks, as described in [6]. We then continue evolving
this controller with the fitness function being how well its
behaviour agrees with certain aspects of the human player’s
behaviour. This way we satisfy the top-priority robustness
criterion, but we still need to decide on what fitness function
to employ in order for the controller to satisfy the two other
criteria described above, situational performance and driving
style.

In our earlier paper [12], we measured the average driving
speed of the human player on three tracks designed to
represent different types of driving challenges, and then
evolved controllers to match that performance as closely
as possible on each of the three tracks. That method was
successful, but could be argued to fail to capture much of
the driving style of the player. Here we make an attempt to
model the driving in more detail while still using an indirect
approach.

First of all, we design a test track, featuring a number of
different types of racing challenges. The track, as pictured
in (fig 2), has two long straight sections where the player
can drive really fast (or choose not to), a long smooth curve,
and a sequence of nasty sharp turns. Along the track are 30
waypoints, and when a human player drives the track, the
way he passes each waypoint is recorded. What is recorded
is the speed of the car when the waypoint is passed, and
the orthogonal deviation from the straight path between the
waypoints, i.e. how far to the left or right of the waypoint the
car passed. This matrix of two times 30 values constitutes
the raw data for the player model.

The actual player model is constructed using the Cascad-
ing Elitism algorithm, starting from a general controller and
evolving it on the test track. Three fitness functions are used,
based on minimising the following differences between the
real player and the controller:

• f1: total progress (number of waypoints passed within
1500 timesteps),

• f2: speed at which each waypoint was passed,
• f3: orthogonal deviation was passed.
The first and most important fitness measure is thus

total progress difference, followed by speed and deviation
difference respectively.

D. Results

In our experiments, five different players’ driving was sam-
pled on the test track, and after 50 generations of the Cascad-
ing Elitism algorithm with a population of 100, controllers
whose driving bore an acceptable degree of resemblance
to the modelled humans had emerged. The total progress
varied considerably between the five players - between 1.31
and 2.59 laps in 1500 timesteps - and this difference was
faithfully replicated in the evolved controllers, which is to say

Fig. 2. The test track and the car.

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fi
tn

es
s 

(p
ro

ge
ss

, s
pe

ed
)

0 10 20 30 40 50
−11

−10.5

−10

−9.5

−9

−8.5

−8

−7.5

−7

−6.5

−6

Generations

Fi
tn

es
s 

(o
rth

og
on

al
 d

ev
ia

tio
n)

speed
progress
orthogonal deviation

Fig. 3. Evolving a controller to model a slow, careful driver. Since the initial
general controller is quite performing, the evolutionary algorithm quickly
adapts the driving style to obtain the required progress and speeds. At last
also the ortogonal deviation fitness improves. See IV-C for the description
of the fitnesses.

that some controllers drove much faster than others (see the
speed fitness in fig.3 and fig.4 ) . Progress was made on the
two other fitness measures as well, and though there was still
some numerical difference between the real and modelled
speed and orthogonal deviation at most waypoint passings,
the evolved controllers do reproduce qualitative aspects of
the modelled players’ driving. For example, the controller
modelled on the first author drives very close to the wall in
the long smooth curve, very fast on the straight paths, and
smashes into the wall at the beginning of the first sharp turn.
Conversely, the controller modelled on the anonymous and
very careful driver who scored the lowest total progress crept
along at a steady speed, always keeping to the center of the
track.



0 10 20 30 40 50

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Fi
tn

es
s 

(p
ro

ge
ss

, s
pe

ed
)

0 10 20 30 40 50
−11

−10.5

−10

−9.5

−9

−8.5

−8

−7.5

−7

Generations

Fi
tn

es
s 

(o
rth

og
on

al
 d

ev
ia

tio
n)

speed
progress
orthogonal deviation

Fig. 4. Evolving a controller to model a good driver. The lack of progress on
minimising the progress difference is the result of the fact that the progress
of the modelled driver is very close to that of the generic controller used to
initialise the evolution. See IV-C for the description of the fitnesses.

V. TRACK EVOLUTION

Once a good model of the human player has been acquired,
we will use this model to evolve new, fun racing tracks for
the human player. In order to do this, we must know what
it is for a racing track to be fun, how we can measure this
property, and how the racing track should be represented
in order for good track designs to be in easy reach of the
evolutionary algorithm. We have not been able to find any
previous research on evolving tracks, or for that sake any sort
of computer game levels or environments. However, Ashlock
et al.’s paper on evolving path-finding problems is worthy to
mention as a an example of an approach that could possibly
be extended to certain types of computer games [16].

A. What makes racing fun?

It is not obvious what factors make a particular racing
track fun to drive, or how to measure any such factors. While
several researchers, notably Malone and Koster, have tried
to explain why some games are more fun than others in
the context of computer games in general, we are aware of
no research on the particular genre of racing games. The
following discussion is based on Malone, Koster and our
own observations.

Thomas Malone claims that the factors that make games
fun can be organized into three categories: challenge, fantasy,
and curiosity [17]. The first thing to point out about challenge
is that the existence of some sort of goal adds to the
entertainment value. Further, this goal should not be too hard
or too easy to attain, and the player should not be too certain
about what level of success he will achieve. Translated to
the context of racing game tracks, this ought to mean that
the track should not be too easy or too difficult to drive,
and that the track should encourage the player to try driving
strategies that might work, and might not. These factors can
be estimated by how close the mean speed of the player on

the track is to a pre-set target speed, and as how variable this
mean speed is between attempts or laps, respectively.

Games that include fantasy, according to Malone, “show
or evoke images of physical objects or social situations
not actually present”. The sensation of being somewhere
else, being someone else, doing something else. This is an
important aspect of many racing games, but probably not one
we can investigate in the graphically limited simulation we
are currently using.

Malone’s third factor is curiosity. He claims that fun
games have an “optimal level of informational complexity”
in that their environments are novel and surprising but not
completely incomprehensible. These are games that invite
exploration, and keeps the user playing just to see what
happens next. It is not entirely clear how this insight can be
transferred to the domain of racing games. It could be argued
that tracks should be varied, combining several different
types of challenges in the same track. It could also be argued
that getting to drive a new track drawn from a limitless
supply whenever you want, provokes enough curiosity, in
which case the very method we are proposing in this paper
is the answer to the curiosity challenge, as evolutionary
algorithms are very good at coming up with unexpected
solutions.

Raph Koster has a different take on fun, when he claims
that fun is learning, and games are more or less fun depend-
ing on how good or bad teachers they are [18]. He concurs
with Malone that the level of challenge in a game should be
appropriate, but further claims that the game should display
a good learning curve: new, more complex and rewarding
challenges should be introduced at the rate old challenges
are mastered. In the car racing domain this could mean that
a good track design is one which is initially hard to drive,
but which the player quickly learns to master.

An observation of our own, confirmed by the opinions of
an unstructured selection of non-experts, is that tracks are fun
where it is possible to drive very fast on straight sections, but
it is necessary to brake hard in preparation for sharp turns,
turns which preferably can be taken by skidding. In other
words, it’s fun to almost lose control. However, it is possible
that this is a matter of personality, and that different players
attach very different values to different fun factors. Some
people seem to like to be in control of things, and people
have very different attention spans, which should mean that
some people would want tracks that are easier to learn than
others. Identifying different player types and being able to
select a mix of fun factors optimal to these players would be
an interesting project, but we are not aware of any empirical
studies on that subject.

B. Fitness functions

Developing reliable quantitative measures of, and ways of
maximising, all the above properties would probably require
significant effort. For this paper we chose a set of features
which would be believed not to be too hard to measure, and
designed a fitness function based on these. The features we
want our track to have for the modelled player, in order of



decreasing priority, is the right amount of challenge, varying
amount of challenge, and the presence of sections of the track
in which it is possible to drive really fast. The corresponding
fitness functions are:

• f1: the negative difference between actual progress and
target progress (in this case defined as 30 waypoints in
700 timesteps),

• f2: variance in total progress over five trials of the same
controller on the same track,

• f3: maximum speed.

C. Track representation

In our earlier paper we evolved fixed-length sequences
of track segments. These segments could have various cur-
vatures and decrease or increase the breadth of the track.
While this representation had the advantage of very good
evolvability in that we could maximise both progress and
progress variance simultaneously, the evolved tracks did look
quite jagged, and were not closed; they ended in a different
point than they started, so the car had to be “teleported” back
to the beginning of the track. We therefore set out to create a
representation that, while retaining evolvability, allowed for
smoother, better-looking tracks where the start and end of
the track connect.

The representation we present here is based on b-splines,
or sequences of Bezier curves joined together. Each segment
is defined by two control points, and two adjacent segments
always share one control point. The remaining two control
points necessary to define a Bezier curve are computed in
order to ensure that the curves have the same first and
second derivatives at the point they join, thereby ensuring
smoothness. A track is defined by a b-spline containing 30
segments, and mutation is done by perturbing the positions
of their control points.

The collision detection in the car game works by sampling
pixels on a canvas, and this mechanism is taken advantage
of when the b-spline is transformed into a track. First thick
walls are drawn at some distance on each side of the b-
spline, this distance being either set to 30 pixels or subject
to evolution depending on how the experiment is set up. But
when a turn is too sharp for the current width of the track,
this will result in walls intruding on the track and sometimes
blocking the way. The next step in the construction of the
track is therefore “steamrolling” it, or traversing the b-spline
and painting a thick stroke of white in the middle of the
track. Finally, waypoints are added at approximately regular
distances along the length of the b-spline. The resulting track
(see fig.2can look very smooth, as evidenced by the test track
which was constructed simply by manually setting the control
points of a spline.

D. Initialisation and mutation

In order to investigate how best to leverage the representa-
tional power of the b-splines, we experimented with several
different ways of initialising the tracks at the beginning
of the evolutionary runs, and different implementations of

Fig. 5. Track evolved using the random walk initialisation and mutation.

the mutation operator. Three of these configurations are
described here.

1) Straightforward: The straightforward initial track
shape forming a rectangle with rounded corners. Each mu-
tation operation then perturbs one of the control points by
adding numbers drawn from a gaussian distribution with
standard deviation 20 pixels to both x and y axes.

2) Random walk: In the random walk experiments, mu-
tation proceeds like in the straightforward configuration, but
the initialisation is different. A rounded rectangle track is
first subject to random walk, whereby hundreds of mutations
are carried out on a single track, and only those mutations
that result in a track on which a generic controller is not
able to complete a full lap are retracted. The result of such a
random walk is a severely deformed but still drivable track.
A population is then initialised with this track and evolution
proceeds as usual from there.

3) Radial: The radial method of mutation starts from an
equally spaced radial disposition of the control points around
the center of the image; the distance of each point from
the center is generated randomly. Similarly at each mutation
operation the position of the selected control point is simply
changed randomly along the respective radial line from the
center. Constraining the control points in a radial disposition
is a simple method to exclude the possibility of producing
a b-spline containing loops, therefore producing tracks that
are always fully drivable.

E. Results

We evolved a number of tracks using the b-spline rep-
resentation, different initialisation and mutation methods,
and different controllers derived using the indirect player
modelling approach.

1) Straightforward: Overall, the tracks evolved with the
straightforward method looked smooth, and were just as easy
or hard to drive as they should be: the controller for which the



Fig. 6. A track evolved (using the radial method) to be fun for the first
author, who plays too many racing games anyway. It is not easy to drive,
which is just as it should be.

Fig. 7. A track evolved (using the radial method) to be fun for the second
author, who is a bit more careful in his driving. Note the absence of sharp
turns.

track was evolved typically made a total progress very close
to the target progress. However, the evolved tracks didn’t
differ from each other as much as we would have wanted.
The basic shape of a rounded rectangle shines through rather
more than it should.

2) Random walk: Tracks evolved with random walk ini-
tialisation look weird (see 5) and differ from each other in an
interesting way, and so fulfil at least one of our objectives.
However, their evolvability is a bit lacking, with the actual
progress of the controller often quite a bit different from the
target progress and maximum speed low.

3) Radial: With the radial method, the tracks evolve
rather quickly and look decidedly different (see fig.6 and
6 depending on what controller was used to evolve them,

and can thus be said to be personalised. However, there is
some lack of variety in the end results in that they all look
slightly like flowers, clear bias of the type of mutation used.

4) Comparison with segment-based tracks: It is interest-
ing to compare these tracks with some tracks evolved using
the segment-based representation from our previous paper.
Those tracks (see fig.8) do show both the creativity evolution
is capable of and a good ability to optimise the fitness values
we define. But they don’t look like anything you would want
to get out and drive on.

VI. DISCUSSION

We believe the ideas described in this paper hold great
promise, and that our player modelling method is good
enough to be usable, but that there is much that needs to
be done in order for track evolution to be incorporated in
an actual game. To start with, the track representation and
mutation methods need to be developed further, until we
arrive at something which is as evolvable and variable as the
segment-based representation but looks as good as (and is
closed like) the b-spline-based representation. Features such
as self-intersection also need to be allowed.

Further, the racing game we have used for this investiga-
tion is too simple in several ways, not least graphically but
also in its physics model being two-dimensional. A natural
next step would be to repeat the experiments performed here
in a graphically advanced simulation based on an suitable
physics engine, such as Ageia’s PhysX technology [19]. In
such a simulation, it would be possible to evolve not only the
track in itself, but also other aspects of the environment, such
as buildings in a city in which a race takes place. This could
be done by combining the idea of procedural content creation
[20][21] with evolutionary computation. Another exciting
prospect is evolving personalised competitors, building on
the results of our earlier investigations into co-evolution in
car racing [10].

In the section above on what makes racing fun, we
describe a number of potential measures of entertainment
value, most of which are not implemented in the experiments
described here. Defining quantitative versions of these mea-
sures would definitely be interesting, but we believe it is more
urgent to study the matter empirically. Malone’s and Koster’s
oft-cited hypotheses are just hypotheses, and as far as we
know there are no psychological studies that tell us what
entertainment metric would be most suitable for particular
games and types of player. Real research on real players is
needed. Such research could be in the vein of Yannakakis’
and Hallam’s studies on the Pac-Man game [22], where
human players’ reports on how much they enjoyed playing
the game under various configurations were correlated with
quantitative approximations of challenge and curiosity.

Finally we note that although we distinguished between
different approaches to computational intelligence and games
in the beginning to this paper, many experiments can be
viewed from several perspectives. The focus in this paper
on using evolutionary computation for practical purposes
in games is not at all incompatible with using games for



Fig. 8. Tracks evolved using the segment-based method. Track (a) is evolved for a weak player, and tracks (b) and (c) for a good player. Tracks (a) and
(b) are evolved using all three fitness functions defined above, while track (c) is evolved using only progress fitness.

studying under what conditions intelligence can evolve, a
perspective we have taken in some of our previous papers.
On the contrary.

VII. ACKNOWLEDGEMENTS

We are thankful to Owen Holland, Georgios Yannakakis,
Richard Newcombe and Hugo Marques for insightful discus-
sions.

REFERENCES

[1] G. Kendall and S. M. Lucas, Proceedings of the IEEE Symposium on
Computational Intelligence and Games. IEEE Press, 2005.

[2] P. Spronck, “Adaptive game ai,” Ph.D. dissertation, University of
Maastricht, 2005.

[3] I. Tanev, M. Joachimczak, H. Hemmi, and K. Shimohara, “Evolution
of the driving styles of anticipatory agent remotely operating a scaled
model of racing car,” in Proceedings of the 2005 IEEE Congress on
Evolutionary Computation (CEC-2005), 2005, pp. 1891–1898.

[4] B. Chaperot and C. Fyfe, “Improving artificial intelligence in a
motocross game,” in IEEE Symposium on Computational Intelligence
and Games, 2006.

[5] J. Togelius and S. M. Lucas, “Evolving controllers for simulated car
racing,” in Proceedings of the Congress on Evolutionary Computation,
2005.

[6] ——, “Evolving robust and specialized car racing skills,” in Proceed-
ings of the IEEE Congress on Evolutionary Computation, 2006.

[7] K. Wloch and P. J. Bentley, “Optimising the performance of a
formula one car using a genetic algorithm,” in Proceedings of Eighth
International Conference on Parallel Problem Solving From Nature,
2004, pp. 702–711.

[8] D. Cliff, “Computational neuroethology: a provisional manifesto,” in
Proceedings of the first international conference on simulation of
adaptive behavior on From animals to animats, 1991, pp. 29–39.

[9] D. Floreano, T. Kato, D. Marocco, and E. Sauser, “Coevolution of
active vision and feature selection,” Biological Cybernetics, vol. 90,
pp. 218–228, 2004.

[10] J. Togelius and S. M. Lucas, “Arms races and car races,” in Proceed-
ings of Parallel Problem Solving from Nature. Springer, 2006.

[11] D. A. Pomerleau, “Neural network vision for robot driving,” in The
Handbook of Brain Theory and Neural Networks, 1995.

[12] J. Togelius, R. De Nardi, and S. M. Lucas, “Making racing fun through
player modeling and track evolution,” in Proceedings of the SAB’06
Workshop on Adaptive Approaches for Optimizing Player Satisfaction
in Computer and Physical Games, 2006.

[13] D.-A. Jirenhed, G. Hesslow, and T. Ziemke, “Exploring internal
simulation of perception in mobile robots,” in Proceedings of the
Fourth European Workshop on Advanced Mobile Robots, 2001, pp.
107–113.

[14] R. Herbrich, “(personal communication),” 2006.
[15] G. N. Yannakakis and M. Maragoudakis, “Player modeling impact on

players entertainment in computer games,” in User Modeling, 2005,
pp. 74–78.

[16] D. Ashlock, T. Manikas, and K. Ashenayi, “Evolving a diverse
collection of robot path planning problems,” in Proceedings of the
Congress On Evolutionary Computation, 2006, pp. 6728–6735.

[17] T. W. Malone, “What makes things fun to learn? heuristics for
designing instructional computer games,” in Proceedings of the 3rd
ACM SIGSMALL symposium and the first SIGPC symposium on Small
systems, 1980, pp. 162–169.

[18] R. Koster, A theory of fun for game design. Paraglyph press, 2004.
[19] D. Gamez, R. Newcombe, O. Holland, and R. Knight, “Two simulation

tools for biologically inspired virtual robotics,” in Proceedings of the
IEEE 5th Chapter Conference on Advances in Cybernetic Systems,
2006, pp. 85–90.

[20] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley,
Texturing and Modeling: A Procedural Approach. Morgan Kaufmann,
2002.

[21] S. Greuter, J. Parker, N. Stewart, and G. Leach, “Real-time procedural
generation of ‘pseudo infinite’ cities,” in Proceedings of the 1st inter-
national conference on Computer graphics and interactive techniques
in Australasia and South East Asia, 2003.

[22] G. N. Yannakakis and J. Hallam, “Towards capturing and enhancing
entertainment in computer games,” in Proceedings of the Hellenic
Conference on Artificial Intelligence, 2006, pp. 432–442.


