
Experiments on preditability of word inontextand information rate in natural language∗D. Yu. ManinDeember 26, 2006AbstratBased on data from a large-sale experiment with human subjets,we onlude that the logarithm of probability to guess a word in on-text (unpreditability) depends linearly on the word length. This re-sult holds both for poetry and prose, even though with prose, thesubjets don't know the length of the omitted word. We hypothesizethat this e�et re�ets a tendeny of natural language to have an eveninformation rate.1 IntrodutionIn this paper we report a partiular result of an experimental study onpreditability of words in ontext. The experiment's primary motiva-tion is the study of some aspets of poetry pereption, but the resultreported here is, in the author's view, of a general linguisti interest.The �rst study of natural text preditability was performed by thefounder of information theory, C. E. Shannon [1℄. (We'll note thateven in his groundbreaking work [2℄, Shannon brie�y touhed on therelationship between literary qualities and redundany by ontrastinghighly redundant Basi English with Joye's �Finnegan's Wake� whih
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�enlarges the voabulary and is alleged to ahieve a ompression ofsemanti ontent�.) Shannon presented his subjet with random pas-sages from Je�erson's biography and had her guess the next letter untilthe orret guess was reorded. The number of guesses for eah letterwas then used to alulate upper and lower bounds for the entropy ofEnglish, whih turned out to be between 0.6 and 1.3 bits per hara-ter (bp), muh lower than that of a random mix of the same letters.Shannon's results also indiated that onditional entropy dereases asmore and more text history beomes known to the subjet, up to atleast 100 letters.Several authors repeated Shannon's experiments with some mod-i�ations. Burton and Liklider [3℄ used 10 di�erent texts of similarstyle, and fragment lengths of 1, 2, 4, ..., 128, 1000 haraters. Theironlusion was that, ontrary to Shannon, inreasing history doesn'ta�et measured entropy when history length exeeds 32 haraters.F�onagy [4℄ ompared preditability of the next letter for three typesof text: poetry, newspaper, and �a onversation of two young girls�.Apparently, his tehnique involved only one guess per letter, so en-tropy estimates ould not be alulated (see below), and results arepresented in terms of the rate of orret answers, poetry being muhless preditable than both other types.Kolmogorov reported the results of 0.9�1.4 bp for Russian texts inhis work [5℄ that laid the ground of algorithmi omplexity theory. Thepaper ontains no details on the very ingenious experimental tehniue,but it is desribed in the well-known monograph by Yaglom & Yaglom[6℄. Cover and King [7℄ modi�ed Shannon's tehnique by having theirsubjets plae bets on the next letter. They showed that the opti-mal betting poliy would be to distribute available apital among thepossible outomes aording to their probability and so if the subjetsplay in an optimal way (whih is not self-evident though), the letterprobabilities ould be inferred from their bets. Their estimate of theentropy of English was alulated at 1.3 bp. This work also ontainsan extensive bibliography.Moradi et al [8℄ �rst used two di�erent texts (a textbook on digitalsignal proessing and a novel by Judith Krantz) to on�rm Burtonand Liklider's results on the ritial history length (32 haraters),then added two more texts (�101 Dalmatians� and a federal aviationmanual) to study the dependene of entropy on text type and subjet(with somewhat inonlusive results).2



A number of works were devoted to estimating entropy of naturallanguage by means of statistial analysis, without using human sub-jets. One of the �rst attempts is reported in [9℄, where 39 Englishtranslations of 9 lassial Greek texts were used to study entropy de-pendeny on subjet matter, style, and period. A very rude entropyestimate by letter digram frequeny was used. For some of the morereent developments, see [10℄, [11℄ and referenes therein. By the verynature of these methods they an't utilize meaning (and even syntax)of the text, but by the brute fore of ontemporary omputers they be-gin ahieving results that ome reasonably lose to those demonstratedby human language speakers.Our experimental setup di�ers from the previous work in two im-portant aspets. First, we have subjets guess whole words, and notindividual haraters. Seond, the words to be guessed ome (gener-ally speaking) from the middle of a ontext, rather than at the end ofa fragment. In addition to �lling blanks, we present the subjets withtwo other task types where authentiity of a presented word is to beassessed. The reason for this is that while most of the previous studieswere eventually aimed at e�ient text ompression, we are interested inliterary (hie�y, poeti) texts as works of literature, and not as mereharater strings subjet to appliation of ompression algorithms1.Our goal in designing the experiment was to provide researhers in the�eld of poetis with hard data to ground some hypotheses that other-wise are unavoidably speulative. Guessing the next word in sequeneis not the best way to treat literary text, beause even an ordinarysentene like this one is not essentially a linear sequene of words orharaters, but a omplex struture with word assoiations runningall over the plae, both forward and bakward. A poem, even moreso, is a struture with strongly oordinated parts, whih is not readsequentially, muh less written sequentially. Also, pratie shows thateven when guessing letter by letter, people almost always base theirnext harater hoie on a tentative word guess. This is why guessingwhole words in ontext was more appropriate for our purpose.However, the results we present here, as already mentioned, are notrelevant to poetis proper, so we will not dwell on this further, andrefer the interested reader to [12℄.1It should be noted though that e�ient ompression is important not only per se, butalso for ryptographi appliations as pointed out in [11℄. In addition, language modelsdeveloped for the purpose of ompression are suessfully used in appliations like speehreognition and OCR, allowing to disambiguate di�ult ases and orret errors.3



2 Experimental setupIn their Introdution to the speial issue on omputational linguis-tis using large orpora, Churh and Merer [13℄ note that �The 1990shave witnessed a resurgene of interest in 1950s-style empirial andstatistial methods of language analysis�. They attribute this empir-ial renaissane primarily to the availability of proessing power andof massive quantities of data. Of ourse, these fators favor statisti-al analysis of texts as harater strings. However, wide availabilityof omputer networks and interative Web tehnologies also made itpossible to set up large-sale experiments with human subjets.The experiment has the form of an online literary game in Russian2.However, the players are also fully aware of the researh side, havefree aess to theoretial bakground and urrent experimental results,and an partiipate in online disussions. The players are presentedwith text fragments in whih one of the words is replaed with blanksor with a di�erent word. Any sequene of 5 or more Cyrilli letterssurrounded by non-letters was onsidered a �word�. Words are seletedfrom fragments randomly. There are three di�erent trial types:type 1: a word is omitted, and is to be guessed.type 2: a word is highlighted, and the task is to determine whetherit is original or replaed.type 3: two words are displayed, and the subjet has to determinewhih one is the original word.Inorret guesses from trials of type 1 are used as replaements intrials of types 2 and 3.Texts are randomly drawn from a orpus of 3439 fragments ofmostly poeti works in a wide range of styles and periods: from Avant-garde to mass ulture and from 18th entury to ontemporary. Threeprosai texts are also inluded (two lassi novels, and a ontemporarypolitial essay).As of this writing, the experiment has been running almost ontin-uously for three years. Over 8000 people took part in it and olletivelymade almost 900,000 guesses, about a third of whih is of type 1. Thetraditional laboratory experiment ould have never ahieved this sale.Of ourse, the tehnique has its own drawbaks, whih are disussed in2http://ygre.msk.ru 4



detail in [12℄. But they are a small prie to pay for statistial relevane,espeially if it an't be ahieved in any other way.3 ResultsThe spei� goal of the experiment is to disover and analyze system-ati di�erenes between di�erent ategories of texts from the viewpointof how easy it is to a) reonstrut an omitted word, and b) distinguishthe original word from a replaement. However here we'll onsider apartiular property of the texts that turns out to be independent ofthe text type and so probably haraterizes the language itself ratherthan spei� texts. This property is the dependeny of word unpre-ditability on its length.We de�ne unpreditability U as the negative binary logarithm ofthe probability to guess a word, U = − log2 p1, where p1 is the averagerate of orret answers to trials of type 1. For a single word, this isformally equivalent to Shannon's de�nition of entropy, H. However,when multiple words are taken into aount, entropy should be alu-lated as the average logarithm of probability, and not as the logarithmof average probability,
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1 (2)Indeed, the logarithm of probability to guess a word equals theamount of information in bits required to determine the word hoie.Thus, it is this quantity that is subjet to averaging. When dealingwith experimental data, it is ustomary to use frequenies as estimatesof unobservable probabilities. However, there are always words thatwere never guessed orretly and have p1 = 0 for whih logarithm isunde�ned (this is why Shannon's tehinque involves repeated guessingof the same letter until the orret answer is obtained). Formally, ifthere is one element in the sequene with zero (very small, in fat)probability of being guessed, then the amount of information of thewhole sequene may be determined solely by this one element.On the other hand, unpreditability as de�ned above is not sen-sitive to the exat probability to guess suh words, but only on how5



many there are of them. While entropy haraterizes the number oftries required to guess a randomly seleted word, unpreditability har-aterizes the portion of words that would be guessed on the �rst try.They are equal, of ourse, if all words have the same entropy.One way around the problem presented by never-guessed wordswould be to assign some arbitrary �nite entropy to them. We om-pared unpreditability with entropy alulated under this approxima-tion with two values of the onstant: 10 bits (orresponding roughly towild guessing using a frequeny ditionary) and 3 bits (the low bound).In both ases, while H is not equal numerially to U , they turned out tobe in an almost monotoni, approximately linear orrespondene. Thisprobably means that the fration of hard-to-guess words o-varies withunpreditability of the rest of the words. Beause of this, we preferto work in terms of unpreditability, rather than introduing arbitraryhypotheses to alulate an entropy value of dubious validity.Unpreditability as a funtion of word length alulated over allwords of the same length aross all texts is plotted in Fig. 1 andFig. 2 (where word length is measured in haraters and syllablesrespetively). Con�dene intervals on the graphs are alulated basedon the standard deviation of the binomial distribution (sine the dataomes from a series of independent trials with two possible outomesin eah: a guess may be orret or inorret).In the range from 5 to 14 haraters and from 1 to 5 syllables,an exellent linear dependene is observed. Longer words are rare, sothe data for them is signi�antly less statistially reliable. We'll onlydisuss the linear dependene in the range where it is de�nitely valid.4 DisussionIt is very di�ult, for the reasons mentioned above, to ompare ourresults with previous studies. However, there are two points of om-parison that an be made. First, we an roughly estimate the e�et ofword guessing in ontext as opposed to guessing the next word in se-quene. Reall that Shannon [1℄ estimated zeroth-order word entropyfor English based on Zipf's law to be 11.82 bits per word (bpw). Brownet al [10℄ used a word trigram model to ahieve an entropy estimateof 1.72 bp, whih translates to 7.74 bpw for average word length of4.5 haraters in English. This means that trigram word probabilitiesontribute 11.82− 7.74 = 4.08 bpw for predition of word in sequene.6
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But word in ontext partiipates in three trigrams at one: as the last,the middle and the �rst word of a trigram. Only the �rst trigram isavailable when the model is prediting the next word, but all three tri-grams ould be used to �ll in an omitted word (this is a hypothetialexperiment whih was not atually performed). Of ourse, they arenot statistially independent, and as a rough estimate we an assumethat the last trigram ontributes somewhat less information than the�rst one, while the middle trigram ontributes very little (sine all ofits words are already aounted for). In other words, we ould expetthis model to have about 4 bpw more information when guessing wordsin ontext, whih is very signi�ant.The seond point of omparison is provided by [14℄ (Fig. 13 there),where entropy is plotted for the n-th letter of eah word, versus itsposition n. Entropy was estimated using a Ziv�Lempel type algo-rithm. It is well-known that guessing is least on�dent at the wordboundaries for both human subjets and omputer algorithms, andthis hart quanti�es the observation: the �rst letter has the entropyof 4 bp, whih drops quikly to about 0.6�0.7 bp for the 5th let-ter and then stays surprizingly onstant all the way through the 16thharater. This hart is pratially the same for the original text anda text with randomly permuted words, whih gives a telling evideneof the urrent language models' strengths and weaknesses. For thepurposes of this disussion, the data allows to reonstrut the depen-deny of word entropy on the word length as h
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is the entropy ofthe i-th letter in a word. This dependeny, valid for the languagemodel in [14℄, has a steep inrease from 1 through 5 haraters, andthen an approximately linear growth with a muh shallower slope of0.6�0.7 bp. This is very di�erent from our Fig. 1, and even thoughour data is on unpreditability, rather than entropy, the di�erene isprobably signi�ant.In fat, our result may at �rst glane seem trivial. Indeed, aord-ing to a theorem due to Shannon (Theorem 3 in [2℄), for a harater se-quene emitted by a stationary ergodi soure, almost all subsequenesof length n have the same probability exponential in n: Pn = 2−Hn forlarge enough length (H is the entropy of the soure). However, this ex-planation is not valid here for several reasons. Even if we set aside thequestion of natural language ergodiity, from the formal point of view,the theorem requires that n is large enough so that all possible letterdigrams are likely to be enountered more than one (many times, in8



fat). Needless to say that the length of a single word is muh lessthan that. Pratially, if this explanation were to be adopted, we'dexpet the probability to guess a word to be on the order Pn, whihis muh smaller than the observed probability. In fat, the only rea-son our subjets are able to guess words in ontext is that the wordsare onneted to the ontext and make sense in it, while under theassumptions of Shannon's theorem, the equiprobable subsequenes areasymptotially independent of the ontext.Another tentative argument is to presume that the total numberof words in the language (either in the voabulary or in texts, whihis not the same thing) of a given length inreases with length, whihmakes longer words harder to guess due to sheer expansion of possibil-ities. If there had been exponential expansion of voabulary with wordlength, we ould argue that ontextual restritions on word hoie utthe number of hoies by a onstant fator (on the average), so thenumber of words satisfying these restritions still grows exponentiallywith word length. However, the data does not support this idea. Dis-tribution of words by length, whether omputed from the atual textsor from a ditionary (we used a Russian frequeny ditionary ontain-ing 32000 words [15℄), is not even monotoni, let alone exponentiallygrowing. The number of di�erent words grows up to about 8 har-aters of length, then dereases. This behavior is in no way re�etedin Figs 1, 2, so we an onlude that the total number of ditionarywords of a given length is not a fator in guessing suess.In fat, the word length distribution ould have had a diret e�eton unpreditability only if the word length were known to the subjet.But this is generally not the ase. Subjets in our experiment are notgiven any external lue as to the length of the omitted word. SineRussian verse is for the most part metri, the syllabi length of a lineis typially known, and this allows to predit the syllabi length of theomitted word with a great deal of ertainty. However unpreditabilitydepends on word length in exatly the same way for poetry and prose(see Fig. 3), and in prose there are no external or internal lues forthe word length. 3This leaves us with the only reasonable explanation for the ob-3It is also worth noting that average unpreditability of words in poetry and proseis surprisingly lose. In poetry, it turns out, preditability due to meter and rhyme isounterated by inreased unpreditability of semantis and, possibly, grammar. Notably,these two tendenies almost balane eah other. This phenomenon and its signi�ane isdisussed at length in [12℄. 9
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76543210Figure 3: Unpreditability as a funtion of word length in haraters, proseonly served dependeny: in ourse of its evolution, the language tends toeven out information rate, so that longer words arry proportionallymore information. This would be a natural assumption, sine an un-even information rate is ine�ient: some portions will underutilize thebandwidth of the hannel, and some will overutilize it and diminisherror-orretion apabilities. In other words, as language hanges overtime, some words and grammatial forms that are too long will beshortened, and those that are too short will be expanded and rein-fored.It is interesting to note that this hypothesis was also proposed inpassing by Churh and Merer in a di�erent ontext in [13℄. Disussingappliations of trigram word-predition models to speeh reognition,they write (page 12):In general, high-frequeny funtion words like to andthe, whih are aoustially short, are more preditable thanontent words like resolve and important, whih are longer.This is onvenient for speeh reognition beause it meansthat the language model provides more powerful onstraintsjust when the aousti model is having the toughest time.10



One suspets that this is not an aident, but rather a nat-ural result of the evolution of speeh to �ll the human needsfor reliable ommuniation in the presene of noise.A feature that is �onvenient for speeh reognition� is, indeed, notto be unexpeted in natural language, and from our results it appearsthat its extent is muh broader than ould be suggested by Churh andMerer's observation. Of ourse, this is only one of many mehanismsthat drive language hange, and it only ats statistially, so any givenlanguage state will have low-redundany and high-redundany pokets.Thus, any Russian speaker knows how di�ult it is to distinguishbetween mne nado 'I need' and ne nado 'please don't'. Moreover,it is likely that this hange typially proeeds by vaillations. As anexample onsider the evolution of negation in English aording to [16℄(p. 175�176):the original Old English word of negation was ne, asin i ne w	at, 'I don't know'. This ordinary mode of nega-tion ould be reinfored by the hyperboli use of either wiht'something, anything' or n	awiht 'nothing, not anything' [...℄.As time progressed, the hyperboli fore of (n	a)wiht beganto fade [...℄ and the form n	awiht ame to be interpreted aspart of a two-part, �disontinuous� marker of negation ne... n	awiht [...℄. But one ordinary negation was expressedby two words, ne and n	awiht, the stage was set for ellipsisto ome in and to eliminate the seeming redundany. Theresult was that ne, the word that originally had been themarker of negation, was deleted, and not, the re�ex of orig-inally hyperboli n	awiht beame the only marker of nega-tion. [...℄ (Modern English has introdued further hangesthrough the introdution of the �helping word� do.)This looks very muh like osillations resulting from an iterativesearh for the optimum length of a partiular grammatial form. It'sall the more amazing then, how this tendeny, despite its statistialand non-stationary harater, beautifully manifests itself in the data.Addendum. After this paper was published in J. InformationPro., the author beame aware of the following works in whih e�etsof the same nature was disovered on di�erent levels:The disoure level. Genzel and Charniak [17℄ study the entropyof a sentene depending on its position in the text. They show thatthe entropy alulated by a language model, whih does not aount11



for semantis, inreases somewhat in the initial portion of the text.They onlude that the hypothetial entropy value with aount forsemantis would be onstant, beause the ontent of the preeding textwould help prediting the following text.The sentene level. The authors of [18℄ onsider the English sen-tenes with optional relativizer that. They demonstrate experimentallythat the speakers tend to utter the optional relativizer more frequentlyin those sentenes where information density is higher thus �diluting�them. This an be interpreted as a tendeny to homogenize informa-tion density.The syllabe level Aulett and Turk [19℄ demonstrate that in spon-taneous speeh, those syllables that are less preditable, are inreasedin duration and prosodi prominene. In this way, speakers tend tosmooth out the redundany level.Aknowledgements. I am grateful to D. Flitman for hostingthe website, to Yu. Manin, M. Verbitsky, Yu. Fridman, R. Leibov,G. Mints and many others for fruitful disussions. This work ouldnot have happened without the generous support of over 8000 peoplewho generated experimental data by playing the game.Referenes[1℄ Shannon C.E. Predition and entropy of printed English. BellSystem Tehnial Journal, 1951, vol. 30, pp. 50�64.[2℄ Shannon C.E. A mathematial theory of ommuniation. Bell Sys-tem Tehnial Journal, 1948, vol. 27, pp. 379�423.[3℄ Burton N.G., Liklider J.C.R. Long-range onstraints in the sta-tistial struture of printed English. Amerian Journal of Psy-hology, 1955, vol. 68, no. 4, pp. 650�653[4℄ F�onagy I. Informationsgehalt von wort und laut in der dih-tung. In: Poetis. Poetyka. Ïîýòèêà. Warszawa: Pa�nstwoWydawnitwo Naukowe, 1961, pp. 591�605.[5℄ Kolmogorov A. Three approahes to the quantitative de�nition ofinformation. Problems Inform. Transmission, 1965, vol. 1, pp. 1�7.[6℄ Yaglom A.M. and Yaglom I.M. Probability and information Rei-del, Dordreht, 1983. 12
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