Hu, Huping and Wu, Maoxin (2008) Concerning Spin as Mind-pixel: How Mind Interacts with the Brain through Electric Spin Effects. [Journal (Paginated)]
Full text available as:
|
PDF
97Kb |
Abstract
Electric spin effects are effects of electric fields on the dynamics/motions of nuclear/electron spins and related phenomena. Since classical brain activities are largely electric, we explore here a model of mind-brain interaction within the framework of spin-mediated consciousness theory in which these effects in the varying high-voltage electric fields inside neural membranes and proteins mediate mind-brain input and output processes. In particulars, we suggest that the input processes in said electric fields are possibly mediated by spin transverse forces and/or Dirac-Hestenes electric dipoles both of which are associated with the nuclear/electronic spin processes. We then suggest that the output processes (proactive spin processes) in said electric fields possibly involve Dirac negative energy extraction processes, shown by Solomon, and also Dirac-Hestenes electric dipole interactions of nuclei/electrons besides non-local processes driven by quantum information. We propose that these output processes modulate the action potentials, thus influencing the brain, by affecting the cross-membrane electric voltages and currents directly and/or indirectly through changing the capacitance, conductance and/or battery in the Hudgkin-Huxley model. These propositions are based on our own experimental findings, further theoretical considerations, and studies reported by others in the fields of spintronics, high-energy physics and alternative energy research.
Item Type: | Journal (Paginated) |
---|---|
Keywords: | spin, mind-pixel, electric spin effect, spin transverse force, Dirac-Hestenes electric dipole, electric field, proactive spin |
Subjects: | Neuroscience > Biophysics |
ID Code: | 5955 |
Deposited By: | Hu, Dr. Huping |
Deposited On: | 10 Mar 2008 14:55 |
Last Modified: | 11 Mar 2011 08:57 |
References in Article
Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.
Metadata
- ASCII Citation
- Atom
- BibTeX
- Dublin Core
- EP3 XML
- EPrints Application Profile (experimental)
- EndNote
- HTML Citation
- ID Plus Text Citation
- JSON
- METS
- MODS
- MPEG-21 DIDL
- OpenURL ContextObject
- OpenURL ContextObject in Span
- RDF+N-Triples
- RDF+N3
- RDF+XML
- Refer
- Reference Manager
- Search Data Dump
- Simple Metadata
- YAML
Repository Staff Only: item control page