This site has been permanently archived. This is a static copy provided by the University of Southampton.
Cogprints

Spin-Mediated Consciousness Theory: Possible Roles of Neural Membrane Nuclear Spin Ensembles and Paramagnetic Oxygen

Hu, Huping and Wu, Maoxin (2004) Spin-Mediated Consciousness Theory: Possible Roles of Neural Membrane Nuclear Spin Ensembles and Paramagnetic Oxygen. [Journal (Paginated)]

Full text available as:

[img]
Preview
PDF
351Kb

Abstract

A novel theory of consciousness is proposed in this paper. We postulate that consciousness is intrinsically connected to quantum spin since the latter is the origin of quantum effects in both Bohm and Hestenes quantum formulism and a fundamental quantum process associated with the structure of space-time. That is, spin is the “mind-pixel.” The unity of mind is achieved by entanglement of the mind-pixels. Applying these ideas to the particular structures and dynamics of the brain, we theorize that human brain works as follows: Through action potential modulated nuclear spin interactions and paramagnetic O2/NO driven activations, the nuclear spins inside neural membranes and proteins form various entangled quantum states some of which survive decoherence through quantum Zeno effects or in decoherence-free subspaces and then collapse contextually via irreversible and non-computable means producing consciousness and, in turn, the collective spin dynamics associated with said collapses have effects through spin chemistry on classical neural activities thus influencing the neural networks of the brain. Our proposal calls for extension of associative encoding of neural memories to the dynamical structures of neural membranes and proteins. Thus, according our theory, the nuclear spin ensembles are the “mind-screen” with nuclear spins as its pixels, the neural membranes and proteins are the mind-screen and memory matrices, and the biologically available paramagnetic species such as O2 and NO are pixel-activating agents. Together, they form the neural substrates of consciousness. We also present supporting evidence and make important predictions. We stress that our theory is experimentally verifiable with present technologies. Further, experimental realizations of intra-/inter-molecular nuclear spin coherence and entanglement, macroscopic entanglement of spin ensembles and NMR quantum computation, all in room temperatures, strongly suggest the possibility of a spin-mediated mind.

Item Type:Journal (Paginated)
Keywords:mind-pixel, nuclear spin, spin-mediated consciousness
Subjects:Neuroscience > Biophysics
Biology > Theoretical Biology
ID Code:6012
Deposited By: Hu, Dr. Huping
Deposited On:27 Apr 2008 16:19
Last Modified:11 Mar 2011 08:57

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

1. Penrose, R. The Emperor’s New Mind (Oxford: Oxford University Press, 1989).

2. Edelman, G. M. The Remembered Present: A Biological Theory of Consciousness (New York: Basic Books, 1989).

3. Donald, M. J. Quantum theory and the brain. Proc. R. Soc. A. 1990, 427: 43-93.

4. Beck, F., Eccles, J. C. Quantum aspects of brain activity and the role of consciousness. Proc. Natl. Acad. Sci. USA, 1992; 89: 11357-11361.

5. Stapp. H. P. Mind, Matter and Quantum Mechanics (New York: Springer-Verlag, 1993).

6. Crick, F. The Astonishing Hypothesis (New York: Simon & Schuster, 1994).

7. Penrose, R. Shadows of the Mind (Oxford: Oxford University Press, 1994).

8. Hameroff, S., Penrose, R. Conscious events as orchestrated spacetime selections. J. Conscious Stud., 1996; 3: 36-53.

9. Searle, J. The Rediscovery of the Mind (Cambridge, MA: MIT Press, 1992).

10. Churchland, P.S., Sejnowski, T. J. The Computational Brain, 2d. ed. (Cambridge, MA: MIT Press, 1993).

11. Chalmers, D. The Conscious Mind (Oxford: Oxford University Press, 1996).

12. Dirac, P. A. M. The quantum theory of the electron. Proc. R. Soc. A , 1928; 117: 610-624.

13. Penrose, R. A spinor approach to general relativity. Ann. Phys., 1960; 10: 171.

14. Penrose, R. Twistor algebra. J. Math. Phys., 1967; 8: 345.

15. Budinich, P. From the geometry of pure spinors with their division algebra to fermions’s physics. http://www.arxiv.org/pdf/hep-th/0102049, 2002.

16. Cantor, R. S. The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochem., 1997; 36: 2339-2344.

17. Hu, H. P., Wu, M. X. Mechanism of anesthetic action: oxygen pathway perturbation hypothesis’, Med. Hypotheses, 2001; 57, 619-627.

18. Morris, P. G. Nuclear Magnetic Resonance Imaging in Medicine and Biology (Oxford: Clarendon Press, 1986).

19. Nagakura, S., Hayashi, H. and Azumi, T. Dynamic Spin Chemistry (New York: Wiley, 1998).

20. Hayashi, H. Advent of spin chemistry. RIKEN Review, 2002: 44: 7-10.

21. Minaev, B. F. Intermolecular exchange in the system O2 + H2 as a model of spin-catalysis in radical recombination reaction. Theor. Experimental Chem., 1996; 32: 229.

22. Bohm, D., Hiley, B. J. Generalisation of the twistor to Clifford algebras as a basis for geometry. Revista Brasilera de Fisica,, 1984; Vol. Especial Os 70, anos de Mario Schonberg, 1-26.

23. Baez, J. C. Spin foam models. Class.Quant.Grav., 1998; 15: 1827-1858.

24. Smolin, L. Three Roads to Quantum Gravity (New York: Basic Books, 2001).

25. Hestenes, D. Quantum mechanics from self-interaction. Found. Physics, 1983; 15: 63-87.

26. Bohm, D. and Hiley, B. J. The Undivided Universe (London: Routledge, 1993).

27. Salesi, G. and Recami, E. Hydrodynamics of spinning particles. Phys. Rev. A, 1998; 57: 98.

28. Esposito, S. On the role of spin in quantum mechanics. Found. Phys. Lett., 1999; 12: 165.

29. Bogan, J. R. Spin: the classical to quantum connection. http://www.arxiv.org/pdf/quant-ph/0212110, 2002.

30. Kiehn, R. M. An extension to Bohm’s quantum theory to include non-gradient potentials and the production of nanometer vortices. http://www22.pair.com/csdc/pdf/bohmplus.pdf, 1999.

31. Newman, T. E. On a classical, geometric origin of magnetic moments, spin-angular momentum and the Dirac gyromagnetic ratio. Phys. Rev., 2002; 65D: 104005.

32. Galiautdinov, A. A. Quantum theory of elementary process (Ph.D. Thesis). http://www.arxiv.org/pdf/hep-th/0203263, 2002.

33. Finkelstein, D. R. Spin, statatistics, space-time. http://www.physics.gatech.edu/people/faculty/finkelstein/spin_notes.pdf, 2002.

34. Sidharth, B. G. Issues and ramifications in quantized fractal space-time: an interface with quantum superstrings. Chaos Solitons Fractals, 2001 12: 1449-1457.

35. Sidharth, B. G., Chaotic Universe (New York: Nova Science, 2001).

36. Tu, K. Effect of anesthetics on the structure of a phospholipid bilayer: molecular dynamics investigation of halothane in the hydrated liquid crystal phase of dipalmitoyl-phosphatylcholine. Biophys. J., 1998; 75: 2123-2134

37. Koubi, L. Distribution of halothane in a dipalmitoylphosphatidylcholine bilayer from molecular dynamics calculations. Biophys. J., 2000; 78: 800-811.

38. Khitrin, A. K.Ermakov, V. L. Spin Processor’, http://www.arxiv.org/pdf/quant-ph/0205040, 2002.

39. Khitrin, A. K., Ermakov, V. L., Fung, B. M. Information storage using a cluster of dipolar-coupled spins. Chem. Phys. Lett., 2002; 360: 161-166.

40. Khitrin, A. K.; Ermakov, V. L., Fung, B. M. NMR molecular photography. J. Chem. Phys., 2002;117, 6903-6906.

41. Wertz, J. E., Bolton J. R. Electron Spin Resonance: Elementary theory and practical application (New York: McGraw-Hill Book Company, 1972).

42. Marsh, D. Polarity and permeation profiles in lipid membranes. Proc. Natl. Acad. Sci. USA, 2001; 98: 7777–7782.

43. Prosser, R. S., Luchette, P. A., Weterman, P. W., Rozek, A., Hancock, R. E. W. Determination of membrane immersion depth with O2: A high-pressure 19F NMR study. Biophys. J., 2001; 80:1406–1416.

44. Bryan-Brown, G. P., Brown, C. V., Sage, I. C., Hui, V. C. Voltage-dependent anchoring of a nematic liquid crystal on a grating surface. Nature, 1998; 392: 365–367.

45. Tegmark, M. The importance of quantum decoherence in brain processes. Phys. Rev., 2000; 61E: 4194.

46. Hagan, S., Hameroff, S. R. and Tuszynski, J. A. Quantum computation in brain microtubules: decoherence and biological feasibility’, Phys. Rev. E., 2002; 65: 061901(1-10).

47. Warren, W. S. et al. Generation of impossible correlation peaks between bulk water and biomolecules in solution NMR. Science, 1993; 262: 2005.

48. Warren, W. S. et al. MR imaging contrast based on intermolecular zero-quantum coherence. Science, 1998; 281: 274-250.

49. Julsgaard, B., Kozhekin, A., Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature, 2001; 413: 400-403.

50. Kun, S. Y., et. al. Schrodinger cat states in highly-excited strongly-interacting many-body system’, http://www.arxiv.org/pdf/quant-ph/0205036, 2002.

51. Lidar, D. A., Whaley, K. B. Decoherence-free subspaces and subsystems. In Irreversible Quantum Dynamics, Benatti , F., Floreanini, R. (Eds.), 83-120 (Springer Lecture Notes in Physics vol. 622, Berlin, 2003)

52. Castagnoli, G., Finkelstein, D. R. Quantum statistical computation. http://www.arxiv.org/pdf/hep-th/0111120, 2001.

53. Marder, E. et. al. Memory from the dynamics of intrinsic membrane currents. Proc. Natl. Sci. USA, 1996; 93: 13481-13486.

54. Raffy, S., Teissie, J. Control of membrane stability by cholesterol content. Biophys. J., 1999; 76: 2072-2080.

55. Smondyrev, A M., Berkowitz, M. L. Structure of Dipalmitoylphosphatidylcholine-cholesterol bilayer at law and high cholesterol concentrations: molecular dynamics simulation’, Biophys. J., 1999; 77: 2075-2089.

56. Woolf, T. B., Roux, B. Structure, energetics, and dynamics of lipid-protein interactions: A molecular dynamics study of the gramicidin a channel in a DMPC bilayer. Proteins: Struct. Funct. Gen., 1996; 24: 92-114.

57. Akinlaja, J., Sachs, F. The breakdown of cell membranes by electrical and mechanical stress. Biophys. J., 1998; 75: 247-254.

58. Sens, P., Isambert, H. Undulation instability of lipid membranes under electric field. http://www.arxiv.org/pdf/cond-mat/0106634, 2001.

59. Wikswo, J. P. Biomagnetic sources and their models. In Advances in Biomagnetism, Williamson, S. J., et al (Eds) (New York: Plenum, 1990).

60. Kushner, D. J., Baker, A, Dunstall, T. G. Pharmacological uses and perspectives of heavy water and denatured compound. Can. J. Physiol. Pharmacol., 1999; 77: 79-88.

61. Richter, C. P. A study of taste and smell of heavy water (99.8%) in rats. Proc. Soc. Exp. Biol. Med., 1976; 152: 677-84.

62. Richter, C. P. Heavy water as a tool for study of the forces that control length of period of the 24-hour clock of the hamster. Proc. Natl. Acad Sci. USA, 1977; 74: 1295-1299.

63. Limoniemi, R. J. Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. NeuroReport, 1997; 8: 3537-3540.

64. Chicurei, M. Magnetic mind games. Nature, 2002; 417: 114-116.

65. Mennerick, S. Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in Hippocampal cultures. J. Neurosci., 1998; 18: 9716-9726.

66. Philippides, A., Husbands, P., and O’Shea, M. Four-dimensional neural signaling by nitric oxide: A computer analysis. J. Neurosci., 2000; 20: 1199-1207.

67. Fu, Y. X., et al. Temporal specificity in the cortical plasticity of visual space representation. Science, 2002; 296: 1999-2003.

68. Marino, A. A. Environmental electromagnetic fields and public health. In: Foundations of Modern Bioelectricity Marino, A. A., (Eds.) (Marcel Dekker, New York, 1988).

69. Shellock, F. G. Magnetic Resonance Safety Update 2002: Implants and Devices. J. Magn. Resonan. Imaging, 2002; 16: 485–496.

70. Gershenfeld, N. & Chuang, I. L. Bulk spin resonance quantum computation. Science, 1997; 275: 350–356.

Metadata

Repository Staff Only: item control page