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2 Introduction to fMRI: experimental 

design and data analysis 

2.1 Introduction to fMRI 

Functional Magnetic Resonance Imaging (functional MRI or fMRI) is a non-

invasive neuroimaging technique that can be used for studying human brain 

function in vivo. Functional MRI extends the use of Magnetic Resonance 

Imaging to provide information about biological function in addition to the 

anatomical information. Seiji Ogawa first demonstrated that by measuring the 

blood-oxygenation-level-dependent (BOLD) signal, Functional MRI could be 

used to visualize brain function (Ogawa et al., 1990).  

The BOLD fMRI technique is designed to measure primarily, changes in 

the inhomogeneity of the magnetic field that result from changes in blood 

oxygenation. The fact that haemoglobin and deoxyhaemoglobin are 

magnetically different is exploited in the BOLD technique. Magnetic 

susceptibility refers to the amount of magnetization that can be achieved when a 

material is placed in a magnetic field. Deoxyhaemoglobin is paramagnetic and 

introduces an inhomogeneity into the nearby magnetic field, while 

oxyhaemoglobin is weakly diamagnetic and has little effect. Thus, the 

paramagnetic deoxyhaemoglobin induces a susceptibility difference between the 

blood vessels and the surrounding tissue can be used as an endogenous contrast 

(i.e. depends on intrinsic property of the biological tissue).  
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Figure  2.1 BOLD mechanism of functional MRI 

(A) Blood-oxygen level-dependent signal mechanism in magnetic timbre 
imaging (B) oxyhaemoglobin and deoxyhaemoglobin blood flow during 
rest and activation 

Hydrogen nuclei (protons) have magnetic properties, called nuclear spin. 

They behave like tiny rotating magnets. In presence of a magnetic field the 

hydrogen atoms, present in the water molecules of the brain, align themselves 

with this field and reach an equilibrium state. Exchange of energy between two 

systems at a specific frequency is called resonance. Magnetic resonance 

corresponds to the energetic interaction between spins and electromagnetic 

radio frequency (RF). When a brief radio frequency (RF) is applied, the 

hydrogen atoms absorb energy (excitation) and their equilibrium state is 

perturbed. These hydrogen atoms would emit energy (relaxation) at the same 

radio frequency until they gradually return to their equilibrium state. The 

magnetic vector of spinning protons can be broken down into two orthogonal 

components: a longitudinal or Z component, and a transverse component, lying 

on the XY plane. Relaxation gives rise to the magnetic resonance signal and is 

composed of two components. Longitudinal relaxation is due to energy 

exchange between the spins and surrounding lattice (spin-lattice relaxation, 

decay constant T1) and Transverse relaxation (spin-spin relaxation, decay 

constant T2) occurs due to the spins getting out of phase. T1 depends on the 

applied magnetic field strength with longer relaxation times for greater field 
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Figure  2.2 A schematic diagram of functional MRI scanning 

strengths. T2 is independent of the applied magnetic field strength and is always 

shorter than T1. The observed transverse relaxation time T2* is always shorter 

than T2 due to the combined effect of local field inhomogeneities and T2.  

The fundamental concept underlying the formation of a magnetic 

resonance image is a magnetic gradient, i.e. a spatially varying magnetic field. 

Lauterbur (1973) demonstrated that by superimposing a magnetic field that 

varies linearly across space, hydrogen atoms would precess at different 

frequencies in a controlled fashion. Thus different points in space become 

identified by different resonance frequencies. The Fourier transform of the 

signal would show its strength at each frequency, and thus at each position. 

Mansfield (1977) proposed the technique of echo planar imaging (EPI) to obtain 

MRI images following a single excitation using a rapid gradient switching. A 

series of changing magnetic field gradients and oscillating magnetic fields is 

referred to as the pulse sequence. Presently, magnetic resonance imaging (MRI) 

instruments use three mutually orthogonal sets of electromagnetic 'gradient 

coils' to encode the three spatial co-ordinates of the MR signal (Cohen et al., 

1994). The data acquisition is achieved in two steps: First, a particular slice is 
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selected within the total imaging volume using a one-dimensional excitation 

pulse. Then a two-dimensional encoding scheme (phase and frequency) is used 

to resolve the spatial distribution of the spin magnetizations. The field of view 

defines the spatial extent along different dimensions of the image space. 

Sequential excitation of adjacent slices may lead to off-resonance excitation (i.e. 

excitation of spins to intermediate state) that results in each slice being pre-

excited by the previous excitation pulse. To overcome these effects, interleaved 

slice acquisition can be used.  

There are two important factors that govern the time at which MR 

images are collected: (a) The time interval between successive excitation pulses, 

known as the repetition time, or TR and (b) The time interval between excitation 

and data acquisition, known as echo time or TE. The most commonly used 

contrast for structural anatomical images is T1-weighted. A number of methods 

exist for contrast generation in MRI images. In the following, a discussion of 

contrast mechanisms based on relaxation times is briefly described. To generate 

T1 contrast images, an intermediate TR and short TE is recommended. At short 

and long TRs, there is either little time for the longitudinal magnetization to 

recover or would recover completely. This would result in loss of contrast 

between tissues. Further, TE should be much less than T2 to have exclusively 

T1 contrast. Similarly to generate T2 contrast images, intermediate TE is 

recommended to observe differences in transverse magnetization between 

tissues and long TR to eliminate T1 effects. MR signal changes that are 

measured at data acquisition can be generated by using the gradients only 

(Gradient Echo sequence) or by a second 180º electromagnetic pulse, called a 

refocusing pulse (Spin Echo sequence). The refocusing pulse corrects for phase 

dispersion due to T2 effects, so that all spins are approximately in phase during 

the data acquisition period. T2 weighted images can only be generated using 

spin echo sequences, while T1 weighted images can be generated by any of the 

gradient or spin echo sequences. Spin echo sequences provide true spin-spin 

relaxation that does not depend on the field inhomogeneity (e.g. T2* effects) 

using the 180º refocusing pulse. Hence spin-echo sequences can be used to 

avoid the susceptibility artefacts, which are caused by magnetic field 

inhomogeneities near air-tissue interfaces, usually observed as signal losses or 
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Figure  2.3 The haemodynamic response function for fMRI data 

(reproduced from Heeger and Ress, 2002) 

dropouts in the orbitofrontal region and temporal lobes of the brain. The T2* 

contrast forms the basis of BOLD fMRI. T2* contrast requires long TR and 

medium TE and the MR signal needs to be generated using the magnetic field 

gradients rather than using the refocusing pulse that would eliminate field 

inhomogeneity effects. Due to the reduced T2* sensitivity, spin-echo sequences 

are less frequently used for BOLD fMRI.  

The measured RF signal decays over time depending on many factors 

including the presence of inhomogeneities in the magnetic field. Greater 

inhomogeneity results in decreased image intensity.   

The increase in neuronal activity in a brain area results in an initial 

increase in oxygen consumption. After a delay of about 2 sec, a large increase in 

localized cerebral blood flow is triggered, which over-compensates the oxygen 

consumption. Therefore, localized increases in blood flow increase blood 

oxygenation and consequently reduce deoxyhaemoglobin. As a result, better 
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visibility in MRI images is thought to correlate with neuronal activity. 

Simultaneous fMRI and electrophysiological recordings by Logothetis and 

colleagues (Logothetis et. al. 2001) have confirmed that the BOLD contrast 

mechanism directly reflects the neural responses elicited by a stimulus. 

However, fMRI activation in an area is correlated with the local field potentials 

reflecting processing of the incoming input rather than the spiking activity. 

Hence, the absence of an FMRI signal does not necessarily mean that no 

information processing is taking place in a particular brain area. After fifteen 

years of fMRI studies, there is still much to learn about the source of these 

signals (see Heeger and Ress, 2002 for review).  

The fMRI provides a non-invasive method to access indirectly neuronal 

activity in the brain with a relatively good spatial and temporal resolution. 

Before the emergence of functional MRI, radio isotope based techniques such as 

Positron Emission Tomography (PET) which measures regional cerebral blood 

flow (rCBF), were widely used for mapping the brain function. However, these 

techniques are invasive and have a low spatial and temporal resolution.  

Although animal studies provide an unprecedented approach to study 

neural mechanisms at cellular level, the limited communication and cognitive 

capabilities restricts the investigation of brain function in animals. 

Electrophysiological methods due to their invasive nature (i.e. require insertion 

of electrodes directly into the brain) have limited use for studying brain function 

in humans. Electroencephalography (EEG) measures of the electrical activity of 

the brain by recording on a millisecond time scale from electrodes placed on the 

scalp. The magnetoencephalography (MEG) and EEG techniques signals derive 

from the net effect of ionic currents flowing in the dendrites of neurons during 

synaptic transmission. While EEG has poor spatial resolution, MEG technique 

promises good spatial and temporal resolution. The inverse problem of uniquely 

identifying the locations of neural sources giving rise to pattern of activity on 

the skull has by and large limited the value of EEG and MEG in mapping brain 

function.  

Lesion studies provide clear evidence that a brain region is necessary for 

a particular behaviour but do not specify the time course of the region’s activity. 

Lesion studies result in a permanent loss of a brain region, thus lending itself to 
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be an irreversible process. Hence, human lesion studies can only be done by 

finding patients with isolated damage to a particular brain area. The temporary 

interruption of function within a brain region is possible using transcranial 

magnetic stimulation (TMS). Due to several considerations as outlined above, 

the functional MRI technique offers a suitable method for investigating human 

brain function.  

2.2 Issues related to Experimental Design 

Developing successful fMRI experiments requires careful attention to 

experimental design, data acquisition techniques, and data analysis (Chein and 

Schneider, 2003). Experimental design is at the heart of any cognitive 

neuroscience investigation.  

As fMRI does not measure absolute neural activity, neuroimaging 

studies must be designed to quantify relative changes of activity. Further, the 

brain is constantly engaged in several controlling tasks such as respiration, 

heart-beat etc. Hence, to measure specific task-related activity, we need to scan 

subjects while at rest or while performing a simple baseline task (Gusnard and 

Raichle, 2001). Assuming that brain activity scales in a linear fashion and that 

cognitive processes are additive, we can test for brain activations pertaining to 

certain cognitive processes (Berns, 1999). Although there is no inherent baseline 

associated with the blood oxygen-level-dependent (BOLD) signal (Gusnard and 

Raichle, 2001) that is measured in traditional functional MRI (fMRI) studies, 

researchers often have attempted to establish such a baseline by using periods of 

rest. Rest periods may be 10- to 30-s long blocks of rest or fixation (blocked 

fMRI), the final seconds of long intertribal intervals (ITIs; in the case of slow, 

or non-overlapping, event related fMRI), or 2- to 4-s null trials (in the case of 

rapid event-related fMRI). Because no task is being performed during rest, it has 

seemed reasonable to assume that this baseline represents something akin to a 

zero-activity condition that then can be compared with activity during cognitive 

tasks. Therefore, when activity in a particular region of the brain during a 

cognitive task is no greater than during rest, it often has been supposed that this 

particular region of the brain is not involved in the task. However, periods of 

rest have often been associated with significant cognitive activity (Stark and 
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Figure  2.4 The principle of subtractive design 

Squire, 2001), suggesting the crucial role of baseline tasks in design and 

interpretation of fMRI studies. 

Overall, designs can be classified into three types i.e., categorical, 

factorial or parametric (Friston, 1997). The categorical designs assume that the 

cognitive processes can be dissected into sub-cognitive processes. That is one 

can remove and add different cognitive processes by the assumption of pure 

insertion. In other words, pure insertion requires that one cognitive component 

does not affect the effect of another cognitive component. The categorical 

designs are further divided into subtraction type or conjunction type. Cognitive 

subtraction designs are used to test the hypothesis pertaining to activation in one 

task as compared to that in another task considering the fact that the neural 

structures supporting cognitive and behavioural processes combine in a simple 

additive manner. Whereas in the cognitive conjunctions type designs, several 

hypotheses are tested, asking whether all the activations in a series of task pairs 

are jointly significant. Cognitive conjunctions can be thought as an extension of 

the subtraction technique in the sense that they combine a series of subtractions. 

While cognitive subtraction studies are designed such that a pair of tasks differ 

only by the processing components of interest, cognitive conjunction studies are 

designed such that two or more distinct task pairs each share a common 

processing difference. The problem of finding a baseline that activate all 

cognitive processes except the process of interest can be overcome by 

conjunction design (Price et al., 1997). The only constraint on selecting the 
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baseline is that the component of interest is the only process that differs in each 

task pair (Price and Friston, 1997).  

Factorial designs involve combining two or more factors within a task 

and looking at the effect of one factor on the response to other factor. The 

problem of interactions (i.e., the effect that the added component in the 

activation task has on pre-existing components) can be overcome when the 

experimental design is factorial. Price et al. (1997) demonstrated that when the 

design is factorial, conjunction analysis reveals commonalities in activation, 

while the interactions reveal task-specific effects. In particular, the effect of a 

cognitive component (i.e., an effect that is independent of other components) is 

best captured by the main (activation) effect of that component and that the 

integration among components (i.e., the expression of one cognitive process in 

the context of another) can be assessed with the interaction terms (Friston et al., 

1996).  

In parametric designs, rather than assuming that the cognitive processes 

are composed of different cognitive components, they are considered as 

belonging to different psychological dimensions. The systematic changes in the 

brain responses according to some performance attributes of task can be 

investigated in parametric designs. In parametric designs one can also look at 

the linear and non-linear types of relations to be determined empirically. 

The experimental design can be either a within-group or a between-

group design. Due to the difficulty of matching all parameters (including age, 

IQ, gender etc) between groups, within-group designs are generally preferred, 

except when comparing special populations such as patients with a control 

group.  

2.2.1 Block and Event-related designs 

An fMRI experiment to test a given biological hypothesis must be designed 

within the constraints of the temporal characteristics of the BOLD fMRI signal 

and of the various confounding effects to which fMRI signal is susceptible. 

Typically, two designs are possible 1) Epoch-based design using Blocks of 

stimulation (boxcar designs with alternating activation and rest) and 2) Event-
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Figure  2.5 Block and Event-related designs 

Block (top panel) and Event-related (bottom panel) fMRI design for two task 
conditions A and B. The x-axis is time from left to right.  

related design, where data may be recorded to monitor the BOLD response 

following a marked (pre-determined) event such as a single stimulus or task.  

Blocked design (Epoch-based) experiments (Bandettini, 1994) are used 

mainly to average across many trials to obtain sufficient signal-to-noise ratios to 

generate functional activation images. The block design experiments descended 

from the low temporal resolution imaging based on blood dynamics (such as 

PET). However, such blocked trial procedures do not allow separate trials 

within the task blocks to be distinguished. Blocked-designs cannot be used if we 

want to consider trials that depend on subject’s performance (e.g. correct or 

wrong; chooses among different alternatives) or need to present trials in a non-

blocked fashion (e.g. the oddball paradigm). Dale and Buckner (1997) 

demonstrated the feasibility of using fMRI for selective averaging of rapidly 

presented individual trials, a technique that was used in event related potential 

(ERP) studies such as the EEG/MEG. It is shown that the haemodynamic 

response is delayed and lasts for several seconds even for brief stimulation (less 

than couple of seconds) (see Figure  2.3). As the haemodynamic response to 

individual trials extends temporally, the responses to successive trials may 

overlap. Hence the inter-trial interval between successive trials needs to last for 

about 15 seconds. However this severely limits the number of trials, which can 

be averaged per unit time, thus limiting the achievable signal-to-noise ratio. 

Dale and Buckner (1997) demonstrated that the haemodynamic response to 

successive events adds in an approximately linear fashion even at relatively 
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short inter-trial intervals (2 sec and 5 sec) and hence selective averaging of 

rapidly presented individual trials is feasible. The findings of Dale and Buckner 

(1997) support the Linear Time Invariant model for the haemodynamic response 

function (Boynton et al., 1996). Dale (1999) has shown that the statistical 

efficiency of rapid event-related designs when the inter-trial interval is 

appropriately jittered can be up to 10 times greater than fixed inter-trial interval 

designs.  Further, random intermixing of trial types eliminates strategy effects 

that might otherwise confound the results in blocked task paradigms. 

In conducting a hypothesis-based experiment, we wish to be able to 

attribute any observed effects to experimentally manipulated conditions. This 

can be guaranteed only if conditions are randomly allocated to a presentation 

order for each subject in a sensible manner. Further, this randomisation should 

be appropriately balanced, both across and within subjects. With such random 

allocation of conditions, any unexpected effects are randomly scattered between 

the conditions, and therefore do not affect the designed effects. 

2.3 Analysis of functional MRI Data 

The main issue in analysing functional MRI images is comparing images, or 

groups of images, in a statistically meaningful way. In a typical fMRI 

experiment, a whole-brain functional image is acquired every 2-3 seconds 

resulting in a few hundred images to be analysed. Each image is acquired as a 

number of slices (e.g. 21 with thickness ~ 5 mm) with a typical in-plane 

resolution of 3x3 mm for a field of view of 192x192 mm. With these typical 

parameters, a single fMRI image would have dimensions of 64x64x21 mm. 

Statistical Parametric Mapping (SPM) is a form of data reduction, condensing 

information (in a statistically meaningful way) from a number of individual 

scans into a single image volume that can be more easily viewed and 

interpreted. Usually a univariate approach is followed in which the parametric 

map is computed by examining every voxel location across all images. In order 

to select a particular statistical distribution models (e.g. Poisson, normal, 

Gaussian), we need to know the underlying distribution of variance of the data 

being analysed, which is usually unknown in neuroimaging data. Further, 

univariate statistical models generally assume independent data points. Several 
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Figure  2.6 Key stages in fMRI data analysis 

preprocessing steps are required before proceeding with statistical analysis in 

order to reduce artefacts and noise and to perform spatial transformations. The 

analysis of fMRI data within the framework of SPM2 software 

(http://www.fil.ion.ucl.ac.uk/spm Wellcome Department of Imaging 

Neuroscience, London) is presented here.  

2.3.1 Preprocessing 

Spatial transformations are important in many aspects of functional image 

analysis and involve both within- and between-subject registration followed by 

spatial smoothing with a Gaussian kernel. Preprocessing includes several steps, 

all of which are aimed at massaging the data so that it is suitable to be 

statistically analysed. The first several steps put each image volume into a 

standardized spatial reference frame. The last preprocessing step applies a 

Gaussian spatial filter. Few scans at the beginning of each session are discarded 

to account for transients in magnetic field of scanner. The origin of the images 

is set to match the line joining anterior-commissure to the posterior-commissure 

(AC-PC line). 

Within-subject registration 
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The 3-dimensional functional brain images are usually acquired as a number of 

slices in 2-dimensions. Hence, there will be a time difference approximately 

equal to the TR (repetition time or inter scan interval) between the first slice and 

the last slice acquired in a single whole-brain acquisition. One option to 

compensate for the time difference between bottom and top slices of the brain is 

to acquire the slices in an interleaved fashion. Hence all odd numbered slices are 

acquired first followed by even numbered slices. During preprocessing stage, it 

is desirable to temporally interpolate the slices so that it would be equivalent to 

acquiring the whole brain image at a single time point. This is usually done with 

respect to a reference slice (e.g. middle slice or bottom slice of the brain), which 

depends on the regions of particular interest for a given experiment. This 

procedure is referred to as slice timing correction.  

In functional imaging, the signal changes due to any haemodynamic 

response can be small compared to signal changes that can result from subject 

motion. So, prior to performing the statistical tests, it is important that the 

images are as closely aligned as possible. Although the subjects are asked to 

keep their head's still, movement does occur. The realignment algorithm follows 

a rigid-body registration procedure (Friston et al., 1995a). A rigid body can have 

a linear translational movement or a rotational movement in each of the three 

directions (X, Y and Z). Correspondingly, there are six parameters that need to 

be estimated (X, Y, Z translations, pitch, roll and yaw). For multi-session data, 

realignment works in two steps. First, the first functional images from each 

session are realigned to each other taking the first session as reference. Second, 

the remaining images within each session are realigned to the first image. As a 

consequence, all images are realigned to the first image from the first session.  

When applying slice-timing correction and realignment, the order of 

these two preprocessing steps needs special consideration. Applying 

realignment procedure first would account for large movements, but the images 

will no longer correspond to the specific time that the slice was supposed to 

have been acquired after being realigned. On the other hand, slice-timing 

correction essentially interpolates the data temporally and the realignment 

procedure would need to work on resliced images after the slice timing 

correction has been applied. The disadvantage of reslicing the data several times 
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during the preprocessing stage would incur loss in the image quality. The 

movement-related activation can be substantially large compared to the task-

related BOLD changes. Hence, often the realignment parameters are included as 

covariates of no interest in the statistical analysis stage. An additional way to 

account for differences in timing of haemodynamic responses for different brain 

regions would be to include the temporal derivatives of the canonical HRF as 

part of the basis functions during statistical analysis.  

Between-subject registration 

Sometimes, it is desirable to warp images from a number of individuals into 

roughly the same standard space to allow signal averaging across subjects. A 

further advantage of using spatially normalized images is that activation sites 

can be reported according to their coordinates within a standard space such as 

the one described by Talairach and Tournoux (1988). SPM2 uses the average 

brain template created by the Montreal Neurological Institute, that is an average 

of 152 brain images and hence more representative of the population as 

compared to the Talairach and Tournoux atlas. The Normalization process 

(Friston et al., 1995a) not only considers the rigid-body transformations but also 

considers shears and zooms to match the individual subject’s images to the 

template. For accurate normalization, it would also be required to use nonlinear 

transformations that would account for deformations that do not vary in a linear 

fashion. SPM2 uses cosine basis functions as part of nonlinear transformations 

for normalization procedure.  
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Figure  2.7  Rigid body and affine transformations 

(A) Translation (B) Rotation (C) Shear (D) Zoom (adapted from Rik 
Henson, SPM Mini course, 2006, MRC-CBU) 

The normalization procedure can be performed in two different ways. 

First, the mean functional image from the output of realignment procedure can 

be used to match with the EPI template image in the MNI space and then the 

resultant parameters can be applied to all the functional images to be 

normalized. The spatial resolution of functional images is poor compared to the 

high-resolution structural images that give detailed anatomy of the subjects’ 

brain. Hence, it is desirable to use the information provided by the structural 

images for better match with template brain. However, the functional and 

structural images are usually acquired using different imaging parameters and 

slice orientations.  So prior to using a structural image to compute normalization 

parameters to a T1 template image, the structural images need to be co-

registered with the functional images of the subject. This step forms part of the 

within-subject registration. Apart from a more precise spatial normalization, a 

further use of this registration is that the activations of the subject in the 

functional space can be overlaid onto the structural image of the subject for 

better visualization and localization of the activation.  
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As the normalization procedure invariably tries to warp the subject’s 

brain into a template space, it can be problematic when there is a dropout in 

some regions or when the subjects have a lesion. Brett and Rorden (Brett et al., 

2001) have suggested that such regions be masked prior to applying the 

normalization procedure to avoid the algorithm trying to fill in the lesion / 

dropout region with the surrounding tissue. This approach can however 

compromise the computation of parameter estimates during statistical analysis, 

particularly at group level, as data would not be available for regions excluded 

only in some subjects.  

Spatial Smoothing 

The matching of the brains in the Normalization step is only possible on a 

coarse scale, since there is not necessarily a one-to-one mapping of the cortical 

structures between different brains. Because of this, images are smoothed prior 

to the statistical analysis in a multi-subject study, so that corresponding sites of 

activation from the different brains are superimposed. Smoothing generally 

increases the signal relative to noise. From the matched filter theorem, to get 

optimum resolution of signal from noise, we need a filter that is matched to the 

signal. Since, haemodynamic responses are modelled to have a Gaussian shape; 

we need to use a Gaussian kernel of size at least twice the voxel size (FWHM of 

about 6 or 8 mm) for smoothing the functional images. The idea of smoothing is 

to replace the intensity value within each voxel with a weighted average (as 

determined by a Gaussian kernel centred on that particular voxel) that 

incorporates the intensity values of the neighbouring voxels. Smoothing is 

performed to compensate for residual between-subject variability after 

normalization.  Smoothing also permits the application of Gaussian random 

field theory at the statistics inference stage. 

2.3.2 Statistical analysis of fMRI images 

Model setup and parameter estimation 

After preprocessing, the images are ready for statistical analysis. FMRI data are 

high-pass filtered to remove physiological effects such as heartbeat, respiration, 

scanner-drift etc. Statistical analysis corresponds to Statistical Parametric 
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Mapping (Friston et al., 1995b) using the General Linear Model and theory of 

Gaussian fields. The GLM is used to specify the conditions in the form of a 

design matrix, which defines the experimental design and the nature of 

hypothesis testing to be implemented. The hypothesis is framed as a design 

matrix model. The design matrix has one row for each scan and one column for 

each effect one has built into the experiment or explanatory variables that may 

confound the results. The columns of the design matrix correspond to 

experimental conditions of interest (the hypothesis under test) and a set of 

columns that model effects of no interest.  This is the stage where the groups 

designated for the images (e.g. reward/no reward) are specified. This stage 

corresponds to modelling the data in order to partition observed 

neurophysiological responses into components of interest, confounds, or 

components of no interest and an error term.  

The general linear model (GLM) is an equation, which expresses the 

observed response variable in terms of a linear combination of explanatory 

variables plus a well-behaved error term. Commonly used parametric models, 

such as linear regression, t-tests and analysis of variance (ANOVA) are special 

cases of the general linear model. The GLM relates what one observes, to what 

one expected to see, by expressing the observations (response variable Y) as a 

linear combination of expected components (or explanatory variables x) and 

some residual error (ε), thereby equivalent to linear regression.  
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This can be expressed in the matrix form as  

Y = X β + ε 

Here, X is called the design matrix that contains the explanatory variables and β 

is the unknown parameter to be estimated. The ordinary least squares approach 

to calculate parameter estimates β would be  

β* = (XTX)-1XTy 
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The fitted response would be Y = X β* and the residual is y-Y. The assumption 

underlying least squares approximation is that the residuals are drawn from 

independent and identically distributed normal (Gaussian) distribution (white 

noise). This assumption is violated by the fMRI data, which are typically 

correlated from one scan to the next. Hence the effective degrees of freedom 

(df) cannot be assumed to be number of scans minus the dfs used in the model. 

SPM2 uses the restricted maximum likelihood (ReML) approach to estimate the 

non-sphericity (of which autocorrelation is one type) in fMRI data. Additional 

approach to deal with autocorrelation in fMRI data is to explicitly model using, 

for example, a first order auto regression model AR(1).   

MRI gives us the blood flow signal, but we are interested in the neural 

activity. It is possible that the neural response is quicker and the changes in 

blood flow take place a little later. To account for these and to find the neural 

activity from the MRI signal, the columns of the design matrix are convolved 

with the canonical haemodynamic response function (HRF). The temporal and 

dispersion derivatives of the HRF are used additionally to account for variation 

in onset and width, respectively, of the HRF across different brain regions. An 

alternative approach is to use a basis functions that do not make any assumption 

about the shape of the haemodynamic response (e.g. using a finite impulse 

response model). Henson et al. (2001) have demonstrated that using the 

canonical HRF and its temporal and dispersion derivatives is sufficient for 

reliable detection of activation in event-related fMRI.  

Statistical Inference 

Brain activity specific to task is obtained by specifying linear contrasts. A 

contrast can be used to compare different conditions. The subtractive approach 

assumes that brain activity scales in a linear fashion. The conditions of interest 

are given a positive value, such as 1, and conditions that are to be subtracted 

from these conditions of interest take on a negative value, such as -1. The end 

result is a statistical parametric map. The activations thus obtained can be 

overlaid or rendered onto the high-resolution anatomical image of the subject in 

order to accurately locate the neural activity.   
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Statistical parametric mapping approach is a univariate approach. That is 

each voxel is analysed separately. Hence for a statistical threshold of p<0.05, 

5% of the voxels would show activation by chance alone (false activation – type 

I error). This means a correction for multiple comparisons is needed. The 

traditional way of doing this is to use some version of a Bonferroni correction. 

However, due to large number of voxels involved, a straightforward 

implementation would severely reduce the estimated number of degrees of 

freedom. The individual voxels in most neuroimaging modalities (PET, fMRI, 

EEG, MEG etc.) are heavily correlated with neighbouring voxels. Hence, to the 

extent that the image data approximate a random Gaussian field (Worsley e al., 

1996), correction for multiple comparison need to be only made for number of 

voxels that can be resolved independently (resolution elements or resels). The 

correction for multiple comparisons is controlled for family-wise error (FWE) 

rate. This assumption of random Gaussian field is assured by applying a 

Gaussian smoothing filter in the pre-processing stages.   

A serious limitation of correcting for multiple comparisons is that the 

number of false negatives (type II error) is increased. Another approach is to 

determine the false discovery rate (FDR) that controls for 5% at (p<0.05) of 

observed activations can be false positives (Genovese et al., 2002). The FWE 

approach controls for a 5% chance of a single false positive. As a trade-off to 

correction for multiple comparison, alternative approaches have been described 

such as (i) using a strict uncorrected threshold (e.g. p<0.001), (ii) using an 

inference over the cluster size, so that it is unlikely to find activations in a 

cluster of size, say 30 voxels. (iii) small volume corrections in regions where a 

prior hypothesis exists (iv) a region of interest (ROI) analysis in which the 

average signal for all voxels in an anatomical or functional ROI is used, hence 

reducing the number of multiple comparisons voxel space to the number of 

ROIs.  

Random Effects Analysis 

In order to make an inference about brain activity in a task, the contrast images 

from a group of subjects are analysed using a random effects model (Holmes 

and Friston, 1998) using student's t-test or ANOVA like methods. The contrast 
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images represent spatially distributed images of the weighted sum of the 

parameter estimates for a particular contrast. In essence, it's like a difference 

image for (activation-rest) or (reward-no reward). When using a one-sample t-

test, one contrast image for each subject is required. By doing that, the images 

are being collapsed over intra-subject variability (to only one image per contrast 

per subject) and the image-to-image residual variability is now between subject 

variance alone. When using ANOVA, a number of contrast images are entered 

from each subject. These need to be corrected for non-sphericity. If the contrast 

images being entered into ANOVA are main effects of a condition, a within-

subjects model should be used. On the other hand, if the contrast images have 

already accounted for within-subject variability, then an ANOVA without 

constant term can be used.  

The purpose of the Random Effects analysis is to find the areas that are 

activated in much the same way in all subjects, as opposed to a fixed effects 

model, which gives areas that are activated on the average across the subjects. 

This is really a crucial difference since a fixed effects analysis may yield 

significant results when one or a couple of subjects activate a lot even though 

the other subjects do not activate at all. The Random Effects analysis 

incorporates both within-subject variance, as well as between-subject variance. 

This allows generalization of the results to the population from which the 

subjects were drawn.  
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