2 Introduction to fMRI: experimental

design and data analysis

2.1 IntroductiontofMRI

Functional Magnetic Resonance Imaging (function&IMr fMRI) is a non-
invasive neuroimaging technique that can be usedstisdying human brain
function in vivo. Functional MRI extends the use of Magnetic Resoea
Imaging to provide information about biological @tion in addition to the
anatomical information. Seiji Ogawa first demont&dathat by measuring the
blood-oxygenation-level-dependent (BOLD) signaln&ional MRI could be

used to visualize brain function (Ogawa et al.,@)99

The BOLD fMRI technique is designed to measure grily, changes in
the inhomogeneity of the magnetic field that reduttm changes in blood
oxygenation. The fact that haemoglobin and deoxyloggobin are
magnetically different is exploited in the BOLD keique. Magnetic
susceptibility refers to the amount of magnetizatiwat can be achieved when a
material is placed in a magnetic field. Deoxyhaeloloig is paramagnetic and
introduces an inhomogeneity into the nearby magn€ield, while
oxyhaemoglobin is weakly diamagnetic and has litd#ect. Thus, the
paramagnetic deoxyhaemoglobin induces a suscefytithifference between the
blood vessels and the surrounding tissue can likasan endogenous contrast
(i.e. depends on intrinsic property of the biol@gitssue).
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(A) Blood-oxygen level-dependent signal mechanismagnetic timbre
imaging (B) oxyhaemoglobin and deoxyhaemoglobirotliow during
rest and activation

Hydrogen nuclei (protons) have magnetic propertialed nuclear spin.
They behave like tiny rotating magnets. In preseotc@ magnetic field the
hydrogen atoms, present in the water molecules@tbtain, align themselves
with this field and reach an equilibrium state. Exege of energy between two
systems at a specific frequency is called resonaiMa&gnetic resonance
corresponds to the energetic interaction betweenssand electromagnetic
radio frequency (RF). When a brief radio frequen®&®F) is applied, the
hydrogen atoms absorb energy (excitation) and teeuilibrium state is
perturbed. These hydrogen atoms would emit enamggxation) at the same
radio frequency until they gradually return to thequilibrium state. The
magnetic vector of spinning protons can be brokewrdinto two orthogonal
components: a longitudinal or Z component, andaasiverse component, lying
on the XY plane. Relaxation gives rise to the mégnmesonance signal and is
composed of two components. Longitudinal relaxatisndue to energy
exchange between the spins and surrounding latspm-lattice relaxation,
decay constant T1) and Transverse relaxation (pim-relaxation, decay
constant T2) occurs due to the spins getting oythafse. T1 depends on the
applied magnetic field strength with longer relaxattimes for greater field
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Chapter2 Introduction to fMRI: experimental design andadahalysis

strengths. T2 is independent of the applied magiield strength and is always
shorter than T1. The observed transverse relaxétiom T2* is always shorter

than T2 due to the combined effect of local fieldomogeneities and T2.

The fundamental concept underlying the formation aofmagnetic
resonance image is a magnetic gradient, i.e. aafipatarying magnetic field.
Lauterbur (1973) demonstrated that by superimposingiagnetic field that
varies linearly across space, hydrogen atoms waquletess at different
frequencies in a controlled fashion. Thus differ@aints in space become
identified by different resonance frequencies. Huwrier transform of the
signal would show its strength at each frequenoyl #hus at each position.
Mansfield (1977) proposed the technique of echoglanaging (EPI) to obtain
MRI images following a single excitation using gichgradient switching. A
series of changing magnetic field gradients andllaBog magnetic fields is
referred to as the pulse sequence. Presently, miagesgonance imaging (MRI)
instruments use three mutually orthogonal sets lett®magnetic 'gradient
coils' to encode the three spatial co-ordinatethefMR signal (Cohen et al.,

1994). The data acquisition is achieved in two stéjirst, a particular slice is

cedabadient. coil..

Figure 2.2 A schematic diagram of functional MRI scanning
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selected within the total imaging volume using a&-dimensional excitation

pulse. Then a two-dimensional encoding scheme €had frequency) is used
to resolve the spatial distribution of the spin matizations. The field of view

defines the spatial extent along different dimensi®f the image space.
Sequential excitation of adjacent slices may leadfftresonance excitation (i.e.
excitation of spins to intermediate state) thaultssin each slice being pre-
excited by the previous excitation pulse. To overedhese effects, interleaved
slice acquisition can be used.

There are two important factors that govern theetiat which MR
images are collected: (a) The time interval betwaetessive excitation pulses,
known as the repetition time, or TR and (b) Theetimterval between excitation
and data acquisition, known as echo time or TE. fiwst commonly used
contrast for structural anatomical images is Tlghd. A number of methods
exist for contrast generation in MRI images. In fobowing, a discussion of
contrast mechanisms based on relaxation timesea#iybdescribed. To generate
T1 contrast images, an intermediate TR and shorisTEcommended. At short
and long TRs, there is either little time for tlmngitudinal magnetization to
recover or would recover completely. This wouldufesn loss of contrast
between tissues. Further, TE should be much less T2 to have exclusively
T1 contrast. Similarly to generate T2 contrast ieggintermediate TE is
recommended to observe differences in transversgnetization between
tissues and long TR to eliminate T1 effects. MRnalgchanges that are
measured at data acquisition can be generated ing tise gradients only
(Gradient Echo sequence) or by a second 180° eheatnetic pulse, called a
refocusing pulse (Spin Echo sequence). The refogusillse corrects for phase
dispersion due to T2 effects, so that all spinsaggroximately in phase during
the data acquisition period. T2 weighted images @aly be generated using
spin echo sequences, while T1 weighted images eayeberated by any of the
gradient or spin echo sequences. Spin echo sequ@moeide true spin-spin
relaxation that does not depend on the field inhgeneity (e.g. T2* effects)
using the 180° refocusing pulse. Hence spin-ecljpiesees can be used to
avoid the susceptibility artefacts, which are cdudsy magnetic field

inhomogeneities near air-tissue interfaces, usuagerved as signal losses or
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Figure 2.3 The haemodynamic response function for fMRI data

(reproduced from Heeger and Ress, 2002)

dropouts in the orbitofrontal region and tempordds of the brain. The T2*
contrast forms the basis of BOLD fMRI. T2* contrasguires long TR and
medium TE and the MR signal needs to be generated) the magnetic field
gradients rather than using the refocusing pulsg Would eliminate field
inhomogeneity effects. Due to the reduced T2* getitsi, spin-echo sequences

are less frequently used for BOLD fMRI.

The measured RF signal decays over time dependingany factors
including the presence of inhomogeneities in thegme#c field. Greater

inhomogeneity results in decreased image intensity.

The increase in neuronal activity in a brain aresults in an initial
increase in oxygen consumption. After a delay @il sec, a large increase in
localized cerebral blood flow is triggered, whicheo-compensates the oxygen
consumption. Therefore, localized increases in dldlow increase blood

oxygenation and consequently reduce deoxyhaemaglds a result, better
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visibility in MRI images is thought to correlate tivi neuronal activity.
Simultaneous fMRI and electrophysiological recogdinby Logothetis and
colleagues (Logothetis et. al. 2001) have confirnieat the BOLD contrast
mechanism directly reflects the neural responsésitesl by a stimulus.
However, fMRI activation in an area is correlateithwhe local field potentials
reflecting processing of the incoming input ratllean the spiking activity.
Hence, the absence of an FMRI signal does not saghs mean that no
information processing is taking place in a paticibrain area. After fifteen
years of fMRI studies, there is still much to leamout the source of these

signals (see Heeger and Ress, 2002 for review).

The fMRI provides a non-invasive method to accesi#éctly neuronal
activity in the brain with a relatively good spatend temporal resolution.
Before the emergence of functional MRI, radio ipetdbased techniques such as
Positron Emission Tomography (PET) which measuegtonal cerebral blood
flow (rCBF), were widely used for mapping the br&imction. However, these

techniques are invasive and have a low spatiatemgoral resolution.

Although animal studies provide an unprecedentqutageh to study
neural mechanisms at cellular level, the limitednownication and cognitive
capabilities restricts the investigation of braiundtion in animals.
Electrophysiological methods due to their invagiature (i.e. require insertion
of electrodes directly into the brain) have limitegk for studying brain function
in humans. Electroencephalography (EEG) measurtdsedlectrical activity of
the brain by recording on a millisecond time sdeden electrodes placed on the
scalp. The magnetoencephalography (MEG) and EE@higpees signals derive
from the net effect of ionic currents flowing inetllendrites of neurons during
synaptic transmission. While EEG has poor spaéisblution, MEG technique
promises good spatial and temporal resolution. iiiherse problem of uniquely
identifying the locations of neural sources giviige to pattern of activity on
the skull has by and large limited the value of E&f@& MEG in mapping brain

function.

Lesion studies provide clear evidence that a megion is necessary for
a particular behaviour but do not specify the tooarse of the region’s activity.

Lesion studies result in a permanent loss of anlmegion, thus lending itself to
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be an irreversible process. Hence, human lesiatiestican only be done by
finding patients with isolated damage to a particddrain area. The temporary
interruption of function within a brain region iogsible using transcranial
magnetic stimulation (TMS). Due to several conatlens as outlined above,
the functional MRI technique offers a suitable noetfior investigating human

brain function.
2.2 |ssuesrelated to Experimental Design

Developing successful fMRI experiments requires eftdr attention to
experimental design, data acquisition techniqued, data analysis (Chein and
Schneider, 2003). Experimental design is at therthe& any cognitive

neuroscience investigation.

As fMRI does not measure absolute neural activitguroimaging
studies must be designed to quantify relative ceargf activity. Further, the
brain is constantly engaged in several controlliagks such as respiration,
heart-beat etc. Hence, to measure specific tagkegblactivity, we need to scan
subjects while at rest or while performing a simpéeseline task (Gusnard and
Raichle, 2001). Assuming that brain activity scatea linear fashion and that
cognitive processes are additive, we can test fa@intactivations pertaining to
certain cognitive processes (Berns, 1999). Althaihgie is no inherent baseline
associated with the blood oxygen-level-depende@L(B) signal (Gusnard and
Raichle, 2001) that is measured in traditional fiomal MRI (fMRI) studies,
researchers often have attempted to establishasbelkeline by using periods of
rest. Rest periods may be 10- to 30-s long blodkest or fixation (blocked
fMRI), the final seconds of long intertribal integ (ITIs; in the case of slow,
or non-overlapping, event related fMRI), or 2- t@ 4ull trials (in the case of
rapid event-related fMRI). Because no task is b@edormed during rest, it has
seemed reasonable to assume that this baselireseeps something akin to a
zero-activity condition that then can be compareith activity during cognitive
tasks. Therefore, when activity in a particularioagof the brain during a
cognitive task is no greater than during restftérohas been supposed that this
particular region of the brain is not involved tmettask. However, periods of

rest have often been associated with significagnitive activity (Stark and
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Task condition Baseline

Figure 2.4 The principle of subtractive design

Squire, 2001), suggesting the crucial role of basetasks in design and
interpretation of fMRI studies.

Overall, designs can be classified into three types categorical,
factorial or parametric (Friston, 1997). The categ designs assume that the
cognitive processes can be dissected into sub-begmrocesses. That is one
can remove and add different cognitive processethbyassumption of pure
insertion. In other words, pure insertion requittegt one cognitive component
does not affect the effect of another cognitive ponent. The categorical
designs are further divided into subtraction typeanjunction type. Cognitive
subtraction designs are used to test the hypotpesigining to activation in one
task as compared to that in another task consgléha fact that the neural
structures supporting cognitive and behaviourat@sses combine in a simple
additive manner. Whereas in the cognitive conjumdtitype designs, several
hypotheses are tested, asking whether all theadicins in a series of task pairs
are jointly significant. Cognitive conjunctions cha thought as an extension of
the subtraction technique in the sense that thenbawe a series of subtractions.
While cognitive subtraction studies are designezhgbat a pair of tasks differ
only by the processing components of interest, itivgnconjunction studies are
designed such that two or more distinct task pamsh share a common
processing difference. The problem of finding aedtas that activate all
cognitive processes except the process of intecast be overcome by
conjunction design (Price et al., 1997). The onbnstraint on selecting the
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baseline is that the component of interest is tilg process that differs in each
task pair (Price and Friston, 1997).

Factorial designs involve combining two or moretdas within a task
and looking at the effect of one factor on the oese to other factor. The
problem of interactions (i.e., the effect that tadded component in the
activation task has on pre-existing components) lmanovercome when the
experimental design is factorial. Price et al. (@98emonstrated that when the
design is factorial, conjunction analysis reveatsnmonalities in activation,
while the interactions reveal task-specific effedtsparticular, the effect of a
cognitive component (i.e., an effect that is indegent of other components) is
best captured by the main (activation) effect aitthbomponent and that the
integration among components (i.e., the expressfame cognitive process in
the context of another) can be assessed with teeagtion terms (Friston et al.,
1996).

In parametric designs, rather than assuming tletdignitive processes
are composed of different cognitive components)y tiage considered as
belonging to different psychological dimensionse®ystematic changes in the
brain responses according to some performancebwtts of task can be
investigated in parametric designs. In parametesighs one can also look at
the linear and non-linear types of relations tabtermined empirically.

The experimental design can be either a withinjgrou a between-
group design. Due to the difficulty of matching pirameters (including age,
IQ, gender etc) between groups, within-group desigie generally preferred,
except when comparing special populations such aemis with a control

group.

2.2.1 Block and Event-related designs

An fMRI experiment to test a given biological hypesis must be designed
within the constraints of the temporal charactmssof the BOLD fMRI signal

and of the various confounding effects to which fivdRgnal is susceptible.
Typically, two designs are possible 1) Epoch-badedign using Blocks of
stimulation (boxcar designs with alternating adiwa and rest) and 2) Event-
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related design, where data may be recorded to orotiie BOLD response

following a marked (pre-determined) event such sisigle stimulus or task.

Blocked design (Epoch-based) experiments (Bandett#94) are used
mainly to average across many trials to obtainigefit signal-to-noise ratios to
generate functional activation images. The blockigieexperiments descended
from the low temporal resolution imaging based ¢wo8 dynamics (such as
PET). However, such blocked trial procedures do altiw separate trials
within the task blocks to be distinguished. Blockkssigns cannot be used if we
want to consider trials that depend on subjectdopmance (e.g. correct or
wrong; chooses among different alternatives) odreepresent trials in a non-
blocked fashion (e.g. the oddball paradigm). Daled éBuckner (1997)
demonstrated the feasibility of using fMRI for siiee averaging of rapidly
presented individual trials, a technique that wsesduin event related potential
(ERP) studies such as the EEG/MEG. It is shown that haemodynamic
response is delayed and lasts for several secoedsfer brief stimulation (less
than couple of seconds) (see Figar8). As the haemodynamic response to
individual trials extends temporally, the responsessuccessive trials may
overlap. Hence the inter-trial interval betweencassive trials needs to last for
about 15 seconds. However this severely limitsnim@ber of trials, which can
be averaged per unit time, thus limiting the achide signal-to-noise ratio.
Dale and Buckner (1997) demonstrated that the hdgnamnic response to

successive events adds in an approximately lingstidn even at relatively

E AFB .'A|i? A G 'AF?A% A%

A B A B B A B A A B A

Figure 2.5 Block and Event-related designs

Block (top panel) and Event-related (bottom pafidRRI design for two task
conditions A and B. The x-axis is time from leftright.
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short inter-trial intervals (2 sec and 5 sec) aetide selective averaging of
rapidly presented individual trials is feasible eTimdings of Dale and Buckner
(1997) support the Linear Time Invariant modeltfoe haemodynamic response
function (Boynton et al., 1996). Dale (1999) ha®veh that the statistical
efficiency of rapid event-related designs when théeer-trial interval is
appropriately jittered can be up to 10 times gmetitan fixed inter-trial interval
designs. Further, random intermixing of trial tgpaiminates strategy effects
that might otherwise confound the results in blactesk paradigms.

In conducting a hypothesis-based experiment, weh wis be able to
attribute any observed effects to experimentallynimaated conditions. This
can be guaranteed only if conditions are randortibcated to a presentation
order for each subject in a sensible manner. Fyrthes randomisation should
be appropriately balanced, both across and withbjests. With such random
allocation of conditions, any unexpected effecesrandomly scattered between
the conditions, and therefore do not affect theghesl effects.

2.3 Analysisof functional MRI Data

The main issue in analysing functional MRI imagescomparing images, or
groups of images, in a statistically meaningful wdy a typical fMRI
experiment, a whole-brain functional image is acepliievery 2-3 seconds
resulting in a few hundred images to be analyseghEmage is acquired as a
number of slices (e.g. 21 with thickness ~ 5 mmjhwa typical in-plane
resolution of 3x3 mm for a field of view of 192x192@m. With these typical
parameters, a single fMRI image would have dimerssiof 64x64x21 mm.
Statistical Parametric Mapping (SPM) is a form afadreduction, condensing
information (in a statistically meaningful way) fnoa number of individual
scans into a single image volume that can be maslyeviewed and
interpreted. Usually a univariate approach is fw#d in which the parametric
map is computed by examining every voxel locatioross all images. In order
to select a particular statistical distribution ralsd (e.g. Poisson, normal,
Gaussian), we need to know the underlying distidloubf variance of the data
being analysed, which is usually unknown in neueging data. Further,

univariate statistical models generally assumepeddent data points. Several
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preprocessing steps are required before proceedigstatistical analysis in
order to reduce artefacts and noise and to perfpatial transformations. The
analysis of fMRI data within the framework of SPM2oftware
(http://www fil.ion.ucl.ac.uk/spm  Wellcome Departnte of Imaging

Neuroscience, London) is presented here.

2.3.1 Preprocessing

Spatial transformations are important in many asped functional image
analysis and involve both within- and between-sttbjegistration followed by
spatial smoothing with a Gaussian kernel. Prepsiegsncludes several steps,
all of which are aimed at massaging the data st ith&s suitable to be
statistically analysed. The first several steps @ath image volume into a
standardized spatial reference frame. The lastrpcepsing step applies a
Gaussian spatial filter. Few scans at the beginafrepch session are discarded
to account for transients in magnetic field of stam The origin of the images
is set to match the line joining anterior-commigsiar the posterior-commissure
(AC-PC line).

Within-subject registration

Statistical Analysis

) fMRI ) General Linear Model
time series Cesign matrix
J L Farameter estimation
Within-subject registration Statistical Inference
slice-timing correction Linear Contrasts
Realignment b Thresholding
Coregistration nd
{structural to functional) Random Effects Analysis
(Group analysis only)
Between-subject registration
spatial normalization lL
Statistical
Spatial smoothing Q’arametric Map>

Preprocessing

Figure 2.6 Key stagesin fMRI data analysis
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The 3-dimensional functional brain images are ugwalquired as a number of
slices in 2-dimensions. Hence, there will be a tidiference approximately
equal to the TR (repetition time or inter scanivid) between the first slice and
the last slice acquired in a single whole-brain usgitjion. One option to
compensate for the time difference between bottodhtap slices of the brain is
to acquire the slices in an interleaved fashiomddeall odd numbered slices are
acquired first followed by even numbered slicesriby preprocessing stage, it
is desirable to temporally interpolate the sliceshsat it would be equivalent to
acquiring the whole brain image at a single timmpd his is usually done with
respect to a reference slice (e.g. middle slideottom slice of the brain), which
depends on the regions of particular interest fogiveen experiment. This

procedure is referred to as slice timing correction

In functional imaging, the signal changes due tg haemodynamic
response can be small compared to signal changesdh result from subject
motion. So, prior to performing the statisticalt$gdgt is important that the
images are as closely aligned as possible. Althdbghsubjects are asked to
keep their head's still, movement does occur. €agnment algorithm follows
a rigid-body registration procedure (Friston et 8995a). A rigid body can have
a linear translational movement or a rotational emegnt in each of the three
directions (X, Y and Z). Correspondingly, there ape parameters that need to
be estimated (X, Y, Z translations, pitch, roll arelv). For multi-session data,
realignment works in two steps. First, the firshdtional images from each
session are realigned to each other taking thedassion as reference. Second,
the remaining images within each session are meadigo the first image. As a

consequence, all images are realigned to thermage from the first session.

When applying slice-timing correction and realigmiethe order of
these two preprocessing steps needs special comtsote Applying
realignment procedure first would account for langevements, but the images
will no longer correspond to the specific time thia¢ slice was supposed to
have been acquired after being realigned. On tlerobhand, slice-timing
correction essentially interpolates the data temlporand the realignment
procedure would need to work on resliced imagesr afhe slice timing

correction has been applied. The disadvantagesb€irey the data several times
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during the preprocessing stage would incur losgshm image quality. The

movement-related activation can be substantiallgelacompared to the task-
related BOLD changes. Hence, often the realignmparameters are included as
covariates of no interest in the statistical analgsage. An additional way to
account for differences in timing of haemodynanasponses for different brain
regions would be to include the temporal derivatie¢ the canonical HRF as

part of the basis functions during statistical gsisl
Between-subject registration

Sometimes, it is desirable to warp images from mbwer of individuals into
roughly the same standard space to allow signalaguey across subjects. A
further advantage of using spatially normalized gesis that activation sites
can be reported according to their coordinatesiwighstandard space such as
the one described by Talairach and Tournoux (198BM2 uses the average
brain template created by the Montreal Neurologieslitute, that is an average
of 152 brain images and hence more representativéheo population as
compared to the Talairach and Tournoux atlas. Tlemidlization process
(Friston et al., 1995a) not only considers thedrigody transformations but also
considers shears and zooms to match the individulject’'s images to the
template. For accurate normalization, it would dsarequired to use nonlinear
transformations that would account for deformatitiveg do not vary in a linear
fashion. SPM2 uses cosine basis functions as pardrdinear transformations

for normalization procedure.
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The normalization procedure can be performed in diferent ways.
First, the mean functional image from the outputezlignment procedure can
be used to match with the EPI template image inMiNg space and then the
resultant parameters can be applied to all the tiwmal images to be
normalized. The spatial resolution of functionahgpes is poor compared to the
high-resolution structural images that give dethilmatomy of the subjects’
brain. Hence, it is desirable to use the informatwovided by the structural
images for better match with template brain. Howgwhe functional and
structural images are usually acquired using diffeimaging parameters and
slice orientations. So prior to using a structurege to compute normalization
parameters to a T1 template image, the structuralges need to be co-
registered with the functional images of the subj€his step forms part of the
within-subject registration. Apart from a more psecspatial normalization, a
further use of this registration is that the adimas of the subject in the
functional space can be overlaid onto the struttwnage of the subject for

better visualization and localization of the activa.

Figure 2.7 Rigid body and affine transfor mations

(A) Translation (B) Rotation (C) Shear (D) Zoom d&ated from Rik
Henson, SPM Mini course, 2006, MRC-CBU)
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As the normalization procedure invariably trieswarp the subject’s
brain into a template space, it can be problematien there is a dropout in
some regions or when the subjects have a lesiait &nd Rorden (Brett et al.,
2001) have suggested that such regions be masked tpr applying the
normalization procedure to avoid the algorithm rigyito fill in the lesion /
dropout region with the surrounding tissue. Thigprapch can however
compromise the computation of parameter estimateisgl statistical analysis,
particularly at group level, as data would not bailable for regions excluded

only in some subjects.
Spatial Smoothing

The matching of the brains in the Normalizationpsie only possible on a
coarse scale, since there is not necessarily dosore mapping of the cortical
structures between different brains. Because of tmages are smoothed prior
to the statistical analysis in a multi-subject stusb that corresponding sites of
activation from the different brains are superimggtbsSmoothing generally
increases the signal relative to noise. From th&cimea filter theorem, to get
optimum resolution of signal from noise, we neddter that is matched to the
signal. Since, haemodynamic responses are modelleave a Gaussian shape;
we need to use a Gaussian kernel of size at wast the voxel size (FWHM of
about 6 or 8 mm) for smoothing the functional imagehe idea of smoothing is
to replace the intensity value within each voxethma weighted average (as
determined by a Gaussian kernel centred on thaticpi@r voxel) that
incorporates the intensity values of the neighbaurvoxels. Smoothing is
performed to compensate for residual between-subjeriability after
normalization. Smoothing also permits the applicatof Gaussian random

field theory at the statistics inference stage.

2.3.2 Statistical analysis of fMRI images

Model setup and parameter estimation

After preprocessing, the images are ready forssiedi analysis. FMRI data are
high-pass filtered to remove physiological effestish as heartbeat, respiration,

scanner-drift etc. Statistical analysis corresponas Statistical Parametric
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Mapping (Friston et al., 1995b) using the Geneiakar Model and theory of
Gaussian fields. The GLM is used to specify theddmwns in the form of a

design matrix, which defines the experimental desand the nature of
hypothesis testing to be implemented. The hypahi&ssiframed as a design
matrix model. The design matrix has one row fotheszan and one column for
each effect one has built into the experiment glanatory variables that may
confound the results. The columns of the designrimatorrespond to

experimental conditions of interest (the hypothasmgler test) and a set of
columns that model effects of no interest. Thishis stage where the groups
designated for the images (e.g. reward/no reware)specified. This stage
corresponds to modelling the data in order to famnt observed

neurophysiological responses into components oérest, confounds, or

components of no interest and an error term.

The general linear model (GLM) is an equation, Wwhexpresses the
observed response variable in terms of a linearbawetion of explanatory
variables plus a well-behaved error term. Commadgd parametric models,
such as linear regression, t-tests and analysiaridnce (ANOVA) are special
cases of the general linear model. The GLM relatest one observes, to what
one expected to see, by expressing the observdtiesigonse variable Y) as a
linear combination of expected components (or exailary variables x) and

some residual errok), thereby equivalent to linear regression.

Y, o Noxy ANox | B &
M MO MO M|M M
Yj =1 X1 FA X;y FA X, B |+ &
M MO MO M|M M
L' _XJl A XJI A XJL__BL_ _gL_

This can be expressed in the matrix form as
Y=XB+eg

Here, X is called the design matrix that contalres éxplanatory variables afid
is the unknown parameter to be estimated. The argdileast squares approach
to calculate parameter estimafesould be

p* = (X"X) Xy
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The fitted response would be Y =X and the residual is y-Y. The assumption
underlying least squares approximation is that rdeduals are drawn from
independent and identically distributed normal (&aan) distribution (white
noise). This assumption is violated by the fMRIadatvhich are typically
correlated from one scan to the next. Hence thecefe degrees of freedom
(df) cannot be assumed to be number of scans nineudfs used in the model.
SPM2 uses the restricted maximum likelihood (ReMpproach to estimate the
non-sphericity (of which autocorrelation is onedypn fMRI data. Additional
approach to deal with autocorrelation in fMRI dest@o explicitly model using,

for example, a first order auto regression mode{ AR

MRI gives us the blood flow signal, but we are ragted in the neural
activity. It is possible that the neural responsequicker and the changes in
blood flow take place a little later. To account these and to find the neural
activity from the MRI signal, the columns of thesdgr matrix are convolved
with the canonical haemodynamic response functitiRF). The temporal and
dispersion derivatives of the HRF are used additlgrio account for variation
in onset and width, respectively, of the HRF acrdifierent brain regions. An
alternative approach is to use a basis functioatsdb not make any assumption
about the shape of the haemodynamic response ygigg a finite impulse
response model). Henson et al. (2001) have denavedtrthat using the
canonical HRF and its temporal and dispersion déxigs is sufficient for

reliable detection of activation in event-relat&tH.

Statistical | nference

Brain activity specific to task is obtained by sipgng linear contrasts. A
contrast can be used to compare different conditidhe subtractive approach
assumes that brain activity scales in a lineariéashThe conditions of interest
are given a positive value, such as 1, and comditibat are to be subtracted
from these conditions of interest take on a negatalue, such as -1. The end
result is a statistical parametric map. The adtwat thus obtained can be
overlaid or rendered onto the high-resolution amatal image of the subject in
order to accurately locate the neural activity.
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Statistical parametric mapping approach is a urateapproach. That is
each voxel is analysed separately. Hence for @titat threshold of p<0.05,
5% of the voxels would show activation by chananal(false activation — type
| error). This means a correction for multiple c@ngons is needed. The
traditional way of doing this is to use some veansad a Bonferroni correction.
However, due to large number of voxels involved, saaightforward
implementation would severely reduce the estimatathber of degrees of
freedom. The individual voxels in most neuroimagmgdalities (PET, fMRI,
EEG, MEG etc.) are heavily correlated with neighioogivoxels. Hence, to the
extent that the image data approximate a randonsstaufield (Worsley e al.,
1996), correction for multiple comparison need ¢éodmly made for number of
voxels that can be resolved independently (reswiuélements or resels). The
correction for multiple comparisons is controlled family-wise error (FWE)
rate. This assumption of random Gaussian field ssuged by applying a

Gaussian smoothing filter in the pre-processingesta

A serious limitation of correcting for multiple cqarisons is that the
number of false negatives (type Il error) is ineeh Another approach is to
determine the false discovery rate (FDR) that adsitfor 5% at (p<0.05) of
observed activations can be false positives (Geseet al., 2002). The FWE
approach controls for a 5% chance of a single fptsative. As a trade-off to
correction for multiple comparison, alternative eggches have been described
such as (i) using a strict uncorrected threshold. (p<0.001), (ii) using an
inference over the cluster size, so that it iskehi to find activations in a
cluster of size, say 30 voxels. (iii) small volum@rections in regions where a
prior hypothesis exists (iv) a region of intereRQ() analysis in which the
average signal for all voxels in an anatomicalwrctional ROI is used, hence
reducing the number of multiple comparisons voxgce to the number of
ROls.

Random Effects Analysis

In order to make an inference about brain actiwtg task, the contrast images
from a group of subjects are analysed using a maneffects model (Holmes
and Friston, 1998) using student's t-test or ANOik& methods. The contrast

54



images represent spatially distributed images & weighted sum of the
parameter estimates for a particular contrast.skerce, it's like a difference
image for (activation-rest) or (reward-no rewanjhen using a one-sample t-
test, one contrast image for each subject is requiBy doing that, the images
are being collapsed over intra-subject variab(libyonly one image per contrast
per subject) and the image-to-image residual vaityais now between subject
variance alone. When using ANOVA, a number of casttimages are entered
from each subject. These need to be correcteddioisphericity. If the contrast
images being entered into ANOVA are main effectsaafondition, a within-

subjects model should be used. On the other héatige icontrast images have
already accounted for within-subject variabilithenh an ANOVA without

constant term can be used.

The purpose of the Random Effects analysis isnd the areas that are
activated in much the same way in all subjectso@®osed to a fixed effects
model, which gives areas that are activated oratleeage across the subjects.
This is really a crucial difference since a fixetfeets analysis may yield
significant results when one or a couple of suljexttivate a lot even though
the other subjects do not activate at all. The RandEffects analysis
incorporates both within-subject variance, as \asllbetween-subject variance.
This allows generalization of the results to theudation from which the

subjects were drawn.
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