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Abstract
Slow feature analysis is an algorithm for unsupervised learning of invariant

representations from data with temporal correlations. Here, we present a math-
ematical analysis of slow feature analysis for the case where the input-output
functions are not restricted in complexity. We show that the optimal functions
obey a partial differential eigenvalue problem of a type that is common in the-
oretical physics. This analogy allows the transfer of mathematical techniques
and intuitions from physics to concrete applications of slow feature analysis,
thereby providing the means for analytical predictions and a better understand-
ing of simulation results. We put particular emphasis on the situation where the
input data are generated from a set of statistically independent sources. The
dependence of the optimal functions on the sources is calculated analytically
for the cases where the sources have Gaussian or uniform distribution.

Keywords: slow feature analysis, unsupervised learning, invariant represen-
tations, statistically independent sources, theoretical analysis

1. Introduction

Reliable recognition of objects in spite of changes in position, size, or illumination
is a problem that, although highly relevant for computer vision, has not been solved
in a general manner. The key problem is to establish representations of the data
that are invariant with respect to typical changes in the appearance of the objects
while remaining selective for object identity.

One approach for the unsupervised learning of such invariant representations is
based on the exploitation of temporal correlations in the training data. The basic
idea is that representations that are invariant with respect to typical transforma-
tions in a given set of time-dependent training data should lead to temporally
slowly varying output signals. Using this observation as a rational, it is possible
to learn invariant representations by favoring representations that generate slowly
varying signals over others that generate quickly varying signals. There are several
implementations of this principle, with approaches ranging from gradient descent
(Stone and Bray, 1995; Kayser et al., 2001), over temporally nonlocal Hebbian
learning (Mitchison, 1991; Földiàk, 1991; Wallis and Rolls, 1997; Sprekeler et al.,
2007) to batch learning (Wiskott and Sejnowski, 2002). Here, we focus on Slow
Feature Analysis (SFA) as introduced by Wiskott (1998).

SFA has been applied to a set of problems, ranging from biological model-
ing of receptive fields in early visual processing (Berkes and Wiskott, 2005) and
hippocampal place and head direction cells (Franzius et al., 2007a) to technical
applications such as invariant object recognition (Berkes, 2005; Franzius et al.,
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2007b). On the conceptual side, it has turned out that SFA is closely related to
independent component analysis techniques that rely on second order statistics
(Blaschke et al., 2006). SFA or variations thereof can therefore also be used for
problems of blind source separation (Blaschke et al., 2007).

Previous studies have shown that SFA is amenable to analytical considerations
(Wiskott, 2003; Franzius et al., 2007a). Here, we extend this line of research and
present a mathematical framework for the case where SFA has access to an unlim-
ited function space. The aim of this article is threefold. Firstly, the mathematical
framework allows us to make analytical predictions for the input-output functions
found by SFA in concrete applications. Parts of the theory have been presented
and used for this purpose earlier (Franzius et al., 2007a). Secondly, the theory
shows that SFA bears close analogies to standard systems in physics, which pro-
vide an intuitive interpretation of the functions found by SFA. Thirdly, the theory
makes specific predictions for the case where the input data are generated from a
set of statistically independent sources.

The structure of the paper is as follows. In section 2 we introduce the optimiza-
tion problem that underlies SFA. In sections 3 and 4 we develop the mathematical
framework and study the case of statistically independent sources. In section 5,
we briefly discuss analogies to standard systems in physics and try to convey an
intuitive understanding of the solutions of SFA based on these analogies.

2. Slow Feature Analysis

Slow Feature Analysis is based on the following learning task: Given a multi-
dimensional input signal we want to find scalar input-output functions that gener-
ate output signals that vary as slowly as possible but carry significant information.
To ensure the latter we require the output signals to be uncorrelated and have unit
variance. In mathematical terms, this can be stated as follows:

Optimization problem 1: Given a function space F and an N-dimensional
input signal x(t) find a set of J real-valued input-output functions gj(x) such that
the output signals yj(t) := gj(x(t)) minimize

∆(yj) = 〈ẏ2
j 〉t (1)

under the constraints

〈yj〉t = 0 (zero mean) , (2)

〈y2
j 〉t = 1 (unit variance) , (3)

∀i < j : 〈yiyj〉t = 0 (decorrelation and order) , (4)

with 〈·〉t and ẏ indicating temporal averaging and the derivative of y, respectively.

Equation (1) introduces the ∆-value, which is a measure of the temporal slow-
ness (or rather ’fastness’) of the signal y(t). The constraints (2) and (3) avoid the
trivial constant solution. Constraint (4) ensures that different functions gj code
for different aspects of the input. Note that the decorrelation constraint is asym-
metric: The function g1 is the slowest function in F , while the function g2 is the
slowest function that fulfills the constraint of generating a signal that is uncorre-
lated to the output signal of g1. Therefore, the resulting sequence of functions is
ordered according to the slowness of their output signals on the training data.

It is important to note that although the objective is the slowness of the output
signal, the functions gj are instantaneous functions of the input, so that slowness
cannot be achieved by low-pass filtering. Slow output signals can only be obtained
if the input signal contains slowly varying features that can be extracted by the
functions gj .

2



Theory of Slow Feature Analysis

Depending on the dimensionality of the function space F , the solution of the
optimization problem requires different techniques. If F is finite-dimensional, the
problem can be reduced to a (generalized) eigenvalue problem (Wiskott and Se-
jnowski, 2002; Berkes and Wiskott, 2005). If F is infinite-dimensional, the problem
requires variational calculus and is in general difficult to solve. Here, we consider
this second case for the special situation that there are no constraints on F apart
from sufficient differentiability and integrability. Although strictly speaking this
case cannot be implemented numerically, it has the advantage that it permits the
analytical derivation of partial differential equations for the optimal functions and
predictions for the behavior of systems that implement very high-dimensional func-
tion spaces such as hierarchical systems (Franzius et al., 2007a). It also yields an
intution as to how the structure of the input signal is reflected by the optimal
solutions.

3. A Mathematical Framework for SFA

In this section, we present a rigorous mathematical framework for SFA for the
case of an unrestricted function space F . The key results are that the output
signals extracted by SFA are independent of the representation of the input signals
and that the optimal functions for SFA are the solutions of a partial differential
eigenvalue problem.

3.1 Representations of the input signals

The assumption that SFA has access to an unrestricted function space F has
important theoretical implications. For restricted (but possibly still infinitely-
dimensional) function spaces, coordinate changes in the space of the input data
generally alter the results, because they effectively change the function space from
which the solutions are taken. As an example, assume that the input signal x =
(x, y) is two-dimensional and the function space is the space of linear functions.
Then, a change of the coordinate system to (x′, y′) = (x3, y) if still allowing only
linear functions in the new coordinates leads to a very different function space
in the variables x and y. Thus the optimal functions generate different optimal
output signals yj for the different coordinate systems. The optimization problem
with a restricted function space is generally not invariant with respect to coordinate
changes of the input signals.

For an unrestricted function space, the situation is different, because the con-
catenation of any function in F with the inversion of the coordinate change is
again an element of the function space. The set of output signals that can be
generated by the function space is then invariant with respect to invertible coordi-
nate changes of the input signals. Because the slowness of a function is measured
in terms of its output signal, the optimal functions will of course depend on the
coordinate system used, but the output signals will be the same.

This is particularly interesting in situations where the high-dimensional in-
put signal does not cover the whole space of possible values, but lies on a low-
dimensional manifold. For illustration, consider the example of a video showing a
single rotating object. In this case, the set of possible images can be parameterized
by three angles that characterize the orientation of the object in space. Therefore,
these images lie on a three-dimensional manifold in the space of all possible im-
ages. Because there are no data outside the input manifold, we are generally only
interested in the behavior of the optimal functions within the input manifold, that
is, in the reaction of the system to all images that are possible within the given
training scenario. The equivalence of different coordinate systems then implies
that it is not important whether we take the (high-dimensional) video sequence or
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the (3-dimensional) time-dependent abstract angles as input signals. The output
signal is the same. Of course the low-dimensional representation is much more
amenable to analytical predictions and to intuitive interpretations of the system
behavior. We have previously used this simplification to predict the behavior of a
hierarchical model of visual processing that reproduces the behavior of several cell
types in the hippocampal formation of rodents commonly associated with spatial
navigation (Franzius et al., 2007a).

Another situation in which the coordinate invariance is useful is the case of
nonlinear blind source separation. Here, the input data are assumed to be a
nonlinear mixture of some underlying sources. The task is to reconstruct the
sources from the data without knowledge of the mixture or the sources. A natural
prerequisite for the reconstruction is that the mixture is invertible. The mixture
can then be interpreted as a nonlinear coordinate change, which – due to the
equivalence of different coordinate systems – is immaterial to the optimization
problem above. From the theoretical perspective, we can thus simply assume that
we had the sources themselves as input signals and try to make predictions about
how they are mixed in the optimal output signals found by SFA. If we can infer the
sources (or good representatives thereof) from the optimal output signals under
this condition, we can infer the sources from the output signals, no matter how
they are mixed in the input data. Thus, SFA may be an interesting way of solving
certain nonlinear blind source separation problems.

It is important to bear in mind that the theory developed in the following is
valid for an arbitrary choice of the input coordinate system, so that x(t) can stand
for concrete input signals (e.g. video sequences) as well as abstract representations
of the input (e.g. angles that denote the orientation of the object in the video).
Note however, that as the input data (or the manifold they lie on) becomes very
high-dimensional, the resulting equations may be tedious to solve.

3.2 Further assumptions and notation

We assume that the input signal x(t) is ergodic, so that we can replace time av-
erages by ensemble averages with a suitable probability density. Because the opti-
mization problem underlying SFA relies on the temporal structure of the training
data as reflected by its derivative, a statistical description of the training signal
x must incorporate not only the probability distribution for the values of x, but
rather the joint distribution px,ẋ(x, ẋ) of the input signal x and its derivative ẋ.
We assume that px,ẋ(x, ẋ) is known and that we can define the marginal and
conditional probability densities

px(x) :=

Z
px,ẋ(x, ẋ) dN ẋ , (5)

pẋ|x(ẋ|x) :=
px,ẋ(x, ẋ)

px(x)
, (6)

and the corresponding averages

〈f(x, ẋ)〉x,ẋ :=

Z
px,ẋ(x, ẋ)f(x, ẋ) dNx dN ẋ , (7)

〈f(x)〉x :=

Z
px(x)f(x) dNx , (8)

〈f(x, ẋ)〉ẋ|x(x) :=

Z
pẋ|x(ẋ|x)f(x, ẋ) dN ẋ . (9)

We assume throughout that all averages taken exist. This introduces integrability
constraints on the functions of which the average is taken. The function space is
thus not completely unrestricted. The functions are restricted to be integrable in
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the sense that the averages above exist. In addition, they should be differentiable,
simply to assure that the temporal derivative of their output signal exists.

We use greek letters to denote the index of vector components. Partial deriva-
tives with respect to a component xµ are written as ∂µ. For example, the divergence
of a vector field v(x) takes the short form

div v(x) :=
X
µ

∂vµ(x)

∂xµ
=
X
µ

∂µvµ(x) . (10)

We use the convention that within products, ∂µ acts on all functions to its
right. If we want ∂µ to act locally, we use square brackets. This convention can
be illustrated by the product rule

∂µf(x)g(x) = [∂µf(x)]g(x) + f(x)[∂µg(x)] . (11)

3.3 Reformulation of the optimization problem

To describe the ∆-value in terms of the probability distribution px,ẋ(x, ẋ), we need
to express the temporal derivative of the output signal y(t) = g(x(t)) in terms of
the input signals x(t) and their derivatives. This is readily done by the chain rule

ẏ(t) =
d

dt
g(x(t)) =

X
µ

ẋµ(t)∂µg(x(t)) . (12)

We can now rewrite the objective function (1) by replacing the time average 〈·〉t
by the ensemble average 〈·〉x,ẋ

∆(gj)
(1)
= 〈ẏj(t)2〉t (13)

(12)
=

X
µ,ν

〈ẋµ[∂µgj(x)]ẋν [∂νgj(x)]〉x,ẋ (14)

=
X
µ,ν

〈〈ẋµẋν〉ẋ|x| {z }
=:Kµν(x)

[∂µgj(x)][∂νgj(x)]〉x (15)

=
X
µ,ν

〈Kµν(x)[∂µgj(x)][∂νgj(x)]〉x , (16)

where Kµν(x) is the matrix of the second moments of the conditional velocity
distribution pẋ|x(ẋ|x) and reflects the dynamical structure of the input signal.

An elegant reformulation of the optimization problem can be obtained by in-
troducing the following scalar product (f, g) between functions f, g ∈ F :

(f, g) := 〈f(x)g(x)〉x . (17)

With this definition, the function space F becomes a Hilbert space and the slowness
objective for a function g can be written as

∆(gj) =
X
µ,ν

(∂µg,Kµν∂νg) . (18)

Note that we restrict the action of the partial derivatives to the argument of the
scalar product they appear in.

Replacing the temporal averages by ensemble averages and using the scalar
product (17), the original optimization problem becomes
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Optimization problem 2: Given a function space F and a probability distri-
bution px,ẋ(x, ẋ) for the input signal x and its derivative ẋ, find a set of J + 1
real-valued input-output functions gj(x), j ∈ {0, 1, ..., J} that minimize

∆(gj) =
X
µ,ν

(∂µgj ,Kµν∂νgj) (19)

under the constraint

∀i < j : (gi, gj) = δij (orthonormality and order) . (20)

Here we dropped the zero mean constraint and allow the trivial constant solution
g0 = ±1 to occur. As any function whose scalar product with the constant van-
ishes must have zero mean, the constraint (20) implies zero mean for all functions
with j > 0. For functions f and g with zero mean, in turn, the scalar product (17)
is simply the covariance, so that the constraints (2-4) can be compactly written as
the orthonormality constraint (20).

3.4 A differential equation for the solutions

In this section we show that optimization problem 2 can be reduced to a partial
differential eigenvalue equation. As some of the proofs are lengthy and not very
illustrative, we state and motivate the main results while postponing the exact
proofs to the appendix.

Under the assumption that all functions g ∈ F fulfill a boundary condition that
is stated below, the objective function (19) can be written as

∆(g) = (g,
X
µ,ν

∂†µKµν∂ν| {z }
=:D

g) = (g,Dg) . (21)

Here, A† denotes the adjoint operator to A with respect to the scalar product (17),
i.e., the operator that fulfills the condition (Af, g) = (f,A†g) for all functions
f, g ∈ F . By means of an integration by parts, it can be shown that ∂†µ = − 1

px
∂µpx.

Thus the operator D is the partial differential operator

D = − 1

px

X
µ,ν

∂µpxKµν∂ν . (22)

Because Kµν is symmetric, D is self-adjoint, i.e. (Df, g) = (f,Dg) (see appendix,
Lemma 2).

The main advantage of this reformulation is that the ∆-value takes a form that
is common in other contexts, e.g., in quantum mechanics, where the operator D
corresponds to the Hamilton operator (e.g. Landau and Lifshitz, 1977, §20). This
analogy allows us to transfer the well-developed theory from these areas to our
problem. As in quantum mechanics, the central role is played by the eigenfunctions
of D. This culminates in theorem 1, which we will briefly motivate. A rigorous
proof can be found in the appendix.

Because the operator D is self-adjoint, it possesses a complete set of eigen-
functions gi that are mutually orthogonal with respect to the scalar product (17)
(spectral theorem, see e.g. Courant and Hilbert, 1989, chapter V, §14). The eigen-
functions of D are defined by the eigenvalue equation

Dgi = λigi (23)

and are assumed to be normalized according to

(gi, gi) = 1 . (24)
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Because they are orthogonal, they fulfill the orthonormality constraint (20). In-
serting these expressions into (21) immediately shows that the ∆-value of the
eigenfunctions is given by their eigenvalue

∆(gi)
(21)
= (gi,Dgi)

(23)
= (gi, λigi)

(24)
= λi . (25)

Because of the completeness of the eigenfunctions gi, any function g can be repre-
sented as a linear combination g =

P
i wigi of the eigenfunctions gi. The ∆-value

of g can then be decomposed into a sum of the ∆-values of the eigenfunctions

∆(g)
(21)
= (g,Dg)

(23,20)
=

X
i

w2
i λi . (26)

The unit variance constraint requires that the square sum of the coefficients wi
is unity:

P
i w

2
i = 1. It is then evident that the ∆-value (26) can be minimized

by choosing wi = δ0i, so that the slowest function is simply the eigenfunction g0

with the smallest eigenvalue. The space of all functions that are orthogonal to g0

is spanned by the remaining eigenfunctions gi with i > 0. The slowest function
in this space is the eigenfunction g1 with the second smallest eigenvalue. Iterat-
ing this scheme makes clear that the optimal functions for SFA are simply the
eigenfunctions gi, ordered by their eigenvalue.

The eigenvalue problem (23) is a partial differential equation and thus requires
boundary conditions. A detailed analysis of the problem shows that the optimal
functions are those that fulfill von Neumann boundary conditions (see Appendix).
Altogether this yields

Theorem 1 The solution of optimization problem 2 is given by the J + 1 eigen-
functions of the operator D with the smallest eigenvalues, i.e. the functions that
fulfill

Dgj = λjgj (27)

with the boundary condition X
µ,ν

nµpxKµν∂νgj = 0 , (28)

and the normalization condition

(gj , gj) = 1 . (29)

Here, n(x) is the normal vector on the boundary for the point x. The ∆-value of
the eigenfunctions is given by their eigenvalue

∆(gj) = λj . (30)

If the input data x are not bounded, the boundary condition has to be replaced by
a limit, so that for parameterized boundaries that grow to infinity, the left hand
side of equation (28) converges to zero for all points on the boundary. Note that we
assumed earlier that all averages taken exist. This implies that the square of the
functions and their first derivatives decay more quickly than px(x) as ||x|| → ∞.
Functions that do not fulfill the limit case of the boundary condition tend to have
infinite variance or ∆-value.

The key advantage of the theory is that it converts the (global) optimization
problem into a (local) partial differential eigenvalue equation. Moreover, the eigen-
value equation (27) belongs to a class that is known as Sturm-Liouville problems
(see e.g., Courant and Hilbert, 1989), for which a well-developed theory exists. In
the next chapter we use Sturm-Liouville theory to study the case of input data
that are generated from a set of statistically independent sources.
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4. Statistically Independent Sources

In this section we extend the theory to the scenario where the input signals are
generated from a set of statistically independent sources. This case is particularly
interesting in the light of nonlinear blind source separation and independent com-
ponent analysis. We show that the eigenvalue equation for the optimal functions of
SFA can be split into separate eigenvalue problems for a set of harmonics, each of
which depends on only one of the sources. The optimal functions for the full opti-
mization problem can be expressed as products of these harmonics. We then study
the structure of the harmonics and show that the slowest non-constant harmonics
are monotonic functions of the sources and therefore good representatives thereof.
In the case of Gaussian or uniform statistics, the harmonics can be calculated
analytically. In the Gaussian case, they are Hermite polynomials of the sources,
which implied in particular that the slowest non-constant harmonics are simply
the sources. Finally, we present a perturbartion-theoretical analysis to understand
the effects of weakly inhomogeneous input statistics.

4.1 Statistically independent input data

In this section, we assume that the input signals x are generated from a set of
statistically independent sources sα, α ∈ {1, ..., S} by means of an instantaneous,
invertible function F, i.e., x(t) = F(s(t)). As discussed in section 3.1, the nonlinear
function F can be regarded as a coordinate transformation of the input data and is
thus immaterial to the output signals generated by SFA. Consequently, it makes no
difference if we use the nonlinear mixture as the input signals or the sources. The
output signals should be the same. In the following, we therefore assume that the
input signals for SFA are simply the sources s ∈ RS themselves. To emphasize that
the input signals are the sources and not the “mixture” x, we use indices α and
β for the sources instead of µ and ν for the components of the input signals. The
statistical independence of the sources is formally reflected by the factorization of
their joint probability density

ps,ṡ(s, ṡ) =
Y
α

psα,ṡα(sα, ṡα) . (31)

Then, the marginal probability ps also factorizes into the individual probabilities
pα(sα)

ps(s) =
Y
α

pα(sα) (32)

and Kαβ is diagonal

Kαβ(s) = δαβKα(sα) with Kα(sα) := 〈ṡ2
α〉ṡα|sα . (33)

The latter is true because the mean temporal derivative of 1-dimensional stationary
and differentiable stochastic processes vanish for any sα for continuity reasons, so
that Kαβ is not only the matrix of the second moments of the derivatives, but
actually the conditional covariance matrix of the derivatives of the sources given
the sources. As the sources are statistically independent, their derivatives are
uncorrelated and Kαβ has to be diagonal.

4.2 Factorization of the output signals

In the case of statistically independent input signals, the operator D introduced
in section 3.4 can be split into a sum of operators Dα, each of which depends on
only one of the sources:

D(s) =
X
α

Dα(sα) (34)
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with

Dα = − 1

pα
∂αpαKα∂α , (35)

as follows immediately from equations (22) and (33). This has the important im-
plication that the solution to the full eigenvalue problem for D can be constructed
from the 1-dimensional eigenvalue problems associated with Dα:

Theorem 2 Let gαi (i ∈ N) be the normalized eigenfunctions of the operators Dα,
i.e., the set of functions gαi that fulfill the eigenvalue equations

Dαgαi = λαigαi (36)

with the boundary conditions

pαKα∂αgαi = 0 (37)

and the normalization condition

(gαi, gαi)α := 〈g2
αi〉sα = 1 . (38)

Then, the product functions

gi(s) :=
Y
α

gαiα(sα) (39)

form a complete set of (normalized) eigenfunctions to the full operator D with the
eigenvalues

λi =
X
α

λαiα (40)

and thus those gi with the smallest eigenvalues λi form a solution of optimization
problem 2. Here, i = (i1, ..., iS) ∈ NS denotes a multi-index that enumerates the
eigenfunctions of the full eigenvalue problem.

In the following, we assume that the eigenfunctions gαi are ordered by their
eigenvalue and refer to them as the harmonics of the source sα. This is motivated
by the observation that in the case where pα and Kα are independent of sα,
i.e., for a uniform distribution, the eigenfunctions gαi are harmonic oscillations
whose frequency increases linearly with i (for a derivation see below). Moreover,
we assume that the sources sα are ordered according to slowness, in this case
measured by the eigenvalue λα1 of their lowest non-constant harmonic gα1. These
eigenvalues are the ∆-value of the slowest possible nonlinear point transformations
of the sources.

The main result of the above theorem is that in the case of statistically in-
dependent sources, the output signals are products of harmonics of the sources.
Note that the constant function gα0(sα) = 1 is an eigenfunction with eigenvalue 0
to all the eigenvalue problems (36). As a consequence, the harmonics gαi of
the single sources are also eigenfunctions to the full operator D (with the index
i = (0, ..., 0, iα = i, 0, ..., 0)) and can thus be found by SFA. Importantly, the lowest
non-constant harmonic of the slowest source (i.e., g(1,0,0,...) = g11) is the function
with the smallest overall ∆-value (apart from the constant) and thus the first
function found by SFA. In the next sections, we show that the lowest non-constant
harmonics gα1 reconstruct the sources up to a monotonic and thus invertible point
transformation and that in the case of sources with Gaussian statistics, they even
reproduce the sources exactly.
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4.3 Monotony of the first harmonic

Let us assume that the source sα is bounded and takes on values on the inter-
val sα ∈ [a, b]. The eigenvalue problem (36,37) can be rewritten in the standard
form of a Sturm-Liouville problem:

∂αpαKα ∂αgαi + λαipαgαi
(36,35)

= 0 , (41)

with pαKα∂αgαi
(37)
= 0 for sα ∈ {a, b} . (42)

Note that both pα and pαKα are positive for all sα. Sturm-Liouville theory states
that the solutions gαi, i ∈ N0 of this problem are oscillatory and that gαi has exactly
i zeros on ]a, b[ if the gαi are ordered by increasing eigenvalue λαi (Courant and
Hilbert, 1989, chapter IV, §6). All eigenvalues are positive. In particular, gα1 has
only one zero ξ ∈]a, b[. Without loss of generality we assume that gα1 < 0 for
sα < ξ and gα1 > 0 for sα > ξ. Then equation (41) implies that

∂αpαKα∂αgα1 = −λαpαgα1 < 0 for sα > ξ (43)

=⇒ pαKα∂αgα1 is monotonic decreasing on ]ξ, b] (44)

(42)
=⇒ pαKα ∂αgα1 > 0 on ]ξ, b[ (45)

=⇒ ∂αgα1 > 0 since pαKα > 0 on ]ξ, b[ (46)

⇐⇒ gα1 is monotonic increasing on ]ξ, b[ . (47)

A similar consideration for s < ξ shows that gα1 is also monotonically increasing
on ]a, ξ[. Thus, gα1 is monotonic and invertible on the whole interval [a, b]. Note
that the monotony of gα1 is important in the context of BSS, because it ensures
that not only some of the output signals of SFA depend on only one of the sources
(the harmonics), but that there should actually be some (the lowest non-constant
harmonics) that are very similar to the source itself.

4.4 Gaussian sources

We now consider the situation that the sources are reversible Gaussian stochastic
processes, (i.e., that the joint probability density of s(t) and s(t+ dt) is Gaussian
and symmetric with respect to s(t) and s(t+ dt)). In this case, the instantaneous
values of the sources and their temporal derivatives are statistically independent,
i.e., pṡα|sα(ṡα|sα) = pṡα(ṡα). Thus, Kα is independent of sα, i.e., Kα(sα) = Kα =
const. Without loss of generality we assume that the sources have unit variance.
Then the probability density of the source is given by

pα(sα) =
1√
2π

e−s
2
α/2 (48)

and the eigenvalue equations (41) for the harmonics can be written as

∂αe
−s2α/2∂αgαi +

λαi
Kα

e−s
2
α/2gαi = 0 . (49)

This is a standard form of Hermite’s differential equation (see Courant and Hilbert,
1989, chapter V, § 10). Accordingly, the harmonics gαi are given by the (appro-
priately normalized) Hermite polynomials Hi of the sources:

gαi(sα) =
1√
2ii!

Hi

„
sα√

2

«
. (50)

The Hermite polynomials can be expressed in terms of derivatives of the Gaussian
distribution:

Hn(x) = (−1)nex
2
∂nx e−x

2
. (51)

10
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It is clear that Hermite polynomials fulfill the boundary condition

lim
sα→∞

Kαpα∂αgαi = 0 , (52)

because the derivative of a polynomial is again a polynomial and the Gaussian
distribution decays faster than polynomially as |sα| → ∞. The eigenvalues are
given by

λαi = i/Kα . (53)

The most important consequence is that the lowest non-constant harmonics simply
reproduce the sources: gα1(sα) = 1/

√
2H1(sα/

√
2) = sα. Thus, for Gaussian

sources, SFA with an unrestricted function space reproduces the sources, although
it still remains to determine which of the output signals are the sources and which
are higher harmonics or products of the harmonics of the sources.

4.5 Homogeneously Distributed Sources

Another canonical example for which the eigenvalue equation (36) can be solved
analytically is the case of homogeneously distributed sources, i.e., the case where
the probability distribution ps,ṡ is independent of s. Consequently, neither pα(sα)
nor Kα(sα) can depend on sα, i.e., they are constants. Note that such a dis-
tribution may be difficult to implement by a real differentiable process, because
the velocity distribution should be different at boundaries that cannot be crossed.
Nevertheless, this case provides an approximation to cases, where the distribution
is close to homogeneous.

Let sα take values in the interval [0, Lα]. The eigenvalue equation (41) for the
harmonics is then given by

Kα∂
2
αgαi + λαigαi = 0 . (54)

and readily solved by harmonic oscillations:

gαi(sα) =
√

2 cos

„
iπ
sα
Lα

«
. (55)

The ∆-value of these functions is given by

∆(gαi) = λαi = Kα

„
π

Lα
i

«2

. (56)

Note the similarity of these solutions with the optimal free responses derived by
Wiskott (2003).

4.6 Weakly Inhomogeneous Sources

For homogeneous distributions, the optimal functions for SFA are harmonic oscil-
lations. It is reasonable to assume that this behavior is preserved qualitatively if
pα and Kα are no longer homogeneous but depend weakly on the source sα. In
particular, if the wavelength of the oscillation is much shorter than the typical
scale on which pα and Kα vary, it can be expected that the oscillation “does not
notice” the change. Of course, we are not principally interested in quickly varying
functions, but they can provide insights into the effect of variations of pα and Kα.

To examine this further, we can derive an approximate solution to the eigen-
value equation (36,41) by treating ε = 1/

√
λαi = 1/

√
∆ as a small perturbation

parameter. This corresponds to large ∆-values, i.e., quickly varying functions.
For this case we can apply a perturbation theoretical approach that follows the
Wentzel-Kramers-Brillouin approximation used in quantum mechanics. For a more
detailed description of the approach we refer the reader to the quantum mechanics

11
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literature (e.g., Davydov, 1976). Knowing that the solution shows oscillations, we
start with the complex ansatz

gα(sα) = A exp

„
i

ε
Φ(sα)

«
, (57)

where Φ(sα) is a complex function that needs to be determined. Treating ε as a
small number, we can expand Φ in ε

Φ(sα) = Φ0(sα) + εΦ1(sα) + ... , (58)

where the ellipses stand for higher-order terms. We insert this expression into the
eigenvalue equation (41) and collect terms of the same order in ε. Requiring each
order to vanish separately and neglecting orders of ε2 and higher, we get equations
for Φ0 and Φ1:

(∂αΦ0)2 =
1

Kα
, (59)

∂αΦ1 =
i

2

∂α(pαKα∂αΦ0)

pαKα∂αΦ0
. (60)

These equations are solved by

Φ0(sα) =

sαZ
s0

s
1

Kα(s)
ds , (61)

Φ1(sα) =
i

2
ln
“
pαK

1/2
α

”
, (62)

where s0 is an arbitrary reference point. Inserting this back into equation (57), we
get the approximate solution

gα(sα) =
A

4
p
p2
αKα

exp

0@i sαZ
s0

s
∆

Kα(s)
ds

1A . (63)

This shows that the solutions with large ∆-values show oscillations with local
frequency

p
∆/Kα and amplitude ∼ 1/ 4

p
p2
αKα. Large values of Kα indicate that

the source changes quickly, i.e., where its “velocity” is high. This implies that
the local frequency of the solutions is smaller for values of the sources where the
source velocity is high, whereas small source velocities lead to higher frequencies
than expected for homogeneous movement. The functions compensate for high
source velocities with smaller spatial frequencies such that the effective temporal
frequency of the output signal is kept constant.

Understanding the dependence of the amplitude on pα and Kα is more subtle.
Under the assumption that Kα is independent of sα, the amplitude decreases where
pα is large and increases where pα is small. Intuitively, this can be interpreted as
an equalization of the fraction of the total variance that falls into a small interval of
length ∆sα �

p
Kα/∆. This fraction is roughly given by the product of the prob-

ability pα∆sα of being in this section times the squared amplitude 1/
p
p2
αKα of

the oscillation. For constant Kα, this fraction is also constant, so the amplitude is
effectively rescaled to yield the same “local variance” everywhere. If pα is constant
and Kα varies, on the other hand, the amplitude of the oscillation is small for val-
ues of the sources where they change quickly and large where they change slowly.
This corresponds to the intuition that there are two ways of treating regions where
the sources change quickly: decreasing spatial frequency to generate slower output
signals and/or decreasing the amplitude of the oscillation to “pay less attention”
to these regions. There is also a strong formal argument why the amplitude should
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depend on p2
αKα. As the optimization problem is invariant under arbitrary invert-

ible coordinate transformations, the amplitude of the oscillation should depend
on a function of pα and Kα that is independent of the coordinate system. This
constrains the amplitude to depend on p2

αKα, as this is the only combination of
these quantities that is invariant under coordinate transformations.

5. Analogies in Physics

The last two sections as well as previous studies (Wiskott, 2003) have illustrated
that SFA allows a rich repertoire of analytical considerations. Why is that? The
main reason is that both the ∆-value and the constraints are quadratic functionals
of the output signals. As long as the output signal is linearly related to the
parameters of the input-output functions (as is the case for the nonlinear expansion
approach that underlies the SFA algorithm), both the ∆-value and the constraint
quantities are quadratic forms of the parameters. The gradients involved in finding
the optima are thus linear functions of the parameters, so that the solution can be
found by means of linear methods, typically eigenvalue problems.

Eigenvalue problems have a long history in mathematical physics. They de-
scribe electron orbitals in atoms, acoustic resonances, vibrational modes in solids
and light propagation in optical fibers. Whenever wave phenomena are involved,
the associated theory makes use of eigenvalue problems in one way or another.
Consequently, there is a well-developed mathematical theory for eigenvalue prob-
lems, including the infinite-dimensional case, which can be applied to SFA.

Interestingly, the occurence of eigenvalue problems in SFA is not the only anal-
ogy to physics. In the following, we point out three more analogies that may help
in getting an intuitive understanding for the behavior of SFA.

5.1 Slow Feature Analysis and Hamilton’s Principle

SFA aims at minimizing the mean square of the temporal derivative of the output
signal y. Let us assume for a moment that we were only interested in the first,
i.e., the slowest output signal of SFA. Then the only constraint that applies is
that of unit variance. According to the technique of Lagrange multipliers, we are
searching for stationary points (i.e., points, where the derivative with the respect
to the parameters vanishes) of the objective function

L(y) = 〈ẏ2〉t − λ〈y2〉t =
1

T

Z
ẏ(t)2dt− λ

T

Z
y(t)2dt , (64)

where λ is a Lagrange multiplier, which has to be determined such that the con-
straint is fulfilled.

To interpret this objective function let us for a moment act as if the output
signal y was the position of a physical particle. Then the square of the temporal
derivative of y is proportional to the kinetic energy of the particle. We can thus
interpret K = ẏ2/T as the kinetic energy of the output signal y. Consequently,
it is only natural to interpret the second term in equation (64) in terms of a
potential energy U = λy2/T . Then, the objective function L is the integral over
the difference between the kinetic and the potential energy of the output signal, a
quantity that is known as action in Lagrange mechanics:

L(y) =

Z
[K(t)− U(t)] dt . (65)

One of the most important principles of Lagrange mechanics is Hamilton’s prin-
ciple of stationary action, which states that out of all possible trajectories, physical
systems “choose” those for which the action L is stationary. It is immediately clear
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that with the above reinterpretation of the quantities appearing in SFA, the two
problems are formally very similar.

Moreover, since the potential energy of the physical system corresponding to
SFA is quadratic in the “position y of the particle”, the problem is in essence
that of a harmonic oscillator. From this perspective, it is not surprising that the
optimal output signals for SFA are generally harmonic oscillations, as shown by
Wiskott (2003).

5.2 Standing Waves

The optimal solutions for SFA are given by the eigenfunctions of the operator D,
which is a quadratic form in the partial derivatives ∂µ. Hence, D belongs to the
same class of operators as the Laplace operator. This implies that equation (27)
has the form of a stationary wave equation, which describes oscillatory eigenmodes
of fields.

An intuitive picture can be sketched for the exemplary case that the input
data x lies on a 2-dimensional manifold, embedded in a 3-dimensional space.
We can then interpret this manifold as an oscillating membrane. Equation (27)
describes the vibrational eigenmodes or standing waves on the membrane. The
boundary condition (28) means that the boundary of the membrane is open, i.e.,
the borders of the membrane can oscillate freely. The solutions gi(x) of SFA
correspond to the amplitude of an eigenmode with frequency ω =

√
λi at posi-

tion x. For a constant probability distribution px, the matrix Kµν can moreover
be interpreted as the “surface tension” of the membrane. In a given direction d
(d tangential to the membrane and |d| = 1), the “tension” of the membrane is
given by κ = dTKd = dµKµνdν . If the input changes quickly in the direction
of d, the surface tension κ is large. For large surface tension, however, oscillations
with a given wavelength have a high frequency, that is, a large ∆-value. Thus,
slow functions (solutions with small ∆-values corresponding to oscillations with
low frequency) tend to be oscillatory in directions with small input velocity (low
surface tension) and remain largely constant in directions of large input velocity
(high surface tension). Directions with high surface tension correspond to input
directions in which SFA learns invariances.

5.3 Quantum Mechanics

An intuition for the factorization of the solutions for independent sources can be
gained by interpreting D as a formal equivalent of the Hamilton operator in quan-
tum mechanics. Equation (27) then corresponds to the stationary Schrödinger
equation and the ∆-values λi to the energies of stationary states of a quantum
system. For statistically independent sources, the operator D decomposes into a
sum of operators Dµ, which depend on only one of the sources each. The de-
composition corresponds to the situation of a quantum system with “Hamilton
operator” D that consists of a set of independent quantum systems with “Hamil-
ton operators” Dµ. For readers who are familiar with quantum mechanics, it is
then no longer surprising that the eigenvalue equation for D can be solved by
means of a separation ansatz. The solutions of SFA (stationary states of the full
quantum system) are thus products of the harmonics of the sources in isolation
(the stationary states of the independent subsystems). Similarly, it is clear that
the ∆-value of the product states (the energy of the full system) is the sum of the
∆-values of the harmonics (the energies of the subsystems).

The dependence of the ∆-value (energy) λi on the index (quantum number) i
also has a counterpart in physics. As a function of the source sµ, the harmonics gµiµ
show oscillations with iµ zeros. Thus, the index iµ is a measure of the spatial
frequency (or, in quantum mechanics, the momentum) of the harmonic. From this
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perspective, the dependence of the ∆-value (energy) on the index (frequency or
momentum) i plays the role of a dispersion relation. For homogeneously distributed
sources, the dispersion is quadratic, while for Gaussian sources it is linear.

Wave equations of the type of equation (27) are ubiquitous in physics and
there are probably more formally equivalent physical systems. We believe that
these analogies can help substantially in getting an intuitive understanding of the
behavior of SFA in the limit case of very rich function spaces.

6. Discussion

In this article, we have presented a mathematical framework for SFA for the case
of unrestricted function spaces. The theory shows that the solutions of SFA obey a
partial differential eigenvalue problem that bears strong similarities with systems
common in physics. This analogy leads to an intuitive interpretation of the func-
tions found by SFA, e.g., as vibrational eigenmodes on the manifold spanned by
the input data.

The predictive power of the presented framework is particularly strong in ap-
plications where high-dimensional training data are taken from low-dimensional
manifolds. One example are videos of a single object that rotates or translates
in space. In such a scenario, the images lie on a manifold whose points can be
uniquely parametrized by the position and orientation of the object. By use of the
mathematical framework presented here, analytical predictions for the dependence
of the solutions of SFA on these parameters are straightforward. A reduced version
of such a training scheme has previously been used to learn invariant representa-
tions of objects by means of SFA (Wiskott and Sejnowski, 2002). The application
of SFA for learning place and head direction codes (Franzius et al., 2007a) from
quasi-natural images also belongs to this class of problems. The input manifold
for this scenario can be parametrized by the position and head direction of the
simulated rat.

The application of the theory to the case of input signals generated from sta-
tistically independent sources has shown that the optimal output of SFA consists
of products of signals, each of which depend on a single source only and that some
of these harmonics should be monotonic functions of the sources themselves. In a
subsequent article, we use these results to propose a new algorithm for nonlinear
independent component analysis.
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P. Földiàk. Learning invariance from transformation sequences. Neural Computation, 3:
194–200, 1991.

M. Franzius, H. Sprekeler, and L. Wiskott. Slowness and sparseness lead to place, head-
direction, and spatial-view cells. PLoS Computationl Biology, 3(8):e166, 2007.

15



Sprekeler and Wiskott

M. Franzius, N. Wilbert, and L. Wiskott. Unsupervised learning of invariant 3D-object
representations with slow feature analysis. In Proc. 3rd Bernstein Symposium for
Computational Neuroscience, Göttingen, September 24–27, page 105, 2007b.
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Appendix: Proof of Theorem 1

Theorem 1 The solution of optimization problem 2 is given by the J eigenfunc-
tions of the operator D with the smallest eigenvalues, i.e. the functions that fulfill
the eigenvalue equation

Dgj = λjgj (66)

with the boundary condition X
µ,ν

nµpxKµν∂νgi = 0 . (67)

Here, the operator D is given by

D := − 1

px

X
µ,ν

∂µpxKµν∂ν (68)

and the eigenfunctions are assumed to be normalized accoding to

(gj , gj) = 1 . (69)

n(x) denotes the normal vector on the boundary for the point x. The ∆-value of
the eigenfunctions is given by their eigenvalue

∆(gj) = λj . (70)

Preliminary Lemmas

For reasons of clarity, we first prove several lemmas that help to prove Theorem 1.
The first lemma shows that the optimal functions for SFA fulfill an Euler-Lagrange
equation that is similar to the eigenvalue equation for the operator D.

Lemma 3 For a particular choice of the parameters λij, the solutions gj of opti-
mization problem 2 obey the Euler-Lagrange equation

Dgj(x)− λj0 − λjjgj(x)−
X
i<j

λjigi(x) = 0 (71)

with the boundary condition (67) and the operator D according to equation (68).

Proof
Optimization problem 2 is in essence a constrained optimization problem. The

standard technique for such constrained optimization problems is that of Lagrange
multipliers. This technique states that the solutions of the optimization problem
have to fulfill the necessary condition to be stationary points of an objective func-
tion Ψ that incorporates the constraints

Ψ(gj) =
1

2
∆(gj)− λj0〈gj(x)〉x −

1

2
λjj〈gj(x)2〉x −

X
i<j

λji〈gi(x)gj(x)〉x , (72)

where λij are Lagrange multipliers that need to be chosen such that the stationary
points fulfill the constraints.

The objective (72) is a functional of the function gj we want to optimize. Be-
cause a gradient is not defined for functionals, we cannot find the stationary points
by simply setting the gradient to zero. Instead, the problem requires variational
calculus.

The technique of variational calculus can be illustrated by means of an expan-
sion in the spirit of a Taylor expansion. Let us assume that we know the function
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gj that optimizes the objective function Ψ. The effect of a small change δg of gj
on the objective function Ψ can be written as

Ψ(gj + δg)−Ψ(gj) =

Z
δΨ

δgj
(x) δg(x) dNx+ ... , (73)

where the ellipses stand for higher order terms in δg. The function δΨ
δgj

is the

variational derivative of the functional Ψ and usually depends on the input signal x,
the optimal function gj , and possibly derivatives of gj . Its analogue in finite-
dimensional calculus is the gradient.

We now derive an expression for the variational derivative of the objective
function (72). To keep the calculations tidy, we split the objective in two parts
and omit the dependence on the input signal x:

Ψ(gj) =:
1

2
∆(gj)− Ψ̃(gj) . (74)

The expansion of Ψ̃ is straightforward:

Ψ̃(gj + δg)− Ψ̃(gj) = 〈δg [λj0 + λjjgj +
X
i<j

λjigi]〉x + ... (75)

=

Z
δg px [λj0 + λjjgj +

X
i<j

λjigi]d
Nx+ ... (76)

The expansion of ∆(gj) is done after expressing the ∆-value in terms of probability
density px and the matrix Kµν (cf. equation (16)):

1

2
[∆(gj + δg)−∆(gj)]

(16)
=

1

2

X
µ,ν

〈Kµν [∂µ(gj + δg)][∂ν(gj + δg)]〉x (77)

−1

2

X
µ,ν

〈Kµν [∂µgj ][∂νgj ]〉x (78)

=
1

2

X
µ,ν

〈Kµν [∂µgj ][∂νδg] +Kµν [∂µδg][∂νgj ]〉x + ...

=
X
µ,ν

〈Kµν [∂µδg][∂νgj ]〉x + ... (79)

(since Kµν is symmetric)

(8)
=

X
µ,ν

Z
pxKµν [∂µδg][∂νgj ] dNx (80)

=
X
µ,ν

Z
∂µδg pxKµν∂νgj dNx (81)

−
X
µ,ν

Z
δg ∂µpxKµν∂νgj dNx+ ... (82)

=
X
µ,ν

Z
∂V

nµ δg pxKµν∂νgj dA (83)

−
X
µ,ν

Z
δg ∂µpxKµν∂νgj dNx+ ... (84)

(Gauss’ theorem)

(68)
=

Z
∂V

δg
X
µ,ν

nµ pxKµν∂νgj dA (85)

+

Z
δg px (Dgj) dNx+ ... . (86)
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Here, dA is an infinitesimal surface element of the boundary ∂V of V and n is
the normal vector on dA. To get the expansion of the full objective function, we
add (76) and (86):

Ψ(gj + δg)−Ψ(gj) =

Z
∂V

δg
X
µ,ν

nµ pxKµν∂µgj dA (87)

+

Z
δg px (Dgj − λj0 − λjjgj −

X
i<j

λjigi) dNx+ ... .

In analogy to the finite-dimensional case, gj can only be an optimum of the ob-
jective function Ψ if any small change δg leaves the objective unchanged up to
linear order. As we employ a Lagrange multiplier ansatz, we have an unrestricted
optimization problem, so we are free in choosing δg. From this it is clear that
the right hand side of (87) can only vanish if the integrands of both the volume
and the boundary integral vanish separately. This leaves us with the differential
equation (71) and the boundary condition (67).

Next, we show that the operator D is self-adjoint with respect to the scalar
product (17) when restricted to the set of functions that fulfill the boundary con-
dition (67).

Lemma 4 Let Fb ⊂ F be the space of functions obeying the boundary condi-
tion (28,67). Then D is self-adjoint on Fb with respect to the scalar product

(f, g) := 〈f(x)g(x)〉x, (88)

i.e.
∀f, g ∈ Fb : (Df, g) = (f,Dg). (89)

Proof The proof can be carried out in a direct fashion. Again, we omit the
explicit dependence on x.

(f,Dg)
(88,68,8)

= −
Z
pxf

1

px

X
µ,ν

∂µpxKµν∂νg dNx (90)

= −
X
µ,ν

Z
∂µpxfKµν∂νg dNx+

Z
px
X
µ,ν

Kµν [∂µf ][∂νg] dNx

(91)

= −
Z
∂V

f
X
µ,ν

nµpxKµν∂νg| {z }
(67)
=0

dA+

Z
px
X
µ,ν

Kµν [∂µf ][∂νg]dNx

(Gauss’ theorem) (92)

=

Z
px
X
µ,ν

Kµν [∂µg][∂νf ] dNx (93)

(since Kµν is symmetric)

(93−90)
= (Df, g) . (94)

This property is useful, because it allows the application of the spectral theorem
known from functional analysis (Courant and Hilbert, 1989), which states that any
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self-adjoint operator possesses a complete set of eigenfunctions fj(s) ∈ Fb with real
eigenvalues ∆j , which are pairwise orthogonal, i.e. a set of functions that fulfill the
following conditions:

Dfj = ∆jfj with ∆j ∈ R (eigenvalue equation) , (95)

(fi, fj) = δij (orthonormality) , (96)

∀f ∈ Fb ∃αk : f =

∞X
k=0

αkfk (completeness) . (97)

The eigenfunctions, normalized according to (96), thus fulfill the unit variance
and decorrelation constraints (96). If we set λ0j = λji = 0 for i 6= j, the eigen-
functions also solve the Euler-Lagrange equation (71), which makes them good
candidates for the solution of optimization problem 2. To show that they indeed
minimize the ∆-value we need

Lemma 5 The ∆-value of the normalized eigenfunctions fj is given by their eigen-
value ∆j.

Proof

∆(fj)
(16,8,93−90)

= (fj ,Dfj)
(95)
= (fj ,∆jfj) = ∆j (fj , fj)| {z }

=1

(96)
= ∆j . (98)

Proof of Theorem 1

At this point, we have everything we need to prove Theorem 1.

Proof Without loss of generality we assume that the eigenfunctions fj are ordered
by increasing eigenvalue, starting with the constant f0 = 1. There are no negative
eigenvalues, because according to Lemma 3, the eigenvalue is the ∆-value of the
eigenfunction, which can only be positive by definition. According to Lemma 3,
the optimal responses gj obey the boundary condition (67) and are thus elements
of the subspace Fb ⊂ F defined in Lemma 2. Because of the completeness of the
eigenfunctions on Fb we can do the expansion

gj =

∞X
k=1

αjkfk (99)

where we may omit f0 because of the zero mean constraint. We can now prove by
complete induction that gj = fj solves the optimization problem.
Basis (j=1): Inserting g1 into equation (71) we find

0 = Dg1 − λ10 − λ11g1 (100)

(99,95)
= −λ10 +

∞X
k=1

α1k(∆k − λ11)fk (101)

=⇒ λ10 = 0
∧ (α1k = 0 ∨∆k = λ11) ∀k , (102)

because fk and the constant are linearly independent and (100) must be fulfilled
for all x. Equation (102) implies that the coefficients α1k have to vanish unless the
∆-value of the associated eigenfunction is equal to λ11. Thus, only eigenfunctions
that have the same ∆-value can have non-vanishing coefficients. Therefore, the
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optimal response g1 must also be an eigenfunction of D. Since the ∆-value of the
eigenfunctions is given by their eigenvalue, it is obviously optimal to chose g1 = f1.
Note that although this choice is optimal, it is not necessarily unique, since there
may be several eigenfunctions with the same eigenvalue. In this case any linear
combination of these functions is also optimal.
Induction step: Given that gi = fi for i < j, we prove that gj = fj is opti-
mal. Because of the orthonormality of the eigenfunctions the decorrelation con-
straint (20) yields

0
(20)
= (gi, gj) = (fi,

∞X
k=1

αjkfk) =

∞X
k=1

αjk (fi, fk)| {z }
(96)
= δik

= αji ∀i < j . (103)

Again inserting the expansion (99) into (71) yields

0
(71,99)

= (D − λjj)
∞X
k=1

αjkfk − λj0 −
X
i<j

λjifi (104)

(103)
= (D − λjj)

∞X
k=j

αjkfk − λj0 −
X
i<j

λjifi (105)

(95)
=

∞X
k=j

αjk(∆k − λjj)fk − λj0 −
X
i<j

λjifi (106)

=⇒
λj0 = 0

∧ λji = 0 ∀i < j
∧ (αjk = 0 ∨∆k = λjj) ∀k ≥ j ,

(107)

because the eigenfunctions fi are linearly independent. The conditions (107) can
only be fulfilled if gj is an eigenfunction of D. Because of Lemma 3 an optimal
choice for minimizing the ∆-value without violating the decorrelation constraint
is gj = fj .
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