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ABSTRACT 
 
 

A THING IS WHAT WE SAY IT IS: 
 

REFERENTIAL COMMUNICATION AND INDIRECT CATEGORY LEARNING 
 

John Konstantinos Voiklis 
 
 
 

This study investigates the interaction of referential communication and the 

structure of perceptual features on the joint processes of inventing a referential lexicon 

for novel objects and discovering the functional significance of those objects during an 

indirect category learning activity. During the learning task, participants worked either 

individually or as cooperative dyads to learn four combinations of orthogonal functional 

features—nutritive vs. not nutritive and destructive vs. not destructive—that defined four 

categories of fictional extra-terrestrial creatures. These categories were not specifically 

identified or labeled; rather, participants had to infer them indirectly as they predicted the 

functions. Also, these functionally defined categories exhibited a complex perceptual 

structure: a unidimensional (simple) rule predicted one function, while a family 

resemblance (complex) sub-structure predicted the other function. The function-learning 

task yielded function prediction data.  In addition, each learner worked individually to 

sort the creatures (pre- and post-function learning) and to predict their functions in an 

individual function prediction posttest that also yielded selective attention data. 

Together, the prediction data, sort data, and selective attention data supported 

three a priori hypotheses.  Referential communication generates conceptual homogeneity 

(H3) and enhances indirect category learning (H1), though simple rules are learned 

earlier and better than complex relationships (H2). In explaining the learning advantages 



 

 

observed among dyadic learners, I argue that referential communication may highlight 

attention to relationships between features (perceptual and functional) and actions as well 

as render such relationships more memorable. Moreover, communication may foster 

greater motivation among collaborators and may allow them to take advantage of the 

differing expectations and heuristics each collaborator brings to the task. In explaining 

the simplicity advantages observed among dyadic learners, I argue that referential 

communication may provide explicit “rules” for otherwise implicit (and perhaps more 

difficult) judgements. Dyads appear to have established reference to simple rules earlier 

than they established reference to complex rules; thus, they could explicitly (and perhaps 

more easily) learn the simple rule earlier than the complex rule. Finally, in explaining the 

conceptual homogeneity between and within dyads, I consider whether communication 

pushes “public” conceptualizations and publicly-formed “private” conceptualizations 

towards a limited range of widely shareable conceptual structures.
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I.  INTRODUCTION 

Background 

Joint Activity & Referential Communication 

Human beings engage in myriad joint activities: a parent and child jointly build a 

Lego robot; two families jointly plan and execute a wedding celebration; a far-flung 

group of scholars and researchers jointly develop a domain of knowledge. The successful 

performance of these and other joint activities requires the coordination of actions 

(Schelling, 1960); the coordination of actions presupposes the coordination of intentions, 

assumptions, and beliefs that drive those actions (Lewis, 1969; Stalnaker, 1978, 2002; 

Clark, 1996). Referential communication can facilitate these multiple levels of 

coordination (cf., Bangerter & Clark, 2003; Sacks, Schegloff, & Jefferson, 1974). 

An Example of Coordination Through Referential Communication 

Imagine the following exchange between Alpha and Beta (named for their status 

in the kitchen) as they prepare a meal to impress their new girlfriends, Bonita and Belle 

(named for their beauty). Inspired by a mutton shank, Alpha requests, “heat up the tagine, 

while I dice the aromatics.” At the cookware cabinet, Beta asks, “the heavy one with the 

flat lid?” “No,” clarifies Alpha, “that’s the dutch oven. We need the ceramic one with the 

conical lid.” “Ok;” Beta confirms and asks, “should I put on a kettle for couscous, while 
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I’m at it?” While the conversation between Alpha and Beta could continue in this way 

over multiple pages, this much of the exchange suffices to illustrate how referential 

communication helps them coordinate their culinary seduction of Bonita and Belle. 

“Public” Categorization 

Referential communication serves as a form of externalized or “public” cognition 

(cf., Wittgenstein, 2001 [1958]), including “public” processes of categorization (see 

Russell, 1905; Brown, 1958; Grice, 1975; Cruse, 1977; Barr & Kronmüller, 2006 for 

various formulations of the conceptual function of reference). In the scenario, Alpha 

performs three such “public” categorizations: “aromatics” are a category of vegetables—

onions, carrots, celery, et al.—used to flavor a dish, while “tagine” and “dutch oven” are 

subcategories of braisers—shallow, tightly-lidded pots used for slowly cooking a dish in 

its own condensation. By using a particular reference at a particular level of reference, 

communicating actors direct each other's attention (Kronmüller & Barr, 2007; Metzing 

& Brennan, 2003) to those features that allow each of them to differentiate the target 

referent from other possible referents (E.V. Clark, 1987; Mervis & Crisafi, 1982; Murphy 

& Brownell, 1985). Alpha instructs Beta to “heat up the tagine” (as opposed to “heat up 

the pot” or “heat up the braiser”) in order to help Beta differentiate the target cookware 

from the stock pots, roasting pans, and skillets in the cookware cabinet. Beta understands 

that a tagine is kind of braiser, but needs Alpha to direct his attention to the tagine’s 

differentiating features: ceramic vs. cast iron, conical lid vs. flat lid. Further, the use of a 

particular reference at a particular level of reference can direct joint attention to those 

features that allow each actor to infer the referent's significance to the activity (Brown, 
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1958; Corter & Gluck, 1992). The tagine originates from Morocco; so, Beta infers from 

that feature that Alpha has proposed that they prepare a Moroccan dish and confirms that 

joint intention by asking if he should boil water for couscous. Beta’s confirmatory 

question completes the “public” categorization of the tagine. The successful use of a 

particular reference at a particular level of reference should elicit an action that confirms 

the joint construal of both the target and its significance to the activity (Austin, 1976; 

Krauss & Weinheimer, 1966; Wilkes-Gibbs & Clark, 1992; Clark & Schaefer, 1989). 

Shareability 

Cooking is a recurring, often institutionalized, coordination problem; therefore 

Alpha and Beta can rely heavily on conventions of referential communication—a 

repertoire of mutually-known, mutually-salient, and mutually-expected associations 

between reference and concept. Adherence to referential conventions can minimize the 

cognitive effort of directing joint attention, confirming joint construal, and executing 

joint intentions (Clark, 1996, Lewis, 1969). In this way, referential conventions convey 

conceptual information in a highly shareable form (cf., Freyd, 1983). Nevertheless, when 

faced with a new or unfamiliar activity, communicating actors often rely on ad hoc 

referential conventions (Garrod & Anderson, 1987; Brennan & Clark, 1996; et al.). 

Imagine Alpha and Beta repairing the electric ignitor on their stove; unfamiliar 

with the conventional names for various circuit parts, Beta points out, “that mini-bulb has 

burned out,” referring to a glass cartridge fuse. Such ad hoc conventions also reduce the 

cognitive effort of directing joint attention (Clark Schreuder, & Buttrick, 1983; Clark, 

1972; Clark & Marshall, 1981), confirming joint construal (Wilkes-Gibbs & Clark, 1992; 
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Isaacs & Clark, 1987; Clark & Krych, 2004), and executing joint intentions (Clark & 

Lucy, 1975; Francik & Clark, 1985). The use of “mini-bulb” directs Alpha’s attention to 

a small glass object, containing a fine metal element. Alpha responds, “yeah, the filament 

has melted,” confirming his joint construal of “mini-bulb.” Moreover, these ad hoc 

conventions may affect how each actor later sorts conventionally named objects 

(Markman & Makin, 1998) and how each actor later judges the similarity and/or 

typicality of objects to a conventionally named category (Malt & Sloman, 2004).  For 

example, one might expect Alpha or Beta to search for glass cartridge fuses in the 

lighting aisle of the hardware store rather than the circuitry aisle. 

Nevertheless, ad hoc referential conventions can vary in shareability. The mini-

bulb category ultimately fails. It does not enable either Alpha or Beta to infer the 

functional significance of the fuse—a device for protecting circuits from the power 

surges that today burned a fuse and tomorrow might burn their building. For Alpha and 

Beta this failure will not persist; the hardware clerk will likely provide the necessary 

knowledge. In an entirely novel activity, communicating actors lack both prior 

knowledge and access to third-party experts. They must invent a referential lexicon for 

the objects, actions, and events in the activity environment as they discover the 

differentiating and significant features of those objects, actions, and events. Under such 

conditions, shareability may vary with more basic factors, such as feature structure. 

Structural Constraints 

When engaged in private categorization—category learning during individual 

activity—human beings tend to learn simple relationships between features and their 
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significance more easily than complex relationships (cf., Feldman, 2003b). Imagine 

Bonita, a bee researcher, trying to diagnose colony collapse. She easily diagnoses parasite 

infestation, based on the presence or absence of mites; diagnosing vanishing bee 

syndrome, with its varying constellation of symptoms and uncertain causes, requires 

more effort and yields tentative results. Then again, simply labeling a privately learned 

category can enhance an individual’s ability to infer the category’s significance to the 

activity despite fairly complex, even contradictory, featural information (Yamauchi & 

Markman, 2000). Even a tentative diagnosis of a “syndrome” should prompt Bonita to 

suspect factors that cause general disruptions in the immune systems of the bees. What 

happens, though, when Bonita invites Belle, a designer of agent-based models, to 

collaborate on a simulation of colony collapse; will their conversation bog down in the 

complexities of vanishing bee syndrome, or will their emerging convention of referential 

labels enhance their joint reasoning? How structural complexity affects the shareability of 

ad hoc conventions remains uncertain. 

Purpose 

With the present study, I investigated the interaction of referential communication 

and the structure of perceptual features on the joint processes of inventing a referential 

lexicon for novel objects and discovering the functional significance of those objects 

during an indirect category learning activity. To that end, participants worked either 
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individually or as cooperative1 dyads to learn four combinations of orthogonal functional 

features—nutritive vs. not nutritive and destructive vs. not destructive—that defined four 

categories of fictional extra-terrestrial creatures. These categories were not specifically 

identified or labeled; rather, participants had to infer them indirectly as they predicted the 

functions. Also, these functionally defined categories exhibited a complex perceptual 

structure: a unidimensional (simple) rule predicted one function, while a family 

resemblance (complex) sub-structure predicted the other function. This function-learning 

task yielded function prediction data.  In addition to the main function-learning task, each 

learner worked individually to sort the creatures (pre- and post-function learning) and to 

predict their functions in an individual function prediction posttest that also yielded 

selective attention data. Together, the prediction data, sort data, and selective attention 

data demonstrated the overall affects of referential communication on the extra-linguistic 

aspects of concept learning and the differing affects of communication on the learning of 

simple versus complex relationships between perceptual and latent features. 

Structure of the Dissertation 

What follows is a detailed report of this investigation, organized into four 

chapters. In the Literature Review chapter, I attempt to integrate findings and constructs 

from two research traditions: cognitive research on category learning, both in general and 

with an explicit focus on lexically labeled categories, and psycho-linguistic research on 

conversation and referential communication. From this integrated review, I glean three 

                                                

1 Dyads had positively interdependent goals: the success of each actor depended on the 
other (Deutsch, 1949; Johnson & Johnson, 1989). 
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hypotheses: referential communication generates conceptual homogeneity (H3) and 

enhances indirect category learning (H1), though simple rules are better learned than 

complex relationships (H2). The Method chapter provides details on the experimental 

design that I used to test these hypotheses, as well as on how and why I collected and 

analyzed the various data. Next, in the Results chapter, I highlight how the learning data 

and the linguistic data supported the hypotheses. Finally, I interpret the major findings in 

the Discussion chapter. In particular, I focus on how referential communication directs 

attention to relationships between features (perceptual and functional) and action. In 

addition, I argue that referring expressions may render such relationships more 

memorable and may provide explicit “rules” for otherwise implicit judgements. Finally, I 

speculate on whether communication pushes “public” conceptualizations and publicly-

formed “private” conceptualizations towards a limited range of widely shareable 

conceptual structures.
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II. LITERATURE REVIEW 

When faced with a new or unfamiliar joint activity, communicating actors quickly 

converge on ad hoc referential conventions (Garrod & Anderson, 1987; Brennan & 

Clark, 1996; et al.). These ad hoc conventions entail a system of shared or “public” 

categories of the objects, actions, and events in the activity environment. The shareability 

of a convention derives from the extent to which it minimizes the joint cognitive effort of 

sharing attention and intentions towards those objects, actions, and events (cf., Freyd, 

1983). In the wild, shareable conventions emerge from the coupled evolution of both the 

linguistic and extra-linguistic aspects of the various “public” categories during 

conversationally driven joint activity. I consider this evolution from the perspective of 

two research traditions: cognitive research on “private” category learning, both in general 

and with an explicit focus on lexically labeled categories; and psycho-linguistic research 

on conversation and referential communication. Integrating these traditions yields 

hypotheses about the “public” category learning entailed in the emergence of shareable 

conventions that one could not derive from either tradition alone. 

Plausible Constraints on Human Category Learning 

While conventions such as driving on the left-hand versus right-hand side of the 

road may seem arbitrary, one rarely finds an entirely arbitrary referential convention. As 

a system of “public” categorizations, a referential convention is subject to constraints on 
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the human conceptual system. Some constraints originate from outside human beings. 

For example, both the natural and artificial worlds exhibit structural regularities (e.g., 

Berlin, Breedlove, & Raven, 1966; Simon, 1956). Other constraints originate from within 

human beings. These include, limits on memory and selective attention (e.g., Shepard, 

Hovland, and Jenkins, 1961), the limits of embodiment (e.g., Gallese & Lakoff, 2005), 

and the limits of personal experience (e.g., Murphy & Medin, 1985), among others. 

Structural Constraints 

Among the various constraints addressed by the categorization and decision-

making literature, the structure of the features defining categories of objects, actions, and 

events appears to exert the most pervasive or, at least, most discernible influence on 

category learning and use (Rosch, Mervis, Gray, Johnson, & Braem, 1976; Corter & 

Gluck, 1992; Simon, 1956; Todd & Gigerenzer, 2007). For example, population-wide 

regularities in how individuals name and classify various natural kinds, including colors 

(e.g, Kay et al., 2007 [2003]), kinship (e.g, Goodenough, 1965; Romney & D’Andrade, 

1964; Romney, Boyd, Moore, Batchelder, & Brazill, 1996), as well as plants and animals 

(e.g, Berlin, Breadlove & Raven, 1973; Diamond, 1966; Bulmer, 1967; Hunn, 1977), 

appear to reflect statistical regularities in the environment (Berlin et al., 1966; Rosch et 

al., 1976). This concordance holds even after one accounts for the arbitrary distinctions 

within any particular population-wide convention (Malt, Sloman, & Gennari, 2003a, 

2003b; Malt, Sloman, Gennari, Shi, & Wang, 1999). 

Moreover, individuals tend to name and identify categories of objects (e.g, Rosch 

et al., 1976; Jolicoeur, Gluck, & Kosslyn, 1984; Tversky & Hemenway, 1984; Murphy & 
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Smith, 1982), actions (Tomasello & Merriman, 1995; Vallacher & Wegner, 1987), and 

events (Morris & Murphy, 1990; Rifkin, 1985) at a level of abstraction—the so-called 

basic level—that permits the average person to infer the maximal number of 

differentiating features of those objects, actions, and events (Gluck & Corter, 1985). For 

example, if Alpha, the imaginary character from the Introduction, were talking to Bonita, 

a culinary novice, he would likely refer to the tagine as “the pot with the conical lid” 

instead of using the category label tagine or even braiser. Similar tendencies in the 

naming and identification of experimenter-designed categories suggest that statistical 

regularities in the environment may push human conception towards the most 

informative level (Corter, Gluck, & Bower, 1988; Murphy & Smith, 1982; Hoffmann & 

Ziessler, 1983). In fact, various analytical models (e.g, Gosselin & Schyns, 2001; Gluck 

& Corter, 1985; Rosch et al., 1976; Jones, 1983) can approximate the observed primacy 

of basic-level categorization as a function of featural information. 

Informational & Biological Constraints 

Phenomena like basic-level primacy appears so pervasive that one might 

speculate whether biological evolution has hard-wired certain conceptual structures (e.g, 

Atran, 2005; Medin & Atran, 2004; Shepard, 1992; Tooby & Cosmides, 1989; Rosch, 

1975). By this account, the tendencies to name and identify both natural and artificial 

kinds has evolved as an adaptive response to fairly persistent informational structures in 

the environment (Atran, 2005), and any observed deviations from such “universal” 

tendencies represents a devolution of the conceptual system (Atran, Medin, & Ross, 

2004). To a great extent, the adaptionist account relies on discontinuities between human 
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beings and other primates (Hauser, 2005). Nevertheless, many primate species exhibit 

homologous understandings of various concepts, such as small quantities (Dehaene, 

2001; Hauser, 2000; Hauser et al., 2000, 1996), gravity (Hood, Hauser, Anderson, & 

Santos, 1999), distinctions between living and artifactual kinds (Hauser, 1997), and 

functional distinctions among artifactual kinds (ibid.). Moreover, non-human primates 

trained to use arbitrary symbols can make abstract judgements that are seldom recognized 

in the wild (Thompson, Oden, & Boysen, 1997). 

For the most part, the differences between the human and non-human conceptual 

systems appear quantitative rather than qualitative (Deacon, 2000). A coupling of a 

quantitatively different conceptual system with quantitatively different capacities for 

opportunistic learning suffices to produce qualitatively different results (Wagner & 

Wagner, 2003). Add to that, a quantitatively different capacity for sharing mental states 

(e.g., Meltzoff & Andrew, 2007; Saxe, 2006; Tomasello, Carpenter, Call, Behne, & Moll, 

2005; Bloom, 2002) via heritable media (e.g., language and artifacts; cf.; Hutchins & 

Hazelhurst, 1992; Cavalli-Sforza & Feldman, 1983; Vygotsky, 1978), and strongly 

adaptionist accounts of the human conceptual system appear, at best, unnecessary (Gould 

& Lewontin, 1979).  

At most, one might argue that comparable sensori-motor capacities among human 

beings may yield comparable experiences and, thus, comparable conceptions of a 

common environment (Gallese & Lakoff, 2005; Pfeifer & Bongard, 2006). For instance, 

the particular configuration of the human body yields a particular experience of physical 

space, which may, in turn, yield a spatially-analogous structure to both concrete and 

abstract concepts (Moyer, 1973; Paivio, 1978; Tversky, 2005). 
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Structural & Cognitive Constraints 

Cognitive constraints, such as limits on working memory and selective attention, 

represent a less controversial expression of biology. Structural and cognitive constraints 

appear to intermingle in the oft-cited study by Shepard, Hovland, and Jenkins (1961), 

where varying the number and combination of diagnostic dimensions of artificial 

category structures varied the time and effort required to learn those structures (see also 

Nosofsky, Gluck, Palmieri, Mckinley, & Glauthier, 1994; Love, 2002). Assuming that 

category learners attempt to optimize selective attention across diagnostic dimensions, 

one could attribute the increasing cognitive effort directly to increasing demands on 

selective attention and working memory (e.g, Nosofsky et al., 1994). More often, though, 

category learners rely on satisficing solutions (Simon, 1955), inferring categories from 

the simplest description derivable from known exemplars (Feldman, 2003b; Chater & 

Vitányi, 2003). For example, in the Introduction, Beta relies on the diagnostic features of 

the familiar category light bulb—glass object containing a filament—to identify the 

unfamiliar fuse as a “mini bulb.” This sort of “fast and frugal” reasoning conserves 

cognitive resources (e.g, Todd & Gigerenzer, 2001; Gigerenzer & Goldstein, 1996) and 

has been observed in categorical decision-making (Matsuka & Corter, In Press; Medin et 

al., 1987). 

That said, the extent of one’s “frugality” depends on the compressibility of the 

category structure (Feldman, 2000, 2003a, 2006). For example, Shepard et al. (1961) 

designed each of their six category structures using three binary dimensions, or twelve 

bits of information. Expressed as a Boolean equation, the category structure with one 

diagnostic dimension and two non-diagnostic dimensions compresses to one bit, while 
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the category structure with three diagnostic and nonlinearly separable dimensions 

compresses no smaller than ten bits of information. In other words, the simplest heuristic 

for learning the latter category structure would require nothing short of memorizing each 

category exemplar (e.g, Allen & Brooks, 1991). In the Introduction, Bonita’s difficulty in 

diagnosing Vanishing Bee Syndrome attests to the excessive cognitive effort required in 

learning and using an incompressible category structure. 

Structure, Cognition, and Activity 

The increasing effort required for learning increasingly complex structures may 

stem, in part, from the particular activity—classification—that dominates laboratory 

studies on categorization (for review, see Markman & Ross, 2003). The interplay 

between structural, cognitive, and activity-related constraints becomes obvious when one 

contrasts alternative uses of categories (ibid.)—e.g., classifying an object versus inferring 

its uncertain features. Whereas classification focuses attention on between-category 

featural information, those engaged in feature inference appear to allocate attention to 

within-category featural information, especially to specific feature values and the within-

category correlations among these values (Yamauchi & Markman, 1998, 2000a, 2000b). 

For example, if one needed to classify a particular brazier as either a tagine or a dutch 

oven, one would attend to the category differentiating features—ceramic vs. cast iron, 

conical lid vs. flat lid. Alternatively, if one needed to infer whether a particular pot was 

appropriate for braising a mutton shank, one would attend to the width, depth, and 

thickness of the pot as well as how tightly the lid fits. Those engaged in a classification 

task tend to learn simpler, more compressible, category structures more easily than 
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complex category structures (ibid.). Those engaged in an inference task learn both simple 

and complex category structures with comparable effort (ibid.). 

Activities that involve the indirect learning of categories—e.g, looking for 

patterns among stimuli or rating their pleasantness—appear similar to inference tasks in 

attentional strategy and the effort expended in learning simple versus complex category 

structures (Love, 2002, 2003). Minda & Ross (2004) serves as a noteworthy example of 

indirect category learning. Participants predicted the food allotment for a sequence of 

imaginary animals. Successful predictions required the learning of a complex category 

structure, where both a unidimensional rule and family resemblance (multidimensional 

rule) predicted the food allotment. While participants could rely on either or both rules, 

attentional strategies varied with whether or not a classification task (direct category 

learning) preceded the prediction task (indirect category learning). Those who classified 

animals before predicting food allotments relied on the simple rule; those who only 

predicted food allotment distributed their attention across multiple dimensions (see also 

Ross, 1997, 1999). 

Person-Related Constraints 

Other constraints derive from the person (Murphy & Medin, 1985), including his 

or her prior knowledge (e.g, Chi, Feltovich, & Glaser, 1981; Gauthier, Williams, Tarr, & 

Tanaka, 1998; Tanaka & Taylor, 1991; Murphy & Wright, 1984; Schvaneveldt et al., 

1985), current goals (Barsalou, 1983; Ratneshwar, Barsalou, Pechmann, & Moore, 2001), 

and the situational heuristics (e.g, Gluck, Shohamy, & Myers, 2002) that connect prior 

knowledge and current goals. These individual differences may elicit varying prior 
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expectations of how the objects, actions, and events of a new, rare, or unfamiliar activity 

relate to one another (c.f., Murphy & Medin, 1985). Moreover in trying to induce the 

actual relationships among the objects, actions, and events, differing individuals might 

use different heuristics (Lin & Murphy, 1997). In this way, person-related constraints can 

enhance or impede the learning of novel categories. For example, when Bonita and Belle 

build their computational simulation of Vanishing Bee Syndrome, they are likely to 

model complex interactions among variables like microwaves and genetically modified 

crops based on their prior expectations of a syndrome. Likewise, they are likely to 

exclude simple factors like mite infestation, which might account for many symptoms of 

the syndrome. Usually, when faced with contrary evidence, the category learner abandons 

misapplied prior hypotheses (Livingston & Andrews, 1995). The absence of glass 

cartridge fuses in the lighting aisle of the hardware store will prod Alpha and Beta 

towards the circuitry aisle. When prior hypotheses bear some resemblance to the 

observed evidence, though, mistaken hypotheses can persist and impede learning (ibid.). 

A simulation that includes microwaves and genetically modified crops but excludes mite 

infestation will not help beekeepers. 

Language Constraints 

What a category is called—the category label—and whether or not it is called 

anything at all can affect the learning and use of a category. Such effects fall short of the 

notion that language is thought (Davidson, 1975) or that language determines thought 

(Whorf, 1956), but goes far beyond the notion that category labels serve little purpose 

beyond that of another diagnostic feature among other diagnostic features (Anderson, 
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1991). Category labels appear to serve three interrelated functions: (1) as conceptual 

cues, (2) as conceptual manipulatives, (3) and as conceptual manipulators. 

Category labels as conceptual cues 

By the principle of contrast (E.V. Clark, 1987), different category labels signal 

different concepts. For example, labeling objects by different names can help children 

individuate those objects (Xu, 2002) and often leads them to look for differences among 

differently-labeled objects (Katz, 1963; Landau & Shipley, 2001) and for similarities 

among objects with the same name (Loewenstein & Gentner, 2005; Smith, Jones, & 

Landau, 1996; Waxman & Markow, 1995). Similarly, adults learn event categories better 

when verbs and/or syntax covaries with the events (Cabrera & Billman, 1996). Also, 

children often treat unknown labels as category labels for unknown objects and as feature 

labels for known objects (Markman & Wachtel, 1988). Finally, the mere presence of 

category labels can cue the category learner to look for meaningful patterns in what he or 

she perceives. Children tend to pay more attention to labeled categories than to unlabeled 

categories (Balaban & Waxman, 1997; Waxman & Booth, 2001) and adults learn labeled 

categories more quickly than unlabeled categories (Lupyan, Rakison, & McClelland, 

2007). In all, category labels appear to make abstractions concrete and implicit 

judgements explicit (A. Clark, 2006, Vygotsky, 1986 [1962]). 

Category labels as conceptual manipulatives  

The concreteness of category labels reduces the cognitive effort of reasoning from 

and about abstract and complex concepts, much like Cuisenaire rods reduce the effort of 

learning and using mathematical concepts. Among the examples of the cueing function of 



17 

 

labels, category learners may have offloaded burdensome feature comparisons onto the 

category labels between which differences and similarities are easy to discern (A. Clark 

& Karmiloff-Smith, 1993). Beyond differentiation, children rely more on category labels 

than perceptual similarity when inferring unknown features (Gelman & Markman, 1986), 

and use labels to simplify relational judgements (Kotovsky & Gentner, 1996). Moreover, 

labels anchor abstract concepts like large (Gordon, 2004) and exact numerosities 

(Gellman & Gallistel, 2004) as well as conceptual manipulations like exact mental 

arithmetic (Beller & Bender, 2008; Pica, Lemer, Izard, & Dehaene, 2004). Finally, 

labeling categories enhances visual search by reducing the search space to the category-

relevant features (Lupyan, 2008), or, put another way, by maximizing attention to 

diagnostic features. 

Category labels as conceptual manipulators 

This attentional control points to a third function of category labels: manipulating 

the attentional, perceptual, and memory-related processes of category learning and use 

(cf., Vygotsky, 1986 [1962], on how language scaffolds thought). For example, children 

appear to use the names of previously encountered objects to tune their attention to 

naming-relevant features of subsequently encountered objects (Smith, Jones, Landau, 

Gershkoff-Stowe, & Samuelson, 2002). When adults classify objects using basic-level 

category labels they remember and, perhaps, perceive those objects as more similar to the 

prototype of the labeled category (Lupyan, 2008; see also Carmichael, Hogan & Walter, 

1932; Daniel, 1972). Similarly, assigning descriptive labels to novel stimuli improves the 

sequential matching of those stimuli, a task heretofore considered exclusively visual. In 

contrast, describing the particular features of a particular face (Schooler and Engstler-
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Schooler, 1990) or a particular wine (Melcher & Schooler, 1996) can impair later 

recognition of that face or that wine. Surprisingly, describing a face in terms of 

prototypical features does not distort memory (MacLin, 2002). In all, category labels 

appear to manipulate the conceptual system via a top-down activation of category 

features that attracts attentional processes and colors or ocludes memory and perception.  

  Summary of Plausible Constraints 

Structure, complexity, language, and activity (along with embodiment and person-

related constraints) represent an A-list rather than a catalog of all plausible extra-

conversational constraints on referential convention. These A-list constraints appear 

obvious constituents of any overarching shareability constraint, each may affect the joint 

cognitive effort of sharing a concept. Nevertheless, few empirical researchers have 

examined how referential communication might amplify, dampen, or distort these 

constraints (for exceptions see Markman & Makin, 1998, and Malt & Sloman, 2004). 

Intuitively, one might suspect that structural regularities in the world and the complexity 

of those structures should constrain communicating individuals in ways similar to 

isolated individuals, but how and to what extent is not certain. Moreover, many of the 

studies on use and usefulness of category labels assume that one can decouple language 

from communication. Language is for communicating, and communicating is for thinking 

jointly and in public (cf., Wittgenstein, 2001 [1958]). The use of language requires both a 

self and an other—whether actual or implied. 
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Conceptual Coordination Via the Processes of Referential Communication 

Referential Games 

In new or rare or unfamiliar joint activities, actors often coordinate their actions 

through conversation (Clark, 1996). Since Wittgenstein (2001 [1958]), the processes of 

conversation, in general, and referential communication, in particular, have often been 

formulated as a game (cf., Higgins, 1981; Crawford & Sobel, 1982; Blume, Dejong, Kim, 

& Sprinkle, 1998; Pietarinen, 2006). The players, as speaker and addressee, set the rules 

of play and keep score through their ongoing joint construal of the various referents and 

their significance to the activity (Lewis, 1979). Coordination proceeds through a turn-

taking process where, at any iteration, a speaker will refer to some object, action or event 

in the activity environment. The speaker’s use of a particular reference at a particular 

level of reference functions as a public categorization of the referent, differentiating the 

referent and highlighting its significance to the activity (see Russell, 1905; Brown, 1958; 

Grice, 1975; Cruse, 1977; Barr & Kronmüller, 2006 for various formulations of the 

conceptual function of reference). In reply, the addressee can ratify the proposed 

categorization, seek clarification, or offer a counter-proposal (cf., Clark & Wilkes-Gibbs, 

1986; Sacks et al., 1974; Clark & Krych, 2004; Hulstijn & Maudet, 2006; W. Deutsch & 

Pechmann, 1982). The conversational turn continues until joint-construal is confirmed. 
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Coordination of Attention and Intention in Referential Games 

To illustrate such a game, imagine Bonita and Belle collaborating in what for 

them is a novel activity, cooking. Rummaging in the pantry for ingredients, Bonita 

requests, “could you sharpen the big knife?” Grasping a carving knife, Belle asks, “this 

long one?” “Is it big?” Bonita checks, to which Belle insists, “long is big.” “Fine, the 

wide one,” clarifies Bonita. Carrying shallots from the pantry, Bonita finds a sharpened 

cleaver on her cutting board and responds, “well, you can use that to hack apart the rib 

chops, but that’s not a dicing tool.” “It’s wide,” persists Belle. “I need the one that widens 

from a point to a round belly,” Bonita further clarifies. “Oh, this one,” pulling the chef’s 

knife from the block; “it’s like half a bow” she counter proposes. “Yes,” Bonita confirms, 

“the half-bow knife.” 

From Private to Public Categories… 

Early in conversation, each actor is likely to propose and/or counter-propose 

relatively idiosyncratic or private categorizations of the objects, actions, and event in the 

activity environment (Horton & Keysar, 1996; Keysar, Barr, Balin, & Brauner, 2000; 

Keysar, Barr, Balin, & Paek, 1998; Kronmüller & Barr, 2007; Furnas, Landauer, Gomez, 

& Dumais, 1987). Like Bonita and Belle, they may differ in perspective (Barsalou & 

Sewell, 1984; Keysar, Lin, & Barr, 2003), intentions (Barresi & Moore, 1996), 

knowledge (Chi et al., 1981; Gauthier et al., 1998; Tanaka & Taylor, 1991; Murphy & 

Wright, 1984; Schvaneveldt et al., 1985), and goals (Barsalou, 1983; Ratneshwar et al., 

2001). Thus, each actor might approach a novel activity with differing expectations (c.f., 

Murphy & Medin, 1985) and use differing heuristics (cf. Lin & Murphy, 1997). For 
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example, Bonita uses the heuristic big => wide, while Belle uses the heuristic big => 

long. With each iteration of proposal/counter-proposal and ratification/clarification, each 

actor relies increasingly on publicly available information, shifting from private to public 

categories (cf., Fussell & Krauss, 1989; Krauss & Fussell, 1991; Clark & Brennan, 1991). 

Joint Attention, Joint Intention, and Joint Reference 

With each iteration of proposal/counter-proposal and ratification/clarification, 

actors establish joint attention to publicly relevant features of the referent (Clark, 1972; 

Clark et al., 1983; Tomasello & Farrar, 1986; Kaplan & Hafner, 2006; Tomasello, 1999). 

In particular, actors direct each other's attention (Kronmüller & Barr, 2007; Metzing & 

Brennan, 2003; Baldwin, 1991) to those features that allow each of them to differentiate 

the target referent from other possible referents (E.V. Clark, 1987; Mervis & Crisafi, 

1982; Murphy & Brownell, 1985) and to infer the referent's significance to the activity 

(Brown, 1958; Gluck & Corter, 1985). For instance, Bonita directs Belle’s attention to 

the widening curve of the chef’s knife, which both differentiates it from the carving knife 

and, perhaps, suggests its function as a precise cutting tool. Further, actors establish the 

joint intention to act on the referent to accomplish mutual goals (Clark & Lucy, 1975; 

Francik & Clark, 1985; Tomasello et al., 2005). Bonita and Belle jointly intend the 

sharpening of the chef’s knife. More importantly, having established joint reference to 

“the half-bow knife,” Bonita and Belle are likely to reuse this precedent (Brennan & 

Clark, 1996), reducing the effort of sharing attention and intentions on subsequent 

conversational turns (Clark & Wilkes-Gibbs, 1986). 
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From Joint Reference to Referential Convention 

Often, over the course of a conversation, these referential precedents develop into 

mutually-known, mutually-salient, and mutually-expected associations between reference 

and concept—i.e. a referential convention. Such ad hoc conventions derive from 

opportunistic and/or pre-conscious learning coupled with the dynamics of conversation. 

In the scenario, Bonita ratifies Belle’s proposed conceptualization “it’s like half a bow” 

with the name-like reference “the half-bow knife.” This might represent opportunistic 

learning, where Bonita exploits the opportunity for repeated success in referring to the 

chef’s knife. This might also represent pre-conscious learning, where Bonita speaks what 

she hears due either to the common coding of comprehension and production or some 

other priming mechanism (see Pickering & Garrod, 2004, 2006 on pre-conscious 

linguistic coordination; also see Prinz, 1990, and Liberman & Whalen, 2000 on common 

coding). In either case, a recently used reference is frequently reused, and a frequently 

used reference is mutually available and mutually expected for further reuse (Brennan & 

Clark, 1996). This process drastically reduces the lexical variability between 

communicating actors, often leading to referential conventions that one could not predict 

from common usage patterns and/or normative theories (Barr & Keysar, 2002; Brennan 

& Clark, 1996; W. Deutsch & Pechmann, 1982; Pechmann, 1989). 

One common example is the over-specification of reference—i.e. using a 

reference that is more specific than the situation requires. Grice’s Maxims of Quantity 

exhort the speaker to “1. [m]ake your contribution as informative as is required (for the 

current purposes of the exchange) [, and] 2. [d]o not make your contribution more 

informative than is required” (1975, p. 45). Nevertheless, having established a 
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subordinate-level precedent—e.g., tagine—communicating actors expect each other to 

adhere to that precedent even when a basic-level reference—e.g., brazier or pot—would 

convey information sufficient for the joint activity (Brennan & Clark, 1996; Barr & 

Keysar, 2002). Moreover, these over-specified references usually persist into subsequent 

conversations with different conversational partners (ibid.). 

From Public to Private Categories 

A phenomenon like persistent over-specification seems unremarkable if one 

accepts that reference does more than label or index objects, actions, and events. In fact, a 

“public” category can persist beyond the confines of a conversation. Communicating 

actors often continue to use the “public” categories even in extra-linguistic activities that 

each performs in private. Studies by Markman & Makin (1998) and by Malt & Sloman 

(2004) illustrate this phenomenon more forcefully than would another imaginary scenario 

with Alpha and Beta or Bonita and Belle talking to each other. 

Markman & Makin examined the effects of referential communication on 

category coherence beyond what a person learns from individual activity or perceptual 

similarity. They divided participants into three groups. In the sort-only group, individual 

participants simply sorted Lego blocks. In the build-sort group, individuals first built a 

Lego model, then sorted the blocks. Finally, in the joint-build group dyads collaborated in 

building a Lego Model, then sorted on their own. Before the building task, each dyad had 

to negotiate a referential lexicon for the various Lego blocks. During the building task, 

one member of each dyad built the Lego model while the other member described the 

pictorial directions (which the builder could not see).  
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Dyads generally adhered to their negotiated referential conventions. Also, while 

each dyadic lexicon differed in its particulars, they shared similar mappings between 

lexical references and the structural hierarchy of Lego blocks. The lexemes tended to 

refer to basic-level categories of blocks, and modified lexemes tended to refer to 

subordinate categories of those blocks. More importantly, “public” categorizations appear 

to percolate into private conceptualizations. 

Absent the model-building context or any conversation, the sort-only group sorted 

blocks differently from one another. The experience of building the Lego model 

moderated variability in the sorts produced by the build-sort group. Adding referential 

communication to the building process reduced both within-dyad and between-dyad 

variability most of all; participants in the joint-build group sorted blocks much like their 

partners and much like members of other dyads. 

Malt & Sloman (2004) observed similar effects when they examined the 

propagation of referential conventions through a serially conversing activity group. 

Participants jointly arranged photographs of common artifacts, each identifiable by two 

equally common or “balanced” names–e.g. bucket vs. pail and trashcan vs. wastebasket 

(see Malt & Sloman, 2004, for how they determined "balance"). Participants collaborated 

once with a confederate and once with each other. The confederate served as the first 

speaker, introducing one of the two balanced names–e.g, “bucket” instead of “pail”–for 

each of the target artifacts to the first-round participant. The first-round participant then 

served as speaker in collaboration with a second-round participant. The second-round 

participant then served as speaker in collaboration with the confederate. As elsewhere 

(e.g. Garrod & Deherty, 1994), when participants switched roles from addressee to 
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speaker, they usually attempted to transfer the referential conventions established in 

conversation with the previous speaker to conversations with subsequent addressee. 

Following the collaborative card sorting, participants provided individual 

preference, typicality, and similarity ratings for each of the name pairs and the various 

target objects. Malt & Sloman found that, both when engaged in the joint activity and 

following the joint activity, participants overwhelmingly preferred to use the names 

introduced by the confederate over the other equally valid and equally common artifact 

names. Further, participants judged activity-related artifacts as more typical of categories 

named in conformity with the referential convention. Finally, participants judged activity-

related artifacts as more similar to imagined prototypes of categories named in 

conformity with the referential convention. Again, “public” categorizations appear to 

percolate into “private” conceptualizations. 

Conclusion and Hypotheses 

This overview of the literature on “private” category learning and on referential 

communication provides an integrated perspective on “public” categorization and the 

emergence of shareable referential conventions that one could not derive from either 

research tradition alone. The categorization literature exposes several constraints—

including structure, complexity, language, and activity—that limit or enhance category 

learning and use among isolated individuals. The communication literature elaborates the 

process by which “private” conceptualizations become “public” conceptualizations and 

vice versa. Few studies have examined whether and how individual-level constraints 

operate among communicating actors. The present study looks explicitly at the 
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interaction of referential communication and the structure of perceptual features on the 

joint processes of inventing a referential lexicon for novel objects and discovering the 

functional significance of those objects during a novel activity. Specifically, I test three 

hypotheses: 

H1. Referential communication enhances indirect category learning 

This hypothesis is original to the present study. Previous research (Markman & 

Makin 1998) comparing “public” versus “private” category learning used stimuli 

for which there were multiple potential category configurations. So, one could not 

discern whether “public” categorizations were in any way better than “private” 

categorizations, only whether “public” and “private categorizations were different 

from one another. 

Nevertheless, referential communication directs the joint attention and 

joint actions of communicating actors. Moreover, reference can be used to cue 

and compress concepts. Thus one should expect those engaged in a “public” 

categorization activity to learn unlabeled categories better than those engaged in a 

“private” categorization activity. 

H2. Referential communication enhances the learning of simple rules more 

than complex rules 

This hypothesis is also original to the present study. Again, previous research 

(Markman & Makin 1998) comparing “public” versus “private” category learning 

did not further compare the learning of simple versus complex rules. Moreover, 

isolated individuals engaged in indirect category learning tend to use both simple 

and complex rules with comparable facility (Minda & Ross, 2004). 
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Nevertheless, communicating actors may articulate and comprehend 

simple relationships between the referent's features and its significance to the 

activity more quickly and easily than complex relationships. Moreover, they may 

more quickly and easily cue and compress those concepts. Thus, one should 

expect those engaged in a “public” categorization activity to learn simple 

relationships more quickly and easily than complex relationships. 

H3. Referential communication generates conceptual homogeneity  

Communicating actors tend to conceive of activity related objects in ways similar 

to their partners (Garrod & Anderson, 1987; Brennan & Clark, 1996; et al.) and in 

ways similar to others engaged in the same joint activity (Markman & Makin, 

1998). The present study should replicate this phenomenon. In other words, one 

should expect greater conceptual homogeneity among those engaged in a “public” 

categorization activity than among those engaged in a “private” categorization 

activity. 
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III. METHOD 

Purpose & Overview 

With the present study, I investigated the interaction of referential communication 

and the structure of perceptual features on the joint processes of inventing a referential 

lexicon for novel objects and discovering the functional significance of those objects 

during an indirect category learning activity. To that end, participants worked either 

individually or as cooperative2 dyads to learn four combinations of orthogonal functional 

features—nutritive vs. not nutritive and destructive vs. not destructive—that defined four 

categories of fictional extra-terrestrial creatures. These categories were not specifically 

identified or labeled; rather, participants had to learn them indirectly as they predicted the 

functions. Also, these functionally defined categories possessed a complex perceptual 

structure: a unidimensional (simple) rule predicted one function, while a family 

resemblance (complex) sub-structure predicted the other function. This function-learning 

task yielded function prediction data.  In addition to the main function-learning task, each 

learner worked individually to sort the creatures (pre- and post-function learning) and to 

predict their functions in an individual function prediction posttest that also yielded 

selective attention data. 

                                                

2 Dyads had positively interdependent goals: the success of each actor depended on the 
other (Deutsch, 1949; Johnson & Johnson, 1989). 
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Together with data extracted from the transcripts of the dyadic conversations, the 

prediction data, sort data, and selective attention data demonstrate the extent to which: 

H1. referential communication enhances indirect category learning; 

H2. the learning advantages of dyadic learners vary with the complexity of the 

category structure; and 

H3. referential communication generates conceptual homogeneity. 

Participants 

Thirty-five male and thirty-seven female students (mean age 25.1) from throughout the 

Columbia University community participated in this study for a cash payment. 

Participants were recruited using flyers posted widely across the university campus. The 

flyer promised a cash payment for participation and a digital audio player for the best 

performing participant. All participants were native speakers of the English language, 

with an average of four years of post-secondary schooling during which they devoted an 

average of two (or fewer) hours per week to computer games.  

Design 

Three independent variables were manipulated in the design of this study. 

Learning context served as a between-subjects factor with three levels—dyadic learning 

(N=32) versus individual learning with 160 trials (N=16) versus individual learning with 

320 trials (N=24). The two individual learning conditions were created in response to 

difficulties in establishing an equivalent control condition to dyadic learning. Each dyadic 
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learner described stimuli on 160 learning trials and heard descriptions of stimuli on an 

additional 160 learning trials. Moreover, they received corrective feedback on predictions 

for all 320 trials. One could debate whether acting on a verbal description of an unseen 

stimulus leads to the same learning as both seeing and acting on a stimulus. So, the two 

individual learning conditions each represent the two boundary conditions: 160 versus 

320 learning trials. Learning trials were divided into blocks of thirty-two trials. Block 

served as a within-subjects factor with either five or ten levels, depending on which 

learning conditions were compared. Finally, type of rule served as a within-subjects 

factor with two levels—simple rule versus family resemblance.  

Log files generated during each task for each participant provided data on the 

effects these manipulations had on four dependent variables that capture aspects of 

category learning: 

1. the accuracy with which participants predicted the functional features; 

2. the structural similarity of participant sorts to the "true" category structure, its 

sub-structures, or the sorts of other participants;  

3. the type of explanation participants cited for their sorts, and 

4. the attention allocated to surface features when making predictions. 

In addition, transcripts of the dyadic conversations provided data on the probability with 

which participants referred to the surface features. 
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Materials 

The Design of the Category Structure 

Six observable dimensions (O1-O6) and two functional dimensions (F1 and F2) defined 

the category structure used in this study (Table 1). The four combinations of binary 

values on F1 and F2 defined four categories, while sixteen combinations of binary values 

on O1-O5 defined the sixteen exemplars. The distribution of exemplar-defining value 

combinations met several criteria: each category entailed four unique exemplars, among 

which similar value combinations on O1-O3 predicted the value on F1 (family 

resemblance rule type), the value on O4 predicted the value on F2 (simple rule type), 

while the value on the O5 did not predict the value on any other dimension. Adding a 

modicum of naturalistic noise, O6 varied randomly across a range of possible values. The 

values on O6 did not predict the value on any other dimension. 

Table 1. Category Structure represented in binary notation. 
  Observable Dimensions Functional 

  Diagnostic Non-Diagnostic Dimensions 
EXEMPLAR O1 O2 O3 O4 O5 O6 F1 F2 

ND.1 1 1 1 1 1 random 1 1 
ND.2 1 1 0 1 1 random 1 1 
ND.3 1 0 1 1 0 random 1 1 
ND.4 0 1 1 1 0 random 1 1 
Nx.1 1 1 1 0 0 random 1 0 
Nx.2 1 1 0 0 0 random 1 0 
Nx.3 1 0 1 0 1 random 1 0 
Nx.4 0 1 1 0 1 random 1 0 
xD.1 1 0 0 1 1 random 0 1 
xD.2 0 1 0 1 1 random 0 1 
xD.3 0 0 1 1 0 random 0 1 
xD.4 0 0 0 1 0 random 0 1 
xx.1 1 0 0 0 0 random 0 0 
xx.2 0 1 0 0 0 random 0 0 
xx.3 0 0 1 0 1 random 0 0 
xx.4 0 0 0 0 1 random 0 0 
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Observable dimensions O1-O3 jointly predict functional dimension F1. Observable 
dimension O4 predicts functional dimension F2. The assignment of the perceptual 
features of stimuli to O1-O4 and the functional features to F1-F2 was counterbalanced. 
 

The Design of the Stimuli 

Computer graphics of fictional extra-terrestrial creatures instantiated this category 

structure (using the Squeak variant of Smalltalk, in a 32-bit graphical environment). Each 

creature possessed four diagnostic observable features—tentacles (T), fins (F), torso 

animation (A), and eyes (E)—which varied between two levels (Figure B1 illustrates the 

two levels for each physical feature). Four permutations of these physical features—(1) 

TFAE, (2) ETFA, (3) AETF, (4) FAET—were assigned to dimensions O1-O4 in order to 

counterbalance any effects due to prior expectations of physical/functional correlations. 

The fill colors and border colors (dimension O5) assigned to these physical features 

remained either stable (one of two non-predictive values) or constant. Also, the size 

(dimension O6) of each rendered creature varied in scale, from 90 to 110 percent (in 

increments of 1%) of the basic creature size. This subtle source of variation was meant to 

add a modicum of naturalistic noise to the category structure. 

Participants encountered these creatures in the context of a computer-based video 

game (installed on Apple iMac computers). The scenario (Figure C1) for the game 

presented the learning task and the pre- and post-tests as training materials for an 

imaginary mission to another planet, where the “astronaut” would encounter extra-

terrestrial creatures. Creatures might or might not offer nutritive value (described as a 

“jelly” that could serve either as food or bio-fuel) and might or might not be destructive 

(described as damage to “life support systems”). Successful game play required 
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participants to learn how to discriminate between four functionally-defined creature 

categories—nutritive & destructive (ND), nutritive only (NX), destructive only (XD), or 

no functional significance (XX). The counterbalanced assignment of functional features 

to dimensions F1 and F2 was meant to account for any effects due to function/rule-type 

pairings.  

Tasks 

The Function Prediction Task 

Across learning contexts, participants used the Function Prediction task to learn 

the functional combinations that defined the four unlabeled categories of creatures (see 

Minda & Ross, 2004, and Monos, 1997, for similar tasks). Participants could learn the 

four categories indirectly by learning the functional combinations. A time-stamped log of 

their predictions provided data on both their prediction accuracy. The Function 

Prediction task entailed two separable roles: the spotter, who saw the creature; and the 

beamer, who performed the prediction-related action. In the dyadic learning context, each 

participant’s initial role was assigned randomly on the first Function Prediction trial and 

alternated on each subsequent trial. In each of the individual learning contexts, each 

participant played both roles. 

On each trial, one of the sixteen creatures appeared at the center of the spotter’s 

Function Prediction interface (Figure C2 A & B), where it remained until an action was 

executed or twenty seconds had elapsed. If playing with a partner, the spotter had fifteen 

seconds to describe the creature to the beamer, leaving the beamer  five seconds (each 
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second marked by a tone) to decide which functional combination—ND, NX, XD, or 

XX—the creature entailed and take the functionally-appropriate action—respectively, 

stun & capture, stun, capture, or pass. Across learning contexts, the beamer executed 

these actions with keystrokes on a standard computer keyboard. Individually, the 

<CTRL> key meant “activate tractor beam,” the <OPTION> key meant “activate stun 

beam,” and the <SPACE> key meant “fire” (execute the selected action).  Thus, <CTRL-

OPTION-SPACE> executed stun & capture, <OPTION-SPACE> executed stun, 

<CTRL-SPACE> executed capture, and <SPACE> executed pass. An instructions screen 

offered participants detailed descriptions of key combinations (Figure C3 A & B); a 

color-coded summary of key combinations (Figure C2 A & Figure C4) appeared along 

the bottom of the beamer’s Function Prediction interface. 

In response to each key combination, the background of the Function Prediction 

interface flashed the action-appropriate color (as defined by the color-coded summary), 

after which visual and aural feedback signaled the functionally-related consequences of 

the chosen action. First, either a positive or negative tone indicated whether or not the 

participant executed a functionally appropriate action. Then, a synthesized voice 

(specifically, the IBM Expressive Speech System, Hamza, Bakis, Eide, Picheny, & 

Pitrelli, 2004) described the functionally-related consequences of the chosen action. For 

example, after capturing a NX creature, participants heard “jelly extracted;” alternatively, 

participants who stunned & captured an NX creature, heard “stun beam wasted, some 

jelly extracted.” Descriptive feedback reinforced even partially correct predictions, while 

correcting mistaken predictions. Table A specifies the descriptive feedback for each 

function by prediction pairing. Finally, a graphical energy meter (e.g., Figure C4) 
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provided additional positive or negative feedback, namely a five to fifteen unit (pixel) 

increase or decrease in energy (length). As with the descriptive feedback, the energy 

meter reinforced even partially correct predictions, either granting partial points or 

dampening penalties. Table A specifies the rewards and penalties for each 

function/prediction pairing. The Function Prediction task continued for either five or ten 

blocks of trials (depending on learning context), during which each of the sixteen 

creatures appeared twice in random order. 

The Sorting Tasks 

An individually-performed sorting task preceded (PRE) and followed (POST) the 

Function Prediction task. The two sort tasks differed only in what knowledge about 

functional features was available to participants. During the PRE-sort task, participants 

had no knowledge about the functional significance of the creatures; during the POST-

sort task, participants could use what knowledge they had gleaned from the Function 

Prediction task. At the start of each sort task, all sixteen creatures were rendered at 15% 

of their normal size (in order to fit on the computer screen; see Figure C5) and were 

presented randomly in a two-column graphical container (along the left hand side of the 

screen). While one could discern observable features at the reduced size, dragging a 

creature onto the desktop allowed participants to view it at full size. Participants were 

encouraged (see sorting instructions, Figure C6 A & B) to perform a full-size inspection 

before deciding on how to sort each creature. In order to sort creatures, participants 

created a number of graphical containers into which they dragged the creatures they 

believed belonged together. Upon dragging a creature into a newly-created sorting 
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container, an explanation field appeared in the container, into which participants were 

instructed to provide a short explanation of why the creatures in the container belonged 

together. Participants could explain or edit that explanation at any time during the sorting 

process. Participants were free to create as many or as few categories (from one to 

sixteen) as they deemed necessary. 

The Attention Allocation Task 

The Attention Allocation task captured data on the attention participants allocated 

to the various physical features when deciding which functional combination—ND, NX, 

XD, or XX—the creatures entailed. The Attention Allocation task replicated the single-

player Function Prediction task in all aspects except that each creature appeared with its 

various physical features hidden by graphical blinds (Figure C7). In order to uncover a 

feature, participants mouse-clicked its blind. Participants were instructed to uncover as 

many parts as they needed in order to decide each creature’s functional significance—

ND, NX, XD, or XX—and whether to stun & capture, stun, capture, or pass (for 

instructions, screen see Figure C8). Also unlike the Function Prediction task, the 

Attention Allocation task lasted for a single block of thirty-two trials, during which each 

of the sixteen creatures appeared twice in random order. 

Procedure 

Participants were scheduled as pairs for “gaming” sessions, each of which had 

been randomly designated as dyadic, individual-160, or individual-320 sessions and 
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assigned one of the four physical permutations and one of the two functional 

permutations. After granting informed consent, participants completed a short 

questionnaire, providing their age, gender, years of post-secondary schooling, and the 

number of hours per week devoted to computer-game play. They were then seated at a 

computer terminal on either side of a 5’x5’ barrier, beyond which each participant could 

hear but not see the other. There, each observed a demonstration of the “game” interface 

and was given time to practice the use of the keyboard and mouse. Participants then 

proceeded through each of the four tasks: PRE-sort, function prediction, POST-sort, and 

attention allocation. Before each task, participants were permitted to seek clarification of 

the on-screen instructions. After completion of all tasks, each participant was debriefed. 

Data Analysis 

Deriving measures of prediction accuracy 

For each individual learner, the Function Prediction task logs recorded the 

stimulus (represented as a vector of values on dimensions O1-O4 and F1-F2) that was 

presented on each trial along with the functional combination—nutritive & destructive, 

nutritive only, destructive only, or no functional significance—with which the learner 

responded to the stimulus. Similarly, for each dyad, the Function Prediction task logs 

recorded each stimulus that the learner “spotted” or heard described along with the 

response provided by the learner or his or her partner. As with the Function Prediction 

logs for individual learners, the Attention Allocation task logs for both dyadic and 

individual learners recorded the stimuli and responses of each participant. 
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Averaging correct responses (correctly predicted functional combinations) across 

blocks of thirty-two trials (two presentations of each stimulus) yielded the functional-

category prediction accuracy rates for individuals, dyads3, and, during the Attention 

Allocation task, for individual dyadic learners. The same procedure for correct 

predictions of each function yielded function-prediction accuracy rates. 

Deriving measures of attention allocation 

In addition to the prediction data, the Attention Allocation task logs recorded 

what features each learner uncovered before responding with a function prediction. For 

each learner, these data yielded the average number of features uncovered per stimulus. 

Further, these data were converted into two probabilities: the probability of uncovering a 

family resemblance feature and the probability of uncovering a simple rule feature. 

Specifically, the number of family resemblance features uncovered by each learner was 

summed across Attention Allocation trials then normalized by the maximum number of 

family resemblance features the learner could have uncovered. The probability of 

uncovering a simple rule feature was derived in the same way. 

                                                

3 The responses of dyad members are dependent on one another during the Function 
Prediction task; thus, the dyad rather than the dyad member serves as the unit of analysis. 
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Deriving types of sorting explanations & measures of structural similarity 

The logs recorded during the sorting tasks that preceded (PRE) and followed 

(POST) the Function Prediction task provided data on which creatures were sorted 

together as well as the explanations participants used to justify these creature clusters. 

The explanations were segmented and coded as either function/behaviorally 

related (citing ± nutritive and ± destructive and/or ± capture and ± stun) or perceptually 

related (citing the surface features). Additionally, both function-related and perceptually-

related explanations were coded as either family resemblance related (citing a feature or 

function related to the family resemblance substructure) or simple rule related (citing a 

feature or function related to the simple rule substructure). Normalizing the frequency of 

each type of explanation by the number of creature clusters times the number of 

explanation types yielded the probability of mentioning that type of feature. Similarly, 

normalizing the frequency of explanations that cited functional/behavioral combinations 

by the number of creature clusters yielded the probability of mentioning a functional 

category. 

To derive measures of structural similarity, each participant’s post-learning 

creature groups were converted into binary co-occurrence matrices. Three additional 

matrices, represented co-occurrence based on (1) the “true” category clusters, (2) the 

destructive-function category clusters, and (3) the nutritive-function category clusters. 

The lower triangle (the binary values below the diagonal) of each co-occurrence matrix 

was rearranged as a vector. The jaccard similarity (which is appropriate for binary 

presence/absence data; Jaccard, 1912) between the various co-occurrence vectors served 
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as an indicator of structural similarity. Structural similarity was used to test inter-

participant similarities as well as the effects of learning context and type of rule. 
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IV. RESULTS 

Overall, the results demonstrate that dyadic learners learned the functionally 

defined categories more quickly and more accurately than individual learners. Also, 

dyadic learners exhibited greater conceptual homogeneity than individual learners. 

Nevertheless, the dyadic advantage in learning functions appeared earlier and was greater 

for the simple-rule predicted function than for the family-resemblance predicted function. 

Referential communication enhances indirect category learning 

Functional-category prediction accuracy 

Dyadic learners predicted functionally defined categories with greater accuracy 

than did individual learners. Participants in the two individual learning contexts were 

similarly accurate in predicting functional categories during the initial five blocks of 

learning trials (1-160)4. This dyadic advantage is evident in Figure 1 (below), where three 

accuracy curves compare functional-category prediction accuracy rates by learning 

context across the initial five blocks of learning trials (1-160) and across the final five 

blocks of learning trials (161-320). 

Moreover, this early dyadic advantage was corroborated by a repeated-measures 

ANOVA on the functional-category prediction accuracy rate with learning context as a 

                                                

4 Unless otherwise noted, data from the two individual learning conditions were 
combined for statistical tests relating to learning trials 1-160. 
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between-subjects factor and block (the five blocks that entailed learning trials 1-160) as a 

within-subjects factor. The interaction of learning context and block was significant—

! 

F(4,216) =10.522 , 

! 

p < .000, 

! 

ˆ " 2 = .163—as were the main effects of learning context—

! 

F(1,54 ) =14.839 , 

! 

p < .000, 

! 

ˆ " 2 = .216—and block—

! 

F(4,216) = 21.021, 

! 

p < .000, 

! 

ˆ " 2 = .280 . 

On average across the first 160 learning trials, dyadic learners predicted functional 

categories with an accuracy rate that increased more steeply than the accuracy rate of 

individual learners. 

 

Figure 1. Compares the rate of functional-category prediction accuracy of dyadic learners 
vs. individual learners (both individuals who completed 160 learning trials and 
individuals who completed 320 learning trials). Error bars indicate confidence interval. 
 



43 

 

The continued dyadic advantage was also corroborated by a repeated-measures 

ANOVA on the functional-category prediction accuracy rate with learning context5 as a 

between-subjects factor and block (the five blocks that entailed learning trials 161-320) as 

a within-subjects factor. Again, the interaction of learning context and block was 

significant—

! 

F(4,152) = 8.980 , 

! 

p < .000, 

! 

ˆ " 2 = .191—as were the main effects of learning 

context—

! 

F(1,38) = 30.858 , 

! 

p < .000, 

! 

ˆ " 2 = .448—and block—

! 

F(4,152) = 23.804 , 

! 

p < .000, 

! 

ˆ " 2 = .328 . On average across the final 160 learning trials, dyadic learners predicted 

functional categories with an accuracy rate that continued to increase more steeply than 

the accuracy rate of individual learners. 

 

Figure 2. Compares the rate of functional-category prediction accuracy of dyadic learners 
vs. individual learners (both individuals who completed 160 learning trials and 
individuals who completed 320 learning trials) during the Attention Allocation task. Error 
bars indicate confidence interval. 
 
                                                

5 Unless otherwise noted statistical tests relating to learning trials 161-320 compared 
dyads only to individuals who completed 320 learning trials. 



44 

 

 

Figure 3. Compares the average number of features per stimulus that dyadic learners vs. 
individual learners (both individuals who completed 160 learning trials and individuals 
who completed 320 learning trials) uncovered during the Attention Allocation task. Error 
bars indicate confidence interval. 

Posttest category prediction accuracy and attention allocation 

The dyadic advantage persists into the attention allocation task (Figure 2). Not 

surprisingly, attention allocation—as represented by the average number of features 

uncovered per stimulus (Figure 3)—correlated with functional-category prediction 

accuracy—

! 

r
(acc.,attend )

= .471, 

! 

p < .000. A MANOVA on the functional-category prediction 

accuracy rate and attention allocation (features per stimulus) with learning context6 as a 

between-subjects factor yielded a significant multivariate effect—

! 

F(2,69) = 26.669 , 

! 

p < .000, 

! 

ˆ " 2 = .249—as well as significant univariate effects on functional-category 

prediction accuracy—

! 

F(1,70) = 51.022 , 

! 

p < .000, 

! 

ˆ " 2 = .422—and on attention allocation—

                                                

6 Unless otherwise noted, data from the two individual learning conditions were 
combined for statistical tests relating to the post-learning tasks. 
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! 

F(1,70) =14.275 , 

! 

p < .000, 

! 

ˆ " 2 = .169 . On average, during the attention allocation task, 

dyadic learners predicted functional categories with greater accuracy than individual 

learners—

! 

M(dyad ) = .697 (

! 

SD = .192) vs. 

! 

M
(indiv.)

= .370 (

! 

SD = .195)—while uncovering a 

greater number of perceptual features than individual learners—

! 

M(dyad ) = 3.165  

(

! 

SD = .743) vs. 

! 

M
(indiv.)

= 2.388 (

! 

SD = .954). 

Further, participants needed to uncover at least three features to determine the 

functional category of a stimulus. The mean number of features uncovered by dyadic 

learners, 3.165 (

! 

SD = .743), did not differ significantly from that minimum—

! 

t(31) =1.256 , 

! 

p = .219. The mean number of features uncovered by individual learners, 

2.388 (

! 

SD = .954), fell short of the minimum—

! 

t(39) = -4.057, 

! 

p < .000. 

 

 

Figure 4. Compares the structural similarity of the post-learning sort clusters produced 
by dyadic learners and individual learners (both individuals who completed 160 learning 
trials and individuals who completed 320 learning trials) to the “true” category clusters. 
Error bars indicate confidence interval. 
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Figure 5. Compares the probability of citing a category (whether functionally-defined or 
behaviorally-defined) when dyadic learners vs. individual learners (both individuals who 
completed 160 learning trials and individuals who completed 320 learning trials) 
explained their post-learning sort clusters. Error bars indicate confidence interval. 

The structure of post-learning sort clusters 

The dyadic learning advantage was also evident in how participants sorted 

creatures after the function prediction task. As described in the Data Analysis section of 

the Method chapter, post-learning sort clusters and the “true” category clusters were 

converted into binary co-occurrence matrices, each of which was rearranged as a vector. 

The jaccard similarity between each of the various co-occurrence vectors served as an 

indicator of structural similarity between clusters. As apparent in Figure 4, the post-

learning sort clusters of dyadic learners were more similar to the “true” category clusters 

than were the post-learning sort clusters of individual learners—

! 

M
(dyad ) = .471 

(

! 

SD = .372) vs. 

! 

M
(indiv.)

= .207 (

! 

SD = .172). Moreover, in explaining their sorts (Figure 

5), dyadic learners cited functional and/or behavioral categories (the beams used in 
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response to stimuli) with greater likelihood than did individual learners—

! 

M(dyad ) = .486 

(

! 

SD = .399) vs. 

! 

M
(indiv.)

= .231 (

! 

SD = .344). The similarly of the post-learning sort 

clusters and the “true” category clusters correlated with the reliance on category-related 

explanations of those clusters—

! 

r(sim.,exp lain ) = .614 , 

! 

p < .000. 

The differences between learning contexts were corroborated by a MANOVA on 

structural similarity (jaccard similarity of sorted co-occurrence vectors to the “true” 

category co-occurrence vectors) and type of explanation was run with learning context as 

a between-subjects factor. The multivariate effect of learning context was significant—

! 

F(2,69) = 8.169 , 

! 

p < .000, 

! 

ˆ " 2 = .563—as was its univariate effect on structural 

similarity—

! 

F(1,70) =15.881, 

! 

p < .000, 

! 

ˆ " 2 = .185—and on type of explanation—

! 

F
(1,70)

= 8.4183 , 

! 

p = .005, 

! 

ˆ " 2 = .107 . In all, dyadic learners, more than individual learners, 

sorted in accordance with the normative (experimenter-designed) category clusters. 

Referential communication generates conceptual homogeneity 

Within-Dyad and Between-Dyad Sorting Homogeneity 

Dyadic learners sorted the stimuli in ways that closely resembled the “true” 

category clusters and, to varying degrees, the sort clusters of other learners. Figure 6 

compares the pair-wise jaccard similarities between the co-occurrence vectors of dyadic 

learners paired with their partners (

! 

M = .454 , 

! 

SD = .395) vs. pair-wise jaccard 

similarities between the co-occurrence vectors of various pseudo-dyads, including: 

dyadic learners paired randomly (

! 

M = .274 , 

! 

SD = .286), dyadic learners paired with each 
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non-partner (

! 

M = .249 , 

! 

SD = .262), and individual learners paired with each other 

individual learner (

! 

M = .140 , 

! 

SD = .128). 

 

Figure 6. Compares the mean pair-wise similarity of the post-learning sort clusters 
produced by actual dyads vs. between-dyad pairings and pairs of individual learners. 
Error bars indicate confidence interval. 

 
The post-learning sort clusters of actual dyads were not significantly more similar 

to one another than the sort clusters of randomly paired dyadic learners—

! 

t
(27.32)

=1.483, 

! 

p = .149. Nevertheless, the post-learning sort clusters of non-partners were significantly 

more similar to one another than the sort clusters of individual learners, 

! 

t(597.131) = 8.404 , 

! 

p < .000. One should note that, prior to learning, the sort clusters produced by dyadic 

learners (pair-wise jaccard similarity

! 

M = .192 , 

! 

SD = .211) were no more similar to one 

another than were the sort clusters produced by individual learners (pair-wise jaccard 

similarity

! 

M = .196 , 

! 

SD = .171), 

! 

t(673.077) = -.290 , 

! 

p = .772. 
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Within-Dyad Referential Homogeneity 

Dyadic learners also tended to reference the same features as their partners—i.e. 

they used similar referential conventions (conventions were represented as a vector of 

probabilities with which each dyadic learner mentioned the various features). While 

partners mentioned the various features with differing probabilities when explaining their 

pre-learning sort clusters (

! 

median r
(pre"A ,pre"B ) = .422) they referred to those features with 

highly correlated probabilities (

! 

median r
(initial"A ,initial"B ) = .994 ) during the initial block of 

learning trials. Partners continued to use highly compatible conventions into the final 

block of learning trials (

! 

median r( final"A , final"B ) = .995) though conventions did change 

slightly between the initial and final blocks of learning trials (

! 

median r
(initial, final ) = .847). 

In addition, partners established reference to creatures with greater efficiency over 

time. Partners uttered significantly fewer words per diagnostic feature during the final 

block of dyadic learning trials (

! 

M = 2.349 , 

! 

SD = .898) than during the initial block of 

dyadic learning trials (

! 

M = 3.649, 

! 

SD = .925)—

! 

t(31) = 6.221, 

! 

p < .000. Finally, 

referential conventions accorded well with each partner’s attention to the various 

features. The probabilities with which dyads referred to the various features during the 

last block of dyadic learning trials correlated strongly with the probabilities with which 

each partner would later uncover those features during the attention allocation task 

(

! 

median r
( final ,attend"A ) = .922  and 

! 

median r( final ,attend"B ) = .965). Also during the attention 

allocation task, partners uncovered features with highly correlated probabilities 

(

! 

median r
(attend"A ,attend"B ) = .981). 
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Figure 7 A-C. Compare the simple-rule function prediction accuracy rates vs. family-
resemblance function prediction accuracy rates of dyadic learners vs. individual learners 
who completed 160 learning trials vs. individual learners who completed 320 learning 
trials. Error bars indicate confidence interval. 
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Referential communication enhances simple-rule learning more than complex-rule 
learning 

Function prediction accuracy 

On average across the first 160 learning trials, dyadic learners predicted the 

simple-rule related functions with more sharply increasing accuracy rates than they 

predicted the family-resemblance related functions, while participants in the two 

individual conditions predicted both functions with similar accuracy (Figure 7 A-C). This 

early prediction asymmetry for dyadic learners was corroborated by a repeated-measures 

ANOVA on the function prediction accuracy rate with learning context as a between-

subjects factor and type of rule and block (the five blocks that entailed learning trials 1-

160) as within-subjects factors. The three-way interaction of learning context, type of 

rule, and block was significant—

! 

F(4,216) = 3.855 , 

! 

p = .011, 

! 

ˆ " 2 = .067—as were the two-

way interactions of learning context and type of rule

! 

F(1,54 ) = 5.326 , 

! 

p = .025, 

! 

ˆ " 2 = .090—

and learning context and block—

! 

F(4,216) = 9.218 , 

! 

p < .000, 

! 

ˆ " 2 = .146 . All main effects 

were also significant, including: learning context (

! 

F(1,54 ) =14.254 , 

! 

p < .000, 

! 

ˆ " 2 = .209), 

type of rule (

! 

F(1,54 ) = 8.4169 , 

! 

p = .005, 

! 

ˆ " 2 = .135) and block (

! 

F(4,216) =12.258 , 

! 

p < .000, 

! 

ˆ " 2 = .185). The interaction of type of rule and block failed to reach significance—

! 

ˆ " 2 = .026 . 

Dyadic learners, more than individual learners, continued to predict the simple-

rule related functions with increasingly greater accuracy than they predicted the family-

resemblance related functions across the final 160 learning trials. A repeated-measures 

ANOVA on the function prediction accuracy rate with learning context as a between-

subjects factor and type of rule and block (the five blocks that entailed learning trials 161-
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320) as within-subjects factors yielded a significant three-way interaction of learning 

context, type of rule, and block was significant—

! 

F(4,152) = 2.274 , 

! 

p = .029, 

! 

ˆ " 2 = .056 . The 

two-way interactions of learning context and type of rule—

! 

F
(1,38)

= 4.917 , 

! 

p = .033, 

! 

ˆ " 2 = .115—learning context and block—

! 

F(4,152) = 7.811, 

! 

p < .000, 

! 

ˆ " 2 = .067—and type 

of rule and block—

! 

F(4,152) = 4.081, 

! 

p < .000, 

! 

ˆ " 2 = .097—were also significant, as were 

the main effects of learning context (

! 

F
(1,38)

= 31.328 , 

! 

p < .000, 

! 

ˆ " 2 = .452), type of rule 

(

! 

F(1,38) = 21.326 , 

! 

p < .000, 

! 

ˆ " 2 = .359) and block (

! 

F(4,152) = 20.635 , 

! 

p < .000, 

! 

ˆ " 2 = .352). 

Nevertheless, individuals who continued for 320 trials also exhibited a prediction 

asymmetry. They predicted the simple-rule related functions with increasingly greater 

accuracy than they predicted the family-resemblance related functions. A repeated-

measures ANOVA on the function-prediction accuracy rate with type of rule and block 

(learning trials 161-320) as within-subjects factors yielded a significant interaction of 

type of rule and block—

! 

F
(4,92)

= 4.014 , 

! 

p = .005, 

! 

ˆ " 2 = .149—as well as significant main 

effects of type of rule (

! 

F(1,23) = 9.697 , 

! 

p = .005, 

! 

ˆ " 2 = .296) and block (

! 

F
(4,92)

= 2.791, 

! 

p = .031, 

! 

ˆ " 2 = .108). 

Posttest function prediction accuracy and attention allocation 

During the post-learning Attention Allocation task, participants across learning 

contexts predicted the simple-rule related functions with greater accuracy than the family-

resemblance related functions (Figure 8). Again, attention allocation—as represented by 

the probability of uncovering a simple-rule related vs. family-resemblance related 

feature—correlated with prediction accuracy—

! 

r(acc.,attend ) = .519, 

! 

p < .000 (Figure 9). 



53 

 

 

Figure 8. Compares the simple-rule function prediction accuracy rates vs. simple-rule 
function prediction accuracy rates of dyadic learners vs. individual learners (both 
individuals who completed 160 learning trials and individuals who completed 320 
learning trials) during the Attention Allocation task. Error bars indicate confidence 
interval. 
 

A MANOVA on the function prediction accuracy rate and attention allocation (the 

probability of uncovering a feature) with learning context as a between-subjects factor 

and type of rule as a within-subjects factor yielded a significant multivariate effect for 

learning context—

! 

F(2,69) = 26.353, 

! 

p < .000, 

! 

ˆ " 2 = .247—and for type of rule—

! 

F(2,69) =14.879 , 

! 

p < .000, 

! 

ˆ " 2 = .164 , but not for the interaction of learning context and 

type of rule—

! 

ˆ " 2 = .012 . On average during the Attention Allocation task, dyadic learners 

predicted both functions with greater accuracy than individual learners (

! 

M
(dyad ) = .821, 

! 

SD = .160 , vs. 

! 

M(indiv.) = .596, 

! 

SD = .181), while uncovering features with greater 

likelihood than individual learners (

! 

M(dyad ) = .825, 

! 

SD = .253, vs. 

! 

M(indiv.) = .633, 

! 

SD = .345). Nevertheless, those differences between dyadic learners and individual 
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learners did not depend on which rule—simple or family resemblance—predicted the 

functions—

! 

M(dyad"sr) = .896 (

! 

SD = .122) vs. 

! 

M
(dyad" fr ) = .748  (

! 

SD = .162) and 

! 

M(indiv"sr) = .646 (

! 

SD = .201) vs. 

! 

M(indiv" fr ) = .546 (

! 

SD = .143). 

 

Figure 9. Compares the probability that a dyadic learner vs. individual learner (both 
individuals who completed 160 learning trials and individuals who completed 320 
learning trials) would uncover a family-resemblance related versus simple-rule related 
feature on any Attention Allocation task trial. Error bars indicate confidence interval. 
 

Univariate effects followed the same pattern. Learning context had a significant 

main effect on the function prediction accuracy rate —

! 

F(1,70) = 52.019 , 

! 

p < .000, 

! 

ˆ " 2 = .426—and on attention allocation—

! 

F
(1,70)

=13.117 , 

! 

p < .000, 

! 

ˆ " 2 = .158 . Type of 

rule had a significant main effect on the function prediction accuracy rate —

! 

F
(1,70)

= 30.117 , 

! 

p < .000, 

! 

ˆ " 2 = .301—and on attention allocation—

! 

F
(1,70)

= 8.722 , 

! 

p = .004 , 

! 

ˆ " 2 = .111. The interaction of learning context and type of rule failed to reach 

significance, with 

! 

ˆ " 2 = .016  for the effect on the function prediction accuracy rate and 

! 

ˆ " 2 < .000  for the effect on attention allocation. 
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Figure 10. Compares the structural similarity of the post-learning sort clusters produced 
by dyadic learners vs. individual learners (both individuals who completed 160 learning 
trials and individuals who completed 320 learning trials) to the category clusters defined 
by one or another type of rule. Error bars indicate confidence interval. 

Structural similarity of post-learning sort clusters to the rule-defined clusters 

Similarly, participants across learning contexts sorted creatures into clusters that 

resembled simple-rule defined clusters more than family-resemblance defined clusters, 

though the sorts produced by dyadic learners were slightly more similar to the clusters 

defined by each type of rule (Figure 10). An ANOVA on structural similarity (jaccard 

similarity of sorted co-occurrence vectors to the simple-rule defined and the family-

resemblance defined co-occurrence vectors) with learning context as a between-subjects 

factor and type of rule as a within-subjects factor yielded a significant main effect for 

type of rule 

! 

F
(1,31)

= 22.890 , 

! 

p < .000, 

! 

ˆ " 2 = .246 . Learning context was marginally 

significant—

! 

F(1,70) = 3.353, 

! 

p = .071, 

! 

ˆ " 2 = .046—and the interaction of learning context 

and type of rule failed to reach significance—

! 

ˆ " 2 < .000 . Further, dyadic and individual 
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learners cited simple-rule related features and family-resemblance related features with 

comparable likelihood when explaining their post-learning sorts (Figure 11). In all, 

participants across learning contexts sorted more in accordance with the simple-rule 

defined structure than the family-resemblance defined structure. Nevertheless, 

participants across learning context did not mention simple-rule related features with 

greater likelihood than family-resemblance related features. 

 

Figure 11. Compares the probability that dyadic learners vs. individual learners (both 
individuals who completed 160 learning trials and individuals who completed 320 
learning trials) mentioned features relating to one or another type of rule when explaining 
their post-learning sorts. Error bars indicate confidence interval.
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V. DISCUSSION 

With the present study, I investigated the interaction of referential communication 

and the structure of perceptual features on the joint processes of inventing a referential 

lexicon for novel objects and discovering the functional significance of those objects 

during an indirect category learning activity. As hypothesized, referential communication 

led to better learning of functional categories (H1), though earlier and more so for 

functions predicted by simple rather than complex rules (H2). These effects of 

communication reveal previously untested differences between “public’ and “private” 

category learning. Moreover, referential communication reduced conceptual variability 

within and between collaborating dyads (H3), while individuals who performed the same 

learning tasks remained conceptually heterogeneous. This effect of communication 

replicates and reinforces previous research (e.g., Markman & Makin, 1998). 

To explain the learning advantages observed among dyadic learners, I argue that 

referential communication may direct attention to relationships between features 

(perceptual and functional) and actions as well as render such relationships more 

memorable. Moreover, communication may foster and/or sustain greater motivation 

among collaborators and may allow them to take advantage of the differing expectations 

and heuristics each collaborator brings to the task. 

To explain the simplicity advantages observed among dyadic learners, I argue that 

referential communication may provide explicit “rules” for otherwise implicit (and 

perhaps more difficult) judgements. Dyads appear to have established reference to simple 
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rules earlier than they established reference to complex rules; thus, they could explicitly 

(and perhaps more easily) learn the simple rule earlier than the complex rule. 

Finally, to explain the conceptual homogeneity between and within dyads, I 

consider whether communication pushes “public” conceptualizations and publicly-

formed “private” conceptualizations towards a limited range of widely shareable 

conceptual structures. 

In what follows, I summarize the results that support each of these hypotheses and 

elaborate the preceding explanations of the results. Further, I speculate what these results 

might imply for research on category learning, communication, and joint activity. Finally, 

I suggest ways in which future research might further explore the relationship between 

“public” and “private” concepts. 

Referential communication enhances indirect category learning  

Summary of Results 

The results demonstrate that dyadic learners learned the functionally defined 

categories more quickly and more accurately than individual learners. Dyadic learners 

predicted functions with increasing accuracy across the Function Prediction (learning) 

trials. Only those individual learners who continued beyond 160 learning trials exhibited 

category prediction accuracy rates above thirty percent (where chance = 25%) as they 

approached the end of the learning task. Moreover, dyadic learners, more than individual 

learners, sorted stimuli into clusters that resembled the normative or “true” functional 

category clusters and relied more heavily than individual learners on functionally-defined 

or behaviorally-defined (i.e., what combination of “beams” were required in response to 
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the clustered stimuli) categories in explaining their sort clusters. Finally, dyadic learners 

attended to (i.e., uncovered) a greater number of diagnostic features than individual 

learners during the Attention Allocation posttest trials. In fact, dyadic learners uncovered 

at least as many features (a minimum of three) as required to determine the functional 

categories of creatures, while individuals fell short of the minimum. 

Explanation of the dyadic advantage 

Referential communication directs the joint attention and the joint actions of 

communicating dyads (e.g., Kronmüller & Barr, 2007; Clark & Lucy, 1975). For 

example, one dyad (D10.1) used “juicy-eyed” to reference the relationship between type 

of eyes and the nutritive “jelly” that the beamer should “juice” or extract from the 

creatures. By drawing attention to relationships between perceptual and functional 

features (eyes => jelly) and between features and actions (eyes => jelly => capture), 

referring expressions may cue the concept defined by these relationships (c.f., Lupyan et 

al., 2007); in this case, a nutritive creature that the beamer must capture. Moreover, by 

encapsulating the relationships that define the concept, referring expressions may render 

such relationships more memorable (ibid.).  

In addition to cuing a concept and the relationships that define the concept, 

referring expressions may serve as a compressed form of the concepts and its features—

i.e., a conceptual manipulative (A. Clark & Karmiloff-Smith, 1993). The referring 

expression “juicy-eyed” compresses the relationship between eye type, nutritive value, 

and the extraction of that value. By using the referring expression “juicy-eyed,” the 

members of D10.1 could easily infer the appropriate action, while avoiding burdensome 

comparisons of the different eye types and the functions and actions each type implied. 
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While the referring expression “juicy-eyed” is especially evocative, 

communicating dyads might reap similar benefits from more mundane but often repeated 

referring expressions. Interlocutors tend to reuse each other’s referring expressions (e.g., 

Garrod & Anderson, 1987). Moreover, a recently used referring expression is frequently 

reused, and a frequently used referring expression is mutually available and mutually 

expected for further reuse (Brennan & Clark, 1996). As observed in the present study, 

these repeated referring expressions serve as ad hoc, yet stable, conventions of reference, 

with each partner of a communicating dyad referring to the same features. Such ad hoc 

conventions reduce cognitive load (Clark & Wilkes-Gibbs, 1986); the use of conventional 

references is more likely to convey mutually salient, mutually expected, and mutually 

understood conceptual content (c.f., Jolicoeur et al., 1984). 

Taken together, these various cognitive benefits deriving from referential 

communication and referential convention might explain why those engaged in a 

“public” categorization activity learn novel categories better than those engaged in a 

“private” categorization activity. 

That said, other aspects of social and collaborative activity might also explain the 

dyadic advantage observed in the present study. The learning advantages among dyadic 

learners may result from increased motivation. This goes beyond mere social facilitation, 

otherwise the prize offered to the best performing participant, audience effects (via the 

experimenter), and co-action effects (performing the task at the same time as other 

participants) should have helped individual learners, as well (c.f., Zajonc, 1965). Instead, 

motivation may derive from the interdependence of dyadic learners (c.f., Deutsch, 1949; 

Johnson & Johnson, 1989). That is, the “spotter’s” score depended on the “beamer” 
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making an accurate prediction, which, in turn, depended on establishing joint reference to 

creatures. Hence, dyadic learners were motivated to jettison idiosyncratic conceptions, 

expend greater effort on the task, and avoid satisficing solutions. 

The dyadic advantage observed in the present study may also result from 

knowledge diversity or, more accurately the differing expectations and heuristics that 

derive from differing knowledge. Dyadic learners may approach the Function Prediction 

task with differing expectations and use different heuristics to yield differing and perhaps 

more numerous hypotheses about the relationships between perceptual and functional 

features and between those features and their actions. Competing hypotheses may yield 

better hypotheses about novel objects in a novel activity (c.f., Wiley & Jolly, 2003). 

Diversity among partners may also encourage partners to proffer simpler and more 

shareable hypotheses. Interlocutors try to minimize the joint effort of sharing beliefs 

(Clark & Wilkes-Gibbs, 1986) and tend to take each other’s knowledge into account 

when trying to establish joint reference (Fussell & Krauss, 1989). 

Similarly, human beings may differ in their previously developed inductive 

reasoning skills. Such skills might provide a participant an early advantage in learning to 

predict functional categories. While participants were randomly assigned to learning 

conditions, one cannot entirely ignore the possibility that a greater number of highly 

skilled participants were assigned to the dyadic condition. In the present study, partners 

predicted functional categories with highly correlated accuracy rates across the 320 

learning trials (

! 

median r
(acc."A ,acc."B ) = .744 ). This similarity in prediction accuracy would 

suggest that either all partners were comparably skilled at induction or that the more 

skilled partners were also adept at circumventing the referential strictures of the task (i.e., 
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no explicit guidance on predictions) to convey predictive information to their less skilled 

partners. In either case, a pretest of inductive reasoning may help future studies prevent 

the remote possibility of assigning a greater number of highly skilled participants to the 

dyadic condition. 

Then again, these alternative explanations do not diminish the influence of 

referential communication. Only through communication could dyadic learners take 

advantage of interdependence and/or diversity of knowledge and/or skills. Without 

communication motivation may dwindle and diversity may hinder rather than help the 

learning process. 

Differences in the tasks performed by dyadic and individual learners may also 

lead to a learning advantage in the dyadic condition. Individual learners perform both the 

role of the beamer and the role of the spotter on each learning trial; dyadic learners 

alternate these roles with each trial. On the one hand, one might argue that separating the 

roles reduces cognitive load for dyadic learners: the spotter handles the perceptual 

discrimination task, while the beamer handles the prediction task. One the other hand, 

one might also argue that each separate role in the dyadic learning condition requires 

cognitive effort comparable to that of the joint role in the individual learning condition. 

In addition to the perceptual discrimination task, the spotter must produce a referring 

expression that conveys the predictive perceptual information to the beamer. The beamer 

must comprehend the referring expression and interpret how the verbally conveyed 

perceptual information relates to the prediction task. I offer a possible resolution to these 

arguments in the final suggestion for further exploration of the dyadic advantage. 
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Implications of the dyadic advantage 

Human beings can form categories when working in isolation. Most previous 

research on “private” categorization, though, has focused on simple structures that define 

a small number of categories of a small number of exemplars. In the present study, I 

increased the complexity of the category structure and the number of categories and 

exemplars only slightly beyond the typical levels. Yet individual learners had a difficult 

time learning functions and combining them into categories, while dyadic learners 

accomplished this task with greater efficiency. This dyadic advantage might imply that, 

under time and task strictures that resemble the present study, the “public” act of 

referential communication plays a necessary role in the efficient formation of more 

complex “private” categories. Referential communication both distributes and 

consolidates the cognition of interlocutors. 

In terms of psycholinguistic research, the present study offers extra-linguistic 

evidence that the “private” concepts interlocutors take away from the “public” act of 

referential communication differ from those formed in private. For example, dyadic 

learners sorted creatures into clusters that better matched the “true” category clusters and 

allocated attention widely enough to predict functional categories. In the absence of 

conversation, category learning appeared slow and laborious for individual learners. 

Further, the present study offers converging evidence on the benefits of collaborative 

problem solving and decision-making. An advantage in categorizing a novel problem 

might explain the oft-observed collaborative advantages in making decisions and solving 

problems (see, Johnson & Johnson, 2005, for review). 
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Further exploration of the dyadic advantage 

In terms of understanding the learning advantages observed among dyadic 

learners, the present study was limited in three ways. Whereas theorists (e.g, Chui et al., 

1998; Steels & Belpaeme, 2005) have claimed that communication might impose 

structure on an ill-defined activity and the objects, actions, and events it entails, the 

present study restricted category formation to one category structure with one normative 

classification scheme. Asking whether the dyadic advantage would persist where no 

normative structure exists seems an obvious follow-up question. To address this question, 

one might redesign the learning activity so that perceptual and latent features relate to 

each other and with the actions of collaborators in any of many possible ways. Then, if 

dyadic learners exhibit a greater tendency to form categories than individual learners one 

can attribute that difference to referential communication with greater confidence. 

Also, by providing feedback on each of the functions entailed in a prediction 

rather than feedback on the category prediction as a whole, the present study does not 

clearly answer whether dyadic learners better learned categories or better learned each of 

the component functions. One can address this question with a simple modification to the 

present study: a dyadic condition without function-related feedback. 

Finally, the present study did not control for any benefits from linguistic 

encoding, per se. Again, a simple modification to the present study—an individual 

condition where participants engage in private speech—could address what benefits 

might derive from thinking aloud. Moreover, if participants later based predictions on 

recordings of that private speech, one could also address whether or not performing only 

the beamer role requires fewer cognitive resources than performing both the spotter role 

and the beamer role. 
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Referential communication enhances simple-rule learning more than complex-rule 
learning  

Summary of Results 

The results also demonstrate that the dyadic learning advantage was greater for 

the simple-rule predicted function than for the family-resemblance predicted function. 

Throughout the Function Prediction (learning) task, dyads predicted the simple-rule 

function with greater accuracy than the family-resemblance function. That said, the 

results of the posttests demonstrate that all participants came to exhibit this asymmetry 

between simple-rule learning and family-resemblance learning. They sorted more in 

accordance with the simple-rule structure. They predicted the simple-rule function with 

greater accuracy than the family-resemblance function, and they attended to the simple-

rule related feature with greater likelihood than the family-resemblance related features 

when making those predictions. 

Explanation of the simplicity advantage 

Reference provides an explicit “rule” for an otherwise implicit judgement of how 

perceptual and functional features relate to one another and to the actions of interlocutors. 

Again as an example, the members of dyad D10.1 used “juicy-eyed” to reference the 

relationship between type of eyes and the nutritive “jelly” that the beamer should “juice” 

or extract from the creatures. Simple relationships ease the process of establishing joint 

reference. Dyads appear to have established reference to the simple-rules earlier in the 

learning process, from which point they could explicitly monitor when the referenced 

rule did or did not apply.  
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That said, the simplicity advantage observed in dyadic function learning mirrors 

the well-documented simplicity principle in “private” category learning—i.e., human 

beings tend to learn simple relationships between features and their significance more 

easily than complex relationships (Feldman, 2003b). After all, during the posttests, 

individual learners (whether learning for 160 or 320 trials) also exhibited better learning 

of the simple rule than the family-resemblance rule. Thus, one could argue that referential 

communication simply increases the efficiency of learning: i.e., explicit learning is 

simply more efficient than implicit learning. 

Then again, dyadic learners learned the family resemblance rule better than 

individual learners learned the simple rule. Dyadic learners predicted the family 

resemblance function more accurately than individual learners predicted the simple rule 

function during the posttest. Dyadic-learner accuracy when predicting the family 

resemblance function (

! 

M = .748 , 

! 

SD = .162) differed significantly from the individual-

learner accuracy when predicting the simple rule function (

! 

M = .646 , 

! 

SD = .202) —

! 

t
(70)

= 2.321,

! 

p = .023). Moreover, dyadic learners relied on family-resemblance about as 

much as individual learners relied on the simple-rule when sorting and when attending to 

features. The jaccard similarity between the co-occurrence vectors of dyadic learners and 

the family-resemblance defined co-occurrences (

! 

M = .281, 

! 

SD = .217) did not differ 

significantly from the jaccard similarity between the co-occurrence vectors of individual 

learners and the simple-rule defined co-occurrences (

! 

M = .241, 

! 

SD = .141) —

! 

t
(70)

= .914 ,

! 

p = .364 ). Also, the probability of a dyadic learner uncovering a family-

resemblance feature (

! 

M = .705 , 

! 

SD = .391) did not differ significantly from the 
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probability of an individual learner uncovering a simple rule feature (

! 

M = .757 , 

! 

SD = .223) —

! 

t(70) = .679,

! 

p = .499. 

In other words, referential communication appears to compress or simplify the 

family-resemblance structure, as well. For example, the aforementioned dyad (D10.1) 

referred to the prototypical destructive creature as “hungry, and carrying a knife and 

fork.” Such a reference abstracts away the details of surface features (e.g., moving torso 

design, uneven tentacle length, and sharp-ended fins), rendering a simple yet concrete 

representation of a creature ready to attack. Variations on this economical representation 

likewise reduced the effort of judging creatures that differed from the prototype. 

Implications of the simplicity advantage 

Considered alone, the efficiency of learning simple rules might imply that 

structural complexity (or simplicity) constrains “public” and “private” category learning 

in similar ways. This finding clearly extends psycholinguistic research, where studies 

rarely control for structural complexity. Also, this finding reinforces existing research on 

category learning, offering further support for dual-system (explicit and implicit systems) 

theories of categorization. The apparent efficiency of establishing reference to a simple 

rule (i.e., explicitly stating that rule) yields efficiency in learning that simple rule. 

Nevertheless, the perceived (and, perhaps, practical) complexity of a concept 

depends in part on the shareability of the convention used in referring to the relationships 

between perceptual and functional features and between features and actions. For 

example, the use of basic-level category labels compresses the maximal number of 

concept-differentiating features into single word references such as dog or hammer. 

Certain conversations may generate equally shareable (in this case, compressed) 
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references to either complex or simple relationships; other conversations may generate 

references that complicate the simple relationships to which they refer. In either case, one 

cannot pre-state dyadic learning outcomes based on the category structure or its 

complexity alone. 

The same might hold true for collaborative problem solving and decision-making, 

where researchers often compare outcomes from well-structured (simple) and ill-

structured (complex) problems (c.f., Kapur & Kinzer, 2007). Like the dyads in the present 

study, problem-solving groups have been found to converge on ad hoc conventions early 

in conversation (Kapur, Voiklis, & Kinzer, 2008; Voiklis, Kapur, Kinzer, & Black, 

2006). The shareability of such conventions may predict the performance of problem-

solving and decision-making groups. 

Further exploration of the simplicity advantage 

In terms of understanding the simplicity advantage, the present study was limited 

in two ways. First, each rule—both simple and complex—predicted different and 

orthogonal functions. While this design may isolate the effects of structural complexity, 

one might ask whether simplicity clearly dominates when rules of differing complexity 

predict the same function and the same course of action? One way to answer this question 

is to simply have both rules predict the same function; if most participants settle for the 

most frugal solution—the simple rule—then one might argue that simplicity constrains 

both “public” and “private” category learning, with greater confidence. Better yet, one 

might again design an activity where perceptual and latent features relate to each other 

and with the actions of collaborators in any of many possible ways. One could then 

compare what structures emerge from individual and collaborative learning contexts. 
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Then, if dyads extract mainly simple rules from such an ill-defined informational 

environment one might attribute this bias to some general simplicity advantage. 

The second limitation stems from allowing dyads to invent their own referential 

lexicons. One might respond to the present study by asking whether and to what extent 

the shareability (in terms of compression) of referential conventions enhanced or 

hindered the learning of either the simple or complex rules. One might address this 

question by redesigning the present study so that a confederate of the experimenter refers 

to creatures using different, more or less shareable, conventions. 

Referential communication generates conceptual homogeneity 

Summary of Results 

Finally, the results also demonstrate that dyadic learners exhibited greater 

conceptual homogeneity than individual learners. Dyadic partners tended to reference to 

the same observable features throughout the learning task. Later, each partner attended to 

those same features when making predictions on his or her own. Moreover, dyadic 

learners sorted creatures into clusters that resembled those of other dyadic learners, both 

within and between dyads. Post-learning sort clusters were significantly more similar 

between dyads than between individual learners. 

Explanation of conceptual homogeneity 

Referential communication imposes shareability constraints: interlocutors try to 

minimize the joint cognitive effort of jointly construing an activity’s various referents and 

their significance (Clark & Wilkes-Gibbs, 1986). Dyads appear to assure at least a 
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minimal level of shareability by quickly establishing ad hoc conventions of reference. 

Adherence to these conventions may reinforce attention to the features towards which 

conventional references point. These “public” attentional patterns may later direct 

“private” attention towards the same features. Moreover, similarities in referring to 

similar creatures may delineate a particular structure relating those creatures. Again, 

adherence to partner-specific conventions of reference may reinforce that structure. 

Conceptual homogeneity between dyads may signal a conceptual attractor in 

communication. That is, communication may push “public” conceptualizations and 

publicly-formed “private” conceptualizations towards a limited range of widely shareable 

conceptual structures. 

That said, participants in the present study learned (albeit indirectly) a normative 

category structure. Dyadic learners learned this normative structure much better than 

individual learners. Between-dyad conceptual homogeneity may represent little more 

than normative learning of an experimenter-designed classification scheme. 

Then again, dyadic learners exhibited base-level conceptual homogeneity—

establishing and adhering to ad hoc conventions of reference—during the first block of 

learning trials, far earlier than they exhibited normative learning. To a certain extent, this 

base-level conceptual homogeneity may enhance normative learning. Specifically, ad hoc 

conventions of reference may stabilize perceptual features just enough so that dyadic 

learners can test hypotheses of how those perceptual features relate to functional features 

and how features relate to actions. This does not mean that conceptual homogeneity 

always leads to better learning; in fact, complete and uncritical homogeneity—

groupthink—often yields cognitive myopia, leaving many hypotheses unexplored and 
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untested.  (c.f., Janis, 1982). Instead, dyadic learning may require what Voiklis et al. 

(2006) described as “tensile” intersubjectivity, where collaborators agree on the goal and 

parameters of the activity to which they can apply their differing skills and heuristics.  

Implications of conceptual homogeneity 

Group think—a dysfunctional form of conceptual homogeneity—has been widely 

observed in studies on collaborative work groups (e.g., Janis, 1982). Psycholinguists have 

often observed the emergence of conceptual homogeneity—similar lexicon and similar 

syntax—among interlocutors and groups of interlocutors (see Branigan, Pickering, & 

Cleland, 2000, and Pickering & Branigan, 1999, on syntactic coordination; see Clark, 

1996, for review of lexical coordination). Research on reference and category learning 

has provided extra-linguistic evidence (similarity in sorting and similarity in typicality 

judgements) of within and between dyad conceptual homogeneity (Markman & Makin, 

1998; Malt & Sloman, 2004). The present study accords with these findings, but does not 

clearly extend them. The dyadic advantage in learning a normative structure makes it 

unclear whether and to what extent between-dyad conceptual homogeneity derives from 

some kind of conceptual attractor—a limited range of widely shareable conceptual 

structures—in communication. 

Further exploration of conceptual homogeneity 

As with the observed dyadic advantage and the observed simplicity advantage, the 

single normative category structure that underlay learning in the present study may limit 

generalizations concerning conceptual homogeneity and any in limits in the range of 

widely shareable conceptual structures in communication. Again, as an extension of the 
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present study, one would need to design an activity where perceptual and latent features 

relate to each other and with the actions of collaborators in any of many possible ways. 

Then, if pairs of interlocutors converge on similar referential conventions and/or similar 

ways of categorizing stimuli one can, with greater confidence, attribute that conceptual 

homogeneity to a conceptual attractor in communication.
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APPENDIX A 

Descriptive and Point-Based Feedback 

Table A1. Descriptive Feedback for the Function Prediction and Attention Allocation 
Tasks. 
  Functional Significance of Stimulus 

Participant 
Response 

No Functional 
Significance Nutritive Only Destructive Only Nutritive & 

Destructive 

No Functional 
Significance 

Time and energy 
conserved  No jelly extracted  Life support 

damaged  

Life support 
damaged, and no 
jelly extracted 

Nutritive Only Tractor beam 
wasted  Jelly extracted  

Life support 
damaged, and 
tractor beam wasted  

Life support 
damaged, some jelly 
extracted 

Destructive 
Only Stun beam wasted  No jelly extracted, 

stun beam wasted  
Life support 
protected  

Life support 
protected, but no 
jelly extracted 

Nutritive & 
Destructive 

Tractor beam and 
stun beam both 
wasted  

Stun beam wasted, 
some jelly extracted  

Life support 
protected, but 
tractor beam wasted  

Life support 
protected, and jelly 
extracted 

No Response Too slow, are you 
alert?  

Too slow, no jelly 
extracted  

Too slow, life 
support damaged  

Too slow, life 
support damaged 
and no jelly 
extracted 
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Table A2. Energy Meter: Rewards and Penalties for the Function Prediction and 
Attention Allocation Tasks. 

  Functional Significance of Stimulus 

Participant 
Response 

No Functional 
Significance Nutritive Only Destructive 

Only 
Nutritive & 
Destructive 

No Functional 
Significance 10 -5 -10 -15 

Nutritive Only -5 10 -15 -10 

Destructive Only -5 -10 10 -5 

Nutritive & 
Destructive -10 5 -5 10 

No Response -10 -10 -10 -10 
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APPENDIX B 

Examples of Stimuli 

 
Figure B1. Examples of the binary feature values that instantiate the stimuli and the 
perceptual structure of the functional categories. 
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APPENDIX C 

Instructions for Tasks and Task Interfaces 

 

 

Figure C1. Describes the scenario for the game tasks and provides instruction on how to 
execute function-prediction related actions. 
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Figure C2 A & B. Spotter’s Function Prediction Task Interface. A (top) = Single Player, 
and B (bottom) = Two Player. 
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Figure C3 A & B. Function Prediction Task Instructions. A (top) = Single Player, and B 
(bottom) = Two Player. 
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Figure C4. Two-Player Beamer Function Prediction (FP) Task Interface. 
 



 90 

 

 
Figure C5. Interface for the PRE-sort and POST-sort tasks. 
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Figure C6 A & B. Instructions for the PRE-sort (top) and POST-sort tasks (bottom). 
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Figure C7. Attention Allocation Task Interface. 
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Figure C8. Instructions for Attention Allocation Task, including how to execute task-
related action. 
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