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Short Abstract

We present a theory of reaction time (RT) distributions deriving from the

distribution of the quotient of two normal random variables: task difficulty

(top-down information), and rate of external evidence income (bottom-up in-

formation). We show that a number of known properties of RT distributions

are homogeneously accounted for by variations in the value of two easily inter-

pretable parameters, the coefficients of variation of the two normal variables.

The theory provides a quantitative and qualitative better account of several

large datasets than other distributions families that bave been proposed to

account for RTs.
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Long Abstract

We develop a general theory of reaction time (RT) distributions in psycho-

logical experiments, deriving from the distribution of the quotient of two

normal random variables, that of the task difficulty (top-down information),

and that of the external evidence that becomes available to solve it (bottom-

up information). The theory provides a unified account of known changes

in the shape of the distributions depending on properties of the task and of

the participants, and it predicts additional changes that should be observed.

A number of known properties of RT distributions are homogeneously ac-

counted for by variations in the value of two easily interpretable parameters:

the coefficients of variation of the two normal variables. The predictions of

the theory are compared with those of multiple families of distributions that

have been proposed to account for RTs, indicating our theory provides a sig-

nificantly better account of experimental data. For this purpose, we provide

comparisons with four large datasets across tasks and modalitities. Finally,

we show how the theory links to neurobiological models of response latencies.

Keywords: Drift Diffusion Model; Ex-Gaussian; Ex-Wald; LATER; Power-

Law; Ratio Distribution; RT Distribution
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1 Introduction

Since its introduction by Donders (1869), reaction time (RT) has been an

important measure in the investigation of cognitive processes. As such, a lot

of research has been devoted to the understanding of their properties. An

issue that has raised some attention is the peculiar probability distributions

that describe RTs, which have proved difficult to account for by most general

probability distribution families. This has in many cases led to the proposal

of sophisticated ad-hoc distributions, specific to the domain of RTs (see Luce,

1986, for a comprehensive review of the field). A particular consequence of

this is that the proposed distributions have gone further than being specific

to RTs, but have become specific even to particular experimental tasks and

modalities. In this study we attempt to put these apparently different dis-

tributions under one general theoretical framework, show that they can all

be grouped together in a single general purpose probability distribution. In

addition, we discuss how this theory fits into both the high-level probabilis-

tic models, and lower-level neurobiological models of processing. The theory

that we propose makes new predictions, and has methodological implications

for the analysis of RT experiments

Our theory can be stated in a relatively trivial form: RTs are directly propor-

tional to the difficulty of the task, and inversely proportional to the rate at

which information becomes available to solve it. To obtain a probability dis-

tribution from here one only needs to add that both the task difficulty and
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the incoming information are normally distributed and are possibly inter-

correlated. As we will show, this simple statement has rich and novel impli-

cations for the shapes that distributions of RTs should take. The theory that

we propose fully derives from the statement above without further additions.

The methodological implications can be summarized in the following points.

First, outlier removal based only on the magnitude of the RTs (whether

absolute or relative, short or long) should be avoided. Second, in most cases,

the adequate transformation for analyzing RT data is the reciprocal. Third,

random effects, both of participant and stimulus (and other related to the

particular experiment) should be explicitly included in the analyses as much

as possible. Fourth, effects should be investigated both on the (reciprocal)

mean and on its standard deviation.

We will discuss this problem in four stages. First, we provide an overview of

one particular theory on the distribution of RTs in decisional tasks. This is

the LATER model that was introduced by Carpenter (1981), and has since

then received support from a range of studies. In the following section we will

show how a simple extension of LATER leads to a surprisingly general model,

capable of accounting for responses across participants, types of tasks, and

modalities. Here we also discuss how our theory can account for the known

properties of RT distributions. Having provided a basic description of our

theory, we will continue by showing that our theory can also be taken as a

generalization of some current neuro-biological models of decision making.

We will pay special attention to the integration of our theory with the family
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of Drift Diffusion Models (DDM; Ratcliff, 1978), as these have proved very

useful in explaining the RT distributions in many tasks, and offer a natural

link to the properties of neural populations. We continue by comparing our

theoretical predictions with those of other commonly used RT distributions,

paying special attention to the now very common Ex-Gaussian distribution

(McGill, 1963). For this we make use of several lexical processing datasets

in across tasks and modalities. Finally, we conclude with a discussion of the

theoretical and methodological implications of our theory.

2 The LATER Model

The LATER model (“Linear Approach to Threshold with Ergodic Rate”;

Carpenter, 1981) is one of the simplest, and yet one of the most powerful

models of reaction time distributions in decision tasks. Starting from the

empirical observation that human response latencies in experimental tasks

seem to follow a distribution whose reciprocal is normal, Carpenter proposed

a remarkably simple model: He assumed that some decision signal is accu-

mulated over time at a constant rate until a threshold is reached, at which

point a response is triggered. Crucially, he added that the rate at which such

decision signal accumulates is normally distributed across trials (see Figure 1,

left panel). Despite its elegant simplicity, Carpenter and collaborators have

– in a long sequence of studies – shown that such a model can account for

a surprisingly wide variety of experimental manipulations, extending across



A Theory of RT Distributions 7

Figure 1: Left panel : Schema of the LATER model. Evidence accumulates
from an initial state (S0) to a decision criterion (θ). The rate (r) at which the
evidence accumulates varies according to a normal distribution with mean
µr and variance σ2

r , giving rise to the typical skewed distribution of response
latencies (left-bottom). Right panel : A “Reciprobit plot”. When plotted
against the theoretical quantiles of a normal distribution, the reciprocal re-
sponse latencies (with changed sign) appear to form a straight line. This
is indicative of them also following a normal distribution. In addition, a
small population of early responses seems to arise from a different normal
distribution. Taken from Sinha et al., 2006 – permission pending.

different types of stimuli (auditory, visual, tactile) and response modalities

going from button presses to ocular saccades (e.g., Carpenter, 1981, 1988,

2000, 2001; Carpenter & McDonald, 2007; Carpenter & Reddi, 2001; Carpen-

ter & Williams, 1995; Reddi, Asrress, & Carpenter, 2003; Reddi & Carpenter,

2000; Oswal, Ogden, & Carpenter, 2007; Sinha, Brown, & Carpenter, 2006).

In mathematical terms, the model is rather easily specified. If the response

is triggered when the evidence – starting from a resting level (S0) – reaches

a threshold level (θ), and evidence accumulates at a constant rate (r) which,

across trials, follows a distribution N(µr, σ
2
r), the response latency (T ) is
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determined by:

T =
θ − S0

r
=

∆

r
. (1)

If one further assumes that both S0 and θ are relatively constant across trials,

the distribution of the times is the reciprocal of a normal distribution:

1

T
∼ N

(
µr

θ − S0

,
( σr
θ − S0

)2
)
. (2)

This distribution is what Carpenter terms a Recinormal distribution (further

details of the Recinormal distribution are provided in Appendix A).

2.1 Probabilistic interpretation

LATER can be directly interpreted at the computational level as an optimal

model of hypothesis testing. The main parameters of the LATER model

are the decision threshold (θ), the starting level for the evidence accumula-

tion process (S(0)), and the mean and standard deviation of the evidence

accumulation rate (µr and σr). If we take S(0) to represent the logit prior

probability of an hypothesis (H) being tested (e.g. a stimulus is present, the

stimulus is a word, etc) on the basis of some evidence provided by a stimulus

(E) arriving at a fixed rate r, then we have by Bayes theorem:

S(T ) = log
P (H|E)

1− P (H|E)
= log

P (H)

1− P (H)
+
∫ T

0
log

P (E|H)

1− P (E|H)
dt = S(0)+rT.

(3)

Therefore, interpreting the rate of information intake as the logit of the
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likelihood (i.e., the log Bayes factor; Kass & Raftery, 1995) of the stimulus,

and the prior information as the logit of the prior probabilities (the log prior

odds), the accumulated evidence is an optimal estimate of the logit of the

posterior probability of the hypothesis being tested (the log posterior odds)

in an optimal inference process.

2.2 Reciprobit plots

LATER proposes using the “Reciprobit plot” as a diagnostic tool to assess

the contribution of different factors to an experiment’s results. This plot

is the typical normal quantile-quantile plot (a scatter-plot of the theoretical

quantiles of an N(0, 1) distribution, versus the quantiles from the observed

data) with the axes swapped (the data are plotted on the horizontal axis and

the theoretical normal on the vertical axis), and a (changed sign) reciprocal

transformation on the data (d = −1/RT ). In addition, the labeling of the

axes is also changed to the corresponding RT values on the horizontal axis,

and the equivalent cumulative probability on the vertical axis (see the right

panel of Figure 1). Observing a straight line in this plot is in general a good

diagnostic of a normal distribution of the reciprocal.

Variations in slope and intercept of the Reciprobit line are informative as

to the nature of the experimental manipulations that have been performed.

The Reciprobit plot is a representation of the distribution of the reciprocal
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of the RT:

1

T
=

r

θ − S(0)
=

r

∆
. (4)

If the rate r is normally distributed with mean µr and variance σ2
r , and ∆ is a

constant, then 1/T will also be normally distributed with mean and variance:

µ =
µr
∆
, σ2 =

σ2
r

∆2
, (5)

and the slope and intercept of the Reciprobit are given by:

slope =
1

σ
=

∆

σr
. (6)

intercept =
µ

σ
=

µr
σr
. (7)

Therefore, variation in the ∆ (prior probability or threshold level) will be

reflected in variation in the slope only, while variation in the µr, the rate of

information income, will affect only the intercept of the Reciprobit plot.

These consequences have been experimentally demonstrated. On the one

hand, variations in top-down factors such as the prior probability of stimuli,

result in a change in the slope of the Reciprobit plot (Carpenter & Williams,

1995). In the same direction, Oswal et al. (2007) manipulated the variability

of the foreperiod (i.e., the SOA) by controling the hazard rate of stimulus

appearance (i.e., the probability that a stimulus is presented at any moment

in time given that it has not appeared before). They found that the instanta-

neous hazard rate correlated with the slope of the corresponding Reciprobit

plots, giving further evidence that the expectation of observing a stimulus
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affects the starting level (S0) of the decision process. Similarly, Reddi and

Carpenter (2000) observed that if one manipulates the response threshold by

introducing a variation in the time pressure with which participants perform

the experiment, one also obtains a variation in the general slope of the line.

However, Montagnini and Chelazzi (2005) provide evidence that manipula-

tions in urgency can also affect te intercept of the reciprobit plot. On the

other hand, Reddi et al. (2003) showed that changes in the information con-

tained by the stimulus itself – the rate at which the evidence is acquired – are

reflected in changes in the intercept of the Reciprobit plot. This was shown

by proving that the proportion of coherently moving points in a random dot

kinematogram are reflected in the intercept value on the Reciprobit plot.1

2.3 Neurophysiological evidence

In addition to providing a good fit to experimental data, some neurophys-

iological evidence has been presented that can support this type of model.

Hanes and Schall (1996) found that, before saccadic onset, visuomotor neu-

rons in the frontal eye fields show an approximately linear increase in activity.

The rate of this increase varies randomly from trial to trial, and the time at

which the saccade actually occurs has a more or less constant relation to the

time when the activity reaches a fixed criterion. Furthermore, neurons in the

superior colliculus also show rise-to-threshold behavior, with their starting

level depending on the prior probability of the stimulus (Basso & Wurtz,
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1997, 1998), and this decision based activity seems to be separate from that

elicited by perceptual processes (Thompson, Hanes, Bichot, & Schall, 1996;

see Nakahara, Nakamura, & Hikosaka, 2006, for an extensive review of the

neurophysiological literature that provides support for LATER).

As it can be appreciated in the Reciprobit plot of Figure 1, there appears

to be an additional population of very fast responses which do not follow

the overall Recinormal distribution of the remaining latencies. These short

responses are attributed to a different population of sub-cortical neurons

that – very rarely – would overtake their cortical counterparts in providing a

response (Carpenter, 2001; Carpenter & Williams, 1995; Reddi & Carpenter,

2000; but see also Johnston & Everling, 2008 for evidence that these express

responses might not be of subcortical origin).

3 General Theory of RT Distributions

We have seen that RTs appear to follow a Recinormal distribution. However,

this result holds only as long as the difference between the resting level and

the threshold (∆ = θ− S0) remains fairly constant. For several reasons, it is

difficult to assume that this quantity will remain constant in a psychological

experiment. First, most interesting RT experiments will involve different

types of stimuli, and in most cases these stimuli will be presented to multiple

participants. Clearly, in many situations different stimuli will have different
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prior probabilities. As discussed above, variation in prior probability leads

to variation in S0 (Carpenter & Williams, 1995; Reddi & Carpenter, 2000).

Furthermore, experimental participants themselves are also likely to show

variations in both resting levels and threshold, depending on factors like

their previous experience, age, etc. Finally, even in experiments of the type

shown by Carpenter and colleagues, where the analyses are performed on

individual participants responding to relatively constant types of stimuli, it

is not difficult to imagine that there is a certain degree of variation in the

resting level due to – among other possibilities – random fluctuations in

cortical activity, fatigue, and normal fluctuations in the participants’ level of

attention during an experimental session.

Therefore, in order to account for most of the experimental situations of

interest in psychology, it will become necessary to explicitly include the pos-

sibility of fluctuations in both the information gain rate (r) and in the resting

level to threshold distance (∆). To keep consistency with LATER, we assume

that ∆ is also normally distributed with mean µ∆ and standard deviation

σ∆. If we keep the linear path assumption of LATER – we will show below

that the distributional properties are not dependent on this particular path

– the RT will be given by:

T = ∆
r
, r ∼ N(µr, σ

2
r), ∆ ∼ N(µ∆, σ

2
∆) . (8)

Therefore, once we also allow for normal variation in the in ∆ factor, the RT

will follow a distribution corresponding to the ratio between two normally
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distributed variables. Notice that, under this assumption, both the RTs and

the inverse RTs will in fact follow the same type of distribution: that of the

ratio between normally distributed variables.

A further complication needs to be addressed. Up to the moment, and in

line with other models that also propose to take this variation into account

(Brown & Heathcote, 2008; Nakahara et al., 2006), we have implicitly as-

sumed that the values of r and ∆ are statistically independent of each other.

In reality, this seems over-optimistic. It is not rare that the perceptual prop-

erties of stimuli are in fact correlated with their prior probabilities. The

correlation between these factors will result in a correlation between both

normal distributions in the ratio. Therefore, an additional parameter ρ rep-

resenting the correlation between r and ∆ needs to be taken into account.

3.1 Fieller’s normal ratio distribution

The distribution of the ratio of possibly correlated normal variables is well-

studied and known in analytical form. Fieller (1932) derived the expression

for its density function, and Hinkley (1969) further studied it, crucially pro-

viding a normal approximation with explicit error bounds and conditions of

application (See Appendix B for more details on this distribution.). I will

henceforth refer to this distribution as Fieller’s distribution.
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Fieller’s distribution is fully characterized by four free parameters. If the

random variables X1 and X2 follow a bi-variate normal distribution with

means µ1 and µ2, variances σ2
1 and σ2

2, and a Pearson correlation coefficient

of ρ, then the ratio between them follows a distribution:

X1

X2

∼ Fieller(κ, λ1, λ2, ρ)

κ =
µ1

µ2

, λ1 =
σ1

|µ1|
, λ2 =

σ2

|µ2|
. (9)

The shape parameters λ1 and λ2 represent the coefficients of variation (CoV)

of each of the normal variables. As we will see below, their values have

important consequences for the predictions of our model.

3.2 Special cases of Fieller’s distribution

An interesting property of Fieller’s distribution is that, for particular values

of its CoV parameters λ1 and λ2, it reduces to more familiar probability

distributions. Table 1 shows the most notable of these cases. The most salient

– and least interesting – reduction happens when both CoV parameters take a

value of zero. This indicates that neither the numerator nor the denominator

exhibit any variation, that is, the RT is a constant (i.e., it follows a degenerate

distribution with all probability mass concentrated in one point, a Dirac

impulse function).

More importantly, when the CoV of the denominator (λ2) is zero, Fieller’s
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Table 1: Particular cases of Fieller’s distribution. The numbers in brackets
indicate estimated thresholds below or above which the reduction still applies.

Value of λ1 Value of λ2 Distribution Normal QQ-plot

0 0 Dirac(κ)

any 0 (< .22) N(κ, (κλ1)2) straight line

0 (< .22) any ReciN
(

1
κ
,
(
λ2

κ

)2
)

straight line
(on reciprocal plot)

∞ (> .443) ∞ (> .443) Cauchy
(
ρκλ1

λ2
, λ1

λ2
κ
√

1− ρ2
) horizontal line and

two vertical lines
at edges

distribution reduces to a plain normal distribution with mean κ and variance

((κλ1)2). This corresponds to the intuitive notion that if λ2 is zero, the de-

nominator is just a plain constant that divides the normal distribution on

the numerator. In the reverse case, when λ1 is the one that is zero (i.e., the

numerator is constant), Fieller’s distribution reduces to Carpenter’s Recinor-

mal distribution, with reciprocal mean 1/κ and reciprocal variance (λ2/κ)2.

Finally, when both the CoV parameters λ1 and λ2 approach infinity, the sit-

uation is tat of a ratio between two zero-mean distributions. In this case

Fieller’s distribution converges rather fastly to a Cauchy distribution (also

known as Lorentz distribution). The convergence of the ratio distribution to

Cauchy for high values of the CoV parameters is well-known in the theory of

physical measurements. These four particular cases of Fieller’s distribution

are summarized in Table 1.
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These particular cases of Fieller’s distribution can be safely extended to the

threshold shown in parentheses in Table 1. Independently of the value of

λ1, if λ2 < .22, the distribution is in all respects normal. In what follows we

refer to this as the normal zone. Conversely, if λ1 < .22, the distribution is in

indistinguishable from a recinormal, thus we refer to this as the recinormal

zone. As soon as both λ1 and λ2 rise above around .443 the distribution

approaches Cauchy distribution so we refer to this as the Cauchy zone. When

either λ1 or λ2 lie between .22 and .4, there is a linear, rapidly growing

deviation from (reci-)normality towards the Cauchy distribution. We refer

to this area of the plots as the linear zone. In sum, as long as λ1 or λ2 remains

below .22, we will be able to safely analyze our data using the respectively

the Recinormal or normal distribution.

3.3 Hazard functions

When comparing the properties of different candidate probability distribu-

tions to describe RTs in auditory tasks, Burbeck and Luce (1982) suggested

that crucial discriminating information is provided by the hazard functions,

that is, the probability of a particular reaction time given that it was not

shorter than that particular value:

h(t) = −d log (1− F (t))

dt
=

f(t)

1− F (t)
, (10)
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where f(t) and F (t) are respectively the probability density function of the

times and its cumulative probability function. Burbeck and Luce remarked

that the shape of this function is notably different for different RT distri-

butions. In particular, they contrast distributions that show a monotone

non-decreasing hazard function such as the normal, the Gumbel, and the

Ex-Gaussian distributions, those that show a constant value as the exponen-

tial distribution, distributions that depending on their parameter values can

show either increasing of decreasing hazard functions as is the case with the

Weibull distribution, and those that show a peaked hazard function such as

the Fréchet, the log-normal, the inverse Gaussian, and the RT distribution

predicted by Grice’s non-linear random criterion model (Grice, 1972).

Strictly speaking, the RT distribution that we are advocating belongs to

those that have peaked hazard functions, although some considerations need

to be made. As with the rest of the distribution’s properties, the shape of the

hazard function is determined by the CoV parameters λ1 and λ2 and the cor-

relation coefficient ρ. In particular, as λ2 approaches zero, the peak location

goes to infinity, ultimately becoming a monotonically increasing function –

a Gaussian hazard.
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3.4 Right tails

Perhaps the most valuable information in order to discriminate between com-

peting probability distributions is contained in the shape of their right tail,

that is, the very slow responses. In fact, considering only the relatively fast

reaction times located in the vicinity of the mode of a distribution can lead

to serious problems of ‘model mimicry’, that is, completely different models

can give rise to distributions that are in practice indistinguishable around

their modes (e.g., Ratcliff & Smith, 2004; Wagenmakers, Ratcliff, Gomez, &

Iverson, 2004). This problem is greatly attenuated when one examines the

right tails of the distributions. In this area, different distributions give rise

to qualitatively different shapes. It is therefore important to describe what

our theory predicts in terms of the shape of the right tail of the distribution,

and how does this contrast with other theories.

Clauset, Shalizi, and Newman (2007) provide a useful classification of possi-

ble shapes of the right tails of distributions. Table 2 classifies several com-

mon RT distributions according to Clauset and colleagues’ taxonomy.2 The

classification has been performed by considering the dominant term in the

probability density functions of each distribution. The great majority of dis-

tributions that have been propose to describe RTs, have exponential type

tails, including the Gamma distribution (e.g., Christie, 1952; Luce, 1960;

McGill, 1963), the Inverse Gaussian or Wald distribution (e.g., Lamming,

1968; Stone, 1960), the Ex-Gaussian (e.g., McGill, 1963; Hohle, 1965; Rat-



A Theory of RT Distributions 20

Table 2: Classification of distributions according to the shape of their right
tails. The DDM-large corresponds to the ‘large-time’ infinite series expansion
of the first passage times of the (linear) Drift Diffusion Model (Feller, 1968).
The DDM-small is the ‘small time’ expansion of Feller (1968). The DDM-
Approximate corresponds to the closed-form approximation given by Lee et
al., (2007). Fieller’s (general) refers to the general case of Fieller’s distribu-
tion outside the normal, Recinormal, or Cauchy zones.

Distribution Type Dominant term
Shape Shape

(on log scale) (on log-log scale)
Exponential

Exponential e−λt, λ > 0 Linear decrease Exponential decrease (slow)

Gamma
Inverse Gaussian

Ex-Gaussian
Ex-Wald

DDM-large
DDM-approximate

Normal Quadratic-exponential e−kt
2

Quadratic decrease Exponential decrease (fast)

Log-normal Log-normal 1
t
e−(log t)2 Quasi-linear decrease Quadratic decrease

Pareto
Cauchy

Power-law
t−α Logarithmic decrease Linear decrease

Recinormal α > 1 (from tmin) (from tmin)
Fieller’s

DDM-small Power-law (with cut-off)
t−αe−λt Power-law until tmax Power-law until tmax

α > 1, λ > 0 and linear from tmax and exp. from tmax

Weibull Stretched exponential
tβ−1e−λt

β

Above-linear decrease Below-linear decrease
λ, β > 0
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cliff & Murdock, 1976; Ratcliff, 1978), the Ex-Wald (Schwarz, 2001), the

‘large-time’ series describing the first passage times in the diffusion model

(e.g., Luce, 1986; Ratcliff, 1978; Ratcliff & Smith, 2004; Ratcliff & Tuer-

linckx, 2002; Tuerlinckx, 2004), and the closed form approximation to the

DDM introduced by Lee, Fuss, and Navarro (2007). In general, any distri-

bution that results from the convolution of an exponential with another one

will belong to this group, except in cases where the other distribution in the

convolution is of a power-law or stretched exponential type.

The stretched exponential type of distributions includes the Weibull, which

has been argued as a model of RT distributions (Colonius, 1995; Logan,

1988, 1992, 1995). This type of distributions show thicker right tails than

the exponential type distribution, but still thinner than one would observe in

a power-law type that we are proposing. In the special cases where Fieller’s

distribution is in the Recinormal or Cauchy zones, from a certain value tmin,

the tail will be a power law with exponent α of 2 (Jan, Moseley, Ray, &

Stauffer, 1999). More generally, Fieller’s distribution will show a power-

law tail behavior, with exponent value greater than 2. Finally, in cases of

very small values of λ2, when the distribution approaches the normal zone,

the value of tmin increases, eventually going to infinity as λ2 goes to zero.

These extremely thick tails provide a sharp contrast with the right tails

predicted by most other models. Of the other models proposing very thick,

supra-exponential right tails, we find that the ’short time’ variant of the first

passage time described by Feller (1968) and applied to RT distributions by

Van Zandt (2000), and Van Zandt, Colonius, and Proctor (2000), can give
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rise to cutoff power-law behavior. Notice however, that according to Feller,

this approximation is only valid for the short RTs, and thus not for the right

tails (see Navarro & Fuss, 2008 for details).

As we have seen, our theory predicts much thicker right tails than would

be predicted by most current theories, except for the distribution predicted

by the original LATER mode. LATER’s Recinormal distribution – from

which our theory evolved – is also of a power-law right tail type. In order

to test this distinct prediction, we will need to examine large datasets. By

definition, events in the right tail are very rare, but still we are predicting

that they should happen much more often than one would expect in other

theories. This also implies that we should avoid truncating RT data on

their right tail, as this can often contain the only information that enables

discrimination among theories. Unfortunately, RT are in most situations

truncated to a maximum value during data collection, so in many cases our

power to examine the right tail will be severely hampered. However, the

common practice of discarding RTs longer than 3,000 ms. (e.g., Ratcliff, Van

Zandt, & McKoon, 1999), 2,500 ms. (e.g., Wagenmakers, Ratcliff, Gomez,

& McKoon, 2008) or even a short as 1,500 ms. (e.g., Balota, Yap, Cortese,

& Watson, 2008). In this respect, it is important to contrast our proposal,

with the outlier cleaning recommendations of Ratcliff (1993) who, based on

simulations using the Ex-Gaussian and Inverse Gaussian distributions (both

of the exponential tail type) recommended truncating the data at a fixed

cut-off between 1,000 ms. and 2,500 ms. In the data analysis sections we

will test these predictions.
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3.5 ‘Express’ responses

Carpenter’s motivation for positing the presence of a separate population of

very fast responses in the LATER model comes from the apparent deviations

from recinormality that are observed in some experimental situations (An-

derson & Carpenter, 2008; Carpenter, 2001; Carpenter & Williams, 1995;

Reddi & Carpenter, 2000). Figure 2 reproduces some results of Reddi and

Carpenter (2000) in this respect. Notice that, specially in the time pressure

condition, a separate population of fast responses seems to arise, represented

by the lower slope regression lines.

Carpenter and colleagues attribute these ‘express responses’ to units in the

superior colliculus responding to the stimuli before the cortical areas that

would normally be in charge of the decision have responded. The fast sub-

population arises more frequently in some conditions than others. First,

as it is evident from Figure 2, the differentiated fast responses arise more

clearly in participants or conditions that elicit faster responses. In Reddi and

Carpenter’s study, these were more apparent in the condition including time

pressure than in the condition that did not include it. In addition, from the

graph it appears that the less accurate participants showed a greater presence

of these responses. Second, Carpenter (2001) showed that variability in the

order of stimuli can also affect the proportion of very fast responses. Ratcliff

(2001) showed that Carpenter and Reddi’s data were also well modeled by the

DDM, and also accepted the need for a separate population of slow responses.
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Figure 2: Evidence for the presence of a separate population of express re-
sponses. Notice that each of these Reciprobit plots can clearly be fitted by
two straight lines, one for a minority of very fast responses, and one for the
bulk of experimental responses. The open circles represent a condition in
which participants responded under time pressure, while the filled dots plot
the results of responding without such pressure. Figure taken from Reddi
and Carpenter (2000) – permission pending.
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Although the neuro-physiological mechanism that is argued to justify the

very short latencies is very plausible, there is some indication that make it

difficult to believe that this mechanism is responsible for the greater part of

these short latencies. Following Carpenter’s argument, one would expect that

such sub-population only accounts for a very small percentage of responses.

However, as can also be seen in their graph, in Reddi and Carpenter’s results

the fast sub-population accounts for over 40% of the responses in the time-

pressure situation of participants AC and AM (in fact participant AC seems

to show a majority of short responses in the time pressure condition), and

similar very high percentages of fast responses are found in other studies (e.g.,

Anderson & Carpenter, 2008; Carpenter & McDonald, 2007; Montagnini &

Chelazzi, 2005).

What the high proportions of fast responses seem to suggest, is that those fast

responses actually belong to the same distribution that generates the slower

ones. In this direction, Nakahara et al. (2006) suggested that this deviation

would partially arise in an extension of the LATER model – ELATER – that

allows for uncorrelated variations in the starting level to threshold distance

(∆).

Figure 3 illustrates the typical effect of taking a Fieller-distributed variable

from the recinormal zone into the beginning of the linear zone. The points

were randomly sampled from a Fieller’s distribution with parameter λ1 = .3

(the other parameters were kept to realistic values taken from the analysis of

an English lexical decision experiment). The population of short responses
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Figure 3: Typical Reciprobit plot of Fieller’s distribution bordering the Re-
cinormal zone. The data were sampled from a Fieller’s distribution with
parameter λ1 = .3, that is, outside the Recinormal zone, but not yet reach-
ing the Cauchy zone. The horizontal lines mark the median and 95% interval.
The parameters used to generate the dataset were taken from the analysis
of lexical decision latencies, with the only modification of λ1. The remaining
parameter values were κ = 695, λ2 = .38, and ρ = .6. After sampling, the
data were were truncated, keeping only the values in the interval from 1 ms.
to 4000 ms., as typically happens in experimental situations.
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arises very clearly, and the resulting reciprobit plot seems to be well-fitted by

two straight lines, just as was observed in the experimental data. We can see

that a small modification of the LATER model predicts that the majority of

fast responses belong to the same population as the slower ones.

3.6 ‘Non-decision’ times

Most models of reaction times in psychological tasks include a component of

time that is unrelated to the actual task. This ‘non-decision’ time comprises

the delays that arise from physiological factors such as neural conduction

delays, synaptic delays, etc. Taking this into account, we say that the total

time T is the sum of a non-decision component (Tn), which can either be

constant or be itself a random variable with little variability, and a decision

component (Td) that arises from the evidence accumulation process. The

decision component of the time is derived from the ratio betwen ∆ and

r. Taking these processes together, the expression for the response time

becomes:

T = Tn + Td = Tn +
∆

r
=

∆ + Tn · r
r

, (11)

which is also an instance of Fieller’s distribution, enabling us to perform the

analysis without its explicit consideration.
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3.7 Errors and Alternative Responses

An issue that has become crucial when comparing theories of RTs in choice

tasks is the success with which the are able to predict the proportion of errors

in an experiment, and their RT distributions relative to the correct responses.

This particular aspect has led to some serious criticism of many models. In

particular, LATER has not fared particularly well in this part of the debate

(e.g., Ratcliff, 2001). Although Hanes and Carpenter (1999) provide some

evidence that a race between multiple, laterally inhibited, accumulators could

hypothetically explain error responses, they provided no detailed quantitative

description of it.

Recently, Brown and Heathcote (2005, 2008) proposed a family of ‘ballistic’

accumulator models that seem well-suited to account for error responses both

in their proportion and in their RT distribution. The Linear Ballistic Accu-

mulator (LBA; Brown & Heathcote, 2008) model is in fact very much the

same as LATER, with only an additional component of uniformly distributed

variation in the resting level of the system (S0). As Hanes and Carpenter

(1999) had proposed, LBA relies on a race between competing accumulators,

and errors are produced when this race is won by the “wrong” accumula-

tor. It is worth noticing here that Brown and Heathcote also add that the

different accumulators are independent of each other.

In the theory that we propose, errors arise from the competition between mul-
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tiple accumulators, with some inhibition mechanism binding them together,

whether this mechanism is central, lateral, or feed-forward is not relevant at

our level of explanation, as they all can reduce to equivalent models (Bogacz,

Brown, Moehlis, Holmes, & Cohen, 2006). Different accumulators simulta-

neously integrate evidence, and the first one to reach a threshold triggers a

response, inhibiting all the others.

In a simple two-alternative choice task, two accumulators A and B are in-

tegrating evidence. An error will be produced whenever the incorrect ac-

cumulator (B) reaches the threshold before the correct one (A) does. The

development of the theory for the two-choice case is valid without significant

alterations for the general multiple choice or recognition cases. In these cases,

there is either one correct response among a finite set of possible candidates,

or there is a preferred candidate among a finite set of possible responses, all

of which could be considered correct as is the case in the picture naming

example that we will discuss below.

Some recent models (e.g., Brown & Heathcote, 2008) break down the com-

petition between multiple accumulators to the individual accumulator level.

Notice however, that this becomes of difficult application when the set of

possible responses in not well-defined a priori (e.g., the picture naming ex-

ample). Rather, on an algorithmic level of description (in Marr, 1982’s sense),

it is preferable to describe the process in terms of a correct or preferred re-

sponse, and all others. This corresponds – at the computational level – to

the notion of probability. We have the probability of choosing a particular
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preferred response, and we have the probability of not choosing it . With

this in mind, we can define a generalized accumulator to account for all of

the non-preferred responses.

4 Neurophysiological Plausibility and Rela-

tionship to the DDM

The Drift-Diffusion Model (DDM; Ratcliff, 1978) is perhaps the most suc-

cessful family of rise to threshold models. As noted by Ratcliff (2001) in his

response to the Reddi and Carpenter (2000) study, LATER and the DDM

share many common characteristics, to the point that they might be consid-

ered convergent evidence models. In his letter, Ratcliff additionally points

out that the DDM presents a number of advantages over LATER. The first

of these if that the DDM also provides a direct mechanism to account and

predict error probabilities and their latencies. The use of to opposed thresh-

olds is crucial for this. To this point, Carpenter and Reddi (2001) reply that

the results of Hanes and Carpenter (1999) show that a race between two

accumulators would be able to explain error responses. A second factor that

seems to favor the DDM account over LATER is its suggestive approxima-

tion of the behavior of neural populations. Indeed, neural populations are

very noisy and it is difficult to assume that they will show a constant rate

increase in activities or firing rates. More likely, they will show a seemingly

random fluctuation that, when sampled over a long time or across many mea-
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surements, will reveal the presence of a certain tendency or drift that pushes

the level of oscillations up or down. These highly random fluctuations on a

general accumulation can be observed both in animal single-cell recordings

(Hanes & Schall, 1996) and in human electro-physiological data (cf., Burle,

Vidal, Tandonnet, & Hasbroucq, 2004; Philiastides, Ratcliff, & Sajda, 2006).

DDM-style or random walk models are naturally suited to deal with this

random variations in the neural signal, and studies have demonstrated that

the DDM can account well for the behavior of single neuron data (Ratcliff,

Cherian, & Segraves, 2003; Ratcliff, Hasegawa, Hasegawa, Smith, & Segraves,

2007) although the introduction of non-linearities might be necessary (Roxin

& Ledberg, 2008).

4.1 LATER’s trajectory does not need to be linear

A first issue that could cast doubts on the plausibility of LATER as a model

of activity accumulation in neurons (or more likely neural populations) is

the constrained linear trajectory of the accumulation of evidence (this con-

strained linearity is in fact also problematic for a probabilistic interpretation

of LATER). Even if we overlooked the noisy fluctuations that are observed

in actual neural accumulations, the shape of the average accumulation itself

does not seem to be linear, but rather seems to follow some type of exponen-

tial law.
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Fortunately, despite its explicit linear assumption, the predictions of LATER

do not depend on the linear trajectories (Kubitschek, 1971). In fact, any

function f that is defined in the positive domain, and for which an inverse

function f−1 exists, could serve as a model of the trajectory of LATER giving

rise to an identical distribution of RTs, as long as the accumulated evidence

is a function of the product of r and t. To see this, consider that the evidence

at time t accumulates as a function f of the product of the rate and time rt:

S(t)− S0 = f(rt). (12)

Then, we can apply the inverse function on the left hand side of the equation,

to obtain:

t =
f−1(S(t)− S0)

r
(13)

Therefore, having any linear, non-linear, or transcendental invertible function

(of the rt product) will produce identical results to those predicted by LATER

as long as the “rate” parameter is normally distributed (which has a less clear

interpretation in this generalized case).

To illustrate this point, consider that neural activity actually accumulates as

an exponential function (as would for instance posterior probabilities). Then

the equivalent expression for LATER would be:

S(t) = S0ert. (14)



A Theory of RT Distributions 33

Then we could use the logarithmic transformation to obtain:

t =
log (S(t))− log(S0)

r
. (15)

In this case, it would be useful to define the starting level in a more ap-

propriate way. If we define s(t) = log (S(t)), then we can work with a new

formulation of the resting level s0 = log(S0):

s(t) = s0 + rt. (16)

In this formulation, as long as r, s(t) and s0 are normally distributed (i.e.,

S(t) and S0 are log-normally distributed), t will follow Fieller’s distribution.

4.2 LATER reduces to a variant of the DDM

We propose that LATER provides a description at the algorithmic level, of

what the DDM family implements at a more implementational level in the

sense of Marr (1982). For this to be the case, we need to show how LATER

can be implemented using a DDM process.

The accumulation of evidence by a linear DDM (i.e., a Brownian motion

with a drift and an infinitesimal variance) at any time point t is described by

a normal distribution with mean S0 + υt and variance s2t, where S0, υ, and

s respectively denote the resting level (i.e., the prior or starting value of the
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process), the mean drift and infinitesimal variance of the process. Similarly,

the average accumulation of evidence by a LATER-style model with mean

rate r is also described by a normal distribution centered at a mean S0 + rt

(we will start our analysis using the constant ∆ case and then extend it to

the general case). Thus, equating the average drift υ with the average rise

rate r will result on the same average accumulation of evidence. However,

the variance at time t of the accumulated evidence in a LATER process with

a variation in rate σr is σ2
r t

2. It is clear from this that there is no possible

constant value of sigma that will reduce LATER to a classical DDM. Notice

also that a compression of time will not produce the desired result, as it would

also affect the mean accumulation. The most evident solution to achieve the

same results is to define it as a diffusion model described by the Itô stochastic

differential equation (SDE):


dS(t) = r dt + σr

√
2t dW (t),

S(0) = S0

(17)

where S(t) denotes the accumulated evidence at time t andW (t) is a standard

Wiener process. At time t the accumulated evidence S(t) is follows the

desired normal distribution with mean S0 + rt and variance σ2
r t

2. We will

refer to this reformulation of LATER in terms of the diffusion process as

LATER-d. In turn the Itô SDE describing the classical DDM is:


dS(t) = υ dt + s dW (t),

S(0) = S0.
(18)
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Figure 4: Comparison of LATER and DDM. The left panel overlaps 500
trajectories of the DDM (grey paths; υ = 1, s = 12.02), with 500 trajectories
of a LATER model (black paths; r = 1, σr = .38). The right panel plots
the same DDM trajectories (grey paths), with trajectories sampled from
LATER diffusion (black paths) equivalent to the process in the left panel.
The solid white line marks the mean evidence. The dashed lines mark the 1
SD intervals of the DDM, and the dotted white lines show the 1 SD interval
of the LATER models.

Comparing both equations, the only difference lies in the diffusion coefficient

of both processes. While the DDM has a constant expression for it (s), that

of LATER-d is a function of time (σr
√

2t). This expresses that the magnitude

of the instantaneous fluctuation (i.e., the ‘average step size’) at any point

in time, in the LATER-d case is a function of time itself, whereas in the

original DDM it remains constant. Therefore, although at the beginning of

the process the variance of the accumulated evidence is likely to be smaller in

LATER-d than in the classic DDM, with time LATER-d’s variance overtakes

that of the DDM.
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This last point is schematized in Figure 4. The left panel compares 500

trajectories randomly sampled from a DDM with 500 “ballistic” trajectories

sampled from a LATER model. The parameters in the models were chosen

on a realistic LATER scale, and were fixed to result in equal variances for

both processes at time 1000. For visibility purposes, we have overlaid the

LATER trajectories on top of the DDM’s in the early times, and the DDM’s

on LATER’s at times greater than 1000. It is apparent that, while LATER

shows a triangular pattern of spread, the DDM results in a parabolic pattern,

were the speed of growth of the spread decreases with time. The right panel

shows how LATER-d has an identical behavior to the original fixed-trajectory

version.

It remains only to extend LATER-d to consider the possibility of variability

in ∆ giving rise to Fieller’s distribution of RTs. This is now trivial, the only

thing that one needs to add is either variation in the resting level (S0) or

in the response threshold level (θ), or possibly in both. Figure 5 illustrates

the effects of adding these additional noise components into the model. On

the one hand, we can add a (normal) variation into the threshold level that

is constant in time. We have represented this case as making the threshold

fluctuate according to a distribution N(θ, σ2
θ), whose standard deviation is

plotted by the grey dashed line in the picture. On the other hand, vari-

ation can be put directly in the starting point (i.e., resting level) of the

system. Then, at time zero, the accumulated evidence will follow a distri-

bution N(S0, σ
2
s). As time progresses, at any point in time this variation

combines with the variation of the drift (black dotted lines in the figure).
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Figure 5: Adding variation in the threshold (σθ) and/or starting level (σs)
to LATER-d.
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Taking into account that the drift and the resting level can be correlated

(the parameter ρ of Fieller’s distribution) the accumulated evidence follows

a distribution N(S0 + rt, σ2
s + σ2

r t
2 + 2ρσsσrt), which is depicted by the grey

dash-dotted lines in the figure. The only constraint is that both of these

variances must sum up to the overall variance of the resting level to thresh-

old distance (σ2
∆ = σ2

s + σ2
θ). As described in the previous section, the first

crossing times of this system will follow Fieller’s distribution.

An notable issue that becomes apparent in Figure 5 is that the longer the

reaction time, the lesser the influence of the variation in ∆. For graphical

convenience, consider the case where we place all of σ∆ in σs, leaving σθ = 0.

It is clear from the Figure that the additional variance added by σs on the

increasing variance caused by σr becomes very small. This can be observed

in the asymptotic convergence between the black dotted lines and the grey

dash-dotted line. This has the implication, that, for tasks with very long

reaction times, or for long responses in a particular task, there will effectively

be little deviation from the Recinormal case presented by Carpenter. This

also explains why the “express responses” arise more often in the left side

of the Reciprobit plot than on the right side, and why the faster conditions

clearly show more of it than the slower conditions.
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Table 3: Datasets used in the analyses.

Experiment Language Stimuli Response
Dominant Number Number of
component of items participants

visual lexical decision
English visual button-press decision 37,424 816

(Balota et al., 2007)

word naming
English visual vocal recognition 40,481 450

(Balota et al., 2007)

auditory lexical decision
Danish auditory button-press decision 156 22

(Balling & Baayen, 2008)

picture naming
French visual vocal recognition 512 20

(Moscoso del Prado et al., in prep.)

5 Empirical Evidence

In this section, we proceed to analyze experimental data to see if the predic-

tions of the theory hold in real-life datasets, and how well it compares to other

proposals for RT distributions. We will investigate four experiments which

involve stimuli in two different modalities (visual and auditory), two types of

responses (button presses and vocal) and – importantly – two different kinds

of experimental tasks (decision-dominated and recognition-dominated). The

datasets employed are summarized in Table 3.

5.1 Aggregated datasets

In this section we provide a detailed analysis of the aggregated datasets,

that is, all RT measurements have been lumped together, irrespective of the

participant or the stimulus. As we discussed above, if the data follow Fieller’s
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Figure 6: Reciprobit plots (upper panels) and log-likelihood (lower panels)
of the power parameter in the Box-Cox transformation for each of the four
individual trial aggregated datasets. The horizontal lines in the Reciprobit
plots represent the median and 95% intervals of each dataset. Recinormal
distributions are characterized by straight lines in these plots. The vertical
lines in the Box-Cox plots indicate the maximum likelihood estimates and
estimated 95% confidence interval for the optimal value of the parameter.

distribution the aggregated data should also be described by an instance of

Fieller’s.

We begin our aggregated analyses by inspecting the Reciprobit plots and

the estimated parameter of the Box-Cox power transformation (Box & Cox,

1964) . These are presented in Figure 6 for each of the four datasets. The first

thing that one notices is that the shapes of the Reciprobit plots in the upper

panels are dramatically different between the medium/small scale datasets

(Auditory Lexical Decision and Picture Naming), than for the two massive

datasets from the ELP (Visual Lexical Decision and Word Naming). On
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the one hand, both smaller datasets present a clearly Recinormal trace with

straight lines on their Reciprobit plots. Only the slowest responses (i.e.,

above 3 s.) from the picture naming dataset deviate from the main line.

In fact, this corresponds to the responses when the participants implicitly

received additional pressure to respond (as we discuss later, at this point

the picture disappeared from the screen, although RT recording continued

for 1 additional second). On the other hand, the two ELP datasets present

the characteristic bi-linear pattern that Carpenter attributes to a separate

minority populations of “express” responses. This corresponds to the lower

slope lines depicted in each of the Reciprobit plots, which includes less than

5% percent of the data points in each dataset. This contrast between small

and large datasets is also reflected in the Box-Cox estimates shown in the

bottom panels of the figure. For both small datasets we estimate optimal

values of the power parameter close to −1, as is characteristic of Recinormal

distributions. However, the optimal estimates for the two large datasets are

in fact close to typically log-normal value of zero. In addition, the shape of the

log-likelihood is now changed, now taking high values also into the positive

domain. Notice that, in this case, it becomes clear that the contrast between

datasets has nothing to do with the recognition or decision component of the

datasets, and it is solely determined by the mere size of the datasets.

We can also compare how well different candidate distributions fit these ag-

gregated data. Table 4 compares the quality of the best fits in terms of

Akaike’s Information Criterion (AIC) and Schwartz’s “Bayesian” Informa-

tion Criterion (BIC; cf., Liu & Smith, 2009). The table compares fits using
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the Ex-Wald distribution (i.e., an Inverse Gaussian distribution convoluted

with an Exponential to allow for a variable shift; Schwarz, 2001). We could

not find any variable shift version of the Weibull, and we have thus not in-

cluded it (fitting a 2 parameter version led to extremely poor fits). Finally,

for reference purposes, we have also included a log-normal. The picture pre-

sented by the table is very similar to what we concluded from the Reciprobit

plots and Box-Cox methods. Fieller’s distribution is necessary to explain

the large number of extremely long or short responses that happen in the

large ELP datasets. In the smaller datasets, where extreme responses (ei-

ther long or short) are very unlikely to occur in a significative number, it

appears that the Ex-Gaussian distribution does slightly better than Fieller’s.

However, the evidence from this datasets is much weaker than the evidence

presented by the large ELP data. We can thus conclude that, in order to

distinguish between different distributions, we need a large set of data points,

so that events in the tails become sufficiently frequent. For large aggregated

datasets, Fieller’s distribution provides a significantly better fit than any of

the alternatives.

We have seen that in terms of quality of fits, Fieller’s distribution seems

like a good candidate to account for the aggregated distributions of RTs in

large datasets, both in recognition and decision tasks. An additional piece of

evidence comes from the shape of the hazard functions. As discussed in the

theoretical section, different distributions give rise to characteristic shapes of

the hazard function (see Burbeck & Luce, 1982 and Luce, 1986 for details).
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Table 4: Comparison of estimated maximum likelihood fits to individual
trials in the four datasets. The fits were obtained in the same manner as for
the by-item datasets.

Distribution Stat. Word Nam. Pic. Nam.Lex. Dec. Lex. Dec.
(Auditory) (Visual)

Range (ms.) 446 – 2,327 1 – 3,997 1 – 3,997 370 – 3893

Ex-Gaussian
AIC 43,555 16,177,435 13,965,705 105,427
BIC 43,573 16,177,471 13,965,740 105,448

Fieller
AIC 43,583 16,151,249 13,830,087 105,580
BIC 43,607 16,151,297 13,830,135 105,608

Ex-Wald
AIC 48,709 16,599,825 14,658,385 108,633
BIC 48,728 16,599,860 14,658,421 108,654

Log-normal
AIC 43,873 16,374,800 14,287,700 106,242
BIC 43,886 16,374,824 14,287,724 106,256

Figure 7: Estimated hazard functions for each of the aggregated datasets.
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Figure 7 presents the estimated hazard rates (using the method described

by Burbeck & Luce, 1982) for the four datasets under consideration. The

two small datasets show slightly peaked hazard functions. Notice however,

that the peaks seem very weak. In our own experience, if one generates

Ex-Gaussian distributed random numbers, and then re-estimates the hazard

function from the generated points, one often finds that the estimators have

produced small peaks of the kind found in both small datasets. Therefore,

these hazard estimates could be consistent both with monotonically increas-

ing and with peaked hazard rates. The large datasets however, provide a

much clearer peak, followed by decreasing phases. These cannot be the con-

sequence of a monotonic hazard function. Therefore, they provide strong

qualitative evidence against a Weibull or Ex-Gaussian distribution, much

favoring a peaked type distribution (e.g., Log-normal, Inverse Gaussian, Re-

cinormal, Fieller’s, etc.).

We have discussed in the theoretical sections that, with respect to the tails,

our theory predicts two clear things: there will be a higher number of antic-

ipations with respect to other theories, and the log right tail of the distribu-

tion should follow a power-law pattern (i.e., linear in log-log scale), rather

than the log-linear decrease that would be predicted by distributions with

exponential tails.

Figure 8 compares the quality of the fits provided by the Ex-Gaussian (dark

grey solid lines), Ex-Wald (light grey solid lines) and Fieller’s distribution

(black solid lines) to the visual lexical decision (upper panels) and word nam-
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Figure 8: Comparison of the fits provided by Fieller’s distribution (black
solid lines), the Ex-Gaussian distribution (grey solid lines), and the Ex-Wald
distribution (light grey solid lines) to Kernel density estimates (KDE; grey
dashed lines) of the aggregated visual lexical decision (top panels) and pic-
ture naming (bottom panels) latencies from the English lexicon project. The
left panels show the estimated densities, and the right panels show the cor-
responding log-densities. Notice that the differences on the tails are only
visible on the log-scale plots.
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ing (lower panels) datasets from the English lexicon project. The right panels

show that, when comparing these estimates of the density with a Gaussian

KDE of the same data (dash-dotted grey lines), both distributions seem to

provide very good fits, with hardly any difference between them, although the

Fieller’s fit already seem a bit better. However, when one examines in detail

the log-densities of the distributions, one finds that the Ex-Gaussian fits rad-

ically diverge from the KDE estimates at both tails. Here, the Ex-Gaussian

distribution underestimates the densities by many orders of magnitude (i.e.,

logarithmic units). In contrast, Fieller’s distribution provides an excellent fit

of both datasets up to the far right tail, and a significantly more accurate fits

of the left tail. Similar to the Ex-Gaussian, the Ex-Wald distribution also

shows too light tails relative to the data.

The problems of using exponential tail distribution as a model of aggre-

gated RTs is further highlighted by Figure 9. The figure compares on a

log-log scale the fit of a power-law tailed distribution (Fieller – solid black

lines), and an exponential-tailed distribution (Ex-Gaussian, solid grey lines,

we have not plotted the Ex-Wald fits as they were clearly worse in all as-

pects) to the Gaussian KDE estimates for the lexical decision (top panel)

and word naming datasets (bottom panel) – . The log-log scale emphasizes

the problem of truncating the distributions. The vertical dotted lines show

typical truncating points at 300 ms. and 2,000 ms., as recommended by

Ratcliff (1994). Notice, that within that interval, there is basically no differ-

ence between exponential-tailed and power-law distributions. It is however

precisely beyond these cutoff points where one finds information that can re-
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Figure 9: Log-log scale comparison of the fits provided by Fieller’s distribu-
tion (black solid lines) and the Ex-Gaussian distribution (grey solid lines)
to the KDE estimates of the aggregated visual lexical decision (top panel)
and picture naming (bottom panel) latencies from the English lexicon project.
The vertical dotted lines indicate typical cut-off points of 300 ms. and 2000
ms. The fits have been extrapolated up to 10,000 ms. to stress the different
predictions that each makes.
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Table 5: Comparison of the estimated AIC and BIC for participant-specific
maximum likelihood fits of the Ex-Gaussian distribution and Fieller’s distri-
bution, across all participants in the ELP visual lexical decision and word
naming datasets for which both fits converged. Positive values in the differ-
ence row favor Fieller’s fits, and negative values favor the Ex-Gaussian.

Distribution Statistic
Lexical Decision Word Naming

Mean ± Std. error Median Mean ± Std. error Median

Ex-Gaussian
AIC 19, 151± 56 19, 202 30, 351± 98 30, 433
BIC 19, 167± 56 19, 217 30, 368± 98 30, 450

Fieller
AIC 19, 000± 77 19, 158 30, 086± 98 30, 182
BIC 19, 021± 77 19, 179 30, 109± 98 30, 205

Ex-Gaussian - Fieller AIC +152± 55 −12 +265± 32 +155
(paired) BIC +146± 55 −17 +259± 32 +150

Number of participants 759 432
Correct resps. / participant 1,414 2,323

liably discriminate between both types of distributions (and the underlying

models that each implies).

5.2 Individual participants analyses

In the previous section, we have validated that the aggregate distribution

of data is in accord with Fieller’s distribution. However, this is in a way

indirect evidence in support of the theory. It could well be the case that,

although the aggregate RTs are Fieller distributed, the responses by each

individual participant are not. For instance, a few atypical participants pro-

ducing more long responses than the rest could have bent the tail of the

aggregate distribution.

We now analyze in more detail the distribution of responses of each indi-
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vidual participant in the ELP datasets. In these datasets, each participant

responded to a relatively large number of words (an average of 1,414 cor-

rect responses to words per participant in the lexical decision dataset, and

of 2,323 correct responses per participant in the word naming dataset), thus

enabling separate fits to each participant. Table 5 summarizes the results

of fitting distributions individually to each participant. For simplicity we

have only included the two distributions that produced the best fits for both

datasets, Fieller’s and the Ex-Gaussian, as they provide examples of distribu-

tions with power-law (Fieller’s) and exponential tails (Ex-Gaussian). From

the tables, it appears that both in the lexical decision and in the word nam-

ing datasets, Fieller’s distribution overall outperforms the Ex-Gaussian in

terms of average quality of fit. However, the lexical decision averages are

misleading. Notice that, although in the mean, Fieller’s distribution ap-

pears to provide a better fit to the data, further examination of the paired

median difference reveals that both distributions are even, in fact with the

possibility of a slight advantage for the Ex-Gaussian. The origin of this

discrepancy lies in the distribution of the participant-specific differences be-

tween the information criteria for both fits. While in the picture naming

dataset there was a clear preference for the Fieller’s fit in most participants,

in the lexical decision datasets there was a huge inter-participant variability

on the differences between estimated fits. We confirmed this interpretation

using linear mixed effect model regressions with the estimated AIC values

as dependent variables, including fixed effects of distribution (Fieller’s vs.

Ex-Gaussian), a random effect of the participant identity, and a possible

mixed-effect interaction between the distribution and the participant. In
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the picture naming data there was a significant advantage for Fieller’s fits

(β̂ ' 265, t = 8.4, p < .0001, p̂mcmc = .0234) and no significant mixed effect

interaction between the participants and the fixed effect (χ2
6,2 = .61, p = .74).

In contrast, in the lexical decision data there might have been a slight trend

in favor of the Fieller’s fits (β̂ ' 151, t = 2.38, p = .0174, p̂mcmc = .2150) but

it did not reach significance according to a Markov Chain Montecarlo esti-

mate of the p-value, and there was a clear mixed effect interaction between

participant identity and preferred distribution (χ2
6,2 = 73.55, p < .0001).3

We interpret the above results as clear evidence in favor of Fieller’s fits in

the picture naming datasets, but roughly equal performance in the lexical

decision dataset – if anything, a marginal advantage for Fieller’s fits – and

substantial differences across participants. This is not difficult to understand.

The lexical decision datasets included much fewer responses than does the

word naming one, and it is thus less likely for a participant to elicit relatively

long responses than it is in the larger samples of the word naming dataset.

As the main difference between Fieller’s distribution and the Ex-Gaussian is

found in the heavier right tails, only participants that showed some of the

very rare long RTs would be better accounted for by Fieller’s.

Figure 10 illustrates the estimated RT distributions of an ideal ‘prototypical’

participant in each of the tasks.4 These are plotted by the solid black lines in

the figures. The dashed lines on the logarithmic plots are linear regressions

on the log-tails, used to underline how both ideal distributions deviate from

an exponential tail (which would fall onto the straight lines) that would be
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characteristic of most usually advocated RT distributions. Notice also that,

in consonance with the individual participant analyses, the deviation from

exponentiality is more marked (starts earlier) in the picture naming than in

the lexical decision dataset.

Using these prototypical densities we can also inspect their corresponding

hazard functions (see Figure 11). Note that both estimated hazard functions

are of the peaked type (although the peak is admittedly lighter in the lexi-

cal decision curve). Only distributions that can have peaked hazards could

account for these data. Therefore, the evidence from hazards also seems to

rule out Ex-Gaussian and Weibull type distributions to account for the data.

5.3 Interpretation of the parameter values of Fieller’s

distribution

Above we have seen that Fieller’s distribution presents an overall advantage

over the other candidates to account for the distribution of RTs for indi-

vidual participants in terms of quality of fits, shape of the right tails, and

hazard functions. A crucial point about this distribution is that its estimated

parameter values are informative as to the properties of the task. We now

proceed to interpret the estimated parameter values.

The estimated values of the parameters of the Fieller fits to the aggregated
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Figure 10: Ideal ‘prototypical’ participant in the lexical decision (top panels)
and word naming (bottom panels) datasets. The left panels depict the densi-
ties, and the right panels are their equivalents in log-scale. The grey points
are samples of 50 density points for each participant. The solid black lines
plot the estimate prototypical density. The dashed black lines in the loga-
rithmic plots correspond to linear regressions on the log right tail, showing
what an exponential tailed fit to these data should look like.
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Figure 11: Estimated hazard function for the ‘prototypical’ participants.
The curves where estimated using the non-parametric method described by
Burbeck and Luce (1982) on the estimated quantiles of the prototypical dis-
tributions.
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Figure 12: Values of the CoV parameters λ1 and λ2 obtained by fitting
Fieller’s distribution to each individual participant in the visual lexical de-
cision (left panel) and word naming datasets (right panel) of the ELP. Each
point represents the fit obtained for an individual participant. The contours
represent a 2-dimensional KDE of the density. The horizontal and vertical
grey dashed lines indicate the phase-change boundaries of Fieller’s distri-
bution. Points lying outside the centered 95% with respect to either λ1 or
λ2 have been excluded from both graphs in order to avoid the large value
outliers resulting from non-converging fits.
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data were (κ̂ = 695 ms., λ̂1 = .27, λ̂2 = .38, ρ̂ = .6) for the lexical decision

dataset, and (κ̂ = 681 ms., λ̂1 = .40, λ̂2 = .44, ρ̂ = .84) for the word naming

dataset. This puts both datasets in the linear zone in Fieller’s distribution.

However, the relatively high value of λ̂1 for the word naming dataset in fact

makes this distribution approach the Cauchy zone. This is indicative of a

very high variability in the numerator of the ratio that gives rise to the

distribution. If, following Carpenter and Williams (1995) we attribute this

variability to variability in prior expectations, this fact becomes meaning-

ful. While in the lexical decision experiment there were only two possible re-

sponses, which were matched in prior probability, in the word naming dataset

different words will have a different prior expectation, causing a much greater

variability across items. As we can see, this difference in the tasks is readily

reflected in the fits of Fieller’s distribution. This last issue is explored in

more detail in Figure 12. The figure displays the estimated values of the

λ1 and λ2 parameters in the separate individual participant fits. In the lex-

ical decision data, the typical participant will show an estimated λ1 value

of around .05, with the vast majority of participants having an estimated

value below the critical .22. This indicates that, in visual lexical decision the

responses of each individual participant are well-described by a recinormal

distribution, and thus the larger value of λ1 in the overall fit is due only to

inter-participant variation in threshold or resting levels.

The situation is different in in the word naming participants. In this dataset

the typical participant shows an estimated λ1 just above the critical .22, al-

ready into the linear zone of Fieller’s distribution, with a great proportion of
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the participants being significantly above this value. This indicates that in

this case, there is a much greater heterogeneity in the threshold or resting lev-

els from item to item. Interestingly, there is also a clear correlation in between

the estimated λ1 and λ2 values (ρ = .76, t(421) = 24.09, p < .0001). This

correlation reflects the interrelationship between the top-down and bottom-

up properties of the stimuli (e.g., frequency and word length). In these

experiments, each participant saw a different subset of the stimuli, and thus

there will be variation in both top-down and bottom up properties of the

stimuli and these seem to be related to each other. In sum, variation in the

prior probability of stimuli makes the intra-participant values of λ1 greater

in word naming than in visual lexical decision. In contrast, the estimated

values of λ2 are very similar in both experiments, being either just below or

just above .3 in each experiment, indicating that both experiments exhibit

a similar degree of variation in the bottom-up/perceptual properties of the

stimuli, which are indeed identical in both experiments.

5.4 Distributions of correct and incorrect responses

As we have seen, the right tails of the distributions in both datasets are

significantly thicker than one would predict by any theory that relies on an

exponential-tailed distribution, and seem better described by theories that

propose a power-law type of right tail (perhaps with a cutoff). However, as

we noted in the theoretical section, distributions of the stretched exponen-
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Figure 13: Lexical decision data from the ELP (∼ 1.3 million individual re-
sponses) fitted as an inhibition-free competition between accumulators. The
solid lines represent the predicted densities (right panel) and log densities
(left panel) of the fitted model (the model was fitted with fixed variances for
both accumulators). The discontinuous lines plot Gaussian kernel density
estimators for log-densities and densities. Black lines plot correct responses,
and grey lines plot error responses.

tial type, as is the Weibull proposed by Logan (1988), can also give rise to

heavier than exponential tails. In our theoretical analysis we advanced that

these distributions would still predict too thin tails, below linear in log-log

scale. We now proceed to investigate the distributions of correct and incor-

rect reponses that would arise using a race model. For this, we investigate in

more detail the conditional distributions of correct and incorrect responses

to words in the ELP visual lexical decision dataset.

Figure 13 illustrates the RT distribution that would be predicted by a race
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of independent accumulators of the type proposed by Brown and Heathcote

(2005, 2008). The right panel shows that a relatively good fit of the density is

obtained in comparison with KDE of the same distributions. However, when

one examines in detail the quality of the fit in logarithmic scale (left-panel),

one finds that the lack of inhibition has led to three important problems.

The first of these problems is that the ‘pointiness’ of the mode is lost, giving

rise to the more bell-shaped profile characteristic of a Weibull or Gamma

distribution. The second is that, as predicted, the lack of any inhibition

process has considerably thinned the right tail of the distribution, grossly

underestimating the log-probability of responses above 1500 ms. Finally,

the third problem lies in the diverging ratio of errors to correct responses.

Whereas the empirical data seem to have a constant ratio (save for the very

fast ‘express’ responses) of errors to correct responses, apparent in the parallel

pattern of the KDE-estimated densities, the model desities have instead an

initial diverging phase.

Figure 14 shows the effect of considering that, due to the compensation of

the competition that would be provided by inhibition and decay mechanism,

both the distributions of correct responses and errors can be modelled as

plain instances of Fieller’s distributions. To enable direct comparison with

the fits of Figure 13, the parameters were fitted under identical constraints

of equal variances and thresholds for both accumulators. Note that the three

problems that were apparent in the free competition are greatly attenuated.

The pointiness around the mode is now clear, and the ratio of errors to correct

responses is now more or less constant. Finally, the fit of the right tail of the
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Figure 14: Lexical decision data from the ELP (∼ 1.3 million individual
responses) fitted as a competition including inhibition between accumulators.
The solid lines represent the predicted densities (right panel) and log densities
(left panel) of the fitted model (the model was fitted with fixed variances for
both accumulators). The discontinuous lines plot Gaussian kernel density
estimators for log-densities and densities. Black lines plot correct responses,
and grey lines plot error responses.
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distribution is now very precise even in the logarithmic scale. There is still

an apparently excessive ‘bending’ of the left tail relative to the KDE fits, but

most of this is actually due to the population of very fast responses which is

visible in the shoulder of the left tail of the logarithmic plots.

5.5 Very early responses

As can be appreciated in Figures 8 and Figure 9, neither the our distribution

nor the exponential tail variants accurately models the very fast responses

on the left tails of the curves. Even though Fieller’s distribution provides a

much better fit of these points also, it is still around two orders of magnitude

below the KDE estimate from the data. Once again, despite being very rare

(around 1% of the data counting all responses faster than 250 ms.), there

are still a large enough number (around 13,000 in each dataset) of these

short responses to provide sufficiently good estimates of their distributions

by KDE. However, it is evident in both logarithmic plots that these points

form clearly separate ‘bumps’ in the log-density fit, giving rise to obvious

shoulders in the distributions. In turn, this suggests that these points, or at

least a great proportion of them, are indeed outliers in the sense that they

originate from a different distribution than the one generating the rest of the

points – they are generated by another process. Therefore, as we advanced

above, these can indeed correspond to the ‘express’ responses hypothesized by

Carpenter and Williams (1995) and Reddi and Carpenter (2000). Two things
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are noteworthy though. First, these responses are truly a minority. Most

of the short responses that Carpenter and colleagues attribute to separate

processes are in fact part of the general RT distribution and there is therefore

no reason to believe they came from a different process. The second issue is

that these responses are in fact not completely random. That is, even though

they are very short, they are still more accurate than one would expect by

chance. There are a total of 7437 correct responses and 4701 erroneous ones

below 250 ms. This is a significant difference (χ2
1 = 616.72, p = .0000).

The data presented here correspond to the words in the ELP lexical decision

dataset. The above-chance level of correctness of the very short responses

could be due to the participants having an overall bias favoring ‘yes’ re-

sponses, even if the experiments had been balanced in the number of words

and pseudo-words that were presented. In fact, analyzing the pseudo-words

together with the words one finds that there was indeed a bias: participants

responded ‘no’ significantly more often than they responded ‘yes’ (1,329,459

‘yes’ responses vs. 1,423,209 ‘no’ responses; χ2
1 = 3192.92, p = .0000 across

the whole dataset). This completely discards the possibility that the signifi-

cant correctness of the very short responses is due to a bias in favor of ‘yes’

responses.

The left panel of Figure 15 zooms into the very early visual lexical decision

responses of Figure 14. The solid lines plot the predicted log-densities of

correct (black) and incorrect (grey) responses, and the solid lines represent

the observed log densities (estimated by KDE). The first thing that becomes
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Figure 15: Early visual lexical decision responses.

apparent is that, although the number of erroneous responses is notably in-

creased with respect to the rest of the distribution, there are still significantly

more correct than incorrect responses all the way through the interval. The

prior expectation for words and non words was even in this experiments.

Therefore, this advantage for correct responses can only be due to influence

from the actual presentation of the words. The synaptic and conduction

delays between optical presentation of a stimulus and the performance of a

manual response, have been estimated to lie between 180 ms. and 260 ms. in

monkeys, and an additional increase of one third is suggested to account for

these times in humans (cf., Ledberg, Bressler, Ding, Coppola, & Nakamura,

2007; Thorpe & Fabre-Thorpe, 2001). This would estimate a non-decisional

task component in humans in the range of 240 ms. to 350 ms. However,

as can be seen in the figure, even much earlier than this, participants are
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providing responses that are influenced by the stimulus. This suggests that

non-decisional times are also variable. This is not very surprising, one would

expect that the neural processes involved also reflect stochastic rise to thresh-

old mechanism for triggering the final motor response and on the perceptual

side. The cases when the non-decisional task components were shorter than

usual should then be characterized by the general distributions of correct and

error responses, which are depicted by the solid lines in the figure. These

could explain around 9,756 of the total of 12,138 responses below 250 ms.

An additional very small percentage would correspond to the cases where the

accumulator was accidentally above the response threshold before the pre-

sentation of the stimulus. These would be fully random responses. We can

estimate their number at around 576 additional random responses. Putting

these two together, there remain around 1,806 responses that cannot be ac-

counted for neither by the general distributions nor by the predicted anticipa-

tions. This is approximately 15% of the very short latencies, and 0.1% of all

responses, and they can indeed correspond to Carpenter’s express responses

of sub-cortical origin. The correctness of these responses will be at random,

resulting in a stronger increase in the number of erroneous responses. The

right panel in Figure 15 illustrates this. When one compares the log-ratios

of observed to predicted short responses, one finds that there is a much more

marked increase in errors than in correct ones, and the difference between

these log-ratios is constant over time.



A Theory of RT Distributions 64

6 General Discussion

The central piece in the theory that we have proposed is the distribution of

the quotient of two correlated normal variables, Fieller’s distribution. The

empirical evidence that we have examined seems to support this distribution

as a description of RTs across tasks and modalities.

6.1 Power-law right tails

We have presented evidence in support of an RT distribution with a power-

law type of right tails. RT distributions, whether individually computed for

single participants in a given task and condition, or aggregated across partici-

pants and experimental stimuli have significantly thicker tails than one would

predict by any of the distributions that have traditionally been put forward

to describe RTs. This includes distributions with exponential tails such as

the Ex-Gaussian (e.g., Balota et al., 2008; Hohle, 1965; McGill, 1963; Ratcliff

& Murdock, 1976; Ratcliff, 1978), the Ex-Wald (Schwarz, 2001), the Inverse

Gaussian (e.g., Lamming, 1968; Stone, 1960), the Gamma (e.g., Christie,

1952; Luce, 1960; McGill, 1963), and the distributions that describe the first

passage times through a threshold of (linear versions of) the DDM (Rat-

cliff, 1978, and follow-up studies) whether in exact forms (e.g., Luce, 1986;

Ratcliff, 1978; Ratcliff & Tuerlinckx, 2002; Smith, 2000) or in approximate

forms (e.g., Lee et al., 2007; Navarro & Fuss, 2008), or by distributions with
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slightly heavier stretched exponential types such as the Weibull (Colonius,

1995; Logan, 1988, 1992, 1995) or the distributions that arises from the ‘bal-

listic’ models recently proposed by Brown and Heathcote (2005, 2008). None

of these distributions can show the type of power-law – straight in log-log

scale – right tails that we have observed in the data. Admittedly, the evi-

dence for a power law should be taken with care since a full ‘demonstration’

of power-law behavior would require to have data spanning at least one more

order of magnitude beyond what we have available. However, the qualitative

evidence from the visual inspection of the tails, and the quantitative evidence

such as the goodness of fit statistics (AIC and BIC), both point in this di-

rection when sufficiently large datasets are examined. Of the distributions

that have been proposed to account for RTs, only the Recinormal distribu-

tion proposed in LATER (Carpenter, 1981, and follow-up studies) and the

generalization by Fieller’s normal ratio distribution that we have introduced

are capable of producing this type of tails.

6.2 Flexible hazard functions

The shapes of the hazard functions of RT distributions (Burbeck & Luce,

1982; Luce, 1986) provide further evidence in support of Fieller’s. We have

shown that, in the tasks that we have examined, hazard functions are of the

peaked type. In addition, after the peak, the functions seemed to take the

monotonically decreasing shape of what is commonly termed an ‘infant mor-
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tality’ type of process. In contrast, Burbeck and Luce showed that responses

to low intensity auditory stimuli can give rise to monotonically increasing haz-

ard functions, perhaps with a final plateau. Taken together, these pieces of

evidence discard most existing distributions as candidates for a general model

of RT distribution. On the one hand, distributions like the Ex-Gaussian or

the Weibull can only give rise to monotonic patterns (restricted to increas-

ing in the case of the Ex-Gaussian), and are thus uncapable of accounting

for any of the datasets we have analyzed. On the other hand, most other

RT distributions such as the Inverse Gaussian, Ex-Wald, and Log-normal

are restricted to peaked hazard functions. This makes them unsuitable to

account for Burbeck and Luce’s low signal intensity data. The distribution

that is central to the theory that we are proposing, Fieller’s, is characterized

by a relatively flexible shape of the hazard function. Strictly speaking our

distribution is of a peaked hazard type, followed by a linear decreasing phase

(corresponding to its power-law right tail). However, as the value of the λ2

parameter approaches zero, the distribution converges on a normal distribu-

tion, which is characterized by a monotonically increasing hazard rate. This

is to say, as λ2 goes to zero, the location of the peak goes to infinity. This en-

ables the distribution to account for both monotonically increasing hazards

and for peaked ones.
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6.3 Larger number of fast responses

Nakahara et al. (2006) noticed that adding normal variation in the threshold

level of LATER could give rise to a slight deviation in the lower part of the

reciprobit plot. Our studies of Fieller’s distribution have confirmed the intu-

ition of Nakahara and collaborators. Normal variation in either the starting

level or the threshold level can give rise to exactly the type of deviations

from recinormality that Carpenter and colleagues attribute to sub-cortical

responses. In Carpenter’s experiments, the faster conditions elicited more of

the express responses. Notice that this seems rather counterintuitive. If these

fast guesses were in a race with the actual cortical responses, one would ex-

pect that the longer the delay of the cortical response, the higher the chances

of the sub-cortical having time to reach the threshold, opposite to what Car-

penter and collaborators observed. Our theory provides the tools to predict

when and how this population will arise. In Figure 5 we illustrated that

the effect of the variation in ∆ on the overall distribution is attenuated for

longer RTs. For these, the accumulated variation converges to the same that

would be produced by variation in r alone. Therefore, as Carpenter and his

colleagues repeatedly observed, conditions that on average elicit longer re-

sponses, will tend to show less of this deviation from recinormality. Another

property of the express responses is that variability in the order of stimuli

increases their proportion (Carpenter, 2001). This type of variability would

be reflected in variation in the predictability of stimuli. As we have argued,

this type of variation is reflected in the value of the λ1 parameter, the greater
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the variation the greater λ1 and the larger the deviation from recinormality.

Generally, the values of the CoV parameters of Fieller’s distribution (λ1 and

λ2) provide a compact way of predicting the detailed shape of the distribu-

tion. For instance, the deviation from recinormality is fully accounted for by

the value of the λ1 parameter.

An important issue is that most of these fast responses are accounted for

by the general RT distribution (save for a residual one per thousand). The

implication of this is that they are not completely random. As illustrated

in Figure 15, we have seen that performance is above chance up to the very

early times below 100 ms.

6.4 Need for inhibition

Bogacz et al. (2006) demonstrated that different versions of linear accumu-

lator models can all, under certain conditions, be reduced to the classical

linear DDM, as long as some inhibition mechanism is present in the system.

Importantly, they find that ‘pure race’ models without any significant contri-

bution of inhibition produce different predictions from those of the DDM. As

noticed by Colonius (1995) and Logan (1992, 1995), this type of race mod-

els necessarily lead to Weibull type RT distributions. As discussed above,

Weibull-type show too thin right tails. The presence of inhibition attenuates

the general speed-up caused by the competing accumulators, resulting in a
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higher number of long responses than would be predicted by models such as

that of Logan (1988) or the ones recently proposed by Brown and Heathcote

(2005, 2008).

In their recent study, Brown and Heathcote (2008) noticed that a setback

of their LBA model is that it cannot account for Hick’s Law (Hick, 1952):

The fact that the time to choose among a number of candidates is directly

proportional to the log number of possible alternatives. In their view, under

the pure – inhibition free – race model, increasing the number of accumulators

would lead to faster responses (as the probability of one of them crossing the

threshold at any point would increase), and larger error rates (as there are

more accumulators that can possibly win the race). To solve this problem,

they refer to some parameter adjustments that could eventually address this

problem. In our model, if starting levels interpreted as prior odds and the

incoming evidence interpreted as a Bayes factor is in itself dependent on the

presence of inhibitory mechanisms: if the probability of one option grows, on

average the probability of the others need to decrease, and this decrease is

linear in logarithmic scale, thus naturally accounting for Hick’s Law.

6.5 Levels of explanation and ‘optimality’

As argued by Marr (1982), there are three levels at which models of cognitive

function can explain cognitive phenomena. A computational level presents a
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formal description of the problem, an algorithmic level, in which a descrip-

tion of the method used to solve it is described, and an implementational

level which describes how such computations can be performed in term of

neural structures. An important point that was also made by Marr is of-

ten overlooked. There needs to be an explicit link between the explanations

offered at the different levels.

In this sense, the model that we have introduced constitutes a description of

the origin of RTs at an algorithmic level. In addition, we have also explicitly

linked the model to computational and implementational descriptions. On

the one hand, as has been noticed by proposers of LATER and of the DDM,

our theory fits into a general Bayesian inference framework.

Different models, making slightly different predictions, claim to describe the

behavior of the optimal decision maker, the ‘ideal observer’. This could seem

like a contradiction. In our opinion, this is not a very informative question.

The issue is not whether the decision process is optimal. As forcefully argued

by Jaynes (2003), it must at least approach optimality. The crucial point is

to find what is it that is being optimized and under which conditions. For

instance, despite their different formulations and predictions, both LATER

and the classical DDM are optimal. In both cases, the assumption is that the

optimized function – the cost function – is a function of time. In the case of

the DDM, the quality of a response is directly proportional to the time it took.

In the case of LATER the cost function is non-linear with respect to time.

In addition, both models make different assumptions on how the evidence
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becomes available, either at a constant rate or at a randomly changing one.

On the other hand, we have seen that the model can be reduced to a non-

linear instance of the DDM family of models. In our formulation, we have

introduced the non-linearity by making the volatility rate or diffusion coef-

ficient proportional to time. Working from the opposite direction, that is,

building up from the known properties of neurons, Roxin and Ledberg (2008)

have reached similar conclusions. They show that the behavior of realistic

neural network models can be reduced to a one dimensional non-linear dif-

fusion equation. In particular, they arrive at a diffusion equation in which

the drift rate has a cubic dependence on the value of the accumulator at

any point in time. It remains to be seen whether the distribution we have

proposed can be generated by such type of equation, but a general need for

non-linearity is apparent from both our theory and Roxin and Ledberg’s neu-

ral network models. Bogacz, Usher, Zhang, and McClelland (2007) have also

suggested that extending the Leaky Competing Accumulator model (LCA;

Usher & McClelland, 2001) to include the nonlinearities that are observed in

neural populations might lead to a better account of experimental data by

the LCA model.

The inclusion of LATER into the DDM family also enables our model to

inherit some of the known properties of the DDM. Importantly, the DDM

has proven of great value to account for a large set of experimental phenom-

ena on which LATER has not been explicitly tested. Most salient among

these phenomena are speed-accuracy trade-offs. Our model being a particu-
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lar instance of the DDM enables us to take advantage of the DDM ability to

explain such phenomena.

6.6 Recognition vs. decision

In their response to Ratcliff (2001), Carpenter and Reddi (2001) argue that

LATER is a model that applies to different processes than the DDM. Whereas

the former would describe processes dominated by a decisional component,

the later would describe the RTs in processes that are dominated by recog-

nition components. In our opinion, this is not a satisfactory difference. For

instance, as argued by Ratcliff (2001), the DDM has in fact been most applied

to decisional processes such as the lexical decision task (Ratcliff, Gomez, &

McKoon, 2004), or same/different two choice decisions (Ratcliff, 1985; Rat-

cliff & Smith, 2004). Furthermore, the difference between “recognition” and

“decision” seems to us a rather vague one. One can think of any recognition

process as a plain decision, in which evidence is accumulated until a thresh-

old is reached. In that sense, we have seen that, as Ratcliff (2001) suggested,

LATER can be regarded as a non-linear version of the DDM. We think that

Carpenter might have underestimated the power of LATER to account for

all types of processes.
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6.7 Implications of the power-law

The power-law signature of the right tail of Fieller’s distribution does not

come without implications. Power-law distributions occur in a very diverse

range of natural phenomena. The origin of this type of distributions has at-

tracted a fair amount of interest from physicists. Generally speaking, power-

laws are the typical footprint of systems in a state of “self-organizing critical-

ity” (SOC; cf., Bak & Paczuski, 1995). These are complex systems in which

the behaviour of any part is dependent on the whole, so that perturbations

(e.g., presentation of stimuli) affect the whole system. It is not surprising

that the brain may be one of such systems. Indeed, recent work in neu-

rophysiology has shown that brain oscillations also show patterns that are

indicative of a complex SOC system (cf., Buzsáki & Draguhn, 2004). Fur-

thermore, Gilden, Thornton, and Mallon (1995) observed that the noise in

RTs also exhibits 1/f “pink noise” characteristics, which are another typical

mark of SOC systems. We have not explored further ther SOC implications

of the power-law, but this may provide a useful way of linking properties of

RT distributions with the neurophysiology of the brain. In addition, further

predictions on the properties of RT data could hypothetically be derived from

the properties of complex systems.
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6.8 Large datasets, long responses, and data trimming

The power-law properties of the right tails also stress the importance of the

size of datasets that are used to compare theories. The most conclusive

evidence that is contrastive among theories comes from these tails. The

greater part of the advocated RT distributions are sufficiently flexible as

to be able to replicate the patterns shown around the distributional mode,

giving rise to the model mimicry problem discussed by Ratcliff and Smith

(2004), Van Zandt and Ratcliff (1995), and Wagenmakers et al. (2004).

As we have seen, comparing models using relatively small datasets – up to

somewhere over 1,000 responses per participant – gives an unrealistic bias

in favor of exponential-tailed distributions. Very late responses happen very

rarely, and without those, exponential tails appear to give the best fits to

the data. As soon as a sufficient number of these responses has appeared,

the picture changes drastically. Power-law type distributions begin to offer

by far the best fits. Proportionally, the differece in favor of the power law

found in large datasets is substantially larger than the equivalent advantage

of exponential tails in the smaller datasets, thus the positive average values

for both information criteria in Table 5.

This also speaks to the damage resulting from truncating long and short

responses as ‘outliers’. This has been both the recommended technique (e.g.,

Luce, 1986; Ratcliff, 1993; Van Zandt, 2002; Whelan, 2008) and the ‘standard

practice’ in the field. As we have argued, trimming the long responses results
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in the loss of crucial information and should therefore be avoided in as much

as possible (a certain amount of trimming will remain from the fact that the

measurement of RTs stops after some deadline in most experiments). This

problem is in fact not exclusive to the analysis of RT data. As discussed

by Bak and Paczuski (1995), Mandelbrot (1983), and Newman (2005), these

‘contingent’ events are also erroneously discarded by attribution to ‘special’

causes in areas such as market fluctuations or earthquakes. However, they

are but consequences of the power-law that governs these phenomena. As our

analyses show, very long RTs are not events from some other distributions,

but plain events in the general one. This is to say, long RTs are just long,

not ‘weird’ at all but rather their frequency (but not their actual occurrence)

is well predictable. These very large rare events are the hallmark of self-

organizing – emergent – systems, that are governed by power-laws.

6.9 Conclusion

We return to the statement advanced in the introduction. RTs are directly

proportional to the difficulty of the task, and inversely proportional to the

rate at which information becomes available to solve it. Both task difficulty

and rate of information income are normally distributed.
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A The Recinormal distribution

We define the Recinormal distribution as the distribution of a random vari-

able X whose reciprocal Y = 1/X is normally distributed with mean µ and

standard deviation σ. If φ(y|µ, σ2) is the density function of Y , as Y is

monotonically related to X, the density function of X is:

fr(x|µ, σ) = φ(y|µ, σ)

∣∣∣∣∣dydx

∣∣∣∣∣ = φ
(

1

x

∣∣∣∣µ, σ) 1

x2
. (19)

Developing the normal density function and simpliflying the above expres-

sion, we obtain the density function of the Recinormal:

fr(x|µ, σ) =



1

x2
√

2πσ2
e−

(1−µx)2

2σ2x2 if x 6= 0.

0 if x = 0,

, (20)

where the value at zero has been added by by taking the limits of the general

function value.

B Fieller’s Normal Ratio Distribution

Let X1 and X2 be normally distributed random variables with respective

means θ1 and θ2 and standard deviations σ1 and σ2 and a Pearson correlation

coefficient of ρ. Let W be the random variable resulting from the quotient of

X1 and X2 (W = X1/X2). The distribution of W is given by the probability
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density function (Fieller, 1932; Hinkley, 1969):

f(w) =
b(w)d(w)

σ1σ2a3(w)
√

2π

[
Φ

(
b(w)

a(w)
√

1− ρ2

)
− Φ

(
− b(w)

a(w)
√

1− ρ2

)]
+

√
1− ρ2

πσ1σ2a2(w)
e−

c
2(1−ρ2) ,

(21)

where

a(w) =

√
w2

σ2
1

− 2ρw

σ1σ2

+
1

σ2
2

,

b(w) =
θ1w

σ2
1

− ρ(θ1 + θ2w)

σ1σ2

+
θ2

σ2
2

,

c =
θ2

1

σ2
1

− 2ρθ1θ2

σ1σ2

+
θ2

2

σ2
2

,

d(w) = e
b2(w)−ca2(w)

2(1−ρ2)a2(w) , (22)

and Φ is the cumulative distribution function of the standard normal distri-

bution.

Although in the original characterization given above this distribution ap-

pears to have five free parameters, in effect four parameters are sufficient to

fully describe it; the crucial values that determine the distribution are the

correlation coefficient, the ratio between the normal means, and the scale

of the variation parameters relative to the corresponding mean. Therefore,

we can describe any instance of Fieller’s distribution with four degrees of

freedom, correspoding to the parameters:

κ =
θ1

θ2

,

λ1 =
σ1

|θ1|
,
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λ2 =
σ2

|θ2|
,

−1 < ρ < 1. (23)

Notes

1Carpenter and colleagues in fact assume a constant vertical intercept at infinite time,

and variation in the horizontal intercept only. In our opinion this is not so clear or

informative, therefore we concentrate on variations on the intercept in general.

2We have added a class to accommodate the Gaussian (Clauset and colleagues consider

only thick-tailed distributions

3We report both t-based (p) and Markov Chain Montecarlo estimates (p̂mcmc) of the

p-values because we found the former to be too lax in this dataset, as it can be observed in

the estimates for visual lexical decision regression (see Baayen, Davidson, & Bates, 2008

for a detailed discussion of this issue). The response variable AIC was squared prior to the

analysis, as a Box-Cox transformation estimate suggested this would be most adequate.

In addition, to avoid numerical error from large numbers, the AIC values were divided by

10,000 prior to squaring. The effect estimates (β̂) provided have been back-transformed

to the original AIC scale.

4To obtain these curves, we estimated the cumulative density functions of the RTs

individually for each participant in each task (without any smoothing). From these we

interpolated 50 points from each participant (the grey points in the figures) uniformly

sampled in the interval between 0 ms. and 4000 ms. In order to do this, we fixed the values
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of the cumulative density at zero at 0 ms, and at one at 4000 ms. to enable extrapolation

outside an individual participant’s range of responses. Estimation without extrapolation

would have overestimated the densities at the right tail, as these would be estimated

only from the participants that produced them, ignoring that most participants in fact

did not. This would exaggerate the power-law appearance, biasing in favor of Fieller’s

distribution. The interpolated probabilities were probit-transformed, and we performed

a non-parametric locally weighted regression on the probit values. Finally, the resulting

smoother in probit-scale was back-transformed to standard normal probability density

scale, and then renormalized to integrate to one in the interval from 0 to 4000 ms.


