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Abstract

Systems biology presently suffers the same mereological and
sufficiency fallacies that haunt neural network models of high
order cognition. Shifting perspective from the massively par-
allel space of gene matrix interactions to the grammar/syntax
of the time series of expressed phenotypes using a cogni-
tive paradigm permits import of techniques from statistical
physics via the homology between information source uncer-
tainty and free energy density. This produces a broad spec-
trum of possible statistical models of development and its
pathologies in which epigenetic regulation and the effects of
embedding environment are analogous to a tunable enzyme
catalyst. A cognitive paradigm naturally incorporates mem-
ory, leading directly to models of epigenetic inheritance, as
affected by environmental exposures, in the largest sense. Un-
derstanding gene expression, development, and their dysfunc-
tions will require data analysis tools considerably more sophis-
ticated than the present crop of simplistic models abducted
from neural network studies or stochastic chemical reaction
theory.

Key Words developmental disorder, epigenetic cogni-
tion, gene expression, information theory, merological fallacy,
phase transition

1 Introduction

Researchers have recently begun to explore a de-facto cogni-
tive paradigm for gene expression in which contextual factors
determine behavior of what Cohen calls a ‘reactive system’,
not at all a mechanistic process (e.g., Cohen, 2006; Cohen and
Harel, 2007; Wallace and Wallace, 2008). O’Nuallain (2008)
has, in fact, placed gene expression firmly in the realm of
linguistic behavior, for which context imposes meaning:

...[T]he analogy between gene expression and lan-
guage production is useful, both as a fruitful research
paradigm and also, given the relative lack of success
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of natural language processing (nlp) by computer,
as a cautionary tale for molecular biology. In par-
ticular, given our concern with the Human Genome
Project (HGP) and human health, it is noticeable
that only 2% of diseases can be traced back to a
straightforward genetic cause. As a consequence, we
argue that the HGP will have to be redone for a vari-
ety of metabolic contexts in order to found a sound
technology of genetic engineering (O’Nuallain and
Strohman, 2007).

In essence, the analogy works as follows: first
of all, at the orthographic or phonological level, de-
pending on whether the language is written or spo-
ken, we can map from phonetic elements to nu-
cleotide sequence. The claim is made that Nature
has designed highly ambiguous codes in both cases,
and left disambiguation to the context.

This work investigates a class of statistical models based
on the asymptotic limit theorems of information theory that
instantiates this perspective, and explores a ‘natural’ means
by which epigenetic context ‘farms’ gene expression in an in-
herently punctuated manner via a kind of catalysis. These
models will then be used to illuminate ways in which ‘nor-
mal’ developmental modes can be driven into pathological
trajectories expressed as comorbid psychiatric and physical
disorders, expanding recent work by Wallace (2008b).

We begin with a brief reconsideration of the current de-
facto standard neural network-analog model of development.

2 The spinglass model

Following closely Ciliberti et al. (2007), the spinglass model
of development assumes that N transcriptional regulators, are
represented by their expression patterns

S(t) = [S1(t), ..., SN ()]

at some time ¢ during a developmental or cell-biological pro-
cess and in one cell or domain of an embryo. The transcrip-
tional regulators influence each other’s expression through



cross-regulatory and autoregulatory interactions described by
a matrix w = (w;;). For nonzero elements, if w;; > 0 the
interaction is activating, if w;; < 0 it is repressing. w repre-
sents, in this model, the regulatory genotype of the system,
while the expression state S(t) is the phenotype. These regu-
latory interactions change the expression of the network S(t)
as time progresses according to a difference equation

N
Silt + At) = o> wi;S;(t)],
j=1

(1)

where At is a constant and o a sigmodial function whose
value lies in the interval (—1,1). In the spinglass limit o is
the sign function, taking only the values +1.

The networks of interest are those whose expression state
begins from a prespecified initial state S(0) at time ¢ = 0 and
converge to a second prespecified stable equilibrium state S .
Such a network is termed wiable, for obvious reasons. Such
viable networks, of course, comprise a tiny fraction of possible
ones, i.e., those that do not begin with Sy and end at S..

The model used by Ciliberti et al. is abstracted from sp-
inglass treatments of neural networks, as is made clear in
the seminal papers by the Reinitz group (e.g., Jaeger et al,
2004; Mjolsness et al., 1991; Reinitz and Sharp, 1995; Sharp
and Reinitz, 1998; Toulouse et al., 1986). Thus and conse-
quently, Ciliberti et al. are invoking an implicit cognitive
paradigm for gene expression (e.g., Cohen, 2006; Cohen and
Harel, 2007; Wallace and Wallace, 2008), and cognitive pro-
cess, as the philosopher Fred Dretske (1994) eloquently ar-
gues, is constrained by the necessary conditions imposed by
the asymptotic limit theorems of information theory.

The next sections use information theory methods to make
the transition from crossectional w-space into that of serially
correlated sequences of phenotypes, expanding the results of
Wallace and Wallace, (2008).

3 Cognition information

source

as an

Atlan and Cohen (1998) argue, in the context of immune cog-
nition, that the essence of cognitive function involves compar-
ison of a perceived signal with an internal, learned picture of
the world, and then, upon comparison, choosing a response
from a much larger repertoire of possible responses.

Such choice inherently involves information and informa-
tion transmission since it always generates a reduction in un-
certainty (e.g., Ash 1990, p. 21).

More formally, a pattern of incoming input — like the S()
of equation (1) — is mixed in a systematic algorithmic manner

with a pattern of internal ongoing activity — like the (w;;) ac-
cording to equation (1) — to create a path of combined signals
x = (ag, a1, ..., Gy, ...) — analogous to the sequence of S(t+ At)
of equation (1), with, say, n = t/At. Each aj thus represents
some functional composition of internal and external signals.

This path is fed into a highly nonlinear decision oscillator,
h, which generates an output h(z) that is an element of one
of two disjoint sets By and B; of possible system responses.
Let

BO = bo, ceey bk,

Bl = bk+1, cony bm

Assume a graded response, supposing that if
h(z) € By,

the pattern is not recognized, and if
h(zx) € By,

the pattern is recognized, and some action b;, k+1 < j <m
takes place.

The principal objects of formal interest are paths x trigger-
ing pattern recognition-and-response. That is, given a fixed
initial state ag, examine all possible subsequent paths x be-
ginning with a¢ and leading to the event h(xz) € B;. Thus
h(ag, ...,a;) € By for all 0 < j < m, but h(ag, ...,an,) € Bi.

For each positive integer n, let N(n) be the number of
high probability grammatical and syntactical paths of length
n which begin with some particular ag and lead to the condi-
tion h(x) € B;. Call such paths ‘meaningful’, assuming, not
unreasonably, that N(n) will be considerably less than the
number of all possible paths of length n leading from ag to
the condition h(z) € B;.

While the combining algorithm, the form of the nonlin-
ear oscillator, and the details of grammar and syntax are all
unspecified in this model, the critical assumption which per-
mits inference of the necessary conditions constrained by the
asymptotic limit theorems of information theory is that the
finite limit

H = tim 02V

n—o0 n

(2)

both exists and is independent of the path z.

Define such a pattern recognition-and-response cognitive
process as ergodic. Not all cognitive processes are likely to be
ergodic in this sense, implying that H, if it indeed exists at
all, is path dependent, although extension to nearly ergodic
processes seems possible (Wallace and Fullilove, 2008).



Invoking the spirit of the Shannon-McMillan Theorem, as
choice involves an inherent reduction in uncertainty, it is
then possible to define an adiabatically, piecewise station-
ary, ergodic (APSE) information source X associated with
stochastic variates X; having joint and conditional probabili-
ties P(ao, ..., an) and P(ay|ag, ..., an—1) such that appropriate
conditional and joint Shannon uncertainties satisfy the classic
relations

lim H(X,|Xo,...

n—oo

7Xn71) =

H(Xo,..., Xn)

n+1

lim

n—oo

3)

This information source is defined as dual to the underlying
ergodic cognitive process.

Adiabatic means that the source has been parametized ac-
cording to some scheme, and that, over a certain range, along
a particular piece, as the parameters vary, the source remains
as close to stationary and ergodic as needed for information
theory’s central theorems to apply. Stationary means that
the system’s probabilities do not change in time, and ergodic,
roughly, that the cross sectional means approximate long-time
averages. Between pieces it is necessary to invoke various
kinds of phase transition formalisms, as described more fully
in Wallace (2005) or Wallace and Wallace (2008).

Wallace (2005, pp. 34-36) applies this formalism to a stan-
dard neural network model much like equation (1).

In the developmental vernacular of Ciliberti et al., we now
examine paths in phenotype space that begins at some Sy
and converges n = t/At — oo to some other So.. Suppose
the system is conceived at Sy, and h represents (for exam-
ple) reproduction when phenotype S is reached. Thus h(x)
can have two values, i.e., By not able to reproduce, and B,
mature enough to reproduce. Then 2 = (So, Sat, ..., Snat, ---)
until h(z) = B;.

Structure is now subsumed within the sequential grammar
and syntaz of the dual information source rather than within
the cross sectional internals of (w;;)-space, a simplifying shift
in perspective.

4 Consequences of the perspective
change

This transformation carries computational burdens, as well as
providing mathematical insight.

First, the fact that viable networks comprise a tiny fraction
of all those possible emerges easily from the spinglass formula-
tion simply because of the ‘mechanical’ limit that the number
of paths from Sy to S, will always be far smaller than the
total number of possible paths, most of which simply do not
end on the target configuration.

From the information source perspective, which inherently
subsumes a far larger set of dynamical structures than possi-
ble in a spinglass model — not simply those of symbolic dy-
namics — the result is what Khinchin (1957) characterizes as
the ‘E-property’ of a stationary, ergodic information source.
This allows, in the limit of infinitely long output, the classifi-
cation of output strings into two sets;

[1] a very large collection of gibberish which does not con-
form to underlying (sequential) rules of grammar and syntax,
in a large sense, and which has near-zero probability, and

[2] a relatively small ‘meaningful’ set, in conformity with
underlying structural rules, having very high probability.

The essential content of the Shannon-McMillan Theorem is
that, if N(n) is the number of meaningful strings of length n,
then the uncertainty of an information source X can be de-
fined as H[X] = lim,_,o log[N(n)]/n, that can be expressed
in terms of joint and conditional probabilities as in equation
(3) above. Proving these results for general stationary, er-
godic information sources requires considerable mathematical
machinery (e.g., Khinchin, 1957; Cover and Thomas, 1991;
Dembo and Zeitouni, 1998).

Second, information source uncertainty has an important
heuristic interpretation. Ash (1990) puts it this way:

...[W]e may regard a portion of text in a par-
ticular language as being produced by an informa-
tion source. The probabilities P[X, = a,|Xo =
ag,...Xn—1 = an—1] may be estimated from the avail-
able data about the language; in this way we can
estimate the uncertainty associated with the lan-
guage. A large uncertainty means, by the [Shannon-
MecMillan Theorem]|, a large number of ‘meaningful’
sequences. Thus given two languages with uncer-
tainties H; and Hs respectively, if Hy > Hs, then
in the absence of noise it is easier to communicate
in the first language; more can be said in the same
amount of time. On the other hand, it will be easier
to reconstruct a scrambled portion of text in the sec-
ond language, since fewer of the possible sequences
of length n are meaningful.

This will prove important below.

Third, information source uncertainty is homologous with
free energy density in a physical system, a matter having im-
plications across a broad class of dynamical behaviors.

The free energy density of a physical system having vol-
ume V and partition function Z(K) derived from the system’s
Hamiltonian — the energy function — at inverse temperature
K is (e.g., Landau and Lifshitz 2007)



Pl = Jim OBV
- log[Z(K, V)]
Jim % :

(4)

where Z = 7 VK,

Feynman (2000), following the classic work by Bennett
(1988), concludes that the information contained in a message
is simply the free energy needed to erase it. Thus, according
to this argument, source uncertainty is homologous to free
energy density as defined above, i.e., from the similarity with
the relation H = lim,, o, log[N(n)]/n.

Ash’s comment above then has an important corollary: If,
for a biological system, H; > Hj, source 1 will require more
metabolic free energy than source 2.

5 Symmetry arguments

A formal equivalence class algebra, in the sense of the Ap-
pendix, can now be constructed by choosing different origin
and end points Sg, S and defining equivalence of two states
by the existence of a high probability meaningful path con-
necting them with the same origin and end. Disjoint partition
by equivalence class, analogous to orbit equivalence classes for
dynamical systems, defines the vertices of the proposed net-
work of cognitive dual languages, much enlarged beyond the
spinglass example. We thus envision a network of metanet-
works, in the sense of Ciliberti et al. Each vertex then repre-
sents a different equivalence class of information sources dual
to a cognitive process. This is an abstract set of metanetwork
‘languages’ dual to the cognitive processes of gene expression
and development.

This structure generates a groupoid, in the sense of We-
instein (1996). States aj,ar in a set A are related by the
groupoid morphism if and only if there exists a high prob-
ability grammatical path connecting them to the same base
and end points, and tuning across the various possible ways
in which that can happen — the different cognitive languages
— parametizes the set of equivalence relations and creates the
(very large) groupoid.

There is a hierarchy here. First, there is structure within the
system having the same base and end points, as in Ciliberti et
al. Second, there is a complicated groupoid structure defined
by sets of dual information sources surrounding the variation
of base and end points. We do not need to know what that
structure is in any detail, but can show that its existence has
profound implications.

First we examine the simple case, the set of dual informa-
tion sources associated with a fixed pair of beginning and end
states.

5.1 The first level

The spinglass model of Ciliberti et al. produced a simply con-
nected, but otherwise undifferentiated, metanetwork of gene
expression dynamics that could be traversed continuously by
single-gene transitions in the highly parallel w-space. Taking
the serial grammar /syntax model above, we find that not all
high probability meaningful paths from Sy to S, are actually
the same. They are structured by the uncertainty of the as-
sociated dual information source, and that has a homological
relation with free energy density.

Let us index possible dual information sources connecting
base and end points by some set A = Ua. Argument by
abduction from statistical physics is direct: Given metabolic
energy density available at a rate M, and an allowed devel-
opment time 7, let K = 1/kM7 for some appropriate scaling
constant x, so that Mr is total developmental free energy.
Then the probability of a particular H, will be determined
by the standard relation (e.g., Landau and Lifshitz, 2007),

B exp[ngK]
PUHs) = S oo HL K]

(5)

where the sum may, in fact, be a complicated abstract inte-
gral. The basic requirement is that the sum/integral always
converges. K is the inverse product of a scaling factor, a
metabolic energy density rate term, and a characteristic de-
velopment time 7. The developmental energy might be raised
to some power, e.g., K = 1/(k(M7)?), suggesting the possi-
bility of allometric scaling.

Thus, in this formulation, there must be structure within a
(cross sectional) connected component in the w-space of Cilib-
erti et al., determined in no small measure by available energy.
Some dual information sources will be ‘richer’/smarter than
others, but, conversely, must use more metabolic energy for
their completion.

The next generalization is crucial:

While we might simply impose an equivalence class struc-
ture based on equal levels of energy/source uncertainty, pro-
ducing a groupoid in the sense of the Appendix (and possibly
allowing a Morse Theory approach in the sense of Matsumoto,
2002 or Pettini, 2007), we can do more by now allowing both
source and end points to vary, as well as by imposing energy-
level equivalence. This produces a far more highly structured
groupoid that we now investigate.

5.2 The second level

Equivalence classes define groupoids, by standard mechanisms
(e.g., Weinstein, 1996; Brown, 1987; Golubitsky and Stewart,
2006). The basic equivalence classes — here involving both in-
formation source uncertainty level and the variation of Sy and



Soo, will define transitive groupoids, and higher order systems
can be constructed by the union of transitive groupoids, hav-
ing larger alphabets that allow more complicated statements
in the sense of Ash above.

Again, given an appropriately scaled, dimensionless, fixed,
inverse available metabolic energy density rate and devel-
opment time, so that K = 1/kM7, we propose that the
metabolic-energy-constrained probability of an information
source representing equivalence class D;, Hp,, will again be
given by the classic relation

where the sum/integral is over all possible elements of the
largest available symmetry groupoid. By the arguments of
Ash above, compound sources, formed by the union of un-
derlying transitive groupoids, being more complex, generally
having richer alphabets, as it were, will all have higher free-
energy-density-equivalents than those of the base (transitive)
groupoids.

Let

We now define the Groupoid free energy of the system, Fp,
at inverse normalized metabolic energy density K, as

Fo[K] = ~ - loglZ[K]]

(8)

again following the standard arguments from statistical
physics (again, Landau and Lifshitz, 2007, or Feynman, 2000).

The groupoid free energy construct permits introduction of
important ideas from statistical physics.

5.3 Spontaneous symmetry breaking

We have expressed the probability of an information source
in terms of its relation to a fixed, scaled, available (inverse)
metabolic free energy density, seen as a kind of equivalent (in-
verse) system temperature. This gives a statistical thermo-
dynamic path leading to definition of a ‘higher’ free energy
construct — Fp[K] — to which we now apply Landau’s fun-
damental heuristic phase transition argument (Landau and
Lifshitz 2007; Skierski et al. 1989; Pettini 2007). See, in
particular, Pettini (2007) for details.

The essence of Landau’s insight was that second order phase
transitions were usually in the context of a significant sym-
metry change in the physical states of a system, with one
phase being far more symmetric than the other. A sym-
metry is lost in the transition, a phenomenon called spon-
taneous symmetry breaking, and symmetry changes are in-
herently punctuated. The greatest possible set of symmetries
in a physical system is that of the Hamiltonian describing
its energy states. Usually states accessible at lower temper-
atures will lack the symmetries available at higher tempera-
tures, so that the lower temperature phase is less symmetric:
The randomization of higher temperatures — in this case lim-
ited by available metabolic free energy densities — ensures that
higher symmetry/energy states — mixed transitive groupoid
structures — will then be accessible to the system. Absent
high metabolic free energy rates and densities, however, only
the simplest transitive groupoid structures can be manifest.
A full treatment from this perspective requires invocation of
groupoid representations, no small matter (e.g., Buneci, 2003;
Bos 2006).

Somewhat more rigorously, the biological renormalization
schemes of the Appendix to Wallace and Wallace (2008) may
now be imposed on Fp[K] itself, leading to a spectrum of
highly punctuated transitions in the overall system of devel-
opmental information sources.

Most deeply, however, an extended version of Pettini’s
(2007) Morse-Theory-based topological hypothesis can now
be invoked, i.e., that changes in underlying groupoid struc-
ture are a necessary (but not sufficient) consequence of phase
changes in Fp[K]. Necessity, but not sufficiency, is important,
as it, in theory, allows mixed groupoid symmetries.

The essential insight is that the single simply connected
giant component of Ciliberti et al. is unlikely to be the full
story, and that more complete models will likely be plagued
— or graced — by highly punctuated dynamics.

6 Tunable epigenetic catalysis

Incorporating the influence of embedding contexts — epige-
netic effects — is most elegantly done by invoking the Joint
Asymptotic Equipartition Theorem (JAEPT) and the ex-
tensions of Network Information Theory in equations (6-8)
(Cover and Thomas, 1991). For example, given an embed-
ding contextual information source, say Z, that affects de-
velopment, then the dual cognitive source uncertainty Hp,
is replaced by a joint uncertainty H(Xp,,Z). The objects



of interest then become the jointly typical dual sequences
y™ = (a™,2"), where z is associated with cognitive gene ex-
pression and z with the embedding context. Restricting con-
sideration of x and z to those sequences that are in fact jointly
typical allows use of the information transmitted from Z to
X as the splitting criterion.

One important inference is that, while there are approx-
imately exp[nH(X)] typical X sequences, and exp[nH (Z)]
typical Z sequences, there are only about exp[nH (X, Z)]
jointly typical sequences, so that the effect of the embedding
context, in this model, is to greatly lower the ‘developmen-
tal free energy’ at a given metabolic energy M7. Thus, for a
given M, the effect of epigenetic regulation is to make possi-
ble developmental pathways otherwise inhibited by their high
values of uncertainty/free energy. Hence the epigenetic infor-
mation source Z acts as a tunable catalyst, a kind of second
order cognitive enzyme, to enable and direct developmental
pathways. This result permits hierarchical models similar to
those of higher order cognitive neural function that incor-
porate Baars’ contexts in a natural way (e.g., Wallace and
Wallace, 2008; Wallace and Fullilove, 2008).

This elaboration allows a spectrum of possible ‘final’ pheno-
types, what Gilbert (2001) calls developmental or phenotype
plasticity. Thus gene expression is seen as, in part, respond-
ing to environmental or other, internal, developmental signals.
West-Eberhard (2005) puts the matter as follows:

Any new input, whether it comes from the
genome, like a mutation, or from the external envi-
ronment, like a temperature change, a pathogen, or
a parental opinion, has a developmental effect only
if the preexisting phenotype is responsive to it... A
new input... causes a reorganization of the pheno-
type, or ‘developmental recombination.’...In devel-
opmental recombination, phenotypic traits are ex-
pressed in new or distinctive combinations during
ontogeny, or undergo correlated quantitative change
in dimensions...Developmental recombination can
result in evolutionary divergence... at all levels of
organization.

Individual development can be visualized as a se-
ries of branching pathways. Each branch point is a
developmental decision, or switch point, governed by
some regulatory apparatus, and each switch point
defines a modular trait. Developmental recombina-
tion implies the origin or deletion of a branch and a
new or lost modular trait. It is important to real-
ize that the novel regulatory response and the novel
trait originate simultaneously. Their origins are, in
fact, inseparable events: you cannot have a change
in the phenotype, a novel phenotypic state, without
an altered developmental pathway...

This is accomplished in our formulation by allowing the
set Bp in section 3 to span a distribution of possible ‘final’
states Soo. Then the groupoid arguments merely expand to
permit traverse of both initial states and possible final sets,
recognizing that there can now be a possible overlap in the

latter, and the epigenetic effects are realized through the joint
uncertainties H(Xp,, Z), so that the epigenetic information
source Z serves to direct as well the possible final states of
Xp,.

The mechanics of such channeling can be made more precise
as follows.

7 Rate Distortion dynamics

Real time problems, like the crosstalk between epigenetic and
genetic structures, are inherently rate distortion problems,
and the interaction between biological structures can be re-
stated in communication theory terms. Suppose a sequence
of signals is generated by a biological information source Y’
having output y™ = y1,y2,.... This is ‘digitized’ in terms of
the observed behavior of the system with which it commu-
nicates, say a sequence of observed behaviors b = by, b, ....
The b; happen in real time. Assume each b” is then determin-
istically retranslated back into a reproduction of the original
biological signal,

b = 4" =11, 02, .

Here the information source Y is the epigenetic Z, and B
is Xp,, but the terminology used here is more standard (e.g.,
Cover and Thomas, 1991).

Define a distortion measure d(y,4) which compares the
original to the retranslated path. Many distortion measures
are possible. The Hamming distortion is defined simply as

dy,9) =1Ly #79

d(y,9) =

For continuous variates the squared error distortion is just

Y=17

d(y,9) = (y — 9)*.

There are many such possibilities. The distortion between
paths y™ and g™ is defined as

no A~ 1 - ~
d(y",g") = ﬁzd(yyyj).
j=1

A remarkable fact of the Rate Distortion Theorem is that
the basic result is independent of the exact distortion mea-
sure chosen (Cover and Thomas, 1991; Dembo and Zeitouni,
1998).

Suppose that with each path y™ and b™-path retranslation
into the y-language, denoted 3", there are associated individ-
ual, joint, and conditional probability distributions

" "9")

p(y"),p(@"),p(y",9"), ply

The average distortion is defined as



9)

It is possible, using the distributions given above, to define
the information transmitted from the Y to the Y process using
the Shannon source uncertainty of the strings:

where H(...,...) is the joint and H(...|]...) the conditional
uncertainty (Cover and Thomas, 1991; Ash, 1990).

If there is no uncertainty in Y given the retranslation Y,
then no information is lost, and the systems are in perfect
synchrony.

In general, of course, this will not be true.

The rate distortion function R(D) for a source Y with a
distortion measure d(y, 9) is defined as

R(D) = min I(Y,Y).
p(W.9):) 5, o PPYI9)d(y,9)<D

(11)

The minimization is over all conditional distributions p(y|9)
for which the joint distribution p(y,§) = p(y)p(y|y) satisfies
the average distortion constraint (i.e., average distortion <
D).

The Rate Distortion Theorem states that R(D) is the min-
imum necessary rate of information transmission which en-
sures communication does not exceed average distortion D.
Thus R(D) defines a minimum necessary channel capacity.
Cover and Thomas (1991) or Dembo and Zeitouni (1998) pro-
vide details. The rate distortion function has been explicitly
calculated for a number of simple systems.

Recall, now, the relation between information source un-
certainty and channel capacity (e.g., Ash, 1990):

where H is the uncertainty of the source X and C the
channel capacity, defined according to the relation (Ash, 1990)

C = max I(X]Y).
P(X)

(13)

X is the message, Y the channel, and the probability dis-
tribution P(X) is chosen so as to maximize the rate of infor-
mation transmission along a Y.

Finally, recall the analogous definition of the rate distor-
tion function above, again an extremum over a probability
distribution.

Recall, again, equations (4-8), i.e., that the free energy of a
physical system at a normalized inverse temperature-analog
K =1/kT is defined as F(K) = —log[Z(K)]/K where Z(K)
the partition function defined by the system Hamiltonian.
More precisely, if the possible energy states of the system are
a set F;,i = 1,2,... then, at normalized inverse temperature
K, the probability of a state E; is determined by the relation
P[E;] = exp[—E; K]/ >, exp[-E; K].

The partition function is simply the normalizing factor.

Applying this formalism, it is possible to extend the rate
distortion model by describing a probability distribution for
D across an ensemble of possible rate distortion functions in
terms of available free metabolic energy, K = 1/xM7.

The key is to take the R(D) as representing energy as a
function of the average distortion. Assume a fixed K, so that
the probability density function of an average distortion D,
given a fixed K, is then

P[D,K] = Dmaixp[—R(D)K] |
I exp[—R(D)K]dD

(14)

Thus lowering K in this model rapidly raises the possibility
of low distortion communication between linked systems.

We define the rate distortion partition function as just the
normalizing factor in this equation:

Zp[K]

Dmax
/ exp|—R(D)K]dD,
Dpin



again taking K = 1/kM.
We now define a new free energy-analog, the rate distortion
free-energy, as

(16)

and apply Landau’s spontaneous symmetry breaking argu-
ment to generate punctuated changes in the linkage between
the genetic information source Xp, and the embedding epi-
genetic information source Z. Recall that Landau’s insight
was that certain phase transitions were usually in the context
of a significant symmetry change in the physical states of a
system.

Again, the biological renormalization schemes of the Ap-
pendix to Wallace and Wallace (2008) may now be imposed
on Fr[K] itself, leading to a spectrum of highly punctuated
transitions in the overall system of interacting biological sub-
structures.

Since 1/K is proportional to the embedding metabolic free
energy, we assert that

[1] the greatest possible set of symmetries will be realized
for high developmental metabolic free energies, and

[2] phase transitions, related to total available developmen-
tal metabolic free energy, will be accompanied by fundamental
changes in the final topology of the system of interest — phe-
notype changes — recognizing that evolutionary selection acts
on phenotypes, not genotypes.

The relation 1/K = kM7 suggests the possibility of evolu-
tionary tradeoffs between development time and the rate of
available metabolic free energy.

8 More topology

It seems possible to extend this treatment using standard
topological arguments.

Taking T'= 1/K in equations (6) and (14) as a product of
eigenvalues, we can define it as the determinant of a Hessian
matrix representing a Morse Function, f, on some underlying,
background, manifold, M, characterized in terms of (as yet
unspecified) variables X = (x!,...,2™), so that

1/K = det(Hi,j),

H;; = 0*f/0x' 07

See the Appendix for a brief outline of Morse Theory.

Thus k, M, and the development time 7 are seen as eigen-
values of H on the manifold M in an abstract space defined
by some set of variables X.

By construction H has everywhere only nonzero, and in-
deed, positive, eigenvalues, whose product thereby defines T
as a generalized volume. Thus, and accordingly, all critical
points of f have index zero, that is, no eigenvalues of H are
ever negative at any point, and hence at any critical point X,
where df (X.) = 0.

This defines a particularly simple topological structure for
M: If the interval [a,b] contains a critical value of f with
a single critical point X,, then the topology of the set M,
defined above differs from that of M, in a manner determined
by the index i of the critical point. My is then homeomorphic
to the manifold obtained from attaching to M, an i-handle,
the direct product of an i-disk and an (m — i)-disk.

One obtains, in this case, since ¢ = 0, the two halves of
a sphere with critical points at the top and bottom (Mat-
sumoto, 2002; Pettini, 2007). This is, as in Ciliberti et al.
(2007), a simply connected object. What one does then is to
invoke the Seifert-Van Kampen Theorem (SVKT, Lee, 2000)
and patch together the various simply connected subcompo-
nents to construct the larger, complicated, topological object
representing the full range of possibilities.

The physical natures of x, M, and 7 thus impose constraints

on the possible complexity of this system, in the sense of the
SVKT.

9 Inherited epigenetic memory

The cognitive paradigm for gene expression invoked here re-
quires an internal picture of the world against which incoming
signals are compared — algorithmically combined according to
the rules of Section 3 — and then fed into a nonlinear decision
oscillator that chooses one (or a few) action(s) from a much
large repertoire of possibilities. Memory is inherent, and re-
cent work suggests that epigenetic memory is indeed heri-
table. Jablonka and Lamb (1998), in a now-classic review,
argued that information can be transmitted from one genera-
tion to the next in ways other than through the base sequence
of DNA. It can be transmitted through cultural and behav-
ioral means in higher animals, and by epigenetic means in cell
lineages. All of these transmission systems allow the inheri-
tance of environmentally induced variation. Such Epigenetic
Inheritance Systems are the memory systems that enable so-
matic cells of different phenotypes but identical genotypes to
transmit their phenotypes to their descendants, even when
the stimuli that originally induced these phenotypes are no
longer present.

In chromatin-marking systems information is carried from
one cell generation to the next because it rides with DNA
as binding proteins or additional chemical groups that are
attached to DNA and influence its activity. When DNA is
replicated, so are the chromatin marks. One type of mark is
the methylation pattern a gene carries. The same DNA se-
quence can have several different methylation patterns, each



reflecting a different functional state. These alternative pat-
terns can be stably inherited through many cell divisions.

Epigenetic inheritance systems are very different from the
genetic system. Many variations are directed and predictable
outcomes of environmental changes. Epigenetic variants are
frequently, although not necessarily, adaptive. The frequency
with which variants arise and their rate of reversion varies
widely and epigenetic variations induced by environmental
changes may be produced coordinatedly at several loci.

Jablonka and Lamb (1998) conclude that epigenetic sys-
tems may therefore produce rapid, reversible, co-ordinated,
heritable changes. However such systems can also under-
lie non-induced changes changes that are induced but non-
adaptive, and changes that are very stable.

What is needed, in their view, is a concept of epigenetic
heritability comparable to the classical concept of heritability,
and a model similar to those used for measuring the effects of
cultural inheritance on human behavior in populations.

Following a furious decade of research and debate, Boss-
dorf et al. (2008), for example, are able to conclude that
heritable variation in ecologically relevant traits can be gen-
erated through a suite of epigenetic mechanisms, even in the
absence of genetic variation. Moreover, recent studies indi-
cate that epigenetic variation in natural populations can be
independent from genetic variation, and that in some cases
environmentally induced epigenetic changes may be inherited
by future generations. They infer that we might need to ex-
pand our concept of variation and evolution in natural pop-
ulations, taking into account several (likely interacting) eco-
logically relevant inheritance systems. Potentially, this may
result in a significant expansion (though by all means not a
negation) of the Modern Evolutionary Synthesis as well as in
more conceptual and empirical integration between ecology
and evolution.

The abduction of spinglass and other models from neural
network studies to the analysis of development and its evolu-
tion carries with it the possibility of more than one system of
memory. What Baars called ‘contexts’ channeling high level
animal cognition may often be the influence of cultural in-
heritance, in a large sense. Our formalism suggests a class
of statistical models that indeed greatly generalize those used
for measuring the ‘effects of cultural inheritance on human
behavior in populations’.

Epigenetic machinery, as a dual information source to a
cognitive process, serves as a heritable system, intermediate
between (relatively) hard-wired classical genetics, and a (usu-
ally) highly Larmarckian embedding cultural context. In par-
ticular, the three heritable systems interact, in our model,
through a crosstalk in which the epigenetic machinery acts as
a kind of intelligent catalyst for gene expression.

10 Multiple processes
The argument to this point has, in large measure, been di-

rectly abducted from recent formal studies of high level cog-
nition — consciousness — based on a Dretske-style informa-

tion theoretic treatment of Bernard Baars’ global workspace
model (Wallace, 2005; Atmanspacher, 2006). A defining and
grossly simplifying characteristic of that phenomenon is its
rapidity: typically the global broadcasts of consciousness oc-
cur in a matter of a few hundred milliseconds, limiting the
number of processes that can operate simultaneously. Slower
cognitive dynamics can, therefore, be far more complex than
individual consciousness. One well known example is institu-
tional distributed cognition that encompasses both individual
and group cognition in a hierarchical structure typically op-
erating on timescales ranging from a few seconds or minutes
in combat or hunting groups, to years at the level of major
governmental structures, commercial enterprises, religious or-
ganizations, or other analogous large scale cultural artifacts.
Wallace and Fullilove (2008) provide the first formal mathe-
matical analysis of institutional distributed cognition.

Clearly cognitive gene expression is not generally limited
to a few hundred milliseconds, and something much like the
distributed cognition analysis may be applied here as well.
Extending the analysis requires recognizing an individual cog-
nitive actor can participate in more than one ‘task’, syn-
chronously, asynchronously, or strictly sequentially. Again,
the analogy is with institutional function whereby many in-
dividuals often work together on several distinct projects:
Envision a multiplicity of possible cognitive gene expression
dual ‘languages’ that themselves form a higher order network
linked by crosstalk.

Next, describe crosstalk measures linking different dual lan-
guages on that meta-meta (MM) network by some character-
istic magnitude w, and define a topology on the MM network
by renormalizing the network structure to zero if the crosstalk
is less than w and set it equal to one if greater or equal to
it. A particular w, of sufficient magnitude, defines a giant
component of network elements linked by mutual information
greater or equal to it, in the sense of Erdos and Renyi (1960),
as more fully described in Wallace and Fullilove (2008, Section
3.4).

The fundamental trick is, in the Morse Theory sense (Mat-
sumoto, 2002), to invert the argument so that a given topol-
ogy for the giant component will, in turn, define some critical
value, we, so that network elements interacting by mutual
information less than that value will be unable to participate,
will be locked out and not active. w becomes an epigenet-
ically syntactically-dependent detection limit, and depends
critically on the instantaneous topology of the giant compo-
nent defining the interaction between possible gene interaction
MM networks.

Suppose, now, that a set of such giant components exists
at some generalized system ‘time’ k and is characterized by
a set of parameters Q; = w!, ..., wk . Fixed parameter values
define a particular giant component set having a particular
set of topological structures. Suppose that, over a sequence
of times the set of giant components can be characterized by
a possibly coarse-grained path 7, = g, ,...,Q,_1 having
significant serial correlations that, in fact, permit definition
of an adiabatically, piecewise stationary, ergodic (APSE) in-
formation source T'.



Suppose that a set of (external or internal) epigenetic sig-
nals impinging on the set of such giant components can also be
characterized by another APSE information source Z that in-
teracts not only with the system of interest globally, but with
the tuning parameters of the set of giant components char-
acterized by T'. Pair the paths (v, 2,) and apply the joint
information argument above, generating a splitting criterion
between high and low probability sets of pairs of paths. We
now have a multiple workspace cognitive genetic expression
structure driven by epigenetic catalysis.

11 Multiple models

Recently R.G. Wallace and R. Wallace (2009) have argued
that consciousness may have undergone the characteristic
branching and pruning of evolutionary development, particu-
larly in view of the rapidity of currently surviving conscious
mechanisms. They write

Evolution is littered with polyphyletic paral-
lelisms: many roads lead to functional Romes. We
propose that consciousness [as a particular form
of high order cognitive process operating in real
time] embodies one such example, [represented by]

an equivalence class structure that factors the
broad realm of necessary conditions information
theoretic realizations of Baars’ global workspace
model... [M]any different physiological systems can
support rapidly shifting, highly tunable, and even
simultaneous assemblages of interacting unconscious
cognitive modules... The variety of possibilities sug-
gests minds today may be only a small surviving
fraction of ancient evolutionary radiations — bush
phylogenies of consciousness pruned by selection and
chance extinction.

Even in the realms of rapid global broadcast inherent to real
time cognition, R.G. Wallace and R. Wallace (2009), following
a long tradition, speculate that ancient backbrain structures
instantiate rapid emotional responses, while the newer fore-
brain harbors rapid ‘reasoned’ responses in animal conscious-
ness. The cooperation and competition of these two rapid
phenomena produces, of course, a plethora of systematic be-
haviors.

Since consciousness is necessarily restricted to realms of a
few hundred milliseconds, evolutionary pruning may well have
resulted in only a small surviving fraction of previous evolu-
tionary radiations. Processes operating on longer timescales
may well be spared such draconian evolutionary selection.
That is, the vast spectrum of mathematical models of cog-
nitive gene expression inherent to our analysis here, in the
context of development times much longer than a few hun-
dred milliseconds, implies current organisms may simultane-
ously harbor several, possibly many, quite different cognitive
gene expression mechanisms.

It seems likely that slower cognitive phenomena, like insti-
tutional distributed cognition and cognitive gene expression,

may well permit the operation of very many quite different
cognitive processes simultaneously.

One inference is, then, that cognitive gene expression is
far more complex than individual consciousness, currently re-
garded as one of the ‘really big’ unsolved scientific problems.

Neural network models adapted from the cognition studies
of a generation ago are unlikely to cleave the Gordian Knot
of scientific inference surrounding gene expression.

12 Epigenetic focus

The Tuning Theorem analysis of the Appendix permits an
inattentional blindness/concentrated focus perspective on the
famous computational ‘no free lunch’ theorem of Wolpert and
Macready (1995, 1997). Following closely the arguments of
English (1996), Wolpert and Macready have established that
there exists no generally superior function optimizer. There
is no ‘free lunch’ in the sense that an optimizer ‘pays’ for
superior performance on some functions with inferior perfor-
mance on others. if the distribution of functions is uniform,
then gains and losses balance precisely, and all optimizers
have identical average performance. The formal demonstra-
tion depends primarily upon a theorem that describes how
information is conserved in optimization. This Conservation
Lemma states that when an optimizer evaluates points, the
posterior joint distribution of values for those points is ex-
actly the prior joint distribution. Put simply, observing the
values of a randomly selected function does not change the
distribution: An optimizer has to ‘pay’ for its superiority on
one subset of functions with inferiority on the complementary
subset.

As English puts it, anyone slightly familiar with the evo-
lutionary computing literature recognizes the paper template
‘Algorithm X was treated with modification Y to obtain the
best known results for problems P; and P».” Anyone who
has tried to find subsequent reports on ‘promising’ algorithms
knows that they are extremely rare. Why should this be?

A claim that an algorithm is the very best for two functions
is a claim that it is the very worst, on average, for all but two
functions. It is due to the diversity of the benchmark set of
test problems that the ‘promise’ is rarely realized. Boosting
performance for one subset of the problems usually detracts
from performance for the complement.

English concludes that hammers contain information about
the distribution of nail-driving problems. Screwdrivers con-
tain information about the distribution of screw-driving prob-
lems. Swiss army knives contain information about a broad
distribution of survival problems. Swiss army knives do many
jobs, but none particularly well. When the many jobs must be
done under primitive conditions, Swiss army knives are ideal.

Thus, according to English, the tool literally carries infor-
mation about the task optimizers are literally tools-an algo-
rithm implemented by a computing device is a physical entity.

Another way of looking at this is to recognize that a com-
puted solution is simply the product of the information pro-
cessing of a problem, and, by a very famous argument, in-

10



formation can never be gained simply by processing. Thus
a problem X is transmitted as a message by an information
processing channel, Y, a computing device, and recoded as an
answer. By the Tuning Theorem argument of the Appendix
there will be a channel coding of Y which, when properly
tuned, is most efficiently transmitted by the problem. In
general, then, the most efficient coding of the transmission
channel, that is, the best algorithm turning a problem into
a solution, will necessarily be highly problem-specific. Thus
there can be no best algorithm for all equivalence classes of
problems, although there may well be an optimal algorithm
for any given class. The tuning theorem form of the No Free
Lunch theorem will apply quite generally to cognitive bio-
logical and social structures, as well as to massively parallel
machines.

Rate distortion, however, occurs when the problem is col-
lapsed into a smaller, simplified, version and then solved.
Then there must be a tradeoff between allowed average dis-
tortion and the rate of solution: the retina effect. In a very
fundamental sense — particularly for real time systems — rate
distortion manifolds present a generalization of the converse of
the Wolpert/Macready no free lunch arguments. The neural
corollary is known as inattentional blindness (Wallace, 2007).

We are led to suggest that there may well be a considerable
set of no free lunch-like conundrums confronting highly par-
allel real-time structures, including epigenetic control of gene
expression, and that they may interact in distinctly nonlinear
ways.

13 Developmental disorders

Let U be an information source representing a systematic em-
bedding environmental ‘program’ interacting with the pro-
cess of cognitive gene expression, here defined as a compli-
cated information set of sources having source joint uncer-
tainty H(Z1,..., Zy) that guides the system into a particular
equivalence class of desired developmental behaviors and tra-
jectories.

Most simply, one can directly invoke the network informa-
tion theory result of equations (3) and (4) of Wallace (2008a),
so that

Again, the Z; represent internal information sources and U
that of the embedding environmental context.

The central point is that a one step extension of that sys-
tem via the results of network information theory (Cover and

Thomas, 1991) allows incorporating the effect of an exter-
nal environmental ‘farmer’ in guiding cognitive developmental
gene expression.

The environmental farming of development may not always
be benign.

Suppose we can operationalize and quantify degrees of both
overfocus/inattentional blindness (IAB) and of overall struc-
ture/environment distortion (D) in the actions of a highly
parallel cognitive epigenetic regulatory system. The essential
assumption is that the (internal) dual information source of a
cognitive structure that has low levels of both TAB overfocus
and structure/environment distortion will tend to be richer
than that of one having greater levels. This is shown in figure
la, where H is the source uncertainty dual to internal cogni-
tive process, X = IAB, and Y = D. Regions of low X,Y,
near the origin, have greater source uncertainty than those
nearby, so H(X,Y) shows a (relatively gentle) peak at the
origin, taken here as simply the product of two error func-
tions.

We are, then, particularly interested in the internal cogni-
tive capacity of the structure itself, as paramatized by degree
of overfocus and by the (large scale) distortion between im-
plementation and impact. That capacity, a purely internal
quantity, need not be convex in the parameter D, which is
taken to characterize interaction with an external environ-
ment, and thus becomes a context for internal measures.

The generalized Onsager argument, based on the homology
between information source uncertainty and free energy, as
explained more fully in the Appendix, is shown in figure 1b.
S =H(X,Y)—- XdH/dX — YdH/dY, the ‘disorder’ analog
to entropy in a physical system, is graphed on the Z axis
against the X —Y plane, assuming a gentle peak in H at the
origin. Peaks in S, according to theory, constitute repulsive
system barriers, which must be overcome by external forces.
In figure 1b there are three quasi-stable topological resilience
modes, in the sense of Wallace (2008b), marked as A, B, and
C. The A region is locked in to low levels of both overfocus
and distortion, as it sits in a pocket. Forcing the system
in either direction, that is, increasing either IAB or D, will,
initially, be met by homeostatic attempts to return to the
resilience state A, according to this model.

If overall distortion becomes severe in spite of homeostatic
developmental mechanisms, the system will then jump to
the quasi-stable state B, a second pocket. According to the
model, however, once that transition takes place, there will
be a tendency for the system to remain in a condition of high
distortion. That is, the system will become locked-in to a
structure with high distortion in the match between struc-
ture implementation and structure impact, but one having
lower overall cognitive capacity, i.e., a lower value of H in
figure 1la.

The third pocket, marked C, is a broad plain in which both
IAB and D remain high, a highly overfocused, poorly linked
pattern of behavior which will require significant intervention
to alter once it reaches such a quasi-stable resilience mode.
The structure’s cognitive capacity, measured by H in figure
la, is the lowest of all for this condition of pathological re-



S=H-XdH/dX-YdS/dY

I

o Wi
‘ \\‘\“\ (e
‘\\‘ AR

high  Jow

X=IAB

Figure 1: a. Source uncertainty, H, of the dual information
source of epigenetic cognition, as parametized by degrees of
focus, X = IAB and distortion, Y = D, between implemen-
tation and actual impact. Note the relatively gentle peak at
low values of X, Y. Here H is generated as the product of two
error functions. b. Generalized Onsager treatment of figure
la. S=H(X,Y)-XdH/dX-YdH/dY. The regions marked
A, B, and C represent realms of resilient quasi-stability, di-
vided by barriers defined by the relative peaks in S. Transi-
tion among them requires a forcing mechanism. From another
perspective, limiting energy or other resources, or imposing
stress from the outside — driving down H in figure la, would
force the system into the lower plain of C, in which the sys-
tem would then become trapped in states having high levels
of distortion and inattentional blindness/overfocus.

silience, and attempts to correct the problem — to return to
condition A, will be met with very high barriers in S, accord-
ing to figure 1b. That is, mode C is very highly resilient,
although pathologically so, much like the eutrophication of a
pure lake by sewage outflow. See Wallace (2008a, b) for a
discussion of resilience and literature references.

We can argue that the three quasi-equilibrium configura-
tions of figure 1b represent different dynamical states of the
system, and that the possibility of transition between them
represents the breaking of the associated symmetry groupoid
by external forcing mechanisms. That is, three manifolds rep-
resenting three different kinds of system dynamics have been
patched together to create a more complicated topological
structure. For cognitive phenomena, such behavior is likely
to be the rule rather than the exception. ‘Pure’ groupoids
are abstractions, and the fundamental questions will involve
linkages which break the underlying symmetry.

In all of this, system convergence is not to some fixed state,
limit cycle, or pseudorandom strange attractor, but rather to
some appropriate set of highly dynamic information sources,
i.e., behavior patterns constituting, here, developmental tra-
jectories, rather than to some fixed ‘answer to a computing
problem’ (Wallace, 2009).

What this model suggests is that sufficiently strong exter-
nal perturbation can force a highly parallel real-time cogni-
tive epigenetic structure from a normal, almost homeostatic,
developmental path into one involving a widespread, comor-
bid, developmental disorder. This is a well studied pattern
for humans and their institutions, reviewed at some length
elsewhere (Wallace and Fullilove, 2008; Wallace, 2008b). In-
deed, this argument provides the foundation of a fairly com-
prehensive model of chronic developmental dysfunction across
a broad class of cognitive systems, including, but not limited
to, cognitive epigenetic control of gene expression. One ap-
proach might be as follows:

A developmental process can be viewed as involving a se-
quence of surfaces like figure 1, having, for example, ‘critical
periods’ when the barriers between the normal state A and the
pathological states B and C are relatively low. During such a
time the system would become highly sensitive to perturba-
tion, and to the onset of a subsequent pathological develop-
mental trajectory. Critical periods might occur during times
of rapid growth and/or high system demand for which an en-
ergy limitation imposes the need to focus via something like
a rate distortion manifold. Cognitive process requires energy
through the homologies with free energy density, and more
focus at one end necessarily implies less at some other. In a
distributed zero sum developmental game, as it were, some
cognitive processes must receive more attentional metabolic
free energy than others.

A structure trapped in region C might be said to suffer
something much like what Wiegand (2003) describes as the
loss of gradient problem, in which one part of a multiple pop-
ulation coevolutionary system comes to dominate the others,
creating an impossible situation in which the other partici-
pants do not have enough information from which to learn.
That is, the cliff just becomes too steep to climb. Wiegand
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(2003) also characterizes focusing problems in which a two-
population coevolutionary process becomes overspecialized on
the opponent’s weaknesses, effectively a kind of inattentional
blindness.

Thus there seems some consonance between our asymptotic
analysis of cognitive structural function and current studies
of pathologies affecting coevolutionary algorithms (e.g. Ficici
et al., 2005; Wallace, 2009). In particular the possibility of
historic trajectory, of path dependence, in producing individ-
ualized failure modes, suggests there can be no one-size-fits-all
amelioration strategy.

Equation (17) basically enables a kind of environmental
catalysis to cognitive gene expression, in a sense closely sim-
ilar to the arguments of Section 6. This is analogous to, but
more general than, the ‘mesoscale resonance’ invoked by Wal-
lace and Wallace (2008): during critical periods, according to
these models, environmental signals can have vast impact on
developmental trajectory.

14 Discussion and conclusions

We have hidden the massively parallel neural network-like
calculations made explicit in the work of Ciliberti et al. and
the Reinitz group, burying them as ‘fitting regression-model
analogs to data’, possibly at a second order epigenetic hier-
archical level. In the real world such calculations would be
quite difficult, particularly given the introduction of punctu-
ated transitions that must be fitted using elaborate renormal-
ization calculations, typically requiring such exotic objects as
Lambert W-functions (e.g., Wallace, 2005).

Analogies with neural network studies suggest, however,
intractable conceptual difficulties for spinglass-type models
of gene expression and development dynamics. In spite of
nearly a century of sophisticated neural network model studies
— including elegant treatments like Toulouse et al. (1986) —
Atmanspacher (2006) felt compelled to state that

To formulate a serious, clear-cut and transpar-
ent formal framework for cognitive neuroscience is a
challenge comparable to the early stage of physics
four centuries ago. Only very few approaches worth
mentioning are visible in contemporary literature.

Furthermore, Krebs (2005) has identified what might well
be described as the sufficiency failing of neural network mod-
els, that is, neural networks can be constructed as Turing ma-
chines that can replicate any known dynamic behavior in the
same sense that the Ptolemaic Theory of planetary motion,
as a Fourier expansion in epicycles, can, to sufficient order,
mimic any observed orbit. Keplerian central motion provides
an essential reduction. Krebs’ particular characterization is
that ‘neural possibility is not neural plausibility’.

Likewise, Bennett and Hacker (2003) conclude that neural-
centered explanations of high order mental function commit
the mereological fallacy, that is, the fundamental logical error
of attributing what is in fact a property of an entirety to a
limited part of the whole system. ‘The brain’ does not exist in
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isolation, but as part of a complete biological individual who
is most often deeply embedded in social and cultural contexts.

Neural network-like models of gene expression and devel-
opment applied to complex living things inherently commit
both errors, particularly in a social, cultural, or environmen-
tal milieu. This suggests a particular necessity for the formal
inclusion of the effects of embedding contexts — the epige-
netic Z and the environmental U — in the sense of Baars
(1988, 2005). That is, gene expression and development are
conditioned by internal and external signals from embedding
physiological, social, and for humans, cultural, environments.
As described above, our formulation can include such influ-
ences in a highly natural manner, as they influence epigenetic
catalysis. In addition, multiple, and quite different, cognitive
gene expression mechanisms may operate simultaneously, or
in appropriate sequence, given sufficient development time.

Developmental disorders, in a broad sense that must in-
clude comorbid mental and physical characteristics, emerge
as pathological ‘resilience’ modes, in the sense of Wallace
(2008b). Environmental farming through an embedding infor-
mation source affecting internal epigenetic regulation of gene
expression, can, as a kind of programming of a highly par-
allel cognitive system, place the organism into a quasi-stable
pathological developmental behavior pattern.

The model of developmental disorder presented here is,
most fundamentally, a statistical one based on the asymptotic
limit theorems of information theory, in the same sense that
regression models are really a broad class based on the Central
Limit Theorem. We have not, then, given ‘a’ model of devel-
opmental disorder in cognitive gene expression, but, rather,
outlined a general strategy for fitting empirically-determined
statistical models of developmental disorder to real data, in
precisely the sense that one would fit regression models to
data.

Such statistical models do not, in themselves, do science.
That is done by comparing fitted models for similar systems
under different, or different systems under similar, conditions,
and by examining the structure of residuals.

A particular inference of this work, then, is that under-
standing complicated processes of gene expression and devel-
opment — and their pathologies — will require construction
of data analysis tools considerably more sophisticated than
now available, including the present crop of simplistic sys-
tems biology models abducted from neural network studies
or stochastic chemical reaction theory.

15 Mathematical appendix

15.1
15.1.1 Basic ideas

Groupoids

Following Weinstein (1996) closely, a groupoid, G, is defined
by a base set A upon which some mapping — a morphism — can
be defined. Note that not all possible pairs of states (a;, ax)
in the base set A can be connected by such a morphism.
Those that can define the groupoid element, a morphism



g = (aj,ax) having the natural inverse g=' = (aj, a;). Given
such a pairing, it is possible to define ‘natural’ end-point maps
a(g) = aj, 8(g) = ax from the set of morphisms G into A, and
a formally associative product in the groupoid g;gs provided
a(g192) = a(g1), B(g192) = B(g2), and B(g1) = a(g2). Then
the product is defined, and associative, (g192)g3 = g1(g293)-

In addition, there are natural left and right identity ele-
ments Ay, pg such that A\gg = g = gp, (Weinstein, 1996).

An orbit of the groupoid G over A is an equivalence class
for the relation a; ~ Gay, if and only if there is a groupoid
element g with a(g) = a; and 3(g) = ay. Following Cannas da
Silva and Weinstein (1999), we note that a groupoid is called
transitive if it has just one orbit. The transitive groupoids
are the building blocks of groupoids in that there is a natural
decomposition of the base space of a general groupoid into
orbits. Over each orbit there is a transitive groupoid, and
the disjoint union of these transitive groupoids is the original
groupoid. Conversely, the disjoint union of groupoids is itself
a groupoid.

The isotropy group of a € X consists of those ¢ in G with
a(g) = a = B(g). These groups prove fundamental to classi-
fying groupoids.

If G is any groupoid over A, the map (a,3) : G — Ax A is
a morphism from G to the pair groupoid of A. The image of
(a, B) is the orbit equivalence relation ~ G, and the functional
kernel is the union of the isotropy groups. If f : X — Y is a
function, then the kernel of f, ker(f) = [(z1,22) € X x X :
f(z1) = f(z2)] defines an equivalence relation.

Groupoids may have additional structure. As Weinstein
(1996) explains, a groupoid G is a topological groupoid over a
base space X if G and X are topological spaces and «, 8 and
multiplication are continuous maps. A criticism sometimes
applied to groupoid theory is that their classification up to
isomorphism is nothing other than the classification of equiv-
alence relations via the orbit equivalence relation and groups
via the isotropy groups. The imposition of a compatible topo-
logical structure produces a nontrivial interaction between the
two structures. Below we will introduce a metric structure on
manifolds of related information sources, producing such in-
teraction.

In essence, a groupoid is a category in which all morphisms
have an inverse, here defined in terms of connection to a base
point by a meaningful path of an information source dual to
a cognitive process.

As Weinstein (1996) points out, the morphism (o, 3) sug-
gests another way of looking at groupoids. A groupoid over
A identifies not only which elements of A are equivalent to
one another (isomorphic), but it also parametizes the different
ways (isomorphisms) in which two elements can be equivalent,
i.e., all possible information sources dual to some cognitive
process. Given the information theoretic characterization of
cognition presented above, this produces a full modular cog-
nitive network in a highly natural manner.

Brown (1987) describes the fundamental structure as fol-
lows:

A groupoid should be thought of as a group with
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many objects, or with many identities... A groupoid
with one object is essentially just a group. So the no-
tion of groupoid is an extension of that of groups. It
gives an additional convenience, flexibility and range
of applications...

EXAMPLE 1. A disjoint union [of groups] G =
UxGx, A € A, is a groupoid: the product ab is defined
if and only if a,b belong to the same G, and ab is
then just the product in the group G. There is an
identity 1y for each A € A. The maps «, 5 coincide
and map Gy to A, A € A.

EXAMPLE 2. An equivalence relation R on [a
set] X becomes a groupoid with o, 3 : R — X the
two projections, and product (z,y)(y,z) = (z,z)
whenever (z,y), (y,z) € R. There is an identity,
namely (z,z), for each x € X...

Weinstein (1996) makes the following fundamental point:

Almost every interesting equivalence relation on
a space B arises in a natural way as the orbit equiv-
alence relation of some groupoid G over B. Instead
of dealing directly with the orbit space B/G as an
object in the category Spqp of sets and mappings,
one should consider instead the groupoid G itself as
an object in the category G}y of groupoids and ho-
motopy classes of morphisms.

The groupoid approach has become quite popular in the
study of networks of coupled dynamical systems which can
be defined by differential equation models, (e.g., Golubitsky
and Stewart 2006).

15.1.2 Global and local symmetry groupoids

Here we follow Weinstein (1996) fairly closely, using his ex-
ample of a finite tiling.

Consider a tiling of the euclidean plane R? by identical 2 by
1 rectangles, specified by the set X (one dimensional) where
the grout between tiles is X = HUV, having H = R X Z and
V =27 x R, where R is the set of real numbers and Z the
integers. Call each connected component of R?\ X, that is, the
complement of the two dimensional real plane intersecting X,
a tile.

Let T' be the group of those rigid motions of R? which leave
X invariant, i.e., the normal subgroup of translations by ele-
ments of the lattice A = HNV = 2Z x Z (corresponding to
corner points of the tiles), together with reflections through
each of the points 1/2A = Z x1/2Z, and across the horizontal
and vertical lines through those points. As noted by Weinstein
(1996), much is lost in this coarse-graining, in particular the
same symmetry group would arise if we replaced X entirely
by the lattice A of corner points. I' retains no information
about the local structure of the tiled plane. In the case of
a real tiling, restricted to the finite set B = [0,2m] x [0, n]
the symmetry group shrinks drastically: The subgroup leav-
ing X N B invariant contains just four elements even though



a repetitive pattern is clearly visible. A two-stage groupoid
approach recovers the lost structure.

We define the transformation groupoid of the action of I’
on R? to be the set

GT,R*) ={(z,v,ylvr € R*,y € R*,y €',z = vy},

with the partially defined binary operation

(:E7 PY? y) (y7 V? Z) = (1’7 7”7 Z)'

Here a(x,v,y) = x, and S(x,v,y) = y, and the inverses are
natural.

We can form the restriction of G to B (or any other subset
of R?) by defining

G(I,R?)|5 = {g € G, R*)|a(g), B(g) € B}

[1]. An orbit of the groupoid G over B is an equivalence
class for the relation

x ~qg y if and only if there is a groupoid element g with
a(g) = z and B(g) = y.

Two points are in the same orbit if they are similarly placed
within their tiles or within the grout pattern.

[2]. The isotropy group of € B counsists of those ¢ in G
with a(g) = ¢ = B(g). It is trivial for every point except
those in 1/2A N B, for which it is Z X Za, the direct product
of integers modulo two with itself.

By contrast, embedding the tiled structure within a larger
context permits definition of a much richer structure, i.e., the
identification of local symmetries.

We construct a second groupoid as follows. Consider the
plane R? as being decomposed as the disjoint union of P; =
BN X (the grout), P, = B\P; (the complement of P; in B,
which is the tiles), and Py = R?\B (the exterior of the tiled
room). Let E be the group of all euclidean motions of the
plane, and define the local symmetry groupoid Gy, as the set
of triples (z,7,y) in B X E x B for which z = vy, and for
which y has a neighborhood U in R? such that v(UNP;) C P;
for i = 1,2,3. The composition is given by the same formula
as for G(T', R?).

For this groupoid-in-context there are only a finite number
of orbits:

O; = interior points of the tiles.

O, = interior edges of the tiles.

O3 = interior crossing points of the grout.

04 = exterior boundary edge points of the tile grout.
Os = boundary ‘T’ points.

Og = boundary corner points.

The isotropy group structure is, however, now very rich
indeed:

The isotropy group of a point in O, is now isomorphic to
the entire rotation group Oa.

It is Z2 X ZQ for 02.

For O3 it is the eight-element dihedral group Dy.

For O4, O and O it is simply Zs.

These are the ‘local symmetries’ of the tile-in-context.
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15.2 Morse Theory

Morse theory examines relations between analytic behavior of
a function — the location and character of its critical points
— and the underlying topology of the manifold on which the
function is defined. We are interested in a number of such
functions, for example information source uncertainty on a
parameter space and ‘second order’ iterations involving pa-
rameter manifolds determining critical behavior, for example
sudden onset of a giant component in the mean number model
(Wallace and Wallace, 2008), and universality class tuning in
the mean field model of the next section. These can be re-
formulated from a Morse theory perspective. Here we follow
closely the elegant treatments of Pettini (2007) and Kastner
(2006).

The essential idea of Morse theory is to examine an n-
dimensional manifold M as decomposed into level sets of some
function f : M — R where R is the set of real numbers. The
a-level set of f is defined as

fHa)={zeM: f(z) =a},

the set of all points in M with f(z) = a. If M is compact,
then the whole manifold can be decomposed into such slices
in a canonical fashion between two limits, defined by the min-

imum and maximum of f on M. Let the part of M below a
be defined as

M, = f(~o0,a] = {x € M : f(x) < a}.

These sets describe the whole manifold as a varies between
the minimum and maximum of f.

Morse functions are defined as a particular set of smooth
functions f : M — R as follows. Suppose a function f has
a critical point z., so that the derivative df(xz.) = 0, with
critical value f(z.). Then f is a Morse function if its critical
points are nondegenerate in the sense that the Hessian matrix
of second derivatives at x., whose elements, in terms of local
coordinates are

Hij = 0%f)0x 07,

has rank n, which means that it has only nonzero eigen-
values, so that there are no lines or surfaces of critical points
and, ultimately, critical points are isolated.

The index of the critical point is the number of negative
eigenvalues of H at x..

A level set f~1(a) of f is called a critical level if a is a
critical value of f, that is, if there is at least one critical point
z. € f~1(a).

Again following Pettini (2007), the essential results of
Morse theory are:

[1] If an interval [a,b] contains no critical values of f, then
the topology of f~![a,v] does not change for any v € (a,b].
Importantly, the result is valid even if f is not a Morse func-
tion, but only a smooth function.

[2] If the interval [a, b] contains critical values, the topology
of f~1[a,v] changes in a manner determined by the properties
of the matrix H at the critical points.



B8] If f: M — R is a Morse function, the set of all the
critical points of f is a discrete subset of M, i.e., critical
points are isolated. This is Sard’s Theorem.

[4] If f : M — R is a Morse function, with M compact, then
on a finite interval [a, b] C R, there is only a finite number of
critical points p of f such that f(p) € [a,b]. The set of critical
values of f is a discrete set of R.

[5] For any differentiable manifold M, the set of Morse func-
tions on M is an open dense set in the set of real functions of
M of differentiability class r for 0 < r < co.

[6] Some topological invariants of M, that is, quantities that
are the same for all the manifolds that have the same topology
as M, can be estimated and sometimes computed exactly once
all the critical points of f are known: Let the Morse numbers
wi(i=0,...,m) of a function f on M be the number of critical
points of f of index 7, (the number of negative eigenvalues of
H). The Euler characteristic of the complicated manifold M
can be expressed as the alternating sum of the Morse numbers
of any Morse function on M,

X = Z(—l)i,ui.
i—1

The Euler characteristic reduces, in the case of a simple
polyhedron, to

x=V-E+F

where V| E, and F are the numbers of vertices, edges, and
faces in the polyhedron.

[7] Another important theorem states that, if the interval
[a,b] contains a critical value of f with a single critical point
T, then the topology of the set M} defined above differs from
that of M, in a way which is determined by the index, 4, of
the critical point. Then M, is homeomorphic to the manifold
obtained from attaching to M, an i-handle, i.e., the direct
product of an i-disk and an (m — ¢)-disk.

Again, see Pettini (2007) or Matusmoto (2002) for details.

15.3 Generalized Onsager Theory

Understanding the time dynamics of groupoid-driven infor-
mation systems away from the kind of phase transition criti-
cal points described above requires a phenomenology similar
to the Onsager relations of nonequilibrium thermodynamics.
This also leads to a general theory involving large-scale topo-
logical changes in the sense of Morse theory.

If the Groupoid Free Energy of a biological process is
parametized by some vector of quantities K = (K7, ..., Kp,),
then, in analogy with nonequilibrium thermodynamics, gra-
dients in the K of the disorder, defined as

SG = Fg(K) — ZKjaFg/aKj

j=1

become of central interest.

Equation (18) is similar to the definition of entropy in terms
of the free energy of a physical system.

Pursuing the homology further, the generalized Onsager re-
lations defining temporal dynamics of systems having a GFE
become

dK;/dt =Y L; 0S¢ /0K,

(19)

where the L;; are, in first order, constants reflecting the
nature of the underlying cognitive phenomena. The L-matrix
is to be viewed empirically, in the same spirit as the slope and
intercept of a regression model, and may have structure far
different than familiar from more simple chemical or physical
processes. The 0Sg/0K are analogous to thermodynamic
forces in a chemical system, and may be subject to override by
external physiological or other driving mechanisms: biological
and cognitive phenomena, unlike simple physical systems, can
make choices as to resource allocation.

That is, an essential contrast with simple physical systems
driven by (say) entropy maximization is that complex bio-
logical or cognitive structures can make decisions about re-
source allocation, to the extent resources are available. Thus
resource availability is a context, not a determinant, of be-
havior.

Equations (18) and (19) can be derived in a simple
parameter-free covariant manner which relies on the under-
lying topology of the information source space implicit to the
development (e.g., Wallace and Wallace, 2008b). We will not
pursue that development here.

The dynamics, as we have presented them so far, have
been noiseless, while biological systems are always very noisy.
Equation (19) might be rewritten as

dK;/dt = L;0Sc/0K; + oW (t)

where o is a constant and W (t) represents white noise. This
leads directly to a family of classic stochastic differential equa-
tions having the form

dK? = L (t,K)dt + o7 (t, K)dB;,



where the I/ and o7 are appropriately regular functions of
t and K, and dB; represents the noise structure, and we have
readjusted the indices.

Further progress in this direction requires introduction of
methods from stochastic differential geometry and related
topics in the sense of Emery (1989). The obvious inference
is that noise — not necessarily ‘white’ — can serve as a tool
to shift the system between various topological modes, as a
kind of crosstalk and the source of a generalized stochastic
resonance.

Effectively, topological shifts between and within dynamic
manifolds constitute another theory of phase transitions (Pet-
tini, 2007), and this phenomenological Onsager treatment
would likely be much enriched by explicit adoption of a Morse
theory perspective.

15.4 The Tuning Theorem

Messages from an information source, seen as symbols z; from
some alphabet, each having probabilities P; associated with
a random variable X, are ‘encoded’ into the language of a
‘transmission channel’, a random variable Y with symbols
Yk, having probabilities Py, possibly with error. Someone
receiving the symbol y; then retranslates it (without error)
into some xj, which may or may not be the same as the z;
that was sent.

More formally, the message sent along the channel is char-
acterized by a random variable X having the distribution

P(X

l‘j) = Pj,j = 1,...,M.

The channel through which the message is sent is charac-
terized by a second random variable Y having the distribution

P(Y

yk) = Pk,k = 1, ...,L.

Let the joint probability distribution of X and Y be defined
as

P(X = LL’j7Y = yk) = P(xj7yk) = Pj’k
and the conditional probability of Y given X as
P(Y =yl X = z;) = P(yr|;).

Then the Shannon uncertainty of X and Y independently

M
H(X,Y) == Pjxlog(P;).

j=1k=1

(21)

The conditional uncertainty of Y given X is defined as

M L
H(Y|X)==) > Pjxlog[P(yelz;)].

j=1k=1

(22)

For any two stochastic variates X and Y, H(Y) > H(Y|X),
as knowledge of X generally gives some knowledge of Y.
Equality occurs only in the case of stochastic independence.

Since P(z;,yx) = P(z;)P(yx|z;), we have

H(X|Y) = H(X,Y) - H(Y).

The information transmitted by translating the variable X
into the channel transmission variable Y — possibly with error
— and then retranslating without error the transmitted Y back
into X is defined as

I(X|Y) = H(X) - HX|Y) = HX)+ HY) - HX,Y)

(23)

See, for example, Ash (1990), Khinchin (1957) or Cover and
Thomas (1991) for details. The essential point is that if there
is no uncertainty in X given the channel Y, then there is no
loss of information through transmission. In general this will
not be true, and herein lies the essence of the theory.

Given a fixed vocabulary for the transmitted variable X,

and the joint uncertainty of X and Y together are defined and a fixed vocabulary and probability distribution for the

respectively as

M
H(X) = *ijlog(Pj)

L

H(Y) =~ Pilog(P)
k=1

17

channel Y, we may vary the probability distribution of X in
such a way as to maximize the information sent. The capacity
of the channel is defined as

C =max I(X]Y)
P(X)

(24)



subject to the subsidiary condition that > P(X) = 1.

The critical trick of the Shannon Coding Theorem for send-
ing a message with arbitrarily small error along the channel
Y at any rate R < C is to encode it in longer and longer
‘typical’ sequences of the variable X; that is, those sequences
whose distribution of symbols approximates the probability
distribution P(X) above which maximizes C.

If S(n) is the number of such ‘typical’ sequences of length
n, then

~
~

log[S(n)]
where H(X) is the uncertainty of the stochastic variable
defined above. Some consideration shows that S(n) is much
less than the total number of possible messages of length n.
Thus, as n — oo, only a vanishingly small fraction of all pos-
sible messages is meaningful in this sense. This observation,
after some considerable development, is what allows the Cod-
ing Theorem to work so well. In sum, the prescription is to
encode messages in typical sequences, which are sent at very
nearly the capacity of the channel. As the encoded messages
become longer and longer, their maximum possible rate of
transmission without error approaches channel capacity as a
limit. Again, Ash (1990), Khinchin (1957) and Cover and
Thomas (1991) provide details.

This approach can be, in a sense, inverted to give a tuning
theorem which parsimoniously describes the essence of the
Rate Distortion Manifold.

Telephone lines, optical wave, guides and the tenuous
plasma through which a planetary probe transmits data to
earth may all be viewed in traditional information-theoretic
terms as a noisy channel around which we must structure
a message so as to attain an optimal error-free transmission
rate.

Telephone lines, wave guides, and interplanetary plasmas
are, relatively speaking, fixed on the timescale of most mes-
sages, as are most other signaling networks. Indeed, the
capacity of a channel, is defined by varying the probability
distribution of the ‘message’ process X so as to maximize
I(X|Y).

Suppose there is some message X so critical that its prob-
ability distribution must remain fixed. The trick is to fix the
distribution P(z) but modify the channel — i.e., tune it — so
as to maximize [(X|Y). The dual channel capacity C* can
be defined as

nH(X),

=  max  I(X|Y).
P(Y),P(Y]X)
(25)
But
= max I(Y|X)
PY),P(Y]X)
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since
IX|Y)=H(X)+H(Y)-HX,Y)=1(Y|X).

Thus, in a purely formal mathematical sense, the message
transmits the channel, and there will indeed be, according
to the Coding Theorem, a channel distribution P(Y') which
maximizes C*.

One may do better than this, however, by modifying the
channel matrix P(Y|X). Since

M
Ply;) = 3 Pl Plyle,).

P(Y) is entirely defined by the channel matrix P(Y|X) for
fixed P(X) and

*

max

I(Y|X) = max I(Y|X).
P(Y),P(Y|X)

PY|X)

Calculating C* requires maximizing the complicated ex-
pression

IX|)Y)=HX)+H(Y)-H(X,)Y),

which contains products of terms and their logs, subject
to constraints that the sums of probabilities are 1 and each
probability is itself between 0 and 1. Maximization is done
by varying the channel matrix terms P(y;|x;) within the con-
straints. This is a difficult problem in nonlinear optimization.
However, for the special case M = L, C* may be found by
inspection:

If M = L, then choose

P(l/j|ffi) = 5j,iv

where 0; ; is 1 if ¢ = j and 0 otherwise. For this special case

with P(yx) = P(xzy) for all k. Information is thus trans-
mitted without error when the channel becomes ‘typical’ with
respect to the fized message distribution P(X).

If M < L, matters reduce to this case, but for L < M infor-
mation must be lost, leading to Rate Distortion limitations.

Thus modifying the channel may be a far more efficient
means of ensuring transmission of an important message than
encoding that message in a ‘natural’ language which maxi-
mizes the rate of transmission of information on a fixed chan-
nel.

We have examined the two limits in which either the dis-
tributions of P(Y) or of P(X) are kept fixed. The first pro-
vides the usual Shannon Coding Theorem, and the second a
tuning theorem variant, a tunable retina-like Rate Distortion
Manifold. It seems likely, however, than for many important
systems P(X) and P(Y) will interpenetrate, to use Richard
Levins’ terminology. That is, P(X) and P(Y") will affect each
other in characteristic ways, so that some form of mutual tun-
ing may be the most effective strategy.
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