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Abstract:

I present a single parameter model of free recall and fit the one parameter, the probability per time unit of an item

in  working  memory  entering the  next  memory  store  (similar  to  Atkinson and Shiffrin,  1968),  to  the original

Murdock (1962) data.  Working memory is modeled as having space for a maximum of 4 items (Cowan, 2001).

The first four probability values convey precise information about how items in the partially filled working memory

enter the next memory store.  In particular, one can distinguish between four separate “sub-stores” and a single

store model.  Two alternatives follow for the probability of an item in the initially partially filled working memory

store to enter the next memory store:  the same probability as a single item in the filled working memory or a

probability proportional to the total space that exists in working memory.  I find that the latter alternative is a

better fit (though not a perfect fit), suggesting that working memory is not divided into four separate sub-stores.

It is suggested that new high statistics (low noise) experiments on short lists will either settle the issue or prove

theory incorrect.



Introduction

Short list recall probabilities is the focal point of many important issues:  the number of chunks that can be held

in focus at any one time, which happens to be 4 (Cowan, 2001), how items in working memory go into the next

memory store, which items are recalled in which order, etc.  There are many complex models that exist (for a

review see Daming (2009)) but the more complex the model and the more parameters used the more difficult it

is to evaluate the interplay between the experimental data and the model itself.  In this paper I am going to make

the simplest possible model and see what information can be obtained.  It is a model that I would expect would

be used in text books because of its simplicity but also one that has important things to say about the shape of

the initial part of the free recall curves, i.e. about the properties of a partially filled working memory.

Model

In this model an item can be either in working memory (WM), in the next memory store (NMS) or lost.  Working

memory can handle up to four chunks (Cowan, 2001).  We are going to assume that experimental items are to

be treated as chunks.  As a new item is presented the probability that it goes into working memory is 1 and the

probability that each of the items in working memory leave working memory is ¼.  While in working memory the

probability per unit time that an item is transferred into NMS is α for small times.  Before the list is presented,

WM is unfilled and it is assume that the first four items do not leave WM.  

My model is a simplification of Atkinson & Shiffrin (1968) in which four parameters were used, the buffer size (set

to 4  by the data in Cowan (2001)), the probability of entering WM (effectively set to 1 in my model), the decay

rate of information from LTS (effectively set to 0 in my model.  Note that having a non-zero decay rate suggests

that the NMS should not be termed LTS as in Atkinson & Shiffrin (1968)).

The fitted model result is shown in Fig. 1.  The shape of the recall curve is modeled very nicely.



Fig. 1a.  The probability of free recall from the Murdock 10-2 experiment compared with the model fit using the

parameter α=0.11/second.  R squared is 0.994.

It is presently not known just how working memory works on the biochemical level (my own prediction is in

Tarnow (2009)) and it is not known why there is a limit of four chunks although there are some speculations

(Cowan, 2001).  Not much is known either about the nature of the four chunk limit.  For example, one can ponder

whether one item in WM takes up one quarter of the space or whether it takes up all the space. The first four

items tell  us  important  information  about  the partially  filled  working  memory  because they are  presumably

independent of how items in WM are displaced since they come from an assumption that no items are displaced

until WM is full.  

My one parameter model predicts that the three differences in recall probabilities of the first and second, second

and  third  and  third  and  forth  items  are  proportional  to  α  with  proportionality  constants  1−3/4N−4 ,

1−3/4N−4  and  ¾N−41−3/ 4N−4   where  N  is  the  number  of  items  in  the  list.   Various

combinations  of  these differences  have similar  properties.   These proportionality  constants  are  “rules”  that

experimental measurements should fulfill if the theory is correct.  In particular, their ratios are independent of α

and only dependent on the partially filled working memory.

Let's have a look what experimental measurements can tell us about these three constants.  In table 1 is shown

the constants calculated from the Murdock (1962) data.  The α values used are the α values used in the initial

fits.
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“10-2”
data

“15-2”
data

“20-1”
data

“20-2”
data

“30-1”
data

“40-1” data Average

P1−P2
α

1.33
(0.82)

1.63 1.88
(0.99)

1.42
(0.99)

1.92 1.1 (1.0)

P2−P3
α

0.94
(0.82)

0.48 0.78
(0.99) 

0.45
(0.99)

0.89 0.73 (1.0)

P3−P4
α

0.12
(0.15)

0.44 0.54
(0.01)

0.21
(0.01)

0.32 0.04 (0.000003)

P1−P4
α

2.44 (

P1−P2
P2−P3

1.42 (1
or 1.5)

3.38 (1
or 1.5)

2.39
(1 or
1.5)

3.15 (1
or 1.5)

2.16 (1 or
1.5)

1.52 (1 or 1.5) 2.34 (1 or 1.5)

P1−P3
P1−P4

Table 1.  Values of difference constants calculated from Murdock (1962) data.  The theoretical values are shown

in parenthesis.

The experimental data is noisy and differences of noisy measurements tend to be noisier than the numbers.

There seems to be somewhat of an agreement, however.   If the experimental data were to improve, my model

can make another prediction.  One measurement of this would be whether a single item in WM has a probability

of α to go into NMS or whether it has a probability of 4α .  In the latter case, the theoretical predictions of the

difference constants are slightly changed, see Table 2.



One item, one channel One item, 4 channels, two items 2
channels each, 3 items 4/3
channels each

P1−P2
α

1−3/4N−4 2 1−3 /4 N−4

P2−P3
α

1−3/4N−4 4 /31−3/4N−4

P3−P4
α

¾N−41−3/ 4N−4  ¾N−41−3/ 4N−4 

P1−P2
P2−P3

1 1.5

Table 2.  Theoretical values of difference constants in two types of partially filled WM:  the second column shows

the case for which each item is treated as a single item even if WM is partially filled, the third column shows the

case for which each item fills up as much of WM as is possible.  The last row shows the ratio that experiment

should use to distinguish between the two cases (see below).  It is independent of the total number of items in

the list.

Notice that the third difference is the same for the two cases.  Since α is not known experimentally, the two

cases can be simplest distinguished by the ratio of 
P1−P2
P2−P3

.  If each item gets a single channel in an

otherwise empty WM the ratio should be 1, otherwise it should be 1.5, independent of the number of items in the

list.  The calculations from measurements in Murdock (1962) are shown in Table 1.  Two values are 1.5 and two

values are much larger.  The experimental noise is too high to give us an answer but from now on we will select

the second possibility for the model because it seems to fit the beginning items the best.

Fig. 2a-f show the model and Murdock (1962) results for the six experiment assuming a working memory in

which the single item takes up the full working memory.  While I could have used only one fitting constant, I

included one for each measurement to show that there is a variation in α that makes sense:  The trend in α is to

become lower the higher the number of items or the longer the experiment takes.  This may reflect boredom

from the experimental subjects, the longer the experiment the lower the probability of moving an item from WM

to NMS.  Note that the partially filled properties of working memory can be done with very small lists, minimizing

the subjects' boredom.  

There seems to be systematic deviations present for the last four items – the probability of the last item seems to

be overestimated (it is set to 1) and the probability of the items just preceding is higher in experiment than

theory.  After the last item presentation the subjects may be more intent on performing well and start to rehearse.

Laming (2009) suggests that this scrambling of working memory leads to changes in first item recalls (for which

item 7 seems unusually high.  Average over the last four is typically 6-9% higher than the fitted model perhaps



implying that the potential rehearsal of working memory items themselves improves their recall probabilities.)

Fig. 2a.  The probability of free recall from the Murdock 10-2 experiment compared with the model fit using the

parameter α =0.098/second and one item – four channels.  R squared is 0.992.  Average over the last four items

is 0.79 versus fitted 0.74.
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Fig. 2b.  The probability of free recall from the Murdock 15-2 experiment compared with the model fit using the

parameter α=0.093/second and one item – four channels.  R squared is 0.989.Average over the last four items is

0.80 versus fitted 0.74.

Fig. 2c.The probability of free recall from the Murdock 20-1 experiment compared with the model fit using the

parameter α=0.091/second and one item – four channels. R squared is 0.978.  Average over the last four items

is 0.77 versus fitted 0.71.
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Fig. 2d.  The probability of free recall from the Murdock 20-2 experiment compared with the model fit using the

parameter α=0.070/second and one item – four channels.  R squared is 0.988. Average over the last four items

is 0.77 versus fitted 0.72.

Fig. 2e.  The probability of free recall from the Murdock 30-1 experiment compared with the model fit using the

parameter α=0.0088/second and one item – four channels.  R squared is 0.979. Average over the last four items

is 0.78 versus fitted 0.71.
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Fig. 2f  The probability of free recall from the Murdock 40-1 experiment compared with the model fit using the

parameter α=0.058/second and one item – four channels.  R squared is 0.984.  Average over the last four items

is 0.74 versus fitted 0.70.

Finally, Cowan (2001) finds that some subjects may have 3 or 5 as a working memory chunk limit.  My model fits

to the 10-2 curve under those circumstances are shown in Fig. 3.  The differences are not all that large, again

suggesting the importance of a high statistics experiment.  The number of starting points above the bottom is

(chunk limit – 2), the middle items move up and down unpredictably with the chunk limit, the last items, excluding

the very last item, move up with the chunk limit.
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Fig. 3.  The probability of free recall with the model fit for 3, 4 and 5 places in WM.  Note that the number of

starting points above the bottom is (chunk limit – 2).
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