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Abstract— Over the last decade, significant progress has been 

made in understanding complex biological systems, however 
there have been few attempts at incorporating this knowledge 
into nature inspired optimization algorithms.    In this paper, we 
present a first attempt at incorporating some of the basic 
structural properties of complex biological systems which are 
believed to be necessary preconditions for system qualities such 
as robustness.  In particular, we focus on two important 
conditions missing in Evolutionary Algorithm populations; a self-
organized definition of locality and interaction epistasis.  We 
demonstrate that these two features, when combined, provide 
algorithm behaviors not observed in the canonical Evolutionary 
Algorithm or in Evolutionary Algorithms with structured 
populations such as the Cellular Genetic Algorithm.  The most 
noticeable change in algorithm behavior is an unprecedented 
capacity for sustainable coexistence of genetically distinct 
individuals within a single population.  This capacity for 
sustained genetic diversity is not imposed on the population but 
instead emerges as a natural consequence of the dynamics of the 
system.    

 
Index Terms— Complex Systems, Evolutionary Algorithms, 

Network Evolution, Optimization, Self-Organization, Sustainable 
Diversity  

 

I. INTRODUCTION 
he need to sustain genetic diversity in an Evolutionary 
Algorithm (EA) is as well known as it is difficult to 

achieve.  Maintaining diversity in an EA population has 
traditionally involved a top-down approach where diversity is 
forced upon the system by genetic operators.  Examples 
include operators related to selection (Fitness Sharing [1], 
Crowding [2], [3]), search operators [4], [5], and population 

restarts 
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[6].  A more “nature-inspired” alternative is to 
incorporate constraints into the system dynamics that are 
present in real physical systems.  One such constraint comes 
from defining locality in a system such that each component 
(e.g. population individual) is restricted in who it can interact 
with.  An Evolutionary Algorithm which mimics nature in this 
way is referred to as a structured EA and is seen for instance 
in the island model Genetic Algorithm (GA) [7] and the 
Cellular GA [8].  For structured EA designs including the 
Evolutionary Algorithms used in this research, the population 
is defined on a network where each member of the population 
is represented by a node in the network.   

These population structures impact the EA through the 
localization of genetic operators.  For instance, actions such as 
reproduction and selection only occur among individuals 
directly connected (linked) or near each other in the network.  
The three types of population structures typically considered 
for EA populations are shown on the top row of Figure 1.   

The fully connected graph in Figure 1a represents the 
canonical GA design, which we refer to as the Panmictic GA.  
Here, each individual can interact with every other individual 
such that no definition of locality is possible.  The network in 
Figure 1b represents a typical island model population 
structure where individuals exist in fully-connected subgroups 
which are largely isolated from other population subgroups.  
Here the large arrows represent interactions which take place 
between subgroups but occur at a time scale much greater than 
that of interactions within subgroups.  Consequently, the 
locality of island model networks is defined on a scale that is 
typically much larger than the individual.  The final EA 
structure shown in Figure 1c represents a Cellular EA 
population structure.  Similar to Cellular Automata, the 
network of interactions takes on a lattice structure with 
interactions constrained by the dimensionality of the lattice 
space.  With the Cellular GA, each individual has a unique 
environment defined by its own unique set of interactions 
which we refer to as a neighborhood.   

The ratio of neighborhood size (i.e. number of connections 
per node) to system size (i.e. total number of nodes) can be 
seen as a measure of locality and we find this ratio decreases 
as we consider the EA population structures from left to right 
on the top row of Figure 1. 

Although the three designs clearly have different degrees of 
locality, they also have some important similarities.  For each 
population structure, the nodes within the network each have 
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the exact same number of interactions and the same type of 
interactions (i.e. regular graphs).  Furthermore, the networks 
for all three cases are static and predefined.   

Although the current structures for EA populations have 
proved beneficial to EA performance, the population 
structures do not actually resemble the interaction networks of 
complex biological systems.  This puts into question how 
“nature-inspired” these EA designs are and what additional 
benefits might be derived from more accurate representations 
of complex systems.   

Over the last several years, the interaction networks of 
many complex systems have been studied.  It is now known 
that these systems display some interesting non-random 
characteristics that are similar among many biological and 
even manmade systems [11].  These characteristics are 
believed to be highly relevant to the behavior of these systems 
and particularly important to emergent qualities of these 
systems such as robustness.   

Our goal in this work is to recreate the structural 
characteristics of complex systems within an EA population.  
In order to do this, we have developed simple rules which 
allow the population structure to coevolve with the population 
dynamics of the EA.  This has resulted in EA population 
structures which do in fact have several structural 
characteristics similar to complex systems.  We refer to this 
EA design as the Self-Organizing Topology Evolutionary 
Algorithm (SOTEA).  An example of a SOTEA network is 
shown in Figure 1d.  Unlike most other contemporary 
structured EA designs, one can see that each individual no 
longer has the same number of neighbors.  Also, the structural 
characteristics of the SOTEA network emerge through a 
process of structural evolution that is not sensitive to the 
initial network structure.   

Recently, there have been others which have considered 
population network structures that are similar in some respects 
to SOTEA.  For instance, some have considered EA 
populations defined on small-world and scale-free networks 
such as [12], [13] where the network structure was grown 
prior to the EA run.  In these cases, some of the network 
characteristics are similar to SOTEA, however the networks 
are grown prior to running the EA instead of having the 
structure coevolve with the EA population.  As a result, 
performance improvements using these network structures 
have largely not been realized [12]. 

Also, some have investigated dynamic network structures 
such as [8] where the grid shape of a Cellular GA adapts in 
response to performance data using a predefined adaptive 
strategy.  Unlike this form of structural dynamics, SOTEA is 
the first structured EA design which can acquire some of the 
structural characteristics of biological complex systems 
through the coevolution of network structure with population 
dynamics.  

 

a) b) c)

d) e) f)

Figure 1:  Examples of interaction networks.  The networks on 
the top represent current structures for defining interactions in 
EA populations and are known as (from left to right) Canonical 
GA, island model GA, and Cellular GA.  Networks at the bottom 
have been developed with one or more characteristics of complex 
biological networks and are classified as (from left to right) Self-
Organizing Networks (presented here), Hierarchical Networks 
[9], and Small World Networks [10].  Figure 1e is reprinted with 
permission from AAAS.   

In the next section, we briefly discuss some of the structural 
characteristics observed in complex biological networks as 
well as discuss ways in which networks can be grown with 
these characteristics.  In this section we also describe details 
of the SOTEA algorithm as well as a Cellular GA algorithm 
that is similar in design to SOTEA.  In Section III, we present 
our experimental setup including the test functions used and 
remaining aspects of the EA algorithm design.  Results are 
provided in Section IV with discussion and conclusions in 
Sections V and VI. 

II. MODELING INTERACTIONS IN COMPLEX SYSTEMS 

A. Structural Characteristics of Complex Networks 
To help understand the interaction networks of complex 

systems, we introduce a few simple measures commonly used 
to assess network structural characteristics.   

Characteristic Path Length (L):  The path length is the 
shortest distance between two nodes in a network.  The 
characteristic path length L is the average path length over all 
node pair combinations in a network.  Generally, L grows very 
slowly with increasing system size (e.g. population size) M in 
complex systems.  For instance, Networks exhibiting the 
“Small World” property, such as the network in Figure 1f, 
have L proportional to log M [14]. 

Degree Average (kave):  The degree k is the number of 
connections a node has with the rest of the nodes in the 
network.  The degree average kave is k averaged over all nodes 
in the network.  The degree average is expected to grow very 
slowly with increasing M in complex networks.  

Degree Distribution:  The degree distribution has been 
found to closely approximate a power law distribution for 
biological complex systems with power law and exponential 
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distributions often fitting abiotic complex systems [15].   
Other interesting characteristics such as modularity and 

hierarchy can be measured and are present for instance in the 
network in Figure 1e which was developed by Ravasz et al. in 
[9].  For reviews of these and other characteristics of complex 
networks, we refer the reader to [11], [15], [16]. 

The structural characteristics just described are measured in 
the different structured EA presented in this work.  These 
characteristics can also be interpreted within the context of 
EA populations.  For instance, with structured EA 
populations, individuals directly connected in the network are 
referred to as neighbors.  The total number of neighbors that 
an individual has is called the neighborhood size which is the 
same as the node degree k.  The average neighborhood size in 
the population is equivalent to the degree average kave of the 
network.  The characteristic path length L of the network is a 
measure of the average distance separating individuals in the 
population.     

B. Self-Organization of Complex Networks 
If we want to mimic complex systems, we should try to 

understand how they obtain their interesting behaviors and 
properties.  For both man-made and biological complex 
systems, it is generally understood that the development of 
interaction networks in these systems occurs through a process 
of constrained growth.  Examples would include growth of the 
World Wide Web, the developmental process in multi-cellular 
organisms, and complexification of the genome.   

Over the last decade, substantial efforts have gone into the 
development of models for the growth of networks with 
characteristics similar to that seen in real systems.  These 
efforts have been met with success and have broadened our 
understanding of complex systems.  Exemplars of this success 
can be seen in the Barabasi-Albert (BA) Model [17], and the  
Duplication and Divergence Model [18].  Common to most 
successful models is the emergence of relevant network 
characteristics, such as those previously mentioned (e.g. L ~ 
log M,  Power law k distribution), through the use of simple, 
locally defined rules which constrain structural dynamics 
(including, but not limited to, network growth).  Furthermore, 
these structural dynamics are driven by one or more states or 
properties of the nodes.  This simply means that connections 
in the network change and nodes are added or removed with a 
bias based on state values that are assigned or calculated for 
each node.  States that have been used in models include the 
degree of a node k [17], measures of node modularity [19],  as 
well as measures of node fitness [20].   

In this work, we use measures of node fitness for our 
network dynamics and we give a simple example of how this 
could occur.  For this example, imagine a growing network 
where each growth step involves the addition of a new node.  
When a new node is added, it must attach to the network by 
adding links between itself and existing nodes.  These new 
links could be connected to existing nodes chosen at random 
or the new node might prefer to attach to nodes with high 
fitness.  In the latter case, the structural dynamics would be 

driven by the node states (in particular the fitness values of the 
nodes).  If we decided to define the fitness of a node as being 
equal to k (node degree), then we would be using a network 
growth model that is essentially the same as the preferential 
attachment method in the BA Model [17].   

The network dynamics we use are similar in concept but 
quite different in their implementation.  In the next section, we 
discuss the particular rules we use for governing network 
dynamics in our structured EA populations. 

1) SOTEA and Cellular GA  Network Dynamics 
As previously mentioned, the population of the EA is 

defined on a network.  Besides the trivial case where the 
network is fully connected, we also consider two other 
network designs referred to as the Cellular GA and SOTEA.  
For the Cellular GA and SOTEA, the population is initially 
defined in a ring structure with each node connected to exactly 
two others (e.g. Figure 1c).  A change to the network structure 
(i.e. network dynamics) simply refers to the addition or 
removal of nodes or links.  For both EA designs, a node is 
only added to the network when a new offspring is added to 
the population and a node is only removed from the network 
when an individual dies.  Network changes due to offspring 
creation are referred to as reproduction rules and changes due 
to death of individuals are referred to as competition rules.  
The reproduction and competition rules define how network 
dynamics occur, however only the competition rules make 
changes to the network structure based on node fitness.   

a)  SOTEA Reproduction Rule

 
Figure 2:  Reproduction rules that change the population 
structure (i.e. network dynamics) for SOTEA and the Cellular 
GA.  a)SOTEA Reproduction:  When an offspring is created (by 
asexual reproduction), a new node (shown in black) is added to 
the network through a connection to its parent (shown in gray).  
Each of the parent’s connections are then inherited by the 
offspring (black dotted line) with probability Padd followed by 
each of the inherited connections being lost by the parent (gray 
dotted line) with probability Premove.  For this work, we have set 
Padd = Premove = 10%.  This particular rule is loosely based on 
established models for genome complexification [18].  b)Cellular 
GA Reproduction:  When an offspring is created, a new node 
(shown in black) is added to the network and connected to its 
parent (shown in gray).  One of the parent’s connections is then 
transferred to the offspring, which allows the network to 
maintain a ring topology. 

Add 
Offspring

padd

premove

Add 
Offspring

b)  Cellular GA Reproduction Rulea)  SOTEA Reproduction Rule

Add 
Offspring

padd

premove

b)  Cellular GA Reproduction Rule

Add 
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Reproduction Rule: The reproduction rule (described in 
Figure 2)  occurs in SOTEA and the Cellular GA when a new 
offspring is created.  In all EA designs, the creation of 
offspring involves making a clone of a parent and then 
mutating that clone meaning that each offspring only has one 
parent.  Structural changes from the reproduction rule involve 
the addition of a new node (offspring) to the network, 
connection of the new node to its parent, and then (depending 
on the EA design) the possibility of additional connections 
being added to the offspring node and the possibility of  
connections being removed from the parent node.  Complete 
details of the addition and removal of connections in the 
reproduction rule are provided in Figure 2.    

The reproduction rule represents the only difference 
between SOTEA and the Cellular GA.  With SOTEA, the 
addition of new nodes causes changes to the network topology 
(see Figure 2a).  With the addition of the first offspring in the 
first generation, the ring topology can change into something 
that is similar but not identical to a ring structure.  These 
changes to network structure turn out to be a crucial source of 
structural innovation needed for evolution of the SOTEA 
topology.  

Competition Rule: The competition rule (described in 
Figure 3) is the same for SOTEA and the Cellular GA.  With 
this rule, a randomly selected individual tries to kill its 
weakest  (i.e. least fit) neighbor.  If instead, the selected 
individual is worse than its worst neighbor, then it will die.  
Structural changes from the competition rule involve removal 
of the dead individual and the transfer of its connections to the 
individual that survived.   

 
Figure 3:  Competition rules that change the population 
structure (i.e. network dynamics) for SOTEA and the Cellular 
GA.  The details of the competition rule are the same for SOTEA 
and the Cellular GA, however examples are given for both EA 
designs in this figure.  Competition rule:  The first step is to select 
an individual at random.  This individual then decides to 
compete for survival with its least fit neighbor.  When these two 
individuals compete for survival such as the nodes shown in 
black and gray, the less fit individual is killed.  The winning 
individual (shown in black) inherits all connections from the 
losing individual (shown in gray) that weren’t already in the 
winning individual’s neighborhood.   Finally, the losing 
individual is removed from the network.   

This rule is particularly important because the structural 
changes depend on node states.  This makes it similar to other 
network evolution models developed in complex network 
research.  Figure 4 is provided to help show how structural 
changes depend on node states.  Notice that once a node has 
been selected for the competition rule, this node must decide 
who to compete with.  The decision of who to compete with 
depends on which of the nodes is worst in the neighborhood.  
As a result, structural changes are always driven towards those 
nodes with the lowest fitness.  Notice that if an individual 
decided to kill one of its neighbors at random then this 
decision would no longer depend on the node states and the 
network structural dynamics would no longer depend on (i.e. 
be coupled to) the population dynamics.   

 
Figure 4:  This figure shows how structural changes from 
SOTEA’s competition rule depends on the fitness of individuals 
in the network.  Starting with the network at the top, we assume 
the individual represented by the black node must decide which 
of its neighbors it will try to kill.  The networks at the bottom 
show what would happen if neighbor 1,2, or 3 had been the least 
fit in the black node’s neighborhood.  Each of the choices creates 
a new structure that is different from the other choices.  Notice 
that for the networks on the bottom, the black node has been 
changed to gray.  This is to indicate that either the black node or 
the white neighbor could have won (the structure is the same in 
either case).   

C. Dynamics Occurring on Networks 
To mimic the interaction networks of complex systems, it is 

important to recognize that state dynamics occurring on these 
networks play a significant role in the system’s behavior.  In 
complex dynamical systems, the states of a node are (by 
definition) dependent upon the states of neighboring (i.e. 
connected) nodes.  Significant progress has taken place 
recently in understanding the state dynamics of complex 
systems.  Some current directions of research include 
exploring the synchronization of component states [21], [22], 
robustness of dynamical expression [23], [24] and the coupled 
dynamics of states and network structures [25].   

In this work, we wanted to consider a node state that would 
depend on the states of the other nodes in its neighborhood.  

Black kills  
gray 

a) SOTEA Competition Rule 

Black kills 
gray 

b) Cellular GA Competition Rule 

1 
2 

3 

1 2 3



 5

In particular, we have defined a measure of fitness called 
Epistatic Fitness that is defined based on fitness values in the 
neighborhood of an individual.  We call this Epistatic Fitness 
due to its similarity to genetic epistasis.  In the Genome, 
genetic epistasis  refers to interactions between genes which 
have a noticeable impact on the phenotype.  Similarly, nodes 
in the population network interact in a way that can impact 
their likelihood of surviving.   

In this work, we consider a simple form of epistasis where a 
node’s (individual’s) expressed fitness is related to its 
neighbors as defined in (1). 

k
RankkFitnessEpistatic 1+−

=         (1) 

Rank refers to the rank of an individual’s objective function 
value among all of its k neighbors.  Here the objective 
function is not a direct measure of fitness but only an 
intermediate value used to compute (epistatic) fitness.  A rank 
of 1 indicates that the individual is better than all its 
neighbors, resulting in epistatic fitness taking on its maximum 
value of 1.  A rank of k+1 indicates that the individual is 
worse than all its neighbors, resulting in epistatic fitness 
taking on its minimum value of 0.   

Using epistatic fitness (1) results in the fitness of an 
individual being dependent on the network structure.  In other 
words, the fitness is contextual.  Figure 6 provides an example 
to help clarify how (1) causes an individual’s fitness to be 
dependent upon the network structure.   

It is important to mention that an interesting situation arises 
when SOTEA is used with epistatic fitness.  In this case, the 
fitness values depend on network structure (due to epistatic 
fitness) and structural changes depend on fitness values (due 
to competition rule).  To our knowledge, the coupling of 
structural changes to states plus the coupling of state 
definitions to structure is unique among network evolution 
models.  The competition and reproduction rules for SOTEA 
and Cellular GA are summarized in the pseudocodes in Figure 
5. 

 

Pseudocode: Competition Rule (SOTEA and Cellular 
GA) 

-Select Individual (randomly from Parents + 
Offspring)  
-Compare selected individual with its least fit* 
neighbor 
-Better individual inherits all links of worse 

individual 
-Worse individual is removed from population (and 
node removed from network) 
*fitness is epistatic fitness 

 
Pseudocode: SOTEA Reproduction Rule 

 -Add new node (offspring) to network 
 -Link offspring and parent 

-Offspring inherits Parent links with probability 
Padd=0.1 
-If inherited, Parent loses link with probability 
Premove=   0.1 

 
Pseudocode: Cellular GA Reproduction Rule 

 -Add new node (offspring) to network 
 -Link offspring and parent 
 -Offspring inherits one of Parent’s links  
 -Parent loses inherited link 

Figure 5:  Pseudocode for SOTEA and Cellular GA network 
dynamics.   
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Figure 6:  This figure shows how the epistatic fitness (Fitepi) 
defined by (1) causes the fitness of an individual to depend on its 
local neighborhood.  Parts a-c of the figure show a population of 
five individuals defined on a network.  The Objective Function 
Value (Obj) and epistatic fitness defined by (1) are provided in 
the top and bottom (resp.) for each individual.  For the top two 
individuals in part a), we draw an arrow toward the individual 
on the left to indicate it has the lower epistatic fitness.  The top 
left individual’s epistatic fitness is 2/3 because its objective 
function value is better than 2 of its 3 neighbors.  In part b), a 
new connection has been added to the network causing the 
epistatic fitness values for the two top individuals to now be 
equal.  Finally in part c), a connection has been removed from 
the network, causing the top left individual to have an epistatic 
fitness that is now higher than the top right node.  If the top two 
nodes were to compete for survival based on epistatic fitness, we 
can see that the decision of who survives (i.e. who is more fit) can 
depend on the neighborhoods of the individuals.   

In the next section, we present the remaining aspects of the 
Evolutionary Algorithms used in our experimental work as 
well as the test function generator used in our experiments. 

III. EXPERIMENTAL SETUP 

A. Core EA Design 
A binary coded EA was used with population size M 

varying over the range [50,400].  Only asexual reproduction is 
considered via parent duplication plus mutation with a bit flip 
mutation rate of 1/N for N binary genes.  Evolution occurs 
using a pseudo steady state design where the parent 
population of size M is randomly uniformly sampled (with 
replacement) M times to generate M offspring.  The parents + 
offspring then compete for survival to the next generation.  
The procedures for all the EAs considered are summarized in 
the pseudocode below. 
 
Pseudocode for all three EAs: 

 
Initialize population  
If SOTEA or Cellular GA: Connect individuals with ring structure 
Loop 

 Loop M times 
  Randomly select an individual i 
  Generate offspring by mutation 
  If SOTEA: apply SOTEA reproduction rule (Figure 5) 
  If Cellular GA: apply Cellular GA reproduction rule (Figure 5) 
 End loop 
 Loop M times 
  Randomly select an individual i 
  If Panmitic GA: Select random neighbour 

If SOTEA or Cellular GA: Select worst neighbour 
  Eliminate worse of i or its chosen neighbour 
  If SOTEA or Cellular GA: assign links of loser to winner  
 End loop 

Until maximum number of generations 
 

In order to give the Panmictic GA a better chance at 
maintaining genetic diversity, we decided to use the procedure 
described in the previous pseudocode, which is actually the 
same as Binary Tournament Selection.  If we had selected the 
worst neighbor for competition in the Panmictic GA (like with 
the other EA designs), this would have amounted to 
Truncation Selection.  We have checked the results presented 
here with those using Truncation Selection and we have 
confirmed that using Truncation Selection results in worse 
genetic diversity and worse performance compared to the 
Binary Tournament Selection method used for the Panmictic 
GA in this work (results not shown). 

B. NK Landscape Test Function 
The NK landscape, originally developed by Kauffman [26], 

is a test function generator with a tunable amount of 
ruggedness and a tunable problem size.  The following 
description of the NK landscape has been adapted from [27].  
The NK landscape is a function f: BN  R where B = {0,1}, N 
is the bit string length, and K is the number of bits in the string 
that epistatically interact with each bit.  Each bit xi provides a 
fitness contribution fi: BK+1  R whose value depends on the 
state of bit xi and the states of the K bits interacting with xi.  
The K bits interacting with xi are labeled as z1

(i), z2
(i), … , zK

(i). 

Obj = 5 
Fitepi= 2/2 

Obj = 4 
Fitepi= 2/3 

Fite i p

Obj = 3 
Fitepi= 0 

Obj = 2 
Fitepi= 0 

Obj = 7 
Fitepi= 1 

Obj = 5 
Fitepi= 2/3 

Obj = 4 
Fitepi= 2/3  

Obj = 3 
Fitepi= 0 

Obj = 2 
Fitepi= 0 

a) 

b) 

c) 

Fite i p

Obj = 7 
Fitepi= 2/2 

Obj = 5 
Fitepi= 1/2 
 

Fite i p
Obj = 4 
Fitepi= 2/3 

Obj = 3 
Fitepi= 0 

Obj = 2 
Fitepi= 0 

Obj = 7 
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 7

 
Figure 7:  An example of the fitness lookup tables for 
determining the fitness contribution fi from bit xi.  Given an NK 
landscape with N=8 and K=2, f3(x3, z1

(3), z2
(3)) is the fitness 

contribution for x3.   z1
(3) and z2

(3) are the two bits that 
epistatically interact with x3.  As shown in the figure, they have 
been selected as the bits to the left and right of x3 (i.e. z1

(3) = x2 
and z2

(3) = x4).  The lookup table consists of 2K+1 entries, each 
associated with a unique combination of bit states for x3, z1

(3) and 
z2

(3).  Each entry in the lookup table is a number between [0,1] 
drawn from a uniform distribution. 

NK Landscapes are stochastically generated with the fitness 
contribution fi of bit xi being a number between [0,1] drawn 
from a uniform distribution.  To determine the fitness 
contribution fi, a lookup table is used such as the one shown in 
Figure 7.  The final fitness value is an average of each of the 
fitness contributions as defined in (2).  For a given instance of 
the NK landscape, the maximum fitness value is not known 
however fitness values are bounded between [0,1].  

( ) ( ) ( ) ( )(∑
=

=
N

i

i
K

ii
ii zzzxf

N
xf

1
21 ,...,,,1 )         (2) 

In the original description [26], the K bits that epistatically 
interact with xi are those adjacent to xi in the bit string as seen 
in Figure 7.  In this work, we randomly select each zi to be any 
of the bits (other than xi) and not just those adjacent or nearby.  
Notice that without epistatic interactions (K=0), the problem is 
completely decomposable and trivial to solve.  However, as K 
increases, so too does the phenotypic interdependence of 
genes.  Genetic encoding of the NK landscape is simple with 
each bit xi representing a binary gene and N being the size of 
the genome.   

For most of our experiments N = 30, K = 14.  These 
parameters have been selected based on a tradeoff between the 
problem size, degree of ruggedness, and memory costs of the 
model which are proportional to N* 2K.  More detailed 
descriptions of the NK landscape model and its properties can 
be found in [27], [28], [29].   Also notice that the K used here 

for the NK landscape is different from k used to indicate the 
neighborhood size in the structured EA population. 

IV. RESULTS 
In this section we start by measuring the structural 

characteristics of the EA designs to determine if any are able 
to acquire the structural characteristics of biological complex 
systems.  We are also interested in seeing if any other 
behavioral qualities are acquired from mimicking nature as we 
have.  One important quality of biological complex systems 
that we are seeking to acquire in our artificial system is 
diversity.  Here we look at how the structured EA designs are 
able to sustain diversity in the population.  We also see if 
changes to performance are observed and finally, we make 
some attempts at explaining the unique behaviors from 
SOTEA.   

A. Topological Characteristics of Interaction Networks 
In this section, we present some structural characteristics of 

the interaction networks for each of the EA designs and 
compare them to what is observed in complex systems.  For 
each of the structural characteristics presented in Table 1, only 
the SOTEA network was found to have characteristics similar 
to that seen in complex systems. 

The last column in Table 1 also shows us that every 
individual  has the same neighborhood size k in the Panmictic 
GA and the Cellular GA, however k takes on a distribution of 
values for SOTEA.  The distribution for k is fat tailed (closely 
fitting an exponential  function), meaning that there is large 
heterogeneity in the neighborhood size.  Keeping in mind that 
only neighbors can compete in a structured EA, the 
neighborhood size k impacts the selection pressure within the 
population.  Since there is large heterogeneity in 
neighborhood sizes for SOTEA, we can expect there will also 
be large heterogeneity in selection pressure.   
Table 1:  Topological Characteristics for the interaction 
networks of the Panmictic GA, Cellular GA, and SOTEA.  For 
comparison, common topological characteristics of complex 
networks are also provided (taken from [15], and references 
therein).  L is the characteristic path length, k is the node degree, 
kave is the average node degree, M is the population size, and R is 
a correlation coefficient for the stated proportionalities.  

System L kave k distribution 
Panmictic 

GA 
L = 1 kave = M-1 k = M-1 

Cellular GA L ~ M kave = 2 k = 2 
SOTEA L ~ log M 

(R2=0.969) 
kave ~ log 

log M 
(R2=0.989) 

Exponential 
(R2=0.991) 

Complex 
Networks 

L ~ log M kave << M Fat Tail (e.g. 
Power Law, 
Exponential) 

B. Genetic Diversity 
Measuring genetic diversity of the population is done in a 

straightforward manner.  We calculate the average Hamming 
Distance between population members divided by the average  
Hamming Distance between random points in solution space.  
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For a single binary gene, two randomly selected gene values 
have a 50% chance of being different making the Hamming 
Distance between random individuals of N genes equal to N/2.  
The Hamming Distance is defined in (3) as a summation of 1 
minus the Kronecker Delta function δ(Xi,k , Xj,k).  The 
Kronecker Delta function has a value of 1 if Xi,k = Xj,k, and 0 
otherwise. Xi,k and Xj,k represent the kth gene for individuals i 
and j (resp.). 

(∑
=

−=
N

k
kjki XXjiHam
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Diversity results are shown in Figure 8 with each of the EA 
designs using epistatic fitness.  Here we show the genetic 
diversity of the entire population as well as diversity for the 
20% best individuals in the population.  We measure diversity 
for the top 20% because, in our experience, we have found it 
difficult to maintain diversity among the best individuals in a 
population.  As expected, our results show the Panmictic GA 
is not able to sustain genetic diversity, particularly in the top 
20% of the population.  The Cellular GA has much higher 
levels of diversity although this is significantly reduced in the 
top 20%.  SOTEA exhibits sizeable improvements in diversity 
compared to the other EA designs, particularly for the top 
20%. 
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Figure 8:  Genetic Diversity Results are shown over 4000 
generations for Panmictic GA, SOTEA, and Cellular GA.  
Diversity for each EA is an average over 10 runs with diversity 
calculated from (4) using the entire population (top graph) or the 
20% best individuals in the population (bottom graph).  
Experiments are conducted on NK models with N=30, K=14.  For 
each EA design the population size is set to M=100 and epistatic 
fitness is used as defined by (1). 

C. Performance Results 
Performance results are shown in Figure 9 with each of the 

EA designs using epistatic fitness.  In these results, we found 
the Panmictic GA was not able to continually locate improved 
solutions while SOTEA and the Cellular GA both were able to 
make steady progress throughout the 5000 generations 
considered.  However, SOTEA demonstrated better 
performance than the Cellular GA in the later stages of 
evolution.    
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Figure 9:  Performance Results are shown over 5000 generations 
for Panmictic GA, SOTEA, and Cellular GA each operating with 
Epistatic Fitness.  Performance for each EA is an average over 10 
runs with performance calculated as the best objective function 
value in the population.  Experiments are conducted on NK 
models with N=30, K=14.  For each EA design the population size 
is set to M=100 and epistatic fitness is used as defined by (1). 

D. Impact of Ruggedness 
Here we consider the impact that landscape ruggedness has 

on  genetic diversity of the population for each of the EA 
designs.  Landscape ruggedness is varied by changing the K 
parameter of the NK model as shown in Figure 10.  These 
results clearly show that as the NK landscape becomes 
completely smooth (i.e. K  0), each of the EA designs loses 
the capacity to sustain genetic diversity.  However as 
ruggedness increases, each EA design approachs its own 
asymptotic limit indicating its maximum capacity for genetic 
diversity.  Notice that the asymptote for SOTEA was not 
observed over the range of K values tested.  Larger values of 
K were not considered due to computational costs.   

Knowing that a diversity measure of 1 approximates a 
uniform distribution in genotype space, the fact that SOTEA 
has diversity close to 0.8 among its top 20% individuals tells 
us that SOTEA is able to distribute the search process across 
many promising regions of genotype space. 
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Figure 10:  Genetic Diversity Results are shown for different 
amounts of landscape ruggedness for the Panmictic GA, SOTEA, 
and the Cellular GA.  Diversity is an average of calculations 
using (4) taken at every 20 generations up to 1000 generations 

from the 20% best individuals in the population.  This measure is 
then averaged over 5 runs.    Experiments are conducted on NK 
models with N=30, and K varying as shown in graph.  Increasing 
K indicates increasing levels of landscape ruggedness.  For each 
EA design, the population size is set to M=100 and epistatic 
fitness is used as defined by (1). 

E. Impact of Epistasis 
All results presented thus far have considered EA designs 

with individual fitness defined by (1) (i.e. epistatic fitness).  In 
Figure 11, we continue our analysis of population diversity 
with individual fitness defined in the standard way (as the raw 
objective function value).   Compared to the results with 
epistatic fitness (see Figure 8), both SOTEA and Cellular GA 
have significantly less diversity and are hard to distinguish 
from the diversity present in the Panmictic GA.  This result 
provides evidence that epistasis plays an important role in 
sustaining diversity in structured populations including in the 
Cellular GA.   
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Figure 11:  Genetic Diversity Results are shown over 4000 
generations for Panmictic GA, SOTEA, and Cellular GA each 
operating without Epistatic Fitness.  Diversity for each EA is an 
average over 10 runs with diversity calculated from (4) using the 
entire population (top graph) or the 20% best individuals in the 
population (bottom graph).  Experiments are conducted on NK 
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models with N=30, K=14.  For each EA design, the population 
size is set to M=100 and fitness is defined as the Objective 
Function Value.  The results  shown here for the Panmictic GA 
are identical to results shown in Figure 8.  This is because the  
fitness rankings of individuals when using epistatic fitness (1) are 
the same as when using the Objective Function Value in a fully 
connected population.  Because the fitness rankings are the same, 
the outcome of competitions will also be the same (hence no 
change to EA behavior).   

 
1) Selection Pressure 

A better understanding of the impact of epistatic fitness on 
SOTEA is possible by observing its influence on the selection 
pressure within the SOTEA network.  The networks in Figure 
12  are examples of SOTEA networks grown with and without 
epistatic fitness.   

To represent selection pressure in the system, each node is 
selected in a mock competition trial and arrows are drawn to 
its worst neighbor.  Arrows are drawn in this way because, in 
SOTEA and the Cellular GA, competition occurs by first 
selecting an individual and then having it compete against its 
worst neighbor.  Arrows in gray represent selection pressure 
directed away from the network center, while arrows in black 
indicate selection pressure towards the center.    

For networks evolved with epistatic fitness, selection 
pressure points away from the network center but without 
epistasis, selection pressure points both toward and away from 
the network center.  We have also found that older and higher 
fitness nodes tend to be located more towards the center of the 
network.  Additional experiments are being conducted to help 
better understand the behavior of SOTEA, however we 
believe that the selection pressure patterns shown here 
ultimately play an important role in explaining why genetic 
diversity is maintained at such high levels in SOTEA.   

It is also important to mention that the two networks shown 
in Figure 12 are taken after 100 generations of SOTEA 
evolution.  Typically the amount of time required for the self-
organization of network structure to take place was less than 
100 generations however no attempt was made at determining 
the exact time when this transient was complete.  Beyond 100 
generations, we found that topological characteristics of the 
SOTEA network as well as network visualizations were very 
consistent.     

 

 

 
Figure 12:  Selective pressure in the SOTEA network with (top) 
and without (bottom) Epistasis.  Selective pressure in the 
network is shown with arrows in gray for pressure directed away 
from the network center and black for other directions of 
pressure.  Selective pressure directions have only been calculated 
for nodes located near the network center.  The arrows are 
drawn by selecting a node and drawing an arrow from this node 
to its worst neighbor.  The worst fit neighbor is determined by 
epistatic fitness (1) for the top graph and by the Objective 
Function Value for the bottom graph. 

V. DISCUSSION 

A. Framework for Self-Organization 
It would be useful to be able to generalize the results shown 

in this work and develop a framework under which network 
dynamics could be beneficial to an EA population.  Along 
these lines, we have hinted at several aspects of the SOTEA 
design which we felt were important.  Our work has suggested 
it is necessary to have network dynamics dependent upon 
node states (e.g. SOTEA competition rule) as well as node 
states that depend upon network structure (e.g. epistatic 
fitness).  We were not able to obtain the same behavior in our 
algorithm without this dual form of coupling between state 



 11

and structure dynamics.  The coevolution of structure and 
states is a topic of great interest in the complex networks 
research community.  To our knowledge, a dual coupling 
between states and structure is not present in any other EA 
design and is also unique in the complex networks literature.    

It is also interesting to note that selecting the worst 
neighbor in the competition rule is also very similar to the 
extremal dynamics used in most models of self-organized 
critical systems as reviewed in [30].  By eliminating the worst 
individual in a neighborhood, we may actually be using an 
important driving force for self-organizing processes in 
nature.  Additional experimentation is needed to substantiate 
these claims.   

B. Other Interaction Networks in Evolutionary Algorithms 
In this initial investigation of self-organizing interaction 

networks in an Evolutionary Algorithm, we have intentionally 
focused on the simple but important interactions associated 
with competition and survival.  There are other interaction 
types that are highly relevant and worth studying such as 
interactions associated with multi-parent search operations.  
At a smaller scale, one could also consider the evolution of 
interaction networks between genes in individual population 
members.  Such work could follow a more traditional path of 
self-adaptation to create advanced search operators or one 
could consider less explored territory such as indirect gene 
expression (e.g. via Gene Regulatory Networks).   

C. Fitness Landscape Ruggedness 
The fact that the fitness landscape plays an important role in 

population diversity is not by any means a new or surprising 
result.  However, a common goal for EA designers is to create 
a smooth landscape (at least in the coarse grained sense) 
through the use of specialized search operators or genetic 
encoding.  Such a landscape would be similar to what is seen 
in the NK Landscape when K/N is small.  The feasibility of 
creating a smooth landscape is questionable for most 
applications and furthermore, our results suggest that less 
stringent fitness landscape conditions may be manageable 
when using EA designs like SOTEA.  

D. NK Model 
Although useful, there are valid concerns about the extent 

to which the NK model, as currently defined, represents real 
optimization problems of interest.  If we were to measure the 
structural characteristics of the gene interaction network in the 
NK model used here, we would find it to be a simple random 
network with little similarities to complex systems.   

To date, it appears that complex systems have several 
universal structural characteristics.  Given an appropriate 
problem representation, we might suspect this universality to 
extend to a large and interesting class of optimization 
problems since many of these problems are in fact complex 
systems.  Furthermore, the unabated success and simplicity of 
network evolution models suggests rather straightforward 
modifications of the NK model (via the self-organization of 
interaction epistasis) could move the NK model forward as a 

more realistic and useful test bed for optimization and 
evolution-based research.    

VI. CONCLUSIONS 
In this work, we have presented an initial investigation into 

the self-organization of interaction networks for an 
Evolutionary Algorithm.  Motivating this research was a 
desire to acquire structural characteristics of complex 
biological systems which are believed to be relevant to their 
behavior.  Our particular goal and focus was to create an 
artificial system with a capacity for sustainable coexistence of 
distinct components within a competitive environment (i.e. 
sustainable diversity).   

Population diversity was not imposed upon the EA as is 
traditionally done but instead emerges in the system as a 
natural consequence of population dynamics.  The 
environmental conditions which enable sustainable diversity 
are similar to what is observed in complex biological systems.  
These conditions involved a self-organizing interaction 
network and a contextual definition of individual fitness 
which we called epistatic fitness.   

In future work, we will demonstrate how genetic diversity 
in SOTEA is actually a consequence of parallel search paths 
maintained in the population, a feature which is largely not 
present in other EA designs.  We will also further explore and 
attempt to strengthen the link between the structure and 
dynamics  of SOTEA and complex systems.   

Finally, we suspect that an adaptive network framework for 
EA operators involving selection, reproduction, and genotype 
to phenotype mapping will ultimately lead to more robust self-
adaptive and self-directed capabilities (which we hope to 
explore in future work).  Furthermore, we feel that SOTEA’s 
capacity to sustain high levels of diversity in a competitive 
environment satisfies a small but important precondition for 
the development of open-ended evolution in artificial systems. 
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