

Electronic Physician

ISSN: 2008-5842

Review Article

The role of Coenzyme Q₁₀ in statin-associated myopathy

Sanjay Kalra¹, Navneet Agrawal², Bharti Kalra¹, Amit Sharma¹, Ritu Kamboj¹

Corresponding author:

Sanjay Kalra, Bharti Hospital, Karnal, India

Tel: 091 184 2268484, Fax: 091 184 2267885, E-mail: brideknl@gmail.com

Bibliographic information of this paper for citing:

Sanjay Kalra, Navneet Agrawal, Bharti Kalra, Amit Sharma, & Ritu Kamboj. The role of Coenzyme Q10 in statin-associated myopathy. Electron. Pysicician 2009, 1:2-8, Available at: http://www.ephysician.ir/2009/2-8.pdf

Received: 11 August 2009 Accepted: 25 September 2009 Published: 29 October 2009 © 2009 Electron. Physician

Statins, or 3-hydroxyl-3-methylglutaryl coenzyme HMG-CoA reductase inhibitors, are cholesterol-lowering drugs which are frequently used in the primary and secondary prevention of coronary artery disease. Current research and recommendations support and encourage more extensive use of these drugs.

However, statin usage is limited by many factors, including a high incidence of statin-associated myalgia and myopathy. This review focuses on the use of Coenzyme Q in statin-associated myopathy.

Electronic Physician 2009; Vol 1, Pages 2-8

Keywords: statin, myalgia, myopathy, Coenzyme Q

INTRODUCTION

Statins, or 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, are potent drugs which have pleiotropic effects, including the lowering of cholesterol. The mechanism of

action of these drugs has been well researched.

Associated with their beneficial clinical effects, however, are certain adverse events, including muscle-related complaints. Statin-associated myalgia typically affects 5% of patients, myopathy affects 0.1 %, while rhabdomyolysis occurs in 0.01 % of

¹Bharti Hospital, Karnal, India

²Medical College, Gwalior, India

statin users (1). Studies also suggest that myalgia is among the leading causes of statin discontinuation (1).

The incidence of statin-induced rhabdomyolysis is higher in practice than in controlled clinical trials, from which highrisk subjects are excluded. Accepted highrisk factors for development of myopathy include age; renal, hepatic and thyroid dysfunction; hypertriglyceridemia; exercise; Asian race; and perioperative status (2).

Statin-induced myopathy is a heterogenous condition with multiple pathophysiologic causes. It may be due to the mechanism of action of the drug per se; interactions with other drugs; or genetic, metabolic or immunological vulnerabilities. Statin use may unmask latent conditions such as hypovitaminosis D-related myopathy or hypothyroid myopathy

Muscle metabolism is adversely impacted by statin therapy through various mechanisms. These include altered fatty acid oxidation, increased myocyte degradation via atrogin-1 and ubiquitinproteasome pathways (3), or autoimmune mechanisms. Statins also reduce sarcolemmal cholesterol and GTP while increasing intracellular lipids (occasionally leading to lipid myopathy), and myocellular phytosterols, and at the same time cause mitochondrial dysfunction by reducing intramuscular coenzyme Q_{10} (Co Q_{10}) (4).

The lack of CoQ₁₀ has been postulated to be an etiologic factor for statin-associated myopathy. CoQ₁₀, a 1,4 benzoquinone with a 50-carbon isoprenoid side chain which was first isolated from beef heart mitochondria in 1957, is present in the body in both the reduced (ubiquininol CoQ₁₀ H₂) and oxidized (ubiquininol CoQ₁₀) forms. Oxidized CoQ₁₀ is reduced to CoQ₁₀ H₂ in the mitochondria by flavoenzymes including mitochondrial succinate dehydrogenase and NADH dehydrogenase. CoQ₁₀ is lipophilic and is transported in

lipoprotein particles in the circulation. cofactor CoO_{10} is an essential mitochondrial oxidative phosphorylation, and is necessary for ATP production. CoQ₁₀ acts as a mobile electron carrier transferring electrons from complex I (NADH coenzyme O reductase) to complex III (cytochrome bc1 complex) or from complex II (succinate dehydrogenase) to complex III. The reduced form of CoQ₁₀ is also an antioxidant, and is endogenously only synthesized lipophilic antioxidant (5).

 CoQ_{10} is a natural, fat-soluble quinone localized in hydrophobic parts of cell membranes, and is obtained from dietary fat (meat) or from endogenous synthesis (5). It is involved in mitochondrial oxidative phosphorylation, protection against free radical induced oxidative stress (6), and regeneration of vitamin C and E (7, 8).

CoQ₁₀ deficiency is associated with a large variety of diseases including infantilemulti-systemic diseases, encephalomyopathies with recurrent myobinuria, cerebellar ataxia, pure myopathy, heart failure, Parkinson's disease, and malignancy (5,9). It affects children more often than adults. While mutation in CoQ₁₀ biosynthetic genes, CoQ₂ and PDSS 2 have been identified in CoQ_{10} -deficient children, the molecular basis of adult -onset CoQ_{10} deficiency is undefined (9).

In statin-induced myopathy, however, the enzymatic basis of CoQ_{10} deficiency is gradually becoming better understood. Statins block production of farnesyl pyrophosphate, an intermediate in the production of CoQ_{10} , thus creating a CoQ_{10} deficiency, which adversely affects mitochondrial function.

The effect on mitochondrial CoQ is also noted in the Hep G2 cell line treated with simvastatin. High concentrations of simvastatin lead to cell death, DNA oxidative damage, and reduced ATP

synthesis in Hep G2 cells. CoQ_{10} supplementation reduces cell death and DNA oxidative stress, and increases ATP synthesis. Workers suggest that CoQ_{10} deficiency plays a role in statin-induced hepatopathy as well (10).

EFFECT OF STATINS ON CoQ10 LEVELS IN CIRCULATION

Statins have been shown to reduce circulating CoQ_{10} levels in both animal and human studies. The largest trial, of 1049 subjects, reported reductions in plasma CoQ_{10} levels of 38% after treatment with low (10-20mg/day) doses of atorvastatin (11). This reduction occurs because CoQ_{10} is transported in LDL (58 \pm 10% of serum CoQ_{10}), HDL(26 \pm 8%), and VLDL \pm LDL (16 \pm 8%) particles(12).

One study (13) has also reported a 12.5% reduction in platelet CoQ_{10} levels with statin therapy, while other randomized controlled trials (12-17) have demonstrated reductions in plasma/serum levels of 16% to 54%.

The low CoQ_{10} levels found in platelets and lymphocytes of statin-treated patients, apart from the findings of low plasma LDL in such individuals, suggests a true inhibition of CoQ_{10} synthesis (17).

The reduction in plasma CoQ_{10} is seen with simvastatin as well as a combination of ezetimibe and simvastatin, but not with ezetimibe monotherapy (18). The CoQ_{10} level decrease correlates with decreases in total cholesterol and LDL cholesterol levels.

EFFECT OF STATINS ON CoQ10 LEVELS IN SKELETAL MUSCLE

Statins reduce CoQ_{10} levels in cardiac muscle and the liver (19, 20), but the effect on skeletal muscle CoQ_{10} levels is controversial .While some rabbit studies

demonstrate a decrease of 72 % in CoQ_{10} levels with simvastatin or pravastatin therapies (21), others show no change in skeletal muscle CoQ_{10} concentrations (22), and yet others report severe muscle lesions (23).

Data from human studies report that low-dose statin treatment does not reduce intramuscular CoQ_{10} levels (24), while higher doses (simvastatin 80 mg, atorvastatin 40 mg per day) are associated with reduced levels (34 % decrease in the simvastatin-treated group) (25).

statin-associated with **Patients** myopathy often have low levels of intramuscular CoQ. An open label study of CoQ₁₀ concentration in muscles of patients who developed high serum creatine kinase concentrations while on statins was reported from two tertiary care hospitals. Biopsy evidence showed of mitochondrial dysfunction and nonspecific myopathy in 2 patients each, but was normal in 14 subjects. Ten out of 18 patients had low muscle CoQ_{10} concentration (26). These low levels may have been a cause of myopathy, or a result of physical inactivity, or could have been associated with the reduced mitochondrial volume (25).

Muscle biopsies done in 4 patients with statin-associated myopathy demonstrated findings of intramuscular lipid, reduced cytochrome oxidase staining, and ragged red fibers, all of which resolved after discontinuing statin treatment in the 3 patients for whom a repeat biopsy was done (27).

EFFECT OF STATINS ON MITOCHONDRIA

Animal studies have shown decreased phosphorylation potential of adenosine diphosphate in cardiac mitochondria in lovastatin-treated guinea pigs (28); decreased mitochondrial respiration in

pravastatin-treated dogs (29) and reduced mitochondrial complex I and IV activity in the diaphragm and psoas major muscles of pravastatin-treated rats (30). These findings correlate with the hypothesis that statins may cause myopathy by acting on the mitochondria. In all these studies, serum CoQ_{10} concentrations were also reduced.

Electron transport chain dysfunction has been noted in myotoxicity associated with statin use. Skeletal muscle biopsies of patients experiencing myopathy after treatment with simvastatin have shown low CoQ and cytochrome oxidase (complex IV) activity (31).

CoQ10 CO-THERAPY WITH STATINS

Many studies report that CoQ₁₀ administration increases CoQ₁₀ blood levels in statin-treated patients (11,12,19,20), reduces symptoms of statin-induced myopathy in patients given very high doses for cancer (32,33), and successfully treats statin-associated myalgia (34-36).

In an OPD-based study, 50 patients who discontinued statin and started COQ supplementation exhibited improvement in symptoms of fatigue, myalgia, dyspnea, memory loss, and peripheral neuropathy (34).

Other studies, however, show no difference in statin tolerance with or without CoQ_{10} supplementation (37). This treatment carries no risk, however, and no side effects have been reported by any authors.

Reviewers (38) have noted the contradictory results of many authors, but have not raised any safety concerns regarding CoQ_{10} use.

LIMITATIONS

Only two randomized trials have reported CoQ_{10} as a treatment for statin-associated myopathy (36, 37).

The lack of more trials in this interesting field of medicine may be due to the relatively recent advances in the biochemistry of CoQ, the difficulty in assessing intramuscular CoQ levels, or the reliance on 'soft' end points such as pain scores.

However, the main reason, perhaps, is that CoQ is a non-patented or 'orphan' drug, and hence will not find the major pharmaceutical backing required to carry out a large, multicentric trial.

CONCLUSION

The biochemical, physiological, and pharmacological basis of prescribing CoQ_{10} supplementation in statin-induced myopathy is clear. While most clinical trials suggest beneficial effects, others report variable results.

Limited data have suggested that patients with familial hypercholesterolemia, heart failure, and those aged > 65 years might benefit from CoQ_{10} supplementation (38).

On the whole, however, CoQ_{10} supplementation, 200 mg/day, can be tried in patients requiring statin therapy, who develop statin myalgia, and who cannot be satisfactorily treated otherwise. Such treatment would help ensure that myalgic symptoms do not prevent patients from receiving the pleiotropic benefits of statins. More studies are also required to assess the role of CoQ therapy in statin-induced myalgia.

REFERENCES

- 1. Jacobson TA. Toward 'pain free' statin prescribing Clinical algorithm for diagnosis and management of myalgia. Mayo Clinic Proceedings 2008;83 (6):87 -700.
- 2. Antons K, Wiliams C, Baker S, Philips P. Clinical perspectives of statin –induced rhabdomyolysis. Am Med 19;5: 400 -409.
- 3. Toth PP, Harper CR, Jacobson TA. Clinical characterization and molecular mechanisms of statin myopathy. Expert Review of Cardiovascular Therapy 2008; 6(7):955-969.
- 4. Marcoff L, Thompson PD. The role of coenzyme Q10 in statin-associated myopathy. J Am Coll Card 2007; 49(23): 2231-2237.
- 5. Molyneux SL, Young JM, Florkowski CM, Lever M, George PM. Coenzyme Q10: Is there a clinical role and a case for measurement? Clin Biochem Rev 2008; 29(2):71-82.
- 6. James AM, Smith RA, Murphy MP. Antioxidant and prooxidant properties of mitochondrial coenzyme Q. Arch Biochem Biophys 2004; 423:47-56.
- 7. Arroyo A, Navarro F, Gomez-Diz C, et al. Interactions between ascorbyl free radical and coenzyme Q at the plasma membrane. J Bioenerg Biomembr 2000;32:199-200.
- 8. Constantinescu A, Maguite JJ, Packer L. Interactions between ubiquinones and vitamins in membranes and cells. Mol Aspects Med 1994; 423:47-56.
- 9. Quinzii CM, HiranoM, MauroS. CoQ10 deficiency diseases in adults. Mitochondrion 2007; 7(Suppl 1): S 122 –S126.
- 10. Tavintharan S, Ong CN, Jeyaseelan K, Sivakumar M, Sum CF. Reduced

- mitochondrial coenzyme Q10 levels in Hep G2 cells treated with high –dose simvastatin; A possible role in statin induced hepatotoxicity? Toxicology & Applied Pharmacology 2007; 223(2):173 179.
- 11. Davidson M, Mckenny J, Stein E, et al. Comparision of one year efficacy and safety of atorvastatin versus lovastatin in primary hypercholesterolemia. Atorvastatin Study Group I. Am J Cardiol 1997; 79: 1475-1481.
- 12. Tomasetti M, Alleva R, Solenghi, MD, Littarru GP. Distribution of antioxidants among blood components and lipoproteins: significance of lipids/CoQ10 ratio as a possible marker of increased risk for atherosclerosis. Biofactors 1999;9:231-240.
- 13. Bargossi AM, Grossi G, Firrella Pl, Gaddi A, Di Giulio R, Battino M. Exogenous CoQ10 supplementation prevents plasma ubiquinone reduction induced by HMG-CoA reductase inhibitors. Mol Aspects Med 1994; 15 Suppl: 187-93.
- 14. Mortensen SA, Leth A, Anger E, Rohde M. Dose-related decreases of serum coenzyme Q10 during treatment with HMG-CoA reductase inhibitors. Mol Aspects Med 1997;18 Suppl:S137-44.
- 15.de Lorgeril M, Salen P, Bontemps L, Belichard P, Geyssant A, Itti R. Effects lipid-lowering drugs on left ventricular function exercise and tolerance in dyslipidemic coronary J Cardiovasc Pharmacol patients. 1999:33:473-8.
- 16. Jula A, Marniemi J, Hupponen R, Virtanen A, Rastas M, Ronnemaa T. Effects of diet and simvastatin on serum

- lipids, insulin, and antioxidants in hyper-cholesterolerolemic men: a randomized controlled trial. JAMA 2002;287:598-605.
- 17. Littarru GP, Langsjoen P. Coenzyme Q and statins: Biochemical and clinical implications .Mitochondrion, 2007; 7(Suppl 1): S168 –S174.
- 18. Berthold HK, Naini A, D: Mauro S, et al. Effect of ezetimibe and /or coenzyme Q10 levels in plasma: a randomized trial. Drug safety 2006; 29(8):703-712.
- 19. Morand OH, Aebi JD, Dehmlow H, et al. Ro 48-8.071, a new 2,3-oxidosqualene: lanosterol cylase inhibitor lowering plasma cholesterol in hamsters, squirrel monkeys, and minipigs: comparison to simvastatin. J Lipid Rees 1997;38: 373-90.
- 20. Low P, Andersson M, Edlund C, Dallner G. Effects of mevinolin treatment on tissue dolichol and ubiquinone levels in the rat. Biochim Biophys Acta 1992; 1165:102-9.
- 21. Nakahara K, Kuriyama M, Sonnoda Y, et al. Myopathy induced by HMG-CoA reductase inhibitors in rabbits: a pathological, electro-physiological, and biochemical study. Toxicol Appl Pharmacol 1998; 152:99-106.
- 22. Schaefer WH, Lowrence JW, Loughlin AF,et al. Evaluation of ubiquinone concentration and mitochondrial function relative to cerivastatin-induced skeletal myopathy in rats. Toxicol Appl Pharmacol 2004;194: 10-23.
- 23. Laaksonen R, Jokelainen K, Lasskso J, et al. The effect of simvastatin treatment on natural antioxidants in low-density lipoproteins and high-energy phosphates and ubiquinone in skeletal muscle. Am J Cardiol 1996; 77: 851-854.

- 24. Fukami M, Maeda N, Fukushige J, et al. Effects of HMG-CoA reductase inhibitors on skeletal muscles of rabbits. Res Exp Med (Berl) 1993; 193: 263-73.
- 25. Pavia H, Thelen KM, Vancoster R, et al. High- dose statins and skeletal muscle metabolism in humans: a randomized, controlled trial. Clin Pharmacol Ther 2005;78: 60-8.
- 26. Lamperti C, Naini AB, Lucchini V, et al. Muscle coenzyme Q10 level in statin-related myopathy. Arch Neurol 2005; 62: 109-12.
- 27. Phillips PS, Clerkson P, Karas RH. Statin-associated myopathy. JAMA 2003; 289:1681-1690.
- 28. Diebold BA, Bhagavan NV, Guillory RJ. Influences of lovastatin administration on the respiratory burst of leukocytes and the phosphorylation potential of mitochondria in guinea pigs. Biochim Biophys Acta 1994;1200: 100-108.
- 29. Satoh K, Yamato A, Nakai T, Hoshi K, Ichihara K. Effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on mitochondrial respiration in ischaemic dog hearts Br J Pharmacol 1995;116:1894-1898.
- 30. Sugiyama S. HMG CoA reductase inhibitor accelerates aging effect on diaphragm mitochondrial respiratory function in rats Biochem Mol Biol Int 1998; 46: 923-931.
- 31. Duncan AJ, Hargreaves IP, Damicin MS, Land JM, Heales SJR. Decreased ubiquinone availability and impaired mitochondrial cytochrome oxidase activity associated with statin treatment. Toxicology Mechanisms and Methods 2009; 19 (1):44-50.
- 32. Thibault A, Samid D, Tompkins AC, et al. Phase I study of lovastatin, an inhibitor of the mevalonate pathway, in patients with cancer. Clin Cancer Res 1996;2: 483-491.

- 33. Kim WS, Kim MM, Choi HJ, et al. Phase II study of high-dose lovastatin in patients with advanced gastric adenocarcinoma. Invest New Drugs 2001;19:81-83.
- 34. Langsjoen PH, Langsjoen AM, Lucas LA. Treatment of statin adverse effects with supplementation of Coenzyme Q 10 and statin drug discontinuation. BioFactors 2005; 25 (1-4):147-152.
- 35. Schaars CF, Stalenhoef AF. Effects of ubiquinone (Coenzyme Q10) in myopathy in statin users. Curr Opin Lipidol 2008; 19(6): 553-7.
- 36. Kelly P, Vasu S, Getato M, McNurlan M, Lawson WE. Coenzyme Q10 improves myopathic pain in statin treated patients J Am Coll Cardiol 2005;45: 3A.
- 37. Young JM, Florkowski CM, Molyneux SL, McEwan RG, Frampton CM, George PM. Coenzyme Q10 does not improve simvastatin tolerability in dyslipidemic patients with prior statin-induced myalgia AHA 2006. Circulation 2007; 114: II41.
- 38. Levy HB, Kohlhaas HK. Considerations for supplementing with Coenzyme Q10 during statin therapy. The Annals of Pharmacotherapy 2006; 40(2):290-294.