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Abstract 
In this paper, an improved strategy for automated text dependent 
speaker identification system has been proposed in noisy 
environment. The identification process incorporates the Neuro-
Genetic hybrid algorithm with cepstral based features. To 
remove the background noise from the source utterance, wiener 
filter has been used. Different speech pre-processing techniques 
such as start-end point detection algorithm, pre-emphasis 
filtering, frame blocking and windowing have been used to 
process the speech utterances. RCC, MFCC, ∆MFCC, ∆∆MFCC, 
LPC and LPCC have been used to extract the features. After 
feature extraction of the speech, Neuro-Genetic hybrid algorithm 
has been used in the learning and identification purposes. 
Features are extracted by using different techniques to optimize 
the performance of the identification. According to the VALID 
speech database, the highest speaker identification rate of 
100.000 % for studio environment and 82.33 % for office 
environmental conditions have been achieved in the close set text 
dependent speaker identification system. 
Key words: Bio-informatics, Robust Speaker Identification, 
Speech Signal Pre-processing, Neuro-Genetic Hybrid 
Algorithm. 

1. Introduction 

Biometrics are seen by many researchers as a solution to a 
lot of user identification and security problems now a days 
[1]. Speaker identification is one of the most important 
areas where biometric techniques can be used. There are 
various techniques to resolve the automatic speaker 
identification problem [2, 3, 4, 5, 6, 7, 8].  
 
Most published works in the areas of speech recognition 
and speaker recognition focus on speech under the 
noiseless environments and few published works focus on 

speech under noisy conditions [9, 10, 11, 12]. In some 
research work, different talking styles were used to 
simulate the speech produced under real stressful talking 
conditions [13, 14, 15]. Learning systems in speaker 
identification that employ hybrid strategies can potentially 
offer significant advantages over single-strategy systems.  
 
In this proposed system, Neuro-Genetic Hybrid algorithm 
with cepstral based features has been used to improve the 
performance of the text dependent speaker identification 
system under noisy environment. To extract the features 
from the speech, different types of feature extraction 
technique such as RCC, MFCC, ∆MFCC, ∆∆MFCC, LPC 
and LPCC have been used to achieve good result. Some of 
the tasks of this work have been simulated using Matlab 
based toolbox such as Signal processing Toolbox, 
Voicebox and HMM Toolbox. 

2. Paradigm of the Proposed Speaker 
Identification System 

The basic building blocks of speaker identification system 
are shown in the Fig.1. The first step is the acquisition of 
speech utterances from speakers. To remove the 
background noises from the original speech, wiener filter 
has been used. Then the start and end points detection 
algorithm has been used to detect the start and end points 
from each speech utterance. After which the unnecessary 
parts have been removed. Pre-emphasis filtering technique 
has been used as a noise reduction technique to increase 
the amplitude of the input signal at frequencies where 
signal-to-noise ratio (SNR) is low. The speech signal is 
segmented into overlapping frames. The purpose of the 
overlapping analysis is that each speech sound of the input 
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sequence would be approximately centered at some frame. 
After segmentation, windowing technique has been used. 
Features were extracted from the segmented speech. The 
extracted features were then fed to the Neuro-Genetic 
hybrid techniques for learning and classification.  

Fig. 1 Block diagram of the proposed automated speaker identification 
system. 

3. Speech Signal Pre-processing for Speaker 
Identification 

To capture the speech signal, sampling frequency of 
11025 Hz, sampling resolution of 16-bits, mono recording 
channel and Recorded file format = *.wav have been 
considered. The speech preprocessing part has a vital role 
for the efficiency of learning. After acquisition of speech 
utterances, wiener filter has been used to remove the 
background noise from the original speech utterances [16, 
17, 18]. Speech end points detection and silence part 
removal algorithm has been used to detect the presence of 
speech and to remove pulse and silences in a background 
noise [19, 20, 21, 22, 23]. To detect word boundary, the 
frame energy is computed using the sort-term log energy 
equation [24],   
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Pre-emphasis has been used to balance the spectrum of 
voiced sounds that have a steep roll-off in the high 
frequency region [25, 26, 27]. The transfer function of the 
FIR filter in the z-domain is [26]  
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Where α is the pre-emphasis parameter. 
 
Frame blocking has been performed with an overlapping 
of 25[%] to 75[%] of the frame size. Typically a frame 
length of 10-30 milliseconds has been used. The purpose 
of the overlapping analysis is that each speech sound of 
the input sequence would be approximately centered at 
some frame [28, 29].  
 

From different types of windowing techniques, Hamming 
window has been used for this system. The purpose of 
using windowing is to reduce the effect of the spectral 
artifacts that results from the framing process [30, 31, 32]. 
The hamming window can be defined as follows [33]: 
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4. Speech parameterization Techniques for 
Speaker Identification  

This stage is very important in an ASIS because the 
quality of the speaker modeling and pattern matching 
strongly depends on the quality of the feature extraction 
methods. For the proposed ASIS, different types of speech 
feature extraction methods [34, 35, 36, 37, 38, 39] such as 
RCC, MFCC, ∆MFCC, ∆∆MFCC, LPC, LPCC have been 
applied.  

5. Training and Testing Model for Speaker 
Identification 

Fig.2 shows the working process of neuro-genetic hybrid 
system [40, 41, 42]. The structure of the multilayer neural 
network does not matter for the GA as long as the BPNs 
parameters are mapped correctly to the genes of the 
chromosome the GA is optimizing. Basically, each gene 
represents the value of a certain weight in the BPN and the 
chromosome is a vector that contains these values such 
that each weight corresponds to a fixed position in the 
vector as shown in Fig.2.   
 
The fitness function can be assigned from the 
identification error of the BPN for the set of pictures used 
for training. The GA searches for parameter values that 
minimize the fitness function, thus the identification error 
of the BPN is reduced and the identification rate is 
maximized [43]. 
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Fig.2 Learning and recognition model for the Neuro-Genetic hybrid 
system. 

The algorithm for the Neuro-Genetic based weight 
determination and Fitness Function [44] is as follows: 
Algorithm for Neuro-Genetic Weight determination: 
{ 
i  0; 
Generate the initial population Pi of real coded 
chromosomes C i  

j each representing a weight set for the 
BPN; 
 
Generate fitness values F i  

j for each C i  
j  € Pi using the 

algorithm FITGEN(); 
While the current population Pi has not converged 
{ 
 
Using the cross over mechanism reproduced offspring 
from the parent chromosome and performs mutation on 
offspring; 
 
i  i+1; 
 
Call the current population Pi ; 
 
Calculate fitness values F i  

j for each C i  
j € Pi using the 

algorithm FITGEN(); 
} 
Extract weight from Pi to be used by the BPN; 
} 
 
Algorithm for FITGEN(): 
{Let ( ,iI  jT ), i=1,2,………..N where iI = ( ,1iI  

,2iI ……… liI ) and iT = ( ,1iT  ,2iT ……… liT ) 
represent the input-output pairs of the problem to be 
solved by BPN with a configuration l-m-n. 
{ 
Extract weights iW from Ci ; 

Keeping iW as a fixed weight setting, train the BPN for 
the N input instances (Pattern); 
Calculate error Ei for each of the input instances using the 
formula: 
 
Ei, = ∑ −

j
jiji OT 2)(                                                    (3) 

Where  iO  is the output vector calculated by BPN; 
Find the root mean square E of the errors Ei, I = 1,2,…….N  

i.e.  E = NE
i

i∑                                                     (4) 

Now the fitness value Fi for each of the individual string of 
the population as Fi = E; 
}  
Output Fi for each Ci, i = 1,2,…….P; } 
} 

6. Optimum parameter Selection for the BPN 
and GA 

6.1 Parameter Selection on the BPN 

There are some critical parameters in Neuro-Genetic 
hybrid system (such as in BPN, gain term, speed factor, 
number of hidden layer nodes and in GA, crossover rate 
and the number of generation) that affect the performance 
of the proposed system. A trade off is made to explore the 
optimal values of the above parameters and experiments 
are performed using those parameters. The optimal values 
of the above parameters are chosen carefully and finally 
find out the identification rate.  

6.1.1 Experiment on the Gain Term, η 

In BPN, during the training session when the gain term 
was set as: η 1 = η 2 = 0.4, spread factor was set as k1 = k2 
= 0.20 and tolerable error rate was fixed to 0.001[%] then 
the highest identification rate of 91[%] has been achieved 
which is shown in Fig.3. 

Fig. 3 Performance measurement according to gain term. 

6.1.2 Experiment on the Speed Factor, k 

The performance of the BPN system has been measured 
according to the speed factor, k. We set η 1 = η 2 = 0.4 and 
tolerable error rate was fixed to 0.001[%]. We have 
studied the value of the parameter ranging from 0.1 to 0.5. 
We have found that the highest recognition rate was 93[%] 
at k1 = k2 = 0.15 which is shown in Fig.4. 
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Fig. 4 Performance measurement according to various speed factor. 

6.1.3 Experiment on the Number of Nodes in Hidden 
Layer, NH 

In the learning phase of BPN, We have chosen the hidden 
layer nodes in the range from 5 to 40. We set η 1 = η 2 = 
0.4, k1 = k2 = 0.15 and tolerable error rate was fixed to 
0.001[%]. The highest recognition rate of 94[%] has been 
achieved at NH  = 30 which is shown in Fig.5. 

Fig. 5 Results after setting up the number of internal nodes in BPN. 

6.2 Parameter Selection on the GA 

To measure the optimum value, different parameters of the 
genetic algorithm were also changed to find the best 
matching parameters. The results of the experiments are 
shown below. 

6.2.1 Experiment on the Crossover Rate 

In this experiment, crossover rate has been changed in 
various ways such as 1, 2, 5, 7, 8, 10. The highest speaker 
identification rate of 93[%] was found at crossover point 5 
which is shown in the Fig.6. 

Fig. 6 Performance measurement according to the crossover rate. 

6.2.2 Experiment on the Crossover Rate 

Different values of the number of generations have been 
tested for achieving the optimum number of generations. 
The test results are shown in the Fig.7. The maximum 
identification rate of 95[%] has been found at the number 
of generations 15. 

Fig.7 Accuracy measurement according to the no. of generations. 

7. Performance Measurement of the Text-
Dependent Speaker Identification System 

VALID speech database [45] has been used to measure the 
performance of the proposed hybrid system. In learning 
phase, studio recording speech utterances ware used to 
make reference models and in testing phase, speech 
utterances recorded in four different office conditions 
were used to measure the accurate performance of the 
proposed Neuro-Genetic hybrid system. Performance of 
the proposed system were measured according to various 
cepstral based features such as LPC, LPCC, RCC, MFCC, 
∆MFCC and ∆∆MFCC which are shown in the following 
table. 

Table 1: Speaker identification rate (%) for VALID speech corpus 
Type of 

environments MFCC ∆ 
MFCC 

∆∆ 
MFCC RCC LPCC 

Clean speech 
utterances 100.00 100.00 98.23 90.43 100.00 

Office 
environments 80.17 82.33 68.89 70.33 76.00 
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speech 
utterances 

 
Table 1 shows the overall average speaker identification 
rate for VALID speech corpus. From the table it is easy to 
compare the performance among MFCC, ∆MFCC, 
∆∆MFCC, RCC and LPCC methods for Neuro-Genetic 
hybrid algorithm based text-dependent speaker 
identification system. It has been shown that in clean 
speech environment the performance is 100.00 [%] for 
MFCC, ∆MFCC and LPCC and the highest identification 
rate (i.e. 82.33 [%]) has been achieved at  ∆MFCC for 
four different office environments.  

8. Conclusion and Observations 

The experimental results show the versatility of the Neuro-
Genetic hybrid algorithm based text-dependent speaker 
identification system. The critical parameters such as gain 
term, speed factor, number of hidden layer nodes, 
crossover rate and the number of generations have a great 
impact on the recognition performance of the proposed 
system. The optimum values of the above parameters have 
been selected effectively to find out the best performance. 
The highest recognition rate of BPN and GA have been 
achieved to be 94[%] and 95[%] respectively. According 
to VALID speech database, 100[%] identification rate in 
clean environment and 82.33 [%] in office environment 
conditions have been achieved in Neuro-Genetic hybrid 
system. Therefore, this proposed system can be used in 
various security and access control purposes. Finally the 
performance of this proposed system can be populated 
according to the largest speech recognition database. 
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