
 

 

  

Abstract— This paper proposes a Contourlet Transform based 

approach to the segmentation of corneal blood vessels that is of 

clinical importance in the treatment of corneal 

neovascularisation. The quantification of blood vessels provides 

means for monitoring the affect of any treatment process being 

followed. The proposed approach initially uses semi-automated 

algorithm to detect the corneal area of a high quality colour 

image of an eye. Subsequently the difference image between the 

red and green colour planes is subjected to contrast adjustment 

followed by a novel contrast enhancement algorithm in the 

Contourlet Transform domain. The enhanced blood vessel 

images are finally thresholded to form binary images, using 

which a quantification is carried out based on a measure defined 

as a ratio of pixels belonging to blood vessels within the area of 

the cornea. We provide experimental results based on four 

practical data sets obtained from patients suffering from 

different levels of corneal neovascularization.    

 
Index Terms— Contourlet Transform, contrast enhancement, 

corneal neovascularization, segmentation of blood vessels..  

I. INTRODUCTION 

he normal cornea is devoid of both blood and lymphatic 

vessels (lymphatic vessels refer to the capillaries, 

collecting vessels, and trunks that collect lymph from the 

tissues and carry it to the blood stream).. This avascularity 

(also termed the angiogenic privilege of the cornea) is highly 

conserved evolutionarily to maintain transparency and visual 

acuity. Nonetheless, because of a variety of severe 

inflammatory diseases, the cornea can become invaded by 

pathologic blood and lymphatic vessels. Pathologic corneal 

neovascularization (the excessive ingrowth of blood vessels 

from the limbal vascular plexus into the cornea, i.e., 

angiogenesis) not only reduces the quality of being able to see 

objects through the cornea (also called corneal transparency) 

but also is a major risk factor for corneal transplantation. In 

addition, host corneal neovascularization— both before as 

well as after surgery—is one of the most significant risk 

factors for subsequent immune rejections after replacing the 

 
 

damaged cornea with a clear cornea (corneal grafting). Thus 

timely and effective treatment of corneal neovascularization is 

important. 

     Quantification of corneal neovascularization provides 

means to monitor the effectiveness of any treatment process. 

To this affect many corneal imaging devices are capable of 

providing medical experts with high quality images that may 

be manually inspected and quantified. However, in severe 

cases of corneal neovasculariation, manual inspection and 

quantification becomes an extremely tedious, time consuming 

task prone to human error (figure 1 Illustrates the difference 

between severe and minor cases in terms of number of the 

blood vessels growing within the cornea). Automated or semi-

automated computer aided inspection and measurement 

provides a valuable and more accurate alternative approach. 

 

 
(a)                                              (b) 

Fig. 1. Corneal Neovascularization (a) a severe case  (b) a minor case. 

  

Literature on the quantification of Corneal 

Neovascularization focuses more on the clinical analysis 

aspects and uses basic image processing tools that are 

implemented within standard imaging applications [1-7]. 

These include the separation of colour planes, noise removal, 

contrast adjustment, thresholding based image segmentation 

etc. The use of these tools requires considerable human 

intervention and trial and error testing for determining the best 

threshold values. Further, the segmentation accuracy will 

depend heavily on the image capture device and varying noise 

levels. On the other hand some promising approaches have 

been developed for the enhancement of blood vessels in retinal 

imaging [8-13]. Our detailed study of using some of the key 
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techniques adopted in retinal blood vessel enhancement in 

corneal blood vessel enhancement revealed that the 

differences of noise levels and the presence of bright 

reflections and acute variations in background illumination in 

the latter warrants new approaches to be developed and tested

In this paper we use an approach based on 

Transform [14] which results in a local, flexible multi

resolution and directional image decomposition using contour 

segments. The directional nature of Countourlet Transforms 

allows for more accurate representation of contours, allowing 

their subsequent processing/enhancement to be done more 

efficiently. Given the fact that corneal blood vessels are of

random shapes and orientations and are of varying scale and 

resolution, the use of Countourlet Transforms in their 

representation is further justified. 

For clarity of presentation this paper is divided into five 

sections. Apart from section I that introduced the 

problem domain and gives an insight to existing solutions, 

section II presents the proposed approach. Section III provides 

experimental results and an analysis. Finally section IV 

concludes with an insight to further possible directions of 

research. 

II. PROPOSED APPROACH 

A. An Overview 

The quantification of corneal neovascularization requires 

the determination of the ratio between the total area occupied 

by the blood vessels and the total area of the cornea. This 

requires both the determination of the boundary of the cornea 

and the segmentation of all blood vessels.  

Although a number of automated corneal area segmentation 

algorithms have been proposed in literature under the present 

context of our research which focuses more on the

segmentation of blood vessels, we decided to

automatic, accurate, corneal boundary segmentation approach. 

In this approach an initial elliptically shaped countour is 

adjusted manually by the user to register with the boundary of 

the cornea. Although this step requires manual intervention 

process is easy and is worth the effort due to the difficulty of 

automatically detecting the accurate shape of a corneal 

boundary using any existing image processing approach. 

Once the corneal image is segmented it undergoes a number 

of stages of processing as illustrated by the high level block 

diagram of figure 2. 

Fig. 2. Proposed approach to corneal neovascularization

 

The contrast enhancement and noise removal are both done 

within a Countourlet Transform domain processing procedure 

described in section II.B. As a result of this stage the contrast 
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Fig. 2. Proposed approach to corneal neovascularization 

The contrast enhancement and noise removal are both done 

within a Countourlet Transform domain processing procedure 

section II.B. As a result of this stage the contrast 

of the blood vessels of the corneal image is enhanced. Further 

noise and non-uniform background illumination is minimized. 

This allows the simple thresholding based blood vessel 

extraction algorithm to perform accurately. The final 

quantification stage quantifies the total area occupied by the 

blood vessels. 

B. Contrast Enhancement and Noise Removal

Figure 3 illustrates a detailed block diagram of the stages 

involved within this phase of the proposed appr

quantification of corneal neovascularization. The subsequent 

sections provide more details of each important sub

 

 

 

 

  
Fig.3. Corneal image enhancement

 

       1) Pre-processing - Removal of non

The first phase of this stage is the determination of the 

different images between the red and green colour planes of 

the original corneal colour image. Our investigations with the 

three colour planes revealed that either the difference betwe

the red and green plane or the difference between the red and 

blue planes enables the removal of non

illumination, which is a major obstacle for the subsequent 

blood vessel segmentation stages. (see figure 

illustrates that the highlighted areas have been removed in the 

difference image between the red and green component 

images. As we can notice that the highlighted areas have been 

removed in image (d) the result of difference between the red 

and green plane. 

 
(a)                                                (b)

 
                      (c)                                                (d)

Fig. 4.  Removal of non-uniform illumination

red component image (c) green component (d) red
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Contrast Enhancement and Noise Removal 

Figure 3 illustrates a detailed block diagram of the stages 

involved within this phase of the proposed approach to the 

quantification of corneal neovascularization. The subsequent 

sections provide more details of each important sub-stage. 

 

3. Corneal image enhancement 

Removal of non-uniform illumination: 

The first phase of this stage is the determination of the 

different images between the red and green colour planes of 

the original corneal colour image. Our investigations with the 

three colour planes revealed that either the difference between 

the red and green plane or the difference between the red and 

blue planes enables the removal of non-uniform background 

illumination, which is a major obstacle for the subsequent 

blood vessel segmentation stages. (see figure 4) Figure 4 (d) 

illustrates that the highlighted areas have been removed in the 

difference image between the red and green component 

As we can notice that the highlighted areas have been 

removed in image (d) the result of difference between the red 
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Subsequent to the formation of the difference image 

contrast stretching can be used to improve the contrast further. 

This involves the determination of the highest pixel value and 

re-mapping it to 255 and the determination of the lowest pixel 

value and re-mapping it to 0. 

 

2) Contourlet transform: In general the application of 

Contourlet Transform to an image involves two stages. A 

Laplacian pyramid is first used to capture point discontinuities 

followed by the application of a directional filter bank to link 

point discontinuities into a linear structure (see section II B.4 

equation (2) and (3)). The overall result is thus an image 

expansion using basic elements such as contour segments and 

is hence named a Contourlet. 

Figure 5 illustrates the Contourlet decomposition [14] of a 

typical corneal image with neovascularization. The specific 

decomposition illustrated represents a two level 

decomposition with the first level illustrating four directions 

and the second level illustrating eight directions. It is noted 

that blood vessels are represented in their parts within the 

various sub-bands of decomposition.  

 
 
Fig. 5. Two level, 8 band Contourlet decomposition of a corneal image  

 

3) Contourlet based image enhancement: A closer look at 

the difference image between the red and the green colour 

plains reveals blood vessels of different luminosity. The 

vessels having high contrast to the background (bright) are 

easy to detect but the vessels having low contrast to the 

background will be more difficult to segment. The approach 

proposed attempts soften the stronger edges and amplify the 

faint edges so that the slim vessels will become visible. This is 

done as follows: 

After the decomposition of the image into contourlet 

coefficients they are modified via a non-linearity function yα 

defined below. Note that taking noise into consideration we 

have adopted a noise standard deviation σ in the equation (see 

section II B.4).  
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In the above equations, m determines the degree of 

nonlinearity. s introduces dynamic range compression. Using a 

nonzero s will enhance the weaker edges and soften the 

stronger edges. a is a normalization parameter. Parameter m is 

the value under which coefficients are amplified. It is 

obviously dependent on the values of pixels. There are two 

possible options to derive the value of m, 

� m
m K σ=

, which m is derived from the noise standard 

deviation by using parameter m
K

. m
K

 is independent of 

the Contourlet coefficient values and quite easy for users 

to set. When a=3, m
K

=10, all coefficients can be 

amplified between 3 and 30. 

� a
m lM=

, which m is derived from the maximum 

Contourlet coefficient a
M

 of the relative sub-band. l 

must be less than 1. In this case, choosing for instance 

a=3 l=0.5, we amplify all coefficients with an absolute 

value between 3σ  and half the maximum absolute value 

of the sub-band. 

 

The first option allows the user to define the coefficients to 

be amplified as a function of their signal to noise ratio, while 

the second choice gives a general and easy way to fix the 

parameter m independently of the range of the pixel values. 

 

 4) Estimation of noise standard deviation, σ 

Estimation of the amount of noise is crucial in many 

algorithms for digital image analysis. This enables algorithm 

to adapt to the noise instead of following fixed thresholds. 

There are a number of standard approaches one can use to 

estimate the noise variance. Since image structures like edges 

have strong second order differential components, a noise 



 

 

estimator should be insensitive to the Laplacian of an image. 

One of the estimation methods is to suppress the image 

structure by Laplace masks [15]. 

The Laplacian of an image f can be defined as follows: 
2 2

2

2 2

f f
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x y

∂ ∂
∇ = +
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Immerker in [16] suggests using the difference between two 

templates L1 and L2, approximating the Laplacian of an image 

in discrete format. The two masks are as follows: 
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The noise estimation operator M is represented by the 

difference between the two masks above: 
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which has zero mean and variance  
2 2 2 2 2(4 4 ( 2) 4 1 ) 36n nσ σ+ ⋅ − + ⋅ =

 (6) assuming that the 

noise at each pixel has a standard deviation nσ
. Assume f(x, 

y) * M denotes the value of applying the mask M at position 

(x, y) in the image f.  

Computing the variance of the output of the M operator 

applied to the image f, will give an estimate of 
236 nσ

 at each 

pixel, which can be averaged over the image f or local 

neighbourhoods to give an estimate of the noise variance
2

nσ
. 

The variance of the noise in f can be obtained as, 
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where W and H represent the width and height of image f, * is 

the time domain convolution. 

To obtain the absolute deviation from the variance above, 

assuming Gaussian distribution with zero mean and variance
2

σ , the deviation is  
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From above, we can obtain nσ
, which is the standard 

deviation of noise from the variance 
2

nσ
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 5) Inverse Contourlet transform: Once the coefficients have 

been modified following the above procedure the inverse 

contourlet transform is used to obtain the enhanced image. 

Figure 6 illustrates a typical example.  

 

 

 
(a)                                                (b) 

 
Fig. 6. The difference between the red and green component images (a) before 

application (b) after application, of countourlet based enhancement.  

 

6) Contrast enhancement filter: The following 2-D filter was 

applied on the output of the previous step (Inverse contourlet 

transform)  
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                                                                                                  (11) 

 

C. Segmentation 

After the images have been enhanced following the 

procedure described in II.B we use a simple threholding based 

approach to segment the blood vessels (Note – experimental 

selection of threshold that results in the best perceptual 

results). In doing so we create a binary image with 0 (black) 

representing pixel values outside the blood vessels and 255 

(white) representing pixel values belonging to the blood 

vessels.  

 

Figure 7 illustrates the resulting blood vessel segmentation 

obtained by following the contrast enhancement procedure 

described in II.B 

 



 

 

  
(a)                                                (b) 

 
Fig. 7. The segmentation result (a) before application (b) after application, of 

Contrast enhancement filter.  

 

D. Thinning. 

We applied a standard Thinning approach to make the 

blood vessels more analogous to the ones on the original 

image. 

 

  
(a)                                                (b) 

 
Fig. 8. The segmentation result (a) before application (b) after application, 

of the Thinning algorithm. 

 

E. Quantification 

For each image the total amount of pixels belonging to the 

entire corneal area and the total amount of pixels belonging 

to the blood vessels are calculated.  

 

III. EXPERIMENTAL RESULTS & ANALYSIS 

Experiments were performed on a set of four images with 

various degrees of corneal neovascularisation. All  

algorithms were implemented with Maltab. The results are 

illustrated in Figures 9. The images in figure 9 have been 

arranged in descending order of the degree of corneal 

neovascularization. The results illustrates the capability of 

the proposed approach to enhance the blood vessels before 

segmentation, making the quantifications more accurate. 

Table-1 tabulates the quantification results for four test 

images.  

 

 

 

 

 

 
Table.1 Quantification results 

 

 

 

 

 
 

 

 

 

 Threshold  Cornea 

area 

Vessel 

area 

Ratio% 

Image 1 35 196022 72491 36.9 

Image 2 35 197199 51138 25.9 

Image 3 70 186190 42728 22.9 

Image 4 135 157139 13374 8.5 

Image 1 Image 2 Image 3 

   
 (a)  

   
 (b)  

   
 (c)  

   
 (d)  

   
 (e)  



 

 

 

Fig. 9. Experimental Results (a) original colour images (b) red component 

images (c) green component images (d) The difference between the red and 

green component image, before enhancement (e) The difference between the 

red and green component image after countoulet based enhancement (f) result 

after applying the  contrast enhancement filter (g) binary images after 

segmentation that was used in the quantification.(h) Result after the Thinning 

algorithm is applied 

 

A closer investigation of the test image (2) of figure 9 

illustrates that the proposed approach is also able to remove 

the consideration of suture marks that are present in the 

original image due to surgical intervention.  Further, the 

approach has been able to perform remarkably well in the 

presence of significant effects of non-uniform illumination and 

reflections.  

IV. CONCLUSIONS 

We have proposed an efficient computer aided approach to 

the quantification of corneal neovascularization. The approach 

is based on the use of Contourlet Transforms to enhance the 

blood vessels before their segmentation is carried out. A 

special feature of the approach is that it is robust to different 

levels of noise that may be present in corneal images. We have 

shown that the proposed approach is capable of performing 

effectively in the presence of noise, non-uniform illumination 

and reflections. Quantifications experiments were done on 

four corneal images and the performance of the algorithms 

were analysed at various stages. 

At present we are working on making the proposed 

approach fully automated by introducing an efficient and  

robust approach to the determination of corneal boundary 

and the determination of threholding values used in the final 

stage of segmentation.  
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