Evolving the input space for decision tree building
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Abstract—The aim of this research is to extend the discrim- tackle uncertain data. Previous work has taken the inputespa
ination of a decision tree builder by adding polynomials of he as a given and used evolution to produce the trees. In this
base inputs to the inputs. The polynomials used to extend the \ ok a5 we shall see, the trees are generated using a variant

inputs are evolved using the quality of the decision trees maulting . .
from the extended inputs as a fitness function. Our approach of C4.5 and the input space is evolved rather than the trees,

generates a decision tree using the base inputs and comparigs in direct contrast to other workers.

with a decision tree built using the extended input space. Reilts A vast majority of the approaches use decision trees as

show substantial improvements. a basis for the search in conjunction with either a GA or

GP to further improve the quality of the trees. Our approach

described in this paper addresses continuous data and adds
This paper addresses the well-known problem of dag@lynomials of the input values to extend the input set. A GA

mining where given a set of data; the expected output ilSsused to search the space for these polynomials based on the

a set of rules. Decision trees using the ID3 approach [Huality of the tree discovered using a version of C4.5.

[2] are popular and in most cases successful in generating

rules correctly. Extensions to ID3 such as C4.5 and CART T

are developed to cope with uncertain data. Fu et al [3] used

C4.5 followed by a Genetic Algorithm (GA) to evolve better ID3, C4.5 and their derivatives proceed by selecting an

quality trees; in Fu's work C4.5 was used to seed a GA, whicitribute that results in an information gain with resperct t

were then used as a basis for evolving better trees then uding dependent variable. A simple data set with 2 continuous

Genetic Programming (GP) techniques to cross over the. treatdributes that are linearly separable is shown in Figure 1.

Many rule discovery techniques combining ID3 with other

I. INTRODUCTION

. | TERATIVE DISCRIMINATION

intelligent techniques such as genetic algorithms and tgene T N N T T 4
programming have also been suggested [4], [5], [6]. Gelyeral | | | | ‘ |
when using ID3 with genetic algorithms, individuals which xxxxxxxxx O 77777 ?{
are usually fixed length strings are used to represent decisi O L . S I
trees and the algorithm evolves to find the optimal tree. Pxooxix xbxox olo oio o
When Genetic Programming is used to generate decision ix x|x xix 6]lo oo olo ol
trees, individuals are variable length trees, which regres e e e ol ehe 6o o
the decision tree. Variations in these approaches can bl fou *********
in the gene encoding. One rule per individual as done in | Y ; °° | R | °° | ° D;
Greene [7], Freitas et al [8], [9] is a simple approach but [ °j° ©°jo ojo o0ro0 o050 of

the fitness of a single rule is not necessarily the best italica
of the quality of the discovered rule set. Encoding sever'ﬁg' 1 A g_ranularised version of the linearly separablec$etata based on

. . . a 2 dimensional data set.
rules in an individual requires longer and more complex
operators [10], [11]. In genetic programming, a program can
be represented by a tree with rule conditions and/or atgibu Applying C4.5 to the data set gives the result shown in
values in the leaf nodes and functions in the internal nodédgure 2, which was first documented in [15]. If no errors are
Here the tree can grow dynamically and pruning of the tréequired over a large training set then the complexity of the
is necessary [12]. Papagelis & Kelles [13] used a gene decision tree grows with the size of the training set. This is
represent a decision tree and the GA then evolves to find tivsatisfactory.
optimal tree, similar to Fu et al [3]. To further improve the Anticipating the results of the proposed system a higher
quality of the trees, Eggermont et al [14] applied severagfs level discriminant ofc—y in addition to the two basic variables
measures and ranked them according to their importance intt@andy would give the result shown in Figure 3.



X <= -0.25:
| 'y >-0.75: in (36.0)

> -0.25:
y <= 0.75 : out (40.0)
y > 0.75 :

Eval uation on training data (128 itens):
Fig. 4. A granularised version of the torus illustrating aadratic form.

Bef or e Pruni ng After Pruning

-------------------------------------- X <= -3.25 : out (16.0)

Si ze Errors Si ze Errors Estimate x > -3.25:

27 1( 0.8% 27 1( 0.8% (13.3% | X > 2.75 : out (16.0)
| X <= 2.75 :

Fig. 2. The decision tree produced by C4.5 from the lineaglyasable data | | y <=-3.25: out (12.0)

shown in Figure 1. The size of 27 indicates why this tree is nepticated | | y >-3.25: )

here. | | | y <= 2.75 : in (72.0/24.0)
I I

| y >2.75: out (12.0)
X-y <= -0.5 : out (64.0)

X-y >-0.5: in (64.0) Eval uation on training data (128 itemns):

Eval uation on training data (128 itens): Bef ore Pruning After Pruning

Bef ore Pruning After Pruning Si ze Errors Si ze Errors Estimate
------------------------------------- 9 24(18.8% 9 24(18.8% (25.5%

Size FErrors Size FErrors Estinmate

3 0( 0.0% 3 0( 0.0%9 ( 2.1% Fig. 5. The decision tree produced by C4.5 from the toroidahd

Fig. 3. The decision tree produced by C4.5 from the lineaglyasable data
using the discriminant valuge — y. .. .
g Y 5 decision points compared to 9, and has no errors compared

with 18.8% in the original tree, Figure 5.

IIl. M ORE COMPLEX DISCRIMINANTS
IV. NON PROJECTABLE DATA SETS

So far we have made no more progress than Konstam [16

who used a GA to find linear discriminants. He makes th . : .
. . ) imension and which result in large trees but are nonetbeles
comment that the technique can be applied to quadratic dis- : )
- useful predictors. Section Ill shows that these trees can be
criminants. However he makes no statements about focussin S : . . . .
uced in size considerably by adding higher dimensional

]Thus far we have seen data sets that can be projected onto 1

. €
the search. A set of data was prepared using the same Jata . : -
. . . . . combined functions of the original data elements.
points as above to explore higher order and higher dimeakion ", . LT
o . With the data sets shown in Figures 7 and 11 C4.5 does not
discriminants. The data prepared used a torus such thatspoin .
S ) ; : roduce a tree at all. Of the two data sets presented a higher
inside the torus were in the concept and points outside the ) . : :
. . o : grder combined attribute results in a concise tree where no
torus, including those that are within the inner part of the

torus, were deemed outside the concept. Figure 4 iIIustraH—:‘ee is produced without the higher order attribute. In thgec
the data set although, as above, does not show all the points.

r2 > 8.125 : out (72.0)
r2 <= 8.125 :

Applying C4.5 to the data set represented in figure I4 ﬁg ;:0%%5: : i 2uz4g.8.og))

gives the decision tree shown in Figure 5. This decision tree
is smaller than the decision tree derived from the linearval uati on on training data (128 itemns):
separable data although the function used to produce tlae dat ) _
is much more complex, and the predictions from the tree sh&®' °r € Pruni ng After Pruning
fewer errors. The decision tree is difficult to interpret. Size Errors Size Errors Estirmate
Taking the toroidal data set, Figure 4, and adding anothgr 0( 0.0% 5 0( 0.0% ( 3.1%
attribute computed from the sum of squares of x and y gives
better discrimination and a more interpretable tree shawn gig. 6. The decision tree produced by C4.5 from the augmetuzsidal
Figure 6. Notice that the decision tree is much smaller withta. r2 is the sum of the squares of x and y.



of the quadrant data set, a concise decision is possible witigure 10. This clear 2 dimensional data set results in the
the unaugmented data set, one is not produced by C4.5. following tree from C4.5, Figure 12.

A. Banded data set X <= 0.0 : (64.0)

This test shows a data set that does not project down onto 1 § ;zoobo_ : o:Jtn ggg 8;
dimension. This 2 dimensional data set results in the faligw  ~ 9. o : (64.0) '

tree from C4.5, Figure 8. | y <= 0.0 : out (32.0)
| y >0.0: in (32.0)

Eval uation on training data (128 itens):

Bef or e Pruni ng After Pruning

Si ze Errors Si ze Errors Esti mate
6 0( 0.0% 6 0( 0.0% ( 3.2%

Fig. 10. The decision tree which could be used to discrireitaé quadrant
data, but cannot be produced by C4.5.
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Fig. 7. A granularised version of banded linearly separalale. ‘o o0lo ol!o olflx x!x x!x x|

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

out (128.0/52.0)

Eval uation on training data (128 itens): ix x!x x x x|o olo olo ol

Bef or e Pruning After Pruning

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

Size Errors Size FErrors Estimate | | | | | |
1 52(40.6% 1 52(40.6% (44. 19 A R A EE S S 1

: . Fig. 11. A granularised version of quadrant data set.
Fig. 8. The decision tree produced by C4.5 from the bandeal. dat 9 9 q

The decision tree produced from the banded data, Figure 8,
is shown in Figure 8 and is almost useless. It does not revedf (128.0/52.0)
any useful information from the data. The most that can . oo : i
: . . . val uation on training data (128 itens):
gained from this data is that there are 52 elements in the

concept and the rest are out. Adding the attributey gives Before Pruning After Pruning

the tree shown in Figure 9, this is a good predictor and alse------------ - R Soo--

makes the information held in the data clear. Size Errors Size Errors Estimate
1 52(40.6% 1 52(40. 6% (44. 1%

B. Quadrant data set

This test shows a data set that cannot be doscriminate
by C4.5, however a decision tree does exist. It is shown if

X*y <= -2 : out (38.0)

d‘-ig. 12. The decision tree produced by C4.5 from the quadiata.

X-y <= -2 : out (38.0) Xxy > -2 .

X-y > -2 : | x*y <= 1.5 : in (52.0)
| Xx-y <= 1.5 : in (52.0) | xxy > 1.5 : out (38.0)
| x-y > 1.5 : out (38.0)

Eval uation on training data (128 itens):
Eval uation on training data (128 itens):

Bef or e Pruning After Pruning
Bef or e Pruni ng After Pruning CTTTtTTtTommtm TTTTTToTTTTttommes
______________________________________ Si ze Errors Si ze Errors Esti mat e
Size FErrors Size FErrors Estimte 5 0( 0.0%9 5 0( 0.0%9 ( 3.2%
5 0( 0.0% 5 0( 0.0% ( 3.2%

Fig. 13. The decision tree produced by C4.5 from the quaditate given

Fig. 9. The decision tree produced by C4.5 from the bandeal gisen the e added input feature of x*y.
added input feature of x-y.



V. GENETIC ALGORITHM 1 active
The genetic algorithm attached to the front of c4.5 has a few % fninus
special features. It follows most of the guidelines in [1ZB] >
and so has aspects designed to preserve inheritability ang 5 g
: . inactive
ensure that no part of the genome has an inordinate effectt-en T 2
the phenome. With this in mind the structure of the genome|is 51 times
made up from a set of integers, rather than a binary genome. 1
A. Genetic structure. 0 inactive
The chromosome can deliver several genes corresponding 2 | y
to several combined attributes. The chromosome is a fixed | 2| fIMes
maximum length and achieves a variable number of genes|hy 2 y
an activation flag. Each gene delivers one new attribute an |n2act|ve
each variable is a linear combination of simpler variables. 4w
1) Variable:: If the number in the variable slot i& and 2 | pl2us
there areK basic continuous variables in the data set and 5|y

variables in the gene prior to this one th&hmod (K + M) Fig. 15. An exemplar gene: andy are variables number 1 and 2. The first
refers to variable within thos& + M variables new variable istx — y and is variable number 3. As this is activated then it
. R : T .. will be made available as an input to the decision tree gémer variable 6
2) Function.: If the function is a monadic function then it isis activated then because it relies on variables 4 and 5 thikwlao be kept
applied to variable 1, otherwise to both. The prototypeesyst but not necessarily activated.
has a set of simple arithmetic functions, power, multiglaa,
division and subtraction. This is sufficient to extract dlet o
decision trees we have considered. « the number of degrees of freedom for the decision space
3) Number of genes and gene length.: The variable length  « the probability that the result could have arisen by chance
chromosome has disadvantages as the effect on the geffie itsel the decision tree size
of the two fields that determine the length of the gene is Experi al |
considerably more than any other field and can be destructi(% xperimental results
The variable length gene has similar disadvantages. The genEach data set was split randomly into two sets, the training
structure finally chosen for the system is shown in Figure I1sket which comprised 90% of the data and the test set, which
comprised 10% of the data. The split was generated by

Active choosing whether a particular data point was to be in the

Variablel training set or the test set using a random number generator.

Function This way any temporal aspects that may be in the data are
Variable2 accounted for. Notice the degrees of freedom are diffei@nt f

Fig. 14. This shows the basic structure of the gene adopted. Ac- the training set and the test set, this is because there weere n

tive/Variable/Function/Variable is repeated up to theegémgth. data elements belonging to one of the categories in the test

set, where there were elements in the training set.
This potentially has some of the properties of recessive

genes that are attributed to diploid gene structures adfhou TABLE |
. . . EXPERIMENTAL RESULTS FORGLASS DATA SET
no experiments have been conducted to determine this. An
example gene is shown in Figure 15. This gene has 4 segments, C45 [ C45+GP
1 of which is active. Each segment has 2 attributes, somngérain Correct 92.8 | 98.5
active and some not. The function field is interpreted as 2 fn%egtFﬁcr’;ﬁCt ;g égo
plus, 3 for minus, 5 for multiply. No other function types aré-por Test >5[ 25
illustrated. probability of not null test sef 1.0 | 1.0
Tree size 43 61

V1. EXEMPLAR DATA

The system described above was applied to some data setphe glass data set shows a considerable improvement for
taken from the Machine Learning Repository [19] in ordethe enhanced input space, however the decision tree isrlarge
to compare the capability of the system with other known The iris data set shows an improvement for the enhanced
decision tree generators. input space, but the improvement is marginal, however the

The experiment compares the decision trees generatedd@yision tree is smaller.

C4.5 and the decision trees generated by C4.5 with theThe Pima indians data set shows a considerable improve-
enhanced input space. The results consist of ment for the enhanced input space. Both the training set and

« the percentage of correct results on the training set the test set show improvement. The enhanced decision tree is

« the percentage of correct results on the test set also considerably bigger, by a factor of nearly 4.



TABLE I

EXPERIMENTAL RESULTS FORIRIS DATA SET [2] J. Quinlan, “Induction of decision treesMachine Learning, vol. 1,
no. 1, 1986.
C45 | C45+GP [3] Z. Fu, B. Golden, and S. Lele, “A GA based approach for ding
Train Correct 98 100 accurate decision trees/NFORMS Journal on Computing, vol. 15,
Test Correct 100 | 100 no. 5, pp. 3-23, 2003. o . . -
DOF 5 5 [4] M. Ryan and V. Ray_ward-Smlth, The evolution of deC|S|tmes_, in
robability of ot null test sei 0,99 | 0.99 Proceedings of the Third Apnual Conference on Genetic Programming,
P - . : J. Koza, Ed. San Francisco, CA.: Morgan Kaufmann, 1998, pp-3
Tree size 9 7 358
[5] R. Marmelstein and G. Lamont, “Pattern classificationngsa hybrid
TABLE Il genetic program-decision tree approach,”Hroceedings of the Third
EXPERIMENTAL RESULTS FORPIMA INDIANS DATA SET Annual Conference on Genetic Progra_mming’ J. Koza, Ed. San
Francisco, CA 94104, USA: Morgan Kaufmann, 1998.
C4.5 | C4.5+GP [6] G. Folino, C. Puzzuti, and G. Spezzano, “Genetic prognamg and
Train Correct 82.7 | 98.3 simulated annealing: a hybrid method to evolve decisioestten Pro-
Test Correct 745 | 84.2 ceedings of the Third European Conference on Genetic Programming,
DOF 2 2 R. Poli, W. Banzhaf, W. Langdon, J. Miler, P. Nordin, and Tgé&udy,
probability of not null | 1.0 1.00 Eds. Edinburgh, Scotland, UK: Springer-Verlag, 2000, f®-303.
Tree size 33 119 [7] D. Greene and S. Smith, “Competition-based inductiondetision

models from examplesMachine Learning, vol. 13, pp. 229-257, 1993.
[8] A. Freitas, “A GA for generalised rule induction,” iAdvances in Soft
Computing, Engineering Design and Manufacturing.  Berlin: Springer,
The experiments have shown that the enhanced system is 1999, pp. 340-353.
able to significantly improve the quality of the decisionsdma [9] D. Carvalho and A. Freitas, “A genetic-algorithm basetlton for the

.. problem of small conjuncts,” ifPrinciples of Data Mining and Knowl-
however this is often at the expense of a larger tree. Th@test  eqge Discovery (Proc. 4th European Conf., PKDD-2000. Lyon France),

the iris data set indcates that the decision tree can beeamall ser. Lecture Notes in Artificial Intelligence, vol. 1910. rBger-Verlag,

: P 2000, pp. 345-352.
as shown by some of the demonstration data sets earlier in [Iﬂ)? K. De Jong, W. Spears, and D. Gordon, “Using a genetioritlgn for
paper. concept learning,Machine Learning, vol. 13, pp. 161-188, 1993.
[11] C. Janikow, “A knowledge intensive GA for supervisedariging,”
VII. CONCLUSIONS Machine Learning, vol. 13, pp. 189-228, 1993.

. g s ] Y. Hu, “A genetic programming approach to constructimduction,” in
This paper has extended the capability of decision tr&e Genetic Programming, Proceedings 3rd Annual Conference, San Mateo,

induction systems where the independent variables are con- caiifornia, 1998, pp. 146-151.
tinuous. The incremental decision process has been shdid A. Papagelis and D. Kalles, “GA tree: Genetically ewmlvdecision

; : o trees,” in Tools with Al, ICTAI Proceedings 12th |EEE International
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