
1

INTRODUCING SOCIAL DEVELOPMENT ENVIRONMENTS

Hani Bani-Salameh Clinton Jeffery Iyad Abu Doush

Computer Science Department Computer Science Department Computer Science Department

University of Idaho University of Idaho Yarmouk University

Moscow, ID 83843, USA Moscow, ID 83843, USA Irbid, Jordan
hani@uidaho.edu jeffery@uidaho.edu iyad.doush@yu.edu.jo

ABSTRACT

A Social Development Environment is a real-time collaborative

programming tool with integrated social networking features.

This emerging technology is important for distributed software

developers, e-learning and technical communities. Social

Development Environments advance the state of the art for

collaboration, coordination, and project management in software

development.

Social Development Environments provide a wide range of

facilities for synchronous and asynchronous collaboration and

information sharing between team members. This paper provides

an overview of SDEs and compares state of the art examples with

our novel solution called SCI (Social Collaborative IDE).

Keywords: Collaborative Development Environment, Social

Networks, Software Development.

1. INTRODUCTION

Software engineering is a team effort. Software developers spend

a majority of their time on programming activities using a

development environment coupled with a variety of collaborative

tools. Instant messaging systems, bug trackers, and configuration

management systems are assembled coherently to compose

Collaborative Development Environments (CDEs) for software

engineers [1, 2].

 Many projects involve a broad community of individuals

from different institutions [3]. Software development is a very

knowledge intensive and social process where developers

exchange information and code fragments, connect with others

who share technical interests, post messages in the team or

community weblogs, and answer questions and discuss issues in

public mailing lists [4]. Software development success depends

on the ability to share and integrate information [5].

2. COLLABORATIVE TOOLS GO SOCIAL

Collaborative Development Environments are virtual spaces

where developers of a project can meet, brainstorm, discuss,

record, and go over ideas to solve design and coding problems,

and create software products. During these activities, developers

often need to interact with individuals who have expertise in

particular technical problem domains. As Booch mentioned [6],

“CDEs are essentially team centric, meaning that their primary

user experience focuses on the needs of the team (but with points

of entry for different individuals).”

Grady Booch [1, 5] stated that the purpose of a CDE is to

create a foundation for environments (tools) that reduces the

frictions that have an impact on the daily work of the distributed

software developers and reduces both individual and group

efficiency, and to support the development process during the

whole life cycle of the project.

In contrast with the support that CDEs provide for teams

working closely together, social networks build online

communities of people loosely connected by their common

interests or activities. Community is a vital aspect of software

development, but software developers tend to focus their attention

primarily on their programming environment tools. Software

development projects usually include communities of users.

Community members play vital roles that reflect the success of

such projects, such as reporting bugs, helping other users, and

analyzing problems. These observations lead to a new category of

tool, the Social Development Environment (SDE).

In this paper the term social software development refers to

software development in collaborative online communities with

social relationships. Software development requires interaction

between the people involved in the development process. For this

reason, social activities form a big part of their daily work. In

software development, developer networks are an instance of

object-centered sociality [7], where developers do not usually

interact merely to socialize, as in conventional social networks. In

contrast, they interact and collaborate primarily through shared

project artifacts.

Communication is an important factor for software projects to

succeed. With the geographical, cultural, time-zone, or language

barriers that face the project members involved in the

development, making communication and collaboration more

successful is a not an easy task. Communication leads to

collaboration between the project’s team to accomplish certain

tasks. As teams become more and more geographically

distributed, collaboration becomes more critical and difficult to

achieve. Team members usually use different tools to

communicate and that leads to difficulties to collaborate and

finish their tasks.

2

As mentioned earlier, there are hundreds of communication

applications that are used by software development communities

and these can be combined to support distributed development

teams [7, 8]. CDEs integrate collaboration and programming

tools in one environment. SDEs integrate the development

environment and the social network in a single environment, and

support the interaction between the social networking features

and the communication and collaboration tools. SDEs add value

because they touch on the social and presence elements of

software development. An SDE aims to help users maximize their

productivity, and to help distributed team members maintain a

level of social awareness regarding other team members’ roles,

activity patterns and contributions to the project, as well as the

resources in the community relevant to a given project. In

general, the purpose of the SDE is to provide a frictionless

environment for software development by eliminating the need to

switch between different tools in order to perform their various

solitary and collaborative tasks.

To summarize, CDEs and SDEs share substantially

overlapping purpose and objectives. SDEs add value by

integrating features that help establish and support interaction

among distributed developers, strengthen social bonds,

communication and interactions, and make it possible for them to

work hand in hand, build trust, and have the ability to network.

SDEs are a category of CDEs where the system provides a fully

featured social network for distributed developer communities. In

and SDE, developers can browse profiles, create development

projects, and form professional teams. In addition, SDEs provide

views for listing people and groups, project data, activities, etc.

all from inside the environment. By using these views, users will

be able to request help and assist others in their projects, and form

strong social bonds among the community members. In general,

an SDE is an environment that allows distributed developers to

work hand in hand and also have the ability to network. It is a

combination of social networking and collaborative software

development. The next section describes social teams and their

changing nature.

3. THE SOCIAL NATURE OF TEAMS

Teams are central to software development. While some projects

involve only immediate team members, many require

contributions from a broader community of individuals from

different institutions [3]. Many developers contribute to several

projects in any given week. Thus, not only must a collaborative

tool focus on the activities of the individual project teams, it must

also be concerned about the activities and interactions across

teams and teams of teams.

In general, teams are not what they used to be. The nature of

teams has changed for reasons such as the nature of the work and

the increase in geographic distribution. Thus, relationships and

communications between distributed team members are

becoming more important.

One of the pervasive problems facing any software

development team is getting the right level of communication to

coordinate their work and perform their tasks effectively, and this

problem is more difficult for distributed teams. Factors such as

the degree of distribution and the supported technologies affect

what types of communication are necessary. Trust between team

members is an important factor. It is important to have knowledge

of team members' expertise of shared topics and projects, and to

have strong informal relationships with team members. Such

factors encourage trust between distributed team members [9].

Layzell and others [9], suggest that project members are more

enthusiastic when they are personally interested in a project, and

when they know and like the other project members. This gives

an indication of the social nature of teams and their need to

socialize in order to excel. Also, it explains the value of the social

interactions between distributed developers, and the role of social

interactions in building stronger trust ties among them.

Large scale software development is a social endeavor. For

team members to function effectively, they must maintain a

certain level of social awareness. Developers must be aware of

their other team members’ roles and activities, as well as the

resources in the community relevant to a given project. Also, in

order to catch people when they are “in” and focused on a given

task, developers need to be aware of the other team members’

primary activity windows and/or activity history [4].

4. TECHNICAL CHALLENGES

Like any other distributed groupware system, an SDE has many

technical challenges that need to be addressed. This section

touches on a handful of these challenges.

The interactions between distributed team members are

disadvantaged due to the lack of the rich social communication

and coordination that is only possible when team members are

collocated. Being aware of these challenges is important for

evaluating the effectiveness of a groupware system. The

following are some of the problems that are facing distributed

teams [4]:

1. Distributed teams lose awareness of social interactions
and other members' activities. They are limited in the number and
type of spontaneous interactions that occur between team members.

2. Team members cannot easily observe what each other are
working on, the status of their activity, and what tasks are
underway.

3. In distributed environments, communication relies on
lower-bandwidth tools and applications such as phone and email.
Also, they are constrained by transaction delays in comparison with
face to face interactions and encounters.

3

4. In order for the distributed teams to manage their project
artifacts, they face numerous challenges, including version control
and user access management.

5. REAL-WORLD EXAMPLES

An SDE is not a single application, it is a harmony between many

different development tools. Several applications support the

primary collaborative infrastructures for complete SDEs in a

single environment. SDEs include a spectrum of collaborative

tools that can be of a big benefit to the development communities,

each of these tools adds its own taste and value to the integrated

environment, including Web logs (blogs), Mailing lists, Walls,

Chat rooms, Whiteboards, and Wikis. This section presents a few

related and well-known SDEs.

5.1. Jazz

The most widely-publicized example of a social development

environment thus far is Jazz, a research project at IBM that adds a

set of collaboration tools and features to the Eclipse IDE [2, 10].

The objective is to help foster collaboration within the group.

Jazz provides a facility similar to an IM buddy list to monitor

who is online and whether they are coding or not. Developers can

initiate chats, or use different communication methods such as

screen sharing and VoIP telephony. Jazz also provides developers

with some awareness of the activities of other team members

[10]. Figure 1 shows Jazz’s improvement of team collaboration

to: 1) support Awareness of similar work; 2) track historic

assignments; and 3) link team members [11]. When a user opens

a new file, the system shows images of developers who are

working in related artifacts (Figure 1(A)), and allows users to

hover over developer’s images to view their information and what

artifacts they are working on (Figure 1(B)), also the system

recommends expert developers and allows users to view their

artifacts (Figure 1(C)).

IBM added enterprise social networking features to the

Rational Team Concert (RTC) development environment in their

release of Mainsoft Document Collaboration for Rational Jazz

mentioned on SPTechBlog [12]. Developers are able to: (1)

Access SharePoint My Sites, with links to blogs and wikis, (2)

View SharePoint Personal Profiles, and (3) Use SharePoint

People Search. These features are available on top of the existing

integration of SharePoint document libraries and workflows with

the Jazz development process. Developers can view their other

team members’ SharePoint My Sites from the RTC’s team

artifacts view. Blogs and wikis linked from My Sites are also

listed in the Team Artifacts view, and they can be opened directly

from RTC [13].

Figure 1. Jazz’s Improvement of Team Collaborating (Rationale Ensemble) (adapted from [11]).

4

5.2. MydeveloperWorks

IBM’s MydeveloperWorks social networking service has the

motto: "social networking is the development process".

MydeveloperWorks is a new way for distributed developers to

connect and interact with their fellow developers.

MydeveloperWorks developers can create their own personal

profile and customize their home page to get instant access to the

people, feeds, tags, bookmarks, blogs, groups, forums, etc. that

they care about, and search through user profiles for those with

like-minded interests.

IBM's goal with MydeveloperWorks is to connect the global

community of software developers and make it easier for them to

create new technologies based on open standards such as Java,

Linux and XML [14, 15]. Figure 2 [16] shows that users can have

access to files uploaded by others.

5.3. CollabVS

CollabVS [17] is an SDE based on Microsoft Visual Studio

that allows developers to work together whether planned or ad-

hoc. For example, a pair of developers can agree to work together

at a scheduled time; in addition, a developer can initiate

collaboration with whomever happens to be available online at

any given time. CollabVS extends the Visual Studio programming

environment by adding collaboration tools, such as text and VoIP

chat, watching the unchecked versions of files, and notification of

presence in files. Although CollabVS targets collaboration among

distributed developers, it still relies on the classical check

out/check in model and treats files as the lowest level of

granularity [18. 19].

Although it does not provide full social networking tools,

CollabVS provides two kinds of presence 1) real-time presence

that make the user aware of what other team members are

currently doing (it shows what users are online and whether they

are editing, debugging, engaged in an instant messaging session,

etc); 2) contextual presence facilitates finding relevant

information and people quickly [17].

5.4. Zembly

Zembly [20] is a socially-networked development

environment from Sun. Zembly supported the development of

cloud applications on platforms including Facebook, OpenSocial,

iPhone and other platforms. With Zembly users can do social

programming, and develop applications with other people using

social networking‐type features. Not only Developers can reuse

pieces and parts of other developers’ projects (a work that they

previously implemented to construct new applications), but also

inviting friends and colleagues for collaboration. Also, they can

see what colleagues are working on via news feeds, and keep up

with what others publish and even with what changes they make

to their projects’ artifacts. It is a browser‐based environment

where all activities such as editing, testing, and documenting

happen within the browser with the collaboration of other

developers.

5.5. SCI

SCI [21] is another SDE that allows developers to work

together. Developers can use SCI’s collaborative tools to perform

standard activities such as: programming, testing, and debugging.

SCI supports social presence and messaging within teams and

communities, roles and activities, as well as finding relevant

information and people quickly.

Figure 3 shows the major SCI components. Tabs (F), show

social awareness of the users, their status (online, offline, or idle),

active collaborative sessions and members of each session.

Information in the tabs allows users to observe the presence of the

available teams (groups) and who belongs to each team. Also,

they show the presence of each team member, their activity in the

project, and their activity history. The social parts (G, H, and I)

represent that subset of the awareness information that users get

“for free” while concentrating on their project tasks; it includes a

sessions tree, users tree, groups tree, and projects tree. Figure 3

(I) is a bar chart that shows additional information on a project

from the user projects list. This detail view cycles semi-randomly

through the user's projects, allocating more time to projects with

high activity. The chart shows the project members' activity and

percentage of the time each spent working in the project. Icons (J)

and (K) show passive awareness user notifications of pending

invitations and requests and emails that they receive from friends

and other community members.

5.6. Discussion

The SDE's discussed in this section illustrate just the

beginnings of this genre of software tools. To our knowledge, no

existing tool takes the full "social networked IDE" concept to its

limit. Jazz supports many aspects of social networks. Like SCI,

Jazz focuses on increasing the user’s awareness of people,

resources, and activities, and on fostering communication among

Figure 2. My developerWorks Public Files page.

5

team members. Both Jazz and SCI support synchronous chat

discussions. Also, Jazz provides team-centric discussion boards

that compare to the asynchronous news feed supported by SCI.

User profiles are not integrated in Jazz, but Jazz users can create

their own profile by linking to SharePoint, where in SCI

developers can view other developers' profiles, friends, groups,

projects, and activities directly from the SCI environment. Jazz

supports awareness of the committed code changes with respect

to the code repository. In contrast, SCI provides the developer

awareness information of the committed and uncommitted code

changes, of the currently edited files, and indicates who is

responsible for the changes.

Most of the cited and existing projects implement a subset of

social networking, but do not fully integrate social networking

features within an IDE. They may have some social network-like

features, but not others such as user profiles and news feed. The

major difference between SCI and almost all the related work

cited in this section is the full integration of social network

features inside the software development environment, and

without linking to third party products.

The SDE tools presented previously in this section are

categorized in Table 1. Table 1 shows that SDE tools vary in the

number of awareness and social supported features.

6. CONCLUSIONS

Social support for software development is an important

emerging field of research. Conventional single-user

programming tools and generic communication tools do not

provide the needed environment for smooth collaboration

between distributed developers due to the size and complexity of

today's development projects. SDE tools that support and provide

project artifacts’ updates in real time have the potential to raise

the level of communication, and coordination between distributed

developers.

Most current SDEs have limitations, including little support

for awareness and online presence, missing social networking

features, and weak support for source code repositories’ features.

The multitude of tools increases the friction that results from

switching among different tools.

There is great promise in exploring tool support for the social

side of software development. Collaboration plays a crucial role

in software development. For this reason, continuing to improve

the collaborative tools available inside integrated development

environments is of great potential benefit. Collaborative tools can

be used alongside a non-collaborative IDE, but integration adds

qualitative and quantitative awareness information and reduces

the cost of collaboration during the development process,

particularly for distributed teams.

While CDEs support distributed communities’ work

effectively, we believe SDEs will add better benefit development

Table 1. Awareness Features of Existing SDE system.

Figure 3. A View of the SCI Development Environment.

6

communities and help them increase their productivity and

produce better software products.

7. ACKNOWLEDGEMENT

This research was supported in part by a grant from the National

Science Foundation under agreement number DUE-0402572. In

addition, this work was supported in part by the Specialized

Information Services Division of the U.S. National Library of

Medicine

8. REFERENCES

[1] Booch, G., and Brown, A. Collaborative Development Envi-

ronments, in Advances in Computers Vol. 59, Academic

Press, August 2003.

[2] Cheng, L., Hupfer, S., Ross, S., Patterson, J., Clark, B., and

de Souza, C. Jazz: a Collaborative Application Development

Environment, Demonstration at the 18th annual ACM

SIGPLAN Conference on Object Oriented Programming

Systems Languages and Applications, Anaheim, CA, USA,

pp. 102-103.

[3] Ehrlich, K., Valetto,G., and Helander, M. Seeing Inside:

Using Social Network Analysis to Understand Patterns of

Collaboration and Coordination in Global Software Teams,

pp.297-298, International Conference on Global Software

Engineering (ICGSE 2007), 2007.

[4] Prasolova-Førland E., and Divitini, M. Collaborative Virtual

Environments for Supporting Learning Communities: an Ex-

perience of Use, Proceedings of the 2003 International ACM

SIGGROUP Conference on Supporting Group Work, Sanibel

Island, Florida, USA, 2003, pp. 58 – 67.

[5] Lanubile, F. Collaboration in Distributed Software Develop-

ment, in A. De Lucia and F. Ferrucci (Eds.): Software Engi-

neering, LNCS 5413, Springer-Verlag Berlin Heidelberg, pp.

174-193, 2009.

[6] Booch, G. Introducing Collaborative Development Environ-

ments. Technical report, IBM Rational (2006), Available at

ftp://ftp.software.ibm.com/software/rational/web/whitepapers

/Grady_Booch_CDE.pdf. Accessed December 20, 2010.

[7] Bouillon, P., Krinke, J., and Lukosch, S. Software Engineer-

ing Projects in Distant Teaching, 18th Conference on Soft-

ware Engineering Education & Training (CSEET'05), 2005,

pp.147-154.

[8] Bani-Salameh, H., Jeffery, C., Al-Sharif, Z., and Doush, I.

Integrating Collaborative Program Development and De-

bugging within a Virtual Environment, Proceedings of the

14th Collaboration Researchers’ International Workshop on

Groupware (CRIWG 2008), Omaha, Nebraska, USA, 2008,

pp. 107-120.

[9] Layzell, P., Brereton, O., and French, A. Supporting Collabo-

ration in Distributed Software Engineering Teams, The Asia-

Pacific Software Engineering Conference, 2000, pp. 38-45.

[10] Cheng, L., de Souza, C., Hupfer, S., Patterson, J., and Ross,

S. Building Collaboration into IDEs. ACM Queue 1, 9(2003-

2004), pp. 40-50.

[11] Screenshots of new IBM Rational Jazz products.

http://mikemacd.wordpress.com/2008/06/24/screenshots-of-

new-ibm-rational-jazz-products/. Accessed December 29,

2010.

[12] SPTechBlog. The SharePoint Technology Blog. Bridging the

SharePoint-IBM divide. Available at

http://www.sptechblog.com/2009/05/bridging-sharepoint-

lotus-divide.html. Accessed January 14, 2011.

[13] Bringing Social Networking to Jazz. Available at

http://sharepointlotus.net/content/bringing-social-

networking-jazz. Accessed January 14, 2011.

[14] Communities of Practice. Available at

http://www.infed.org/biblio/communities_of_ practice.htm.

[15] IBM‟s Social Network for Software Developers. Available at

http://www.mytechboxonline.com/mtosn/sn-ibmdev-04.html.

Accessed December 29, 2010.

[16] My developerWorks: New ways to build your technical skills

and your professional network. http://www.ibm.com/ devel-

operworks/library/j-mydeveloperworks-intro/index.html

?S_TACT=105AGX01&S_CMP=HP. Accessed January 10,

2011.

[17] Collaborative Development Environment using Visual Stu-

dio. Available at http://research.microsoft.com/enus

/projects/collabvs/default.aspx. Accessed December 29,

2010.

[18] Hattori, L., Lanza, M. An Environment for Synchronous

Software Development. ICSE Companion 2009: 223-226.

[19] Hegde, R., and Dewan, P. Connecting Programming Envi-

ronments to Support Ad-Hoc Collaboration. ASE 2008: 178-

187.

[20] Anderson, G., Anderson, P., Fast, T., and Webster, C. Assem-

ble the Social Web with zembly. Prentice Hall PTR (1st Ed.).

December 2008. Available at

http://www.asgteach.com/books/zemblybook.html. Accessed

January 15, 2011.

[21] Bani-Salameh, H., Jeffery, C., Al-Gharaibeh, J. A Social

Collaborative Virtual Environment for Software Develop-

ment. Collaborative Technologies and Systems (CTS), 2010

International Conference on DOI

10.1109/CTS.2010.5478525.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hattori:Lile.html
http://www.informatik.uni-trier.de/~ley/db/conf/icse/icse2009c.html#HattoriL09

